复变函数第二章解析函数2

复变函数第二章解析函数2
复变函数第二章解析函数2

复变函数第二章解析函数2.2(2)初等函数课件

复变函数第二章标准答案

复变函数第二章答案

————————————————————————————————作者:————————————————————————————————日期:

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

(完整版)复变函数试题库

《复变函数论》试题库 梅一A111 《复变函数》考试试题(一) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n ...lim 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数. 9. z z sin 的孤立奇点为________ . 10.若0z 是 )(z f 的极点,则___ )(lim 0 =→z f z z . 三.计算题(40分): 1. 设 )2)(1(1 )(--= z z z f ,求)(z f 在} 1||0:{<<=z z D 内的罗朗展式. 2. .cos 1 1||?=z dz z 3. 设 ? -++=C d z z f λ λλλ1 73)(2,其中 }3|:|{==z z C ,试求).1('i f + 4. 求复数 11 +-= z z w 的实部与虚部. 四. 证明题.(20分) 1. 函数 )(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数, 那么它在 D 内为常数. 2. 试证 : ()f z = 在割去线段0Re 1z ≤≤的z 平面内能分出两 个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.

最新复变函数第二章答案

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

复变函数第二章习题答案精编版.doc

第二章解析函数 1-6 题中: (1)只要不满足 C-R 条件,肯定不可导、不可微、不解析 (2)可导、可微的证明:求出一阶偏导u x, u y, v x, v y,只要一阶偏导存在且连续,同时满足C-R 条件。 (3)解析两种情况:第一种函数在区域内解析,只要在区域内处处可导,就处处解析;第二种情况函数在某一点解析,只要函数在该点及其邻域内处处可导则在该点解析,如果只在该点可导,而在其邻域不可导则在该点不解析。 (4)解析函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解析的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解析函数。 解析函数求导: f ( z) u x iv x 4、若函数f ( z)在区域 D上解析,并满足下列的条件,证明 f ( z) 必为常数。 (1)f z 0 z D 证明:因为 f ( z) 在区域上解析,所以。 令 f (z) u( x, y) iv ( x, y) ,即 u v , u v f (z) u i v 0 。 x y y x x y 由复数相等的定义得:u v u v x y 0, 0 。 y x 所以, u( x, y) C1(常数),v( x, y) C2(常数),即 f (z) C1 iC2为 常数。 5、证明函数在z 平面上解析,并求出其导数。 (1) e x ( xcos y y sin y) ie x ( y cos y x sin y).

证明:设 f z u x, y iv x, y = e x ( x cos y y sin y) ie x ( y cos y xsin y). 则 u , y x ( x cos y y sin y ) , v x, y x x e e ( y cos y x sin y) u e x ( x cos y ysin y) e x cos y v e x cos y y sin ye x x cos ye x x ; y u e x ( x sin y sin y y cos y) ; v e x ( y cos y x sin y sin y) y x 满足 u v , u v 。 x y y x 即函数在 z 平面上 ( x, y) 可微且满足 C-R 条件,故函数在 z 平面上 解析。 f (z) u i v e x (x cos y y sin y cos y) ie x ( y cos y x sin y sin y) x x 8、(1)由已知条件求解析函数 f ( z) u iv u x 2 y 2 xy f (i ) 1 i 。 , , 解: u x 2x y, u y 2 y x 由于函数解析,根据 C-R 条件得 u x v y 2x y 于是 y 2 v 2xy (x) 2 其中 ( x) 是 x 的待定函数,再由 C —R 条件的另一个方程得 v x 2y ( x) u y 2y x , x 2 所以 (x) x ,即 (x) c 。 2 于是 v y 2 x 2 c 2xy 2 2 又因为 f (i ) 1 i ,所以当 x 0, y 1 ,时 u 1 1 1 , v c 1得 c 2 2

复变函数与积分变换课后习题答案详解

… 复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) / ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππ2222e cos isin i i 44-??????=-+-= +-=- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+); 3 3 31313;;;.n i i z i ???? -+-- ? ? ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 3 2 2 222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ () ()()()(){ }3 3 2 3 2 1i 31i 311313313388-+??-+? ???== --?-?+?-?- ? ?????? ? ?? ?? ()1 80i 18 = += ∴1i 3Re 1?? -+= ? ??? , 1i 3Im 0??-+= ? ???. ④解: ∵ () ()() ()()2 3 3 23 1313 3133i 1i 38 ??--?-?-+?-?- ?? ??-+? ? = ? ??? ()1 80i 18 = += ∴1i 3Re 1??-+= ? ?? ? , 1i 3Im 0??-+= ? ??? . ⑤解: ∵()()1, 2i 211i, k n k n k k n k ?-=?=∈?=+-???. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i 415-+=+=. 2i 2i -+=-- ②解:33-= 33-=- ③解:()()2i 32i 2i 32i 51365++=++=?=. ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 2 22++== ()1i 11i 222i ++-??= = ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+, 则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数. 若z =x ,x ∈,则z x x ==.

复变函数第二章学习方法导学

第二章 解析函数 解析函数是复变函数论研究的中心和主要对象,它是一类具有某种特性的可微(可导)函数,并在理论和实际问题中有着广泛的应用. 本章,我们首先介绍复变函数的极限与连续,并从复变函数的导数概念出发,引入解析函数,导出复变函数可导和解析的主要条件——柯西—黎曼条件,并给出判断函数可导和解析的一类充分必要条件(它是用复变函数的实部和虚部两个二元实函数所具有的微分性质来表达的充要条件);其次,介绍几类基本初等解析函数,这些函数实际上是数学分析中大家所熟知的初等函数在复数域上的推广,并研究它们的有关性质. 一、基本要求 1.掌握复变函数的极限和连续的概念,能对照数学分析中极限和连续的性质,平行地写出复变函数的极限与连续的相应性质(比如极限和连续的四则运算性、极限和连续的局部不等性(由于复数没有大小的规定,因此,此性质是与局部保号性相对应的性质)、极限与连续的局部有界性、极限存在的柯西准则、极限的归结原则和复合函数的连续性等),并能熟练地运用四则运算性和复合函数的连续性求函数的极限或判断函数的连续性. 2.熟练掌握复变函数的极限和连续与其实部、虚部两个二元实函数的极限和连续的等价关系,能利用这种关系借助二元实函数的极限或连续简洁地求复变函数的极限或讨论复变函数的连续性;能利用这种关系借助有界闭集上二元连续函数的整体性质简洁地证明有界闭集上复变连续函数的整体性质(比如:有界性,最大模和最小模的存在性,一致连续性).另外,关于对具体函数的一致连续性的讨论,大家还要掌握利用下面的结论来判断函数不一致连续的有效方法,结论如下: 复变函数()f z 在点集E ?£上一致连续?对任意两个点列n z ,n z 'E ∈,只要0()n n z z n '-→→∞,总有()()0()n n f z f z n '-→→∞.

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) () 1 -=n n nz z ' (n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-?? ??? ?++-+ += -+= --→→ 2 2 1 12 1lim lim ' ()() 1 1 2 1 12 1----→=?? ? ?? ?++-+ = n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: () ()2 11 111 1z z z z z z z z z z z z z z z z z - =+-= +-= - += ?? ? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??, 0=??y u , 0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2 在直线2 1- =x 上可导,在复平面内处处不解析。 2) ()3 3 32y i x z f += 解:设()iv u z f +=,则3 2x u =,3 3y v = 2 6x x u =??, 0=??y u , 0=??x v , 2 9y y v =??都是连续函数。 只有2 2 96y x =,即032=± y x 时才满足柯西—黎曼方程。 ()3 3 32y i x z f +=∴在直线 032=± y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 2 2 += 解:设()iv u z f +=,则2 xy u =,y x v 2 =

复变函数课后部分习题解答

(1)(3-i) 5 解:3-i=2[cos( -30°)+isin(-30°)] =2[cos30°- isin30°] (3-i)5 =25[cos(30°?5)-isin(30°?5)] =25(-3/2-i/2) =-163-16i

(2)(1+i )6 解:令z=1+i 则x=Re (z )=1,y=Im (z )=1 r=z =22y x +=2 tan θ=x y =1 Θx>0,y>0 ∴θ属于第一象限角 ∴θ= 4 π ∴1+i=2(cos 4π+isin 4 π ) ∴(1+i )6=(2)6(cos 46π+isin 4 6π ) =8(0-i ) =-8i 1.2求下式的值 (3)61-

因为 -1=(cos π+sin π) 所以 6 1-=[cos(ππk 2+/6)+sin(ππk 2+/6)] (k=0,1,2,3,4,5,6). 习题一 1.2(4)求(1-i)3 1的值。

解:(1-i)3 1 =[2(cos-4∏+isin-4 ∏ )]31 =62[cos(12)18(-k ∏)+isin(12 ) 18(-k ∏)] (k=0,1,2) 1.3求方程3z +8=0的所有根。 解:所求方程的根就是w=38- 因为-8=8(cos π+isin π) 所以38-= ρ [cos(π+2k π)/3+isin(π+2k π)/3] k=0,1,2

其中ρ=3r=38=2 即 w=2[cosπ/3+isinπ/3]=1—3i 1 w=2[cos(π+2π)/3+isin(π+2π)/3]=-2 2 w=2[cos(π+4π)/3+isin(π+4π)/3]= 1—3i 3 习题二 1.5 描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。 (1) Im(z)>0 解:设z=x+iy 因为Im(z)>0,即,y>0

复变函数测试题及答案-精品

第一章 复变函数测试题及答案-精品 2020-12-12 【关键字】条件、充分、关系、满足、方向、中心 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为

i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

复变函数与解析函数

复变函数与解析函数 专业:工程力学姓名:李小龙学号:10110756在此仅对基础知识加以总结归纳。 1、基本概念 1、复数 指数表示: 宗量:一个函数的自变量是一个复杂的对象,这是通常称为宗量。 若是z的辐角,则也是其辐角,其中是整数集合,若限制,所得的单值分支称为主值分支,记作argz。 做球面与复平面相切于原点O,过O点作直线OZ垂直于复平面,与球面交于N,即球的北极。 设z是任意复数,连接Nz,与复球面交于P,z与P一一对应,故复数也可用球面上的点P表示,该球面称为复球面。 当,作为N的对应点,我们把复平面上无穷远点当做一点,记作,包括的复平面称为扩充复平面。 2、复变函数 领域:由等式所确定的点集,称为的领域,记作,即以为中心,为半径的开圆(不包括圆周)。 区域:非空点集D若满足:一、D是开集,二、D是连通的,即D中任意两点均可以用全属于D的折线连接。则我们称D为区域。 单通与复通区域:在区域D内画任意简单闭曲线,若其内部全含于D,则D称为单通区域,否则称为复通区域。 复变函数:以复数为自变量的函数。记 则: 所以一个复变函数等价于两个二元实变函数。它给出了z平面到w平面的映射或变换。 复变函数的连续性: 如果 则称在处连续。 3、解析函数

复变函数的导数: 复变函数定义在区域D上,,如果极限 存在且有限,则称在处可导或可微(differentiable),且该极限称为在处的导数或微商(derivative),记作: 解析函数: 若函数f(z)在区域D内可导,则称为区域D内的解析函数,也称全纯函数。 奇点:若函数f(z)在某点不解析,但在的任意领域内都有它的解析点,则称为f(z)的奇点(singular point)。 Cauchy-Riemann条件(CR条件) 此为f(z)在z点可微的必要条件。 充要条件: (1)二元函数u(x,y),v(x,y)在点(x,y)可微。 (2)u(x,y),v(x,y)在点(x,y)满足CR条件。 另外我们有推论: 若f(z)在D内解析,则f(z)在D内具有任意阶导数。 4、初等单值函数 初等函数(elementary function)是由基本初等函数(通常认为包括常数,幂函数,指数函数,对数函数,三角函数,反三角函数)经过有限次的加减乘除和复合所构成的函数。 令 称为有理分式,也称有理函数。除去满足的点外,f(z)在复平面上处处解析,是f(z)的奇点。 复变量的三角函数(trigonometric function)是通过指数函数来定义的:显然都是周期函数,周期为,且他们的绝对值都能大于1. 如:,显然可以大于任意数。 双曲函数: 复变量的双曲函数也是通过指数函数来定义的。 称为双曲余弦函数和双曲正弦函数。他们在整个复平面上解析。 5、解析函数的物理意义 调和函数:如果二元实变函数在区域D内具有连续的二阶偏导数,且满足二维Laplace方程 则称为区域D内的调和函数。 若是区域D内的解析函数,则、均为D内的调和函数。

复变函数第二章

第二章全纯函数 §2.1习题 1.研究下列函数的可微性: (i )();f z z = 解: 0z ≠时 00000 ()() lim lim z z z z z z f z f z z z z z →→--=--不存在 这是因为当0z x iy =+时, 000 lim lim y y y y →→= 当0z x iy =+时, 000 lim lim x x x x →→= = 故0z ≠时,()f z 不可导. 当0z =时,有 ()(0)i i z f z f r e z z re θ θ -??-?===??? 即知()f z z =在0z =也不可导. 从而()f z z =处处不可导. (ii) 2 ();f z z = 解:0z ≠时 0022 0000 ()() lim lim z z z z z z f z f z z z z z →→--=--显然不存在. 这是因为当0z x iy =+时 0022220000000000 ()()lim lim 2x x x x x y x y x x x x x x iy x iy x x →→+---+==+--- 当0z x iy =+时,

0022220000000000()()2lim lim ()y y y y x y x y y y y y y x iy x iy y y i i →→+---+==+--- 0z =时可导,(0)0f '=. (iii )()Re ;f z z = 000 00 ()()Re Re lim lim z z z z f z f z z z z z z z →→--=--显然不存在. 这是因为当0z x iy =+时, 000 lim 1x x x x x iy x iy →-=+--. 当0z x iy =+时, 00 000 lim 0y y x x x iy x iy →-=+-- 从而()Re f z z =处处不可导 (v) ()f z 为常数 不妨设(),f z C =显然' ()0f z = 故()f z C =在处处可导. 2.设f 和g 都在0z 处可微,且' 000()()0,()0f z g z g z ==≠证明:0'0'0()() lim ()() z z f z f z g z g z →= 提示:0 000 ()()() lim lim ()()()z z z z f z f z f z g z g z g z →→-=- 0 000000()()() lim ()()() z z f z f z z z f z z z g z g z g z →'--=?='-- 4.设域G 和域D 关于实轴对称,证明:如果()f z 是D 上的全纯函数,那么()f z 是G 上的全纯函数. 提示:0 0()() ()()lim lim (),z z f z z f z f z z f z f z z G z z →→??+-+-'==∈????

复变函数第二章习题标准答案

第二章解读函数 1-6题中: (1)只要不满足C-R 条件,肯定不可导、不可微、不解读 (2)可导、可微的证明:求出一阶偏导y x y x v v u u ,,,,只要一阶偏导存在且连续,同时满足C-R 条件。 (3)解读两种情况:第一种函数在区域内解读,只要在区域内处处可导,就处处解读;第二种情况函数在某一点解读,只要函数在该点及其邻域内处处可导则在该点解读,如果只在该点可导,而在其邻域不可导则在该点不解读。 (4)解读函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解读的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解读函数。 解读函数求导:x x iv u z f +=')( 4、若函数)(z f 在区域D 上解读,并满足下列的条件,证明)(z f 必为常数。 (1)证明:因为)(z f 在区域上解读,所以。 令),(),()(y x iv y x u z f +=,即x v y u y v x u ??-=????=??,0=??+??='y v i x u z f )(。 由复数相等的定义得: 00=??-=??=??=??x v y u y v x u ,。 所以,1C y x u =),((常数),2C y x v =),((常数),即21iC C z f +=)(为常数。 5、证明函数在平面上解读,并求出其导数。 (1) ()()0f z z D '=∈z (cos sin )(cos sin ).x x e x y y y ie y y x y -++

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) ()1-=n n nz z '(n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-??????++-++=-+=--→→ 2210 0121lim lim ' ()()11210121----→=??????++-+= n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: ()()2000111111z z z z z z z z z z z z z z z z z -=+-=+-=-+=??? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??,0=??y u ,0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。 2) ()3332y i x z f += 解:设()iv u z f +=,则32x u =,33y v = 26x x u =??,0=??y u ,0=??x v ,29y y v =??都是连续函数。 只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。 ()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 22+= 解:设()iv u z f +=,则2xy u =,y x v 2=

关于复变函数的书pdf

聪哥制作版权所有复变函数 QQ285807093 签署者:ycpan2922 签署日期: 4:32 pm, 3/29/08 https://www.360docs.net/doc/4011171490.html,

引言 复数是16世纪人们在解代数方程时引入的。在17世纪和18世纪随着微积分的发明与发展,人们研究复变函数,特别是把实变函数初等函数推广到复变数情形,得到一些重要结果。 复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。 复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为

这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函

《复变函数》第二章习题全解钟玉泉版

第二章 解析函数 (一) 1.证明:0>?δ,使{}0001/),(t t t t δδ+-∈?,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线)()(10t z t z ,是否就存在数列{}01t t n →,使 )()(01t z t z n =,于是有 0) ()(lim )(0 10100 1=--='→t t t z t z t z n n t t n 此与假设矛盾. 01001),(t t t t t >?+∈δ 因为 [])()(arg ) ()(arg 010 101t z t z t t t z t z -=-- 所以 []]) ()(lim arg[)()(arg lim )()(arg lim 0 101010101010 10 1t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→ 因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为 )(arg 0t z '. 2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在. 所以 )()()()() ()(lim )()()()(lim )() (lim 0 00 00000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''= ----=--=→→→ 3.证明:()()() ()()3322 ,0,0,,0,00x y x y u x y x y x y ≠?-? =+??=? ()()() ()() 3322 ,0,0,,0,00x y x y v x y x y x y ≠?+? =+??=? 于是()()()00,00,00,0lim lim 1x x x u x u x u x x →→-===,从而在原点()f z 满足C R -条件,

复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1--; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3 k k +=±±; 主辐角为 4π3 ;原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为 4π i 3 2e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+==+==+ 1.2 计算下列复数 1)() 10 3i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2)()1 3π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1

(2)(/62/3)i n e ππ+ 1.4 已知x 为实数,求复数的实部和虚部. 【解】 令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得 到 22 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且 ()()k k z z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端 取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明:2222 12 1212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=-

复变函数第二章习题答案

第二章解析函数 1-6题中: (1)只要不满足C-R 条件,肯定不可导、不可微、不解析 (2)可导、可微的证明:求出一阶偏导y x y x v v u u ,,,,只要一阶偏导存在且连续,同时满足C-R 条件。 (3)解析两种情况:第一种函数在区域内解析,只要在区域内处处可导,就处处解析;第二种情况函数在某一点解析,只要函数在该点及其邻域内处处可导则在该点解析,如果只在该点可导,而在其邻域不可导则在该点不解析。 (4)解析函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解析的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解析函数。 解析函数求导:x x iv u z f +=')( 4、若函数)(z f 在区域D 上解析,并满足下列的条件,证明)(z f 必为常数。 (1)证明:因为)(z f 在区域上解析,所以。 令),(),()(y x iv y x u z f +=,即x v y u y v x u ??-=????=??,0=??+??='y v i x u z f )(。 由复数相等的定义得: 00=??-=??=??=??x v y u y v x u ,。 所以,1C y x u =),((常数),2C y x v =),((常数),即21iC C z f +=)(为常数。 5、证明函数在平面上解析,并求出其导数。 (1) ()()0f z z D '=∈z (cos sin )(cos sin ).x x e x y y y ie y y x y -++

复变函数(第四版)课后习题答案

习题一解答 1.求下列复数的实部与虚部、共轭复数、模与辐角。 (3)(3+ 4i )(2 5i ) ; (4)i 8 4i 21 + i 1 3+ 2i 1 3i 1 i (1) ; (2) ; i 2i 3+ 2i = (3+ 2i )(3 2i ) = 1 (3 2i ) 1 3 2i 13 解 (1) 所以 ? 1 ?3+ 2i ↑ 13 ? = ← 3, Im ?? ←= 2 1 ? Re ? , 13 ?3+ 2i ↑ 2 2 1 3+ 2i = 1 1 3+ 2i = ?? 3 ? +?? 3 ? 13 (3+ 2i ), , 13 13 ? 13 ? = 13 Arg ? 1 3+ 2i ? ? = arg ? 1 3+ 2i ? ? + 2k π 2 = arctan + 2k ,k = 0,±1,±2," 3 1 3i i 3i (1+ i ) = i 1 ( 3+ 3i )= 3 5 (2) 1 i = i ( i ) (1 i )(1+ i) i, i 2 2 2 所以 ?1 3i ? 3 , Re ? ?i 1 i ↑←= 2 ?1 3i ? ←= 5 Im ? ?i 1 i ↑ 2 2 2 1 3i = + i 5, 3 1 3i 1 i = ? ? +? ? = 34, 3 5 i 1 i ? 1 3i 2 2 i 2 2 2 1 3i ? + 2k π Arg = arg i 1 i ? i 1 i ? = arctan 5 + 2k π, k = 0,±1,±2,". 3 (3) (3+ 4i )(2 5i ) = (3+ 4i )(2 5i )( 2i ) = (26 7i )( 2i ) 2i (2i )( 2i ) 4 = 7 26i = 7 13i 2 2 所以 ?(3+ 4i )(2 5i )? Re ? ←= 7 , ? 2i ↑ 2 ?(3+ 4i )(2 5i )? Im ? ←↑= 13, ? 2i

相关文档
最新文档