基于ADF4360_8的集成化低相噪频率合成器设计

基于ADF4360_8的集成化低相噪频率合成器设计
基于ADF4360_8的集成化低相噪频率合成器设计

2011

自动化应用

5期

作者简介:谢力慧(1986-),硕士,主要研究方向为频率源、锁相环频率合成器。收稿日期:2011-02-09

0引言

在无线通信系统中,频率源作为无线通信系统的核心,有晶振和LC 振荡器2种基本形式。晶振能提供高稳定度的信号,而LC 振荡器则拥有宽范围调谐的特性。频率合成器作为一种有效地结合高稳定度和宽范围可调性两种特性的频率源,能从一个单一频率的低频晶体振荡器中产生宽范围的多种精准频率的信号。频率合成器稳定度高、寄生杂波小、相位噪声好,因此广泛用于通信、导航、测试领域,以及接收机、发射机和测试仪器中。

在实际应用中,频率合成主要使用锁相环(PLL )技术。锁相环技术是一种相位负反馈技术,基本结构如图1所示[1]

图1锁相环电路结构

传统的锁相环频率合成器电路有诸如电路元件

多、电路复杂、系统尺寸大、调试复杂和功耗高等缺点。因此采用一种高集成的专用锁相环芯片

ADF4360-8来实现频率合成系统,并在设计中探讨如何提高诸如低相噪等系统的性能。

1应用ADF4360-8芯片的锁相环电路的设计

1.1关键电路参数的确定

VCO 的中心输出频率是由通过9、10两个引脚外接的两个外部电感确定的,通过改变两个外接电感的大小,可以改变VCO 的中心输出频率。中心输出频率与外部电感的关系为:

f o =

1

2π9.3pF (0.9nH +L ext )

%

姨本设计的电路,其中心频率是300MHz ,因此L ext 的

值为28.6nH 。

同时,外部电感的大小还将影响VCO 的电压灵敏度,这个参数对环路滤波器的设计比较重要,需要在

设计中予以考虑,外部电感和VCO 的电压灵敏度之间的关系如图2所示。

从图2的关系曲线可以看出,电感越小,电压灵敏度越高。因此,在保障输出频率范围的情况下,较大的外部电感能够一定程度上改善相位噪声。

设计频率合成器时,相位噪声是需考虑的一个重

基于ADF4360-8的集成化低相噪频率合成器设计

谢力慧,黄显核

(电子科技大学自动化工程学院,成都610054)

要:结合锁相环技术的基本原理,介绍了一种采用锁相环技术产生高稳定度信号的低相噪频率合成器的设计

思路。采用集成锁相环芯片ADF4360-8来设计锁相环电路,并给出了系统的具体电路参数、实际应用的设计要点和设计注意事项。最后经过仿真,得出系统环路带宽内相噪为-105dBc ,符合系统设计要求。

关键词:集成化;低相噪;锁相环;频率合成器

Integrated Low Phase Noise Frequency Synthesizer Based on ADF4360-8

XIE Li-hui,HUANG Xian-he

(School of Automation,University of Electronic Science and Technology of China,Chengdu 610054,China)

Abstract :With the basic principle of phase locked loop technique,a kind of synthesizer using phase locked loop tech-nique to produce high stability and low phase noise signal is introduced.The integrated phase locked loop chip ADF4360-8is used to design phase locked loop circuits.The specific circuit parameters,practical application of the design features and de-sign considerations are given.Finally,through simulation,it is concluded that the system phase noise is -105dBc,achieving the system design requirements.

Keywords :integration ;low phase noise ;phase locked loop ;frequency synthesizer

鉴相器(PD )

环路滤波器(LPF )

压控振荡器(VCO )

系统解决方案

7

自动化应用

w w w.aut https://www.360docs.net/doc/4112697443.html, 要参数。锁相环频率合成器的总相位噪声为:

N=N IC +20log Q+20log F PD

式中,N 为总相位噪声,N IC 为所使用的锁相环频率合成器专用芯片的噪声,Q 为分频数,F PD 为鉴相频率。由此可以看出,鉴相频率越小,总的相位噪声就越小。根据文献,鉴相频率小,分频比就会变大,同样会恶化倍频所带来的20log N 的噪声。因此鉴相频率的选取需要综合考虑。另外,鉴相频率还会影响环路锁定时间和环路能否锁定。

在本设计中,要使用16MHz 的外部晶振提供频率合成器系统的参考频率,因此采用较大的鉴相频率可以获得比较好的相位噪声性能,经过综合考虑,最终选取1MHz 作为本系统的频率。

1.2环路滤波器的设计

锁相环电路设计的主要工作就是环路滤波器的设计。本设计中,ADF4360-8已经集成了大部分的元件,因此环路滤波器的设计对最终设计出的系统性能尤为重要。合理地设计环路滤波器中各元件参数可以起到校正电路的作用。在本设计中,采用如图3所示的

2R3C 三阶无源滤波器结构。

图3

环路滤波器结构

该结构环路滤波器的传递函数为:

Z (s )=1+s ·T 2s ·A 0·(1+s ·T 1)·(1+s ·T 3)=1+s ·T 2

s ·(A 2·s 2

+A 1·s+A 0)式中,T 1≈R 2·C 2·C 1A 0

,T 2=R 2·C 2,T 3≈R 3

·C 3。而:

A 0=C 1+C 2+C 3

A 1=A 0·(T 1+T 3)=C 2·C 3·R 2+C 1·C 2·R 2+C 1·C 3·R 3+C 2·C 3·R 3

A 2=A 0·T 1·T 3=C 1·C 2·R 2·C 3·R 3环路的相位裕量:

φc (ω)=arctan (ω·T 2)-arctan (ω·T 1)-tan -1(ω·T 3)+180

已知锁相环设计需求的带宽ωc 和相位裕量φc 时,就可以求出T 1、T 2和T 3的值,对上式取正切,并带入带宽和相位裕量可得:

tan (φc )=

ωc ·T 2-ω2c ·T 1·T 3·(tan (φc )-ω2

c ·T 2

)-ωc ·T 1-ωc ·T 31-T 2·ω2

c ·(T 1

+T 3)考虑到T 2=

1

ω2

c

·(T 1+T 3),假设:ω2

c ·T 1

·T 3·(tan (φc )%-ωc ·T 2)≈0,可以得出:T 1+T 3=sec (φc )-tan (φc )

ωc

于是:

T 2=

1

ωc ·(sec (φc )-tan (φc ))

T 1=sec (φc )-tan (φc )c -T 3

因为T 1>0,所以要求:

T 3

ωc

由上面的推导,可以得出最佳衰减的情况是T 1=

T 3,而T 3=0可以得到最大衰减。定义一个极点比率T 31=T 3/T 1,取值范围为0~1,在工程上应用一般可从T 31=0.5开始。

利用上面的方法来得到近似时间常数后,接下来要选择C 1,在本设计中采用最大化C 3的方法。这样可以最大衰减R 3的热噪声和VCO 自带电容带来的干扰。

于是可以推出:

A 0=K φ·K vco

c ·2c ·22(1+ωc ·T 1)·(1+ωc ·T 3)

%

式中,N 为分频数,K φ为电荷泵增益,K vco 为VCO 增益。

于是可以得到最终的环路滤波器参数:

C 1=A 2

T 22

·1+1+T 2

A

2

·(T 2

·A 0

=A 1

)姨姨姨C 2=A 0-C 1-C 3

C 3=-T 22·C 2

1+T 2·A 1·C 1-A 2·A 0

T 2

2·C 1-A 2

R 2=T 2

2

系统解决方案

图2外部电感和VCO 电压灵敏度的关系

PD

R3

C2

C1

C3R2

ToVCO

1210

86420

100

200

300

400500600

外部电感/nH

电压灵敏度/(M H z /V )

8

2011

自动化应用

5期

系统解决方案

R 3=

A 2132

经过上述推导,最终得出本设计的环路滤波器参数:C 1=24.5pF ,C 2=333pF ,C 3=11.2pF ,R 2=13.4k Ω,R 3=

27.3k Ω。

1.3系统其余重要部分设计

本锁相环频率合成器中,对锁相环芯片ADF4360-8的控制采用单片机STC12C4052来实现。因为ADF4360系列芯片对控制程序要求不高,因此单片机只用考虑尺寸便可,不用考虑过高性能,通过单片机3个输出口往锁相环芯片的CLK 、DATA 和LE 引脚写入控制字即可。

另外,ADF4360芯片的多路输出端口MUXOUT ,可以通过程序配置其为锁定检测端口,这样可以在环路失锁时快速检测出,并通过单片机程序将芯片复位。配置完成后,频率合成器加电即可正常工作,不用再加外部控制。

2实验结果

本设计的锁相环频率合成系统,要求输入中心频率300MHz ,频率范围为280~320MHz ,鉴相频率1MHz ,环路带宽100kHz 。

最后,使用ADI 公司提供的专用锁相环仿真软件

ADIsimPLL 对整个频率合成器电路进行仿真。环路开环增益如图4所示。

图4环路开环增益

从图中可以看出,环路带宽为100K ,而相位裕量为45°左右,符合设计要求。

图5为系统在中心频率300MHz 时的相位噪声分

析,包括系统总相噪、环路滤波器噪声、芯片噪声、参考频率源噪声和VCO 的噪声。在偏离载波100kHz 内,也就是环路带宽内,总相噪为-105dBc ,而在偏离载波

1MHz 时,总相噪低至-136dBc ,符合系统设计要求。

图5系统的相位噪声

另外从仿真结果中还可以知道系统的锁定时间,频率上锁定到10Hz 的时间为34.4μs ,而相位上锁定到

1°内的时间为23.2μs ,这也是很好的结果。

3结论

结合锁相环的基本原理,介绍了高集成化低相噪的锁相环芯片ADF4360-8的性能参数和设计要点,并探讨了锁相环电路中的关键部分环路滤波器的设计思路。设计出的频率合成器能做到体型小、功耗低。通过仿真可知,相位噪声在环路带宽100kHz 内能达到-105dBc ,其他指标也符合设计要求,能够很好地投入实际应用。

参考文献

[1]Razavi B.RF microelectronics[M].New Jersey:Prentice Hall PTR.,1998

[2]Analog Devices Inc.Integrated synthesizer and VCO ADF4360-8[EB/OL].(2004-12-01)[2010-11-16].https://www.360docs.net/doc/4112697443.html,

[3]晋军,程剑.基于ADF4360-X 的频率合成器设计[J].军

事通信技术,2008,29(1):61-63

[4]刘万全,鲍庆龙.GPS 信号发生器射频模块的一种实

现方案[J].现代电子技术,2007,30(5):58-60

[5]刘晗超.基于ADF4360_7的宽频带频率合成器设计

[J].时间频率学报,2008,31(1):65-72

增益中心频率300MHz 时的开环增益

相位

806040

200-20-40-60-80-100

频率/Hz

10k 100k 1M

10M

1k

增益/d B

0-20-40-60-80-100-120-140-160-180相位

-60-70

-80

-90-100-110-120-130-140-150-160

相位噪声/(d B c /H z

中心频率300MHz 时的相位噪声

总相位噪声环路滤波器芯片噪声参考频率

VCO

1K

10K

100K 1M 10M

频率/Hz

欢迎投稿、订阅、刊登广告!

9

实现直接数字频率合成器的三种技术方案

实现直接数字频率合成器的三种技术方 案 [日期:2004-12-7] 来源:电子技术应用作者:杭州商学院信息 与电子工程学院姜田华 [字体:大中 小] 摘要:讨论了DDS的工作原理及性能性点,介绍了目前实现DDS常用的三种技术方案,并对各方案的特点作了简单的说明。 关键词:直接数字频率合成器相位累加器信号源现场可编程门限列 1971年,美国学者J.Tierney等人撰写的“A Digital Frequency Synthesizer”-文首次提出了以全数字技术,从相位概念出发直接合成所需波形的一种新给成原理。限于当时的技术和器件产,它的性牟指标尚不能与已有的技术盯比,故未受到重视。近1年间,随着微电子技术的迅速发展,直接数字频率合成器(Direct Digital Frequency Synthesis简称DDS或DDFS)得到了飞速的发展,它以有别于其它频率合成方法的优越性能和特点成为现代频率合成技术中的姣姣者。具体体现在相对带宽宽、频率转换时间短、频率分辨率高、输出相位连续、可产生宽带正交信号及其他多种调制信号、可编程和全数字化、控制灵活方便等方面,并具有极高的性价比。 1 DDS基本原理及性能特点 DDS的基本大批量是利用采样定量,通过查表法产生波形。DDS的结构有很多种,其基本的电路原理可用图1来表示。 相位累加器由N位加法器与N位累加寄存器级联构成。每来一个时钟脉冲fs,加法器将控制字 k与累加寄存器输出的累加相位数据相加,把相加后的结果送到累加寄存器的数据输入端,以使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。这样,相位累加器在时钟作用下,不断对频率控制字进行线性相位加累加。由此可以看出,相位累加器在每一个中输入时,把频率控制字累加一次,相位累加器输出的数据就是合成信号的相位,相位累加器的出频率就是DDS输出的信号频率。 用相位累加器输出的数据作为波形存储器(ROM)的相位取样地址。这样就可把存储在波形存储器内的波形抽样值(二进制编码)经查找表查出,完成相位到幅值转换。波形存储器的输出送到D/A转换器,D/A转换器将数字量形式的波形幅值转换成所要求合成频率的模拟量形式信号。低通滤波器用于滤除不需要的取样分量,以便输出频谱纯净的正弦波信号。

频率合成器设计报告

频率合成器课程设计 总结报告 指导教师:曹俊友 组员:李刚、魏虹宇、张朋、蒙荣鸿 专业:电子信息科学与技术092 日期: 2012年1月1日

摘要:本设计是关于锁相环频率合成器的设计,设计主要由电源、自制压控振荡器(VCO)、锁相环频率合成器(PLL)、单片机控制(MCU)显示以及键盘操作五部分组成。电源部分采用稳压芯片获得稳定的3.3V以及5V的电压输出,压控振荡器采用MAX2620芯片外接电感电容并联谐振回路制成,锁相环频率合成器采用ADF4106制成,、采用AT89C52单片机作为系统的控制单元。基本要求:输出频率可改变,输出功率可调整。扩展要求:具有显示功能,具有键盘控制功能。 关键词:锁相环(PLL)、压控振荡器(VCO)、环路滤波(LPF)、单片机(MCU) Abstract:This design is about lock cirtle frequency synthesizer design, design mainly by power supply, self-control voltage control oscillation (VCO), and phase lock loop (PLL) frequency synthesizer and single-chip microcomputer control (MCU) display and keyboard five parts. The power supply voltage of the chip made steady 3.3 V and 5 V voltage output, controlled oscillator MAX2620 adopts chip made, lock cirtle frequency synthesizer made by ADF4106, by AT89C52 single chip microcomputer as system, the control unit. Basic requirements: output frequency can change, output power can be adjusted. Expand requirements: display function with the keyboard control function. Key words:Phase lock loop (PLL)、Voltage control oscillation (VCO)、LPF、SCM (MCU)

基于FPGA的直接数字频率合成器设计

1 JANGSU UNIVERSITY OF TECHNOLOGY FPGA技术实验报告基于FPGA的直接数字频率合成器设计 学院:电气信息工程学院 专业:电子信息工程 班级: 姓名: 学号: 指导教师:戴霞娟、陈海忠 时间: 2015.9.24

1 目录 绪论.......................................................................................... 错误!未定义书签。 一、背景与意义 (2) 二、设计要求与整体设计 (2) 2.1 设计要求 (2) 2.2 数字信号发生器的系统组成 (3) 2.3 DDS技术 (3) 三、硬件电路设计及原理分析 (4) 3.1 硬件电路设计图 (4) 3.2 设计原理 (5) 四、程序模块设计、仿真结果及分析 (5) 4.1顶层模块设计 (6) 4.2分频模块设计 (6) 4.3时钟模块设计 (11) 4.4数据选择模块设计 (12) 4.5正弦波产生模块设计........................................................ 错误!未定义书签。 4.6三角波产生模块设计 (15) 4.7方波产生模块设计............................................................ 错误!未定义书签。 4.8锯齿波模块设计 (18) 五、软硬件调试 (21) 5.1正弦波 (22) 5.2锯齿波 (22) 5.3方波 (23) 5.4三角 (23) 六、调试结果说明及故障分析 (24) 七、心得体会 (24) 八、参考文献 (25) 九、附录 (25)

直接数字式频率合成器

实验八 直接数字式频率合成器(DDS )程序设计与仿真实验 1 实验目的 (1) 学习利用EDA 技术和FPGA 实现直接数字频率合成器的设计。 (2) 掌握使用Quartus Ⅱ原理图输入设计程序。 2 实验仪器 (1)GW48系列SOPC/EDA 实验开发系统 (2)配套计算机及Quartus II 软件 3 实验原理 直接数字频率合成技术,即DDS 技术,是一种新型的频率合成技术和信号产生方法。其电路系统具有较高的频率分辨率,可以实现快速的频率切换,并且在改变时能够保持相位的连续,很容易实现频率、相位和幅度的数控调制。 传统的生成正弦波的数字是利用—片ROM 和一片DAC ,再加上地址发生计数器和寄存器即可。在ROM 中,每个地址对应的单元中的内容(数据)都相应于正弦波的离散采样值,ROM 中必须包含完整的正弦波采样值,而且还要注意避免在按地址读取ROM 内容时可能引起的不连续点,避免量化噪音集中于基频的谐波上。时钟频率f clk 输入地址发生计数器和寄存器,地址计数器所选中的ROM 地址的内容被锁入寄存器,寄存器的输出经DAC 恢复成连续信号,即由各个台阶重构的正弦波,若相位精度n 比较大,则重构的正弦波经适当平滑后失真很小。当f clk 发生改变,则DAC 输出的正弦波频率就随之改变,但输出频率的改变仅决定于f clk 的改变。 为了控制输出频率更加方便,可以采用相位累加器,使输出频率正比于时钟频率和相位增量之积。图1所示为采用了相位累加方法的直接数字合成系统,把正弦波在相位上的精度定为n 位,于是分辨率相当于1/2n 。用时钟频率f P 依次读取数字相位圆周上各点,这里数字值作为地址,读出相应的ROM 中的值(正弦波的幅度),然后经DAC 重构正弦波。这里多了一个相位累加器,它的作用是在读取数字相位圆周上各点时可以每隔M 个点读一个数值,M 即力图1中的频率字。这样,DAC 输出的正弦波频率f sin 就等于“基频” f clk 1/2n 的M 倍,即DAC 输出的正弦波的频率满足下式: )2(sin n clk f M f (1) 这里,f clk 是DDS 系统的工作时钟,式(6-1-1)中的n 通常取值在24~32之间,由图1可知,

基于AD9858的小型宽带高分辨率频率合成器设计

中国科技核心期刊 基于AD9858的小型宽带高分辨率频率合成器设计 张 冰1 钱时祥2 (1.中国电子科技集团公司第四十一研究所 青岛 266555;2.电子测试技术国防科技重点实验室 青岛 266555) 摘 要:针对目前频率合成器的小型化、高分辨率的要求,本文介绍了一种基于AD9858的小型、宽带、高分辨率的频率合成器设计。通过充分发挥AD9858专用DDS 芯片的各项功能,对传统的DDS +PLL 式频率合成器的设计进行改进,并给出了设计方法及时序控制设置。测试结果表明:这种方式设计的频率合成器在获得优良的相位噪声、快速的频率切换速度,较高的频率分辨率等指标的同时,降低了频综器件的功耗,减小了体积,这对于频率合成器的小型化研究有很高的参考价值。关键词:直接数字频率合成器;PLL ;AD9858中图分类号:TN74 文献标识码:A Design of miniature broadband high resolution frequency synthesizer based on AD9858 Zhang Bing 1 Qian Shixiang 2 (1.The 41st Institute of China Electronics Technology group Corporation ,Qingdao 266555,China ;2.National Key Laboratory for Electronic Measurement Technology ,Qingdao 266555,China ) Abstract :In consideration of t he requirement of miniat ure and high resolution on t he frequency synthesizer recently ,t his paper has presented a design of miniat ure broadband and high resolution frequency synt hesizer based on AD9858.Improvedon t he traditional design of DDS +PLL frequency synt hesizer t hrough t he f ull utilization of different f unctions of AD9858special DDS chip s ,t he paper introduces t he design of t he project and t he setting of time sequence control.The test result s indicate that t he frequency synt hesizer which designed by t he above met hod obtains t he specifications of excel 2lent p hase noise ,fast frequency switching speed ,high frequency resolution and meanwhile decrease t he power consump 2tion and the volume of frequency synt hesizer component s.It has considerable reference value for t he miniat urization researchof frequency synt hesizer. K eyw ords :direct digital synt hesizer (DDS );p haselocked loop ;AD9858  作者简介:张冰,女,助理工程师,主要从事微波毫米波接收机的研发工作。 0 引 言 近年来,基于DDS +PLL 的混合式频率合成技术得 到了大量的深入研究。这种技术是在充分继承传统频率合成方法的优点的基础上,将DDS 的快速、高分辨率和PLL 环路的宽带、低相噪等有机结合,有效地解决了频率合成器对相位噪声,频率切换速度、分辨率,体积和功耗等的要求,其研究成果已在诸如通信、雷达、电子对抗、导航、广播电视、遥测遥控、仪器仪表等领域中被广泛应用。 本文旨在对传统的DDS +PLL 方式加以改进,充分利用AD9858芯片的高性能与PLL 电路相结合,设计出高分辨率、宽带、转换时间短、功耗低、体积小的频率合 成器[127]。 1 AD9858简介与新型的DDS +PLL 设计原理 1.1 AD9858简介 AD9858是美国Analog Devices 公司生产的适用于高 速直接频率合成器的DDS 芯片,外部时钟可达2GHz ,内 部集成了32b 频率累加器、32b 相位累加器、10位高速正交D/A 转换器以及调制和控制电路,可在单片上完成频率调制、相位调制、幅度调制等多种功能。此外,AD9858内部还集成有一个150M Hz 的数字锁相环(digital PLL )和一个2GHz 的模拟乘法器(analog multiplier ),为DDS 、PLL 和Mixer 的组合运用打下了良好基础。 — 26—

数字频率合成器的外文翻译

英文原文 Modulating Direct Digital Synthesizer In the pursuit of more complex phase continuous modulation techniques, the control of the output waveform becomes increasingly more difficult with analog circuitry. In these designs, using a non-linear digital design eliminates the need for circuit board adjustments over yield and temperature. A digital design that meets these goals is a Direct Digital Synthesizer DDS. A DDS system simply takes a constant reference clock input and divides it down a to a specified output frequency digitally quantized or sampled at the reference clock frequency. This form of frequency control makes DDS systems ideal for systems that require precise frequency sweeps such as radar chirps or fast frequency hoppers. With control of the frequency output derived from the digital input word, DDS systems can be used as a PLL allowing precise frequency changes phase continuously. As will be shown, DDS systems can also be designed to control the phase of the output carrier using a digital phase word input. With digital control over the carrier phase, a high spectral density phase modulated carrier can easily be generated. This article is intended to give the reader a basic understanding of a DDS design, and an understanding of the spurious output response. This article will also present a sample design running at 45MHz in a high speed field programmable gate array from QuickLogic. A basic DDS system consists of a numerically controlled oscillator (NCO) used to generate the output carrier wave, and a digital to analog converter (DAC) used to take the digital sinusoidal word from the NCO and generate a sampled analog carrier. Since the DAC output is sampled at the reference clock frequency, a wave form smoothing low pass filter is typically used to eliminate alias components. Figure 1 is a basic block diagram of a typical DDS system design.The generation of the output carrier from the reference sample clock input is performed by the NCO. The basic components of the NCO are a phase accumulator and a sinusoidal ROM lookup table. An optional phase modulator can also be include in the NCO design. This phase modulator will add phase offset to the output of the phase accumulator just before the ROM lookup table. This will enhance the DDS system design by adding the

频率合成器的设计

前言 频率合成器是现代无线通信设备中一个重要的组成部分,直接影响着无线通信设备的性能。频率合成技术历经了早期的直接合成技术(DS)和锁相合成技术(PLL),发展到如今的直接数字合成技术(DDS)。直接数字合成技术具有分辨率高,转换速度快,相位噪声低等优点,在无线通信中发挥着越来越重要的作用。随着大规模集成电路的发展,利用锁相环频率合成技术研制出了很多频率合成集成电路。频率合成器是电子系统的心脏,是决定电子系统性能的关键设备,随着通信、数字电视、卫星定位、航空航天、雷达和电子对抗等技术的发展,对频率合成器提出了越来越高的要求。频率合成技术是将一个或多个高稳定、高精确度的标准频率经过一定变换,产生同样高稳定度和精确度的大量离散频率的技术。频率合成理论自20世纪30年代提出以来,已取得了迅速的发展,逐渐形成了目前的4种技术:直接频率合成技术、锁相频率合成技术、直接数字式频率合成技术和混合式频率合成技术。 本文是以如何设计一个锁相环频率合成器为重点,对频率合成器做了一下概述,主要介绍了锁相环这一部分,同时也对锁相环频率合成器的设计及调试等方面进行了阐述。

1 总体方案设计 实现频率合成的方法有多种,可用直接合成,锁相环式,而锁相环式的实现方法又有多种,例如可变晶振,也可变分频系数M,还可以用单片机来实现等等。下面列出了几种用锁相法实现频率合成的方案。 1.1方案一 图1.1 方案一原理框图 如图1.1所示,在VCO的输出端和鉴相器的输入端之间的反馈回路中加入了一个÷N的可变分频器。高稳定度的参考振荡器信号fR经R次分频后,得到频率为fr的参考脉冲信号。同时,压控振荡器的输出经N次分频后,得到频率为fd的脉冲信号,两个脉冲信号在鉴频鉴相器进行频率或相位比较。当环路处于锁定状态时,输出信号频率:fo=N*fd。只要改变分频比N,即可实现输出不同频率的fo,从而实现由fr合成fo的目的。其输出频率点间隔Δf=fr。 1.2方案二

ADF4351宽带频率合成器模块技术指标

HADF4351S集成VCO的宽带频率合成器模块 HADF4351S是由ADF4351芯片集成设计的宽带频率合成器模块,输出频率35MHz致4400MHz,可实现小数N分频或整数N分频锁相环(PLL)频率合成器。HADF4351具有一个集成电压控制振荡器(VCO),其基波输出频率范围为2200 MHz至4400 MHz。此外,利用 1/2/4/8/16/32/64分频电路,可以产生低至35 MHz的RF输出频率。所有片内寄存器均通过简单的三线式接口进行控制。该模块采用5 V 电源供电,内置低纹波3.3V稳压芯片,因此对5V供电要求不高。 该产品按照军工标准生产和设计,尺寸小集成度高,采用邮票孔表贴封装和金属全屏蔽设计,可以减少模块的电磁辐射,电磁兼容性比较好。 特点: ※输出频率范围:35 MHz至4400 MHz ※输出幅度范围:-4dBm至2dBm

※小数N分频频率合成器和整数N分频频率合成器 ※具有低相位噪声2GHz输出时10KHz相噪是-93dBc/Hz ※均方根(RMS)抖动:小于0.4 ps rms(典型值) ※电源电压:4.5V至6.5 V ※三线式串行接口 ※模拟和数字锁定检测 ※在宽带宽内快速锁定 ※输入参考频率10MHz致105MHz最小输入幅度0.7 V p-p ※具有失锁输出保护功能 ※封装形式:表面贴28×22 ×7 ※工作环境温度:-20~+50℃ 应用领域: ※无线基础设施(W-CDMA、TD-SCDMA、WiMAX、GSM、PCS、DCS、DECT) ※军工通讯设备 ※无线测试设备 ※无线局域网(LAN)、有线电视设备

典型应用: GND 4.5-6.5V RFoutA- 10-105MHz RFoutA+ 35-4400MHz LD CLK DATA LE PCB安装尺寸:外框28×22×7mm焊盘1.5×4mm 模块引脚说明: 1.电压输入5V 2.电压负或地 3.参考频率输入10-105MHz 最小幅度0.7Vp-p 4.地 HADF4351S

直接数字频率合成知识点汇总(原理_组成_优缺点_实现)

直接数字频率合成知识点汇总(原理_组成_优缺点_实现) 直接数字频率合概述DDS同DSP(数字信号处理)一样,也是一项关键的数字化技术。DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。DDS 是从相位概念出发直接合成所需要波形的一种新的频率合成技术。 直接数字频率合成是一种新的频率合成技术和信号产生的方法,具有超高速的频率转换时间、极高的频率分辨率分辨率和较低的相位噪声,在频率改变与调频时,DDS能够保持相位的连续,因此很容易实现频率、相位和幅度调制。此外,DDS技术大部分是基于数字电路技术的,具有可编程控制的突出优点。因此,这种信号产生技术得到了越来越广泛的应用,很多厂家已经生产出了DDS专用芯片,这种器件成为当今电子系统及设各中频率源的首选器件。 直接数字频率合成原理工作过程为: 1、将存于数表中的数字波形,经数模转换器D/A,形成模拟量波形。 2、两种方法可以改变输出信号的频率: (1)改变查表寻址的时钟CLOCK的频率,可以改变输出波形的频率。 (2)、改变寻址的步长来改变输出信号的频率.DDS即采用此法。步长即为对数字波形查表的相位增量。由累加器对相位增量进行累加,累加器的值作为查表地址。 3、D/A输出的阶梯形波形,经低通(带通)滤波,成为质量符合需要的模拟波形。 直接数字频率合成系统的构成直接数字频率合成主要由标准参考频率源、相位累加器、波形存储器、数/模转换器、低通平滑滤波器等构成。其中,参考频率源一般是一个高稳定度的晶体振荡器,其输出信号用于DDS中各部件同步工作。DDS的实质是对相位进行可控等间隔的采样。 直接数字频率合成优缺点优点:(1)输出频率相对带宽较宽 输出频率带宽为50%fs(理论值)。但考虑到低通滤波器的特性和设计难度以及对输出信号杂散的抑制,实际的输出频率带宽仍能达到40%fs。 (2)频率转换时间短

直接数字频率合成器开题报告

毕业设计(论文)开题报告 题目基于FPGA的直接数字频率合成专业名称通信工程 班级学号09042138 学生姓名周忠 指导教师刘敏 填表日期2013 年 1 月8 日

一、选题的依据及意义: 直接数字频率合成器(Direct Digital Frequency Synthesizer)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。其电路系统具有较高的频率分辨率,可以实现快速的频率切换(<20ns),频率分辨率高(0.01HZ),频率稳定度高,输出信号的频率和相位可以快速程控切换,输出相位可连续,可编程以及灵活性大等优点。DDS技术很容易实现频率、相位和幅度的数控调制,广泛用于接收本振、信号发生器、仪器、通信系统、雷达系统等,尤其适合调频无线通信系统 本课题使用可编程器件实现直接数字频率合成设计,它比传统的数字频率合成方式有着显著的优越性,与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。 二、国内外研究概况及发展趋势(含文献综述): 直接数字频率合成(DDS)技术是第三代频率合成技术。20世纪70年代以来,随着数字集成电路和电子技术的发展,出现了一种新的合成方法——直接数字频率合成。它从相位的概念出发进行频率合成,采用了数字采样存储技术,具有精确的相位,频率分辨率,快速的转换时间等突出优点,是频率合成技术的新一代技术。直接数字频率合成作为新一代数字频率技术发展迅速,并显示了很大的优越性,已经在军事和民用领域得到广泛的应用,例如在雷达(捷变频雷达、有源相控雷达、低截获概率雷达)、通信(跳频通信、扩频通信)、电子对抗(干扰和反干扰)、仪器和仪表(各种合成信号源)、任意波形发生器、产品测试、冲击和振动、医学等方面的应用。 DDS技术作为一项具有广泛前景和生命力的频率合成技术,越来越受到人们的重视。随着微电子技术的飞速发展,国外一些大公司Qualcomm、ADI等竞相推出DDS芯片,来满足设计人员的要求。许多性能优良的DDS产品不断的推向市场。 Qualcomm公司推出了DDS系列Q2220Q2230等其中Q2368的时钟频率

锁相环CD4046设计频率合成器

通信专业课程设计——基于锁相环的频率合成器的设计 设 计 报 告 姓名:曾明 班级:通信工程2班 学号:2008550725 指导老师:粟建新

目录 一、设计和制作任务 (3) 二、主要技术指标 (3) 三、确定电路组成方案 (3) 四、设计方法 (4) (一)、振荡源的设计 (4) (二)、N分频的设计 (4) (三)、1KHZ标准信号源设计(即M分频的设计) (5) 五、锁相环参数设计 (6) 六、电路板制作 (7) 七、调试步骤 (8) 八、实验小结 (8) 九、心得体会 (9) 十、参考文献 (9) 附录:各芯片的管脚图 (10)

锁相环CD4046设计频率合成器 内容摘要: 频率合成是以一个或少量的高准确度和高稳定度的标准频率作为参考频率,由此导出多个或大量的输出频率,这些输出的准确度与稳定度与参考频率是一致的。在通信、雷达、测控、仪器表等电子系统中有广泛的应用, 频率合成器有直接式频率合成器、直接数字式频率合成器及锁相频率合成器三种基本模式,前两种属于开环系统,因此是有频率转换时间短,分辨率较高等优点,而锁相频率合成器是一种闭环系统,其频率转换时间和分辨率均不如前两种好,但其结构简单,成本低。并且输出频率的准确度不逊色与前两种,因此采用锁相频率合成。 关键词:频率合成器CD4046 一、设计和制作任务 1.确定电路形式,画出电路图。 2.计算电路元件参数并选取元件。 3.组装焊接电路。 4.调试并测量电路性能。 5.写出课程设计报告书 二、主要技术指标 1.频率步进 1kHz 2.频率稳定度f ≤1KHz 3.电源电压 Vcc=5V 三、确定电路组成方案 原理框图如下,锁相环路对稳定度的参考振动器锁定,环内串接可编程的分频器,通过改变分频器的分配比N,从而就得到N倍参考频率的稳定输出。 晶体振荡器输出的信号频率f1, 经固定分频后(M分频)得到 基准频率f1’,输入锁相环的相 位比较器(PC)。锁相环的VCO

DDS 直接数字频率合成器 实验报告(DOC)

直接数字频率合成器(DDS) 实验报告 课程名称电类综合实验 实验名称直接数字频率合成器设计 实验日期2015.6.1—2013.6.4 学生专业测试计量技术及仪器 学生学号114101002268 学生姓名陈静 实验室名称基础实验楼237 教师姓名花汉兵 成绩

摘要 直接数字频率合成器(Direct Digital Frequency Synthesizer 简称DDFS 或DDS)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。本篇报告主要介绍设计完成直接数字频率合成器DDS的过程。其输出频率及相位均可控制,且能输出正弦波、余弦波、方波、锯齿波等五种波形,经过转换后在示波器上显示。经控制能够实现保持、清零功能。除此之外,还能同时显示出频率控制字、相位控制字和输出频率的值。实验要求分析整个电路的工作原理,并分别说明了各子模块的设计原理,依据各模块之间的逻辑关系,将各电路整合到一块,形成一个总体电路。本实验在Quartus Ⅱ环境下进行设计,并下载到SmartSOPC实验系统中进行硬件测试。最终对实验结果进行分析并总结出在实验过程中出现的问题以及提出解决方案。 关键词:Quartus Ⅱ直接数字频率合成器波形频率相位调节 Abstract The Direct Digital Frequency Synthesizer is a technology based on fully digital technique, a frequency combination technique syntheses a required waveform from concept of phase. This report introduces the design to the completion of the process of direct digital frequency synthesizer DDS. The output frequency and phase can be controlled, and can output sine, cosine, triangle wave, square wave, sawtooth wave, which are displayed on the oscilloscope after conversation. Can be achieved by the control to maintain clear function. Further can simultaneously display the value of the frequency, the phase control word and the output frequency. The experimental design in the Quartus Ⅱenvironment, the last hardware test download to SmartSOPC experimental system. The final results will be analyzed, the matter will be put forward and the settling plan can be given at last. Key words:Quartus ⅡDirect Digital Frequency Synthesizer waveform Frequency and phase adjustment

ADI ADF4355微波宽带(54-6800 MHz)频率合成器解决方案

ADI ADF4355微波宽带(54-6800 MHz)频率合成器解决方 案 ADI公司的ADF4355是微波宽带(54-6800MHz)可实现小数N分频或整数N分频锁相环(PLL)的频率合成器,高分辨率38位模数,低相位噪声电压控制振荡器(VCO),可编程 1/2/4/8/16/32/64分频输出,模拟和数字电源为3.3 V,主要用在无线基础设施 (W-CDMA,TD-SCDMA,WiMAX,GSM, PCS,DCS,DECT),点到点/点到多点微波链路,卫星/VSAT ,测试设备/仪器仪表和时钟产生.本文介绍了ADF4355主要特性,框图和几种应用电路,以及评估板EV-ADF4355SD1Z主要特性,电路图,材料清单和PCB设计图. The ADF4355 allows implementation of fractional-N or integer-N phase-locked loop (PLL) frequency synthesizers when used with an external loop filter and an external reference frequency. A series of frequency dividers permits operation from 54 MHz to 6800 MHz. The ADF4355 has an integrated VCO with a fundamental output frequency ranging from 3400 MHz to 6800 MHz. In addition, the VCO frequency is connected to divide by 1, 2, 4, 8, 16, 32, or 64 circuits that allow the user to generate RF output frequencies as low as 54 MHz. For applications that require isolation, the RF output stage can be muted. The mute function is both pin and software controllable. Control of all on-chip registers is through a simple 3-wire interface. The ADF4355 operates with analog and digital power supplies ranging from 3.15 V to 3.45 V, with charge pump and VCO supplies from 4.75 V to 5.25 V. The ADF4355 also contains hardware and software power-down modes. ADF4355主要特性: RF output frequency range: 54 MHz to 6800 MHz Fractional-N synthesizer and integer-N synthesizer High resolution 38-bit modulus Low phase noise, voltage controlled oscillator (VCO) Programmable divide by 1, 2, 4, 8, 16, 32, or 64 output Analog and digital power supplies: 3.3 V Charge pump and VCO power supplies: 5.0 V typical Logic compatibility: 1.8 V Programmable dual modulus prescaler of 4/5 or 8/9

数字PPL频率合成器的原理与使用

龙源期刊网 https://www.360docs.net/doc/4112697443.html, 数字PPL频率合成器的原理与使用 作者:伊力多斯·艾尔肯 来源:《中国科技博览》2013年第36期 中图分类号:TN742.1 文献标识码:A 文章编号:1009-914X(2013)36-0323-01 中波广播发射机载波频率振荡器能在531KHZ--1602KH频段内提供,1KHZ为间隔的1071个频率点。这些频点的载波振荡频率稳定度和精度都应满足系统的性能要求,并能迅速变换。显然常用的晶体振荡器无法满足上述要求,因为尽管晶体振荡器能提供高稳定的振荡频率,但其频率值单一,只能在很小的频率段内进行微调。频率合成技术则是能够实现上述要求的一种新技术,数字PLL频率合成器是目前应用最广泛的一种频率合成器,它与模拟PLL频率合成器的区别在于数字PLL中采用除法器(分频器),而不是用频率减法器来降低输入鉴相器频 率的。由于分频器可以很方便的用数字电路来实现,而且还具有可储存可变换的功能。因此它比一般的模拟PLL频率合成器更方便、更灵活。此外,数字电路易于集成和超小型化。 PLL即相位锁定环路,它是自动控制两振荡信号频率相等和相位同步的闭环系统,频率合成是指用可变分频器的方法将一个(或多个)基准频率信号转换为频率按比例降低或升高的另一个(或多个)所需频率信号的技术,采用PLL技术的频率合成器称为锁相环路频率合成 器,图(1)所示为数字PLL合成器的原理框图。它主要有鉴相器(PD),压控振荡器(VCO),基准晶体振荡器,基准分频器(1/R),前置分频器(1/K),可编程分频器也叫程控分频器(1/N),低通滤波器(LPF)等组成。可编程分频器的分频系数N由二进制码Po---Pn制定(如图1)。 其中鉴相器(PD)是完成压控振荡器(VCO)的输出信号U0(t),经前置分频和程控分频的信号Uf(T)与输入信号Ui(t)的相位比较,得到误差相位Φe(t)=Φf(t)-Φi(t),产生一个输出电压Ud(t),这个电压的大小直接反映两个信号相位差的大小,电压的极性反应输入信号Ui(t)超前或滞后于Uf(t)的相对相位关系。由此可见,PD在环路中是用来完成相位差电压转换作用,其输出误差电压是瞬间相位的函数。低通滤波器(LPF)滤除Ud (t)中的高频分量与噪声成分,得到控制信号Uc(t),压控振荡器(VCO)受Uc(t)控

24GHz射频前端频率合成器设计

第48卷第1期(总第187期) 2019年3月 火控雷达技术 Fire Control Radar Technology Vol.48No.1(Series 187) Mar.2019 收稿日期:2018-10-24作者简介:饶睿楠(1977-),男,高级工程师。研究方向为频率综合器及微波电路技术。 24GHz 射频前端频率合成器设计 饶睿楠 王 栋 余铁军 唐 尧 (西安电子工程研究所西安710100) 摘要:随着微波射频集成电路集成度越来越高, 24GHz 频段的高集成雷达收发芯片逐渐大规模使用。其中英飞凌科技公司的24GHz 锗硅工艺高集成单片雷达解决方案就是其中具有代表性的一种,被大量应用在液位或物料检测、照明控制、汽车防撞、安防系统。FMCW 为此种应用最多采用的信号调制方式。本文采用锁相环频率合成方案,产生系统所需的FMCW 调制信号。关键词:24GHz 射频前端;FMCW ;频率综合器BGT24AT2ADF4159中图分类号:TN95文献标志码:A 文章编号:1008-8652(2019)01-066-04 引用格式:饶睿楠,王栋,余铁军,唐尧.24GHz 射频前端频率合成器设计[ J ].火控雷达技术,2019,48(1):66-69. DOI :10.19472/j.cnki.1008-8652.2019.01.014 Design of a Frequency Synthesizer for 24GHz RF Front Ends Rao Ruinan ,Wang Dong ,Yu Tiejun ,Tang Yao (Xi'an Electronic Engineering Research Institute ,Xi'an 710100) Abstract :With the increasing integration of microwave and radio-frequency integrated circuits ,highly integrated radar transceiver chips in 24GHz band have gradually found large-scale applications.Among those chips ,Infineon's 24GHz SiGe monolithic radar solution is a typical one.It has found wide applications in liquid (or material )detec-tion ,lighting control ,automotive collision avoidance ,and security systems.FMCW is the most widely used signal modulation method in these applications.This paper uses PLL frequency synthesis scheme to generate FMCW mod-ulation signals required by the system. Keywords :24GHz RF front end ;FMCW ;frequency synthesizer ;BGT24AT2;ADF4159 0引言 24GHz 频段雷达大量用于液位检测、照明控制、汽车防撞、安防等领域。近年来由于微波集成电路的高速发展,单芯片电路集成度越来越高,出现了一大批高集成、多功能的射频微波集成电路,以前需要几片或十几片芯片的电路被集成在一片集成电路之中。英飞凌公司推出的基于锗硅工艺的高集成单片雷达解决方案就是其中对具代表性的产品之一。FMCW 信号调制方式被广泛的应用于此类产品。本文采用英飞凌公司BGT24AT2单片信号源芯片与ADI 公司ADF4159锁相环芯片构成24GHz 射频前端频率合成器部分,产生了24GHz 24.2GHz FM-CW 发射信号。 1BGT24AT2锗硅24GHz MMIC 信号源芯片基本指标 BGT24AT2是一款低噪声24GHz ISM 波段多功能信号源。内部集成24GHzVCO 和分频器。3路独立的RF 输出可分别输出+10dBm 的信号,通过SPI 可对输出信号功率进行控制。发射信号的快速脉冲和相位反向可通过单独的输入引脚或通用的SPI 控制接口进行控制。片内集成输出功率及温度传感器,可对芯片工作情况进行监控。芯片工作的环境温度为-40? 125?,满足汽车级环境应用要求。封装为32脚VQFN 封装,单3.3V 电源供电,节省了大量板上空间。其原理框图如图1所示。

相关文档
最新文档