仿真实验——单摆法测重力加速度数据记录及处理

仿真实验——单摆法测重力加速度数据记录及处理
仿真实验——单摆法测重力加速度数据记录及处理

/

1. 数据记录 .

2. 数据处理

A . 直接测量数据处理 米尺仪器误差: 0.05L δ?=

==0.03 小球直径的算术平均值的标准误差:

D δ=

=0.008

周期的算术平均值的标准误差:

T δ=

=0.04

B . 间接测量数据处理 重力加速度的测量误差;2

2

4l g T

π

==测重力加速度摆

线长度:2D

l L =-=0.9105m

的标准误差传递公式:g

E == 重力加速度的相对误差:g g g E δ=?=

最终结果:g g g δ=±=测

-单摆实验-参考

单摆实验 【实验目的】 1.通过对单摆周期的大量精密测量,利用偶然误差统计分布规律验证高斯误差分布定律,从而加深对偶然误差统计规律的认识。 2.利用单摆测重力加速度,掌握用不确定度分析讨论测量结果的方法,学会测量结果表达式的正确书写。 【实验仪器】 GM-1单摆实验仪(编号)数字毫秒计(编号)米尺 【实验原理】 一、利用偶然误差统计分布规律验证高斯误差分布定律 构思:对偶然误差服从正态分布规律的最好验证是统计检验。就是在一定条件下进行大量(几百次或更多)的精密测量,将其偏差的分布与理论值相比较,即是将偏差出现在一定区间的实际个数与理论计算的预期个数相比较,如果两者一致,则可以认为正态分布规律是成立的。 方案: 1、统计直方图…… 2、误差的置信概率…… 二、利用单摆测重力加速度 构思:…… 方案:…… 【实验内容及步骤】 一、利用偶然误差统计分布规律验证高斯误差分布定律(自拟) 二、利用单摆测重力加速度(自拟) 【数据记录及处理】 一、利用偶然误差统计分布规律验证高斯误差分布定律 单摆次数累计时间(s) 周期(T/s)偶然误差(ΔT/s)ΔT(s)ΔT2(s2) 1 0.668 1.355 -0.0220 0.02 2 0.000484 2 1.400 1.381 0.0040 0.004 0.000016 3 2.023 1.387 0.0100 0.010 0.000100

4 2.781 1.361 -0.0160 0.016 0.000256 5 3.410 1.397 0.0200 0.020 0.000400 6 4.142 1.369 -0.0080 0.008 0.000064 7 4.807 1.373 -0.0040 0.004 0.000016 8 5.511 1.394 0.0170 0.017 0.000289 9 6.180 1.358 -0.0190 0.019 0.000361 10 6.905 1.383 0.0060 0.006 0.000036 11 7.538 1.383 0.0060 0.006 0.000036 12 8.288 1.365 -0.0120 0.012 0.000144 13 8.921 1.395 0.0180 0.018 0.000324 14 9.653 1.369 -0.0080 0.008 0.000064 15 10.316 1.375 -0.0020 0.002 0.000004 16 11.022 1.390 0.0130 0.013 0.000169 17 11.691 1.362 -0.0150 0.015 0.000225 18 12.412 1.383 0.0060 0.006 0.000036 19 13.053 1.380 0.0030 0.003 0.000009 20 13.795 1.368 -0.0090 0.009 0.000081 21 14.433 1.392 0.0150 0.015 0.000225 22 15.163 1.369 -0.0080 0.008 0.000064 23 15.825 1.377 0.0000 0.000 0.000000 24 16.532 1.387 0.0100 0.010 0.000100 25 17.202 1.365 -0.0120 0.012 0.000144 26 17.919 1.383 0.0060 0.006 0.000036 27 18.567 1.378 0.0010 0.001 0.000001 28 19.302 1.370 -0.0070 0.007 0.000049 29 19.945 1.390 0.0130 0.013 0.000169 30 20.672 1.370 -0.0070 0.007 0.000049 31 21.335 1.378 0.0010 0.001 0.000001 32 22.042 1.384 0.0070 0.007 0.000049 33 22.713 1.367 -0.0100 0.010 0.000100 34 23.426 1.383 0.0060 0.006 0.000036 35 24.080 1.377 0.0000 0.000 0.000000 36 24.809 1.371 -0.0060 0.006 0.000036 37 25.457 1.389 0.0120 0.012 0.000144 38 26.180 1.371 -0.0060 0.006 0.000036 39 26.846 1.378 0.0010 0.001 0.000001 40 27.551 1.383 0.0060 0.006 0.000036 41 28.224 1.368 -0.0090 0.009 0.000081 42 28.934 1.382 0.0050 0.005 0.000025 43 29.592 1.378 0.0010 0.001 0.000001 44 30.316 1.372 -0.0050 0.005 0.000025 45 30.970 1.387 0.0100 0.010 0.000100 46 31.688 1.372 -0.0050 0.005 0.000025 47 32.357 1.378 0.0010 0.001 0.000001 48 33.060 1.382 0.0050 0.005 0.000025 49 33.735 1.370 -0.0070 0.007 0.000049

大学物理实验报告-单摆测重力加速度

大学物理仿真实验 实验报告 拉伸法钢丝测杨氏模量 实验名称:拉伸法测金属丝的杨氏模量

一、实验目的 1、学会测量杨氏模量的一种方法; 2、掌握光杠杆放大法测量微小长度的原理; 3、学会用逐差法处理数据; 二、实验原理 任何物体(或材料)在外力作用下都会发生形变。当形变不超过某一限度时,撤走外力则形变随之消失,为一可逆过程,这种形变称为弹性形变,这一极限称为弹性极限。超过弹性极限,就会产生永久形变(亦称塑性形变),即撤去外力后形变仍然存在,为不可逆过程。当外力进一步增大到某一点时,会突然发生很大的形变,该点称为屈服点,在达到屈服点后不久,材料可能发生断裂,在断裂点被拉断。人们在研究材料的弹性性质时,希望有这样一些物理量,它们与试样的尺寸、形状和外加的力无关。于是提出了应力F/S(即力与力所作用的面积之比)和应变ΔL/L(即长度或尺寸的变化与原来的长度或尺寸之比)之比的概念。在胡克定律成立的范围内,应力和应变之比是一个常数,即 / ) /( =/ / ((1) ? ) FL = S L L L E? F S E被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。某种材料发生一定应变所需要的力大,该材料的杨氏模量也就大。杨氏模量的大小标志了材料的刚性。

通过式(1),在样品截面积S 上的作用应力为F ,测量引起的相对伸长量ΔL/L ,即可计算出材料的杨氏模量E 。因一般伸长量ΔL 很小,故常采用光学放大法,将其放大,如用光杠杆测量ΔL 。光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触,见图1。当杠杆支脚随被测物上升或下降微小距离ΔL 时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角,如图2所示。当θ很小时, l L /tan ?=≈θθ (2) 式中l 为支脚尖到刀口的垂直距离(也叫光杠杆的臂长)。根据光的反射定律,反射角和入射角相等,故当镜面转动θ角时,反射光线转动2θ角,由图可 D b =≈θθ22tan (3) 式中D 为镜面到标尺的距离,b 为从望远镜中观察到的标尺移动的距离。 从(2)和(3)两式得到 D b l L 2=? (4) 由此得 D bl L 2=? (5)

单摆实验

单摆实验测重力加速度 应物1501 曾超 201510800422 一、引言: 该实验通过对单摆的物理模型,测量重力加速度g,学习掌握随机误差的分布规律以及标准偏差的意义。了解物理实验的严谨性,尤其是对误差分析的严谨对物理实验的影响,并在以 后的实验过程中运用这块的知识解决问题。T 二、实验原理: 用一根细线加一个直径较小,密度大的金属小球组成一个单摆模型。当单摆做简谐运动时,其周期公式为:T=2π√L ,只要测出单摆摆长L和振动周期T,就可以求出当地的重力加速 g 度g。通过多次实验,根据结果得出周期的平均值,标准偏差吗,统计观测值落于某些范围内的几率。 三、实验装置: 带孔的小钢球一个,直径15mm 一根一米长的细线 铁架台 秒表 米尺 四、实验方案: 将摆球提高一定角度(很小),放下的同时开始计时,计算50个周期,算实验一次。通过改变摆长重新实验,做200次以上的实验。 五、实验步骤: (1)准备好实验装置如图: (2)测量小球的直径D,细线的悬长L。 (3)将单摆拉开一个不超过10°的角度,放开小球令其摆动,用秒表测单摆完成50次振动用的时间,求出完成一次全振动的时间。即周期T。 (4)将所得数据代回公式,得出g。 (5)改变摆长,做200次实验。将所得的数据计入表格,计算出周期的平均值T和标准偏差。统计观测值落于 范围内的几率。

六、测量数据记录:

重力加速度平均值g=9.7673m/s^2 周期的标准偏差0.00597629s 在 的概率分别为79.5%,100%,100% 统计直方图为:

横坐标代表周期的区间。左边纵坐标代表数据的个数,右边代表区间所占比重,红色曲线代表各个数据区间所占比重逐级累积上升的趋势。从这张图里可以看出,在周期 2.0144s-2.0180s间出现的数据最多,所占比重也最大。侧面说明了当地的单摆周期最有可能是在2.0144s-2.0180s间出现。 七、结果与讨论: 通过多次实验,对随机误差有了一定的认识。当实验条件不变的情况下,仍然会有各种偶然,无法预测的因素干扰,导致产生测量误差。虽然误差无法预测,但总体上却服从统计规律。再多次测量后,能得出一个规律,在一个范围内可以很大程度上削减随机误差的影响。我在实验中发现,随机误差基本符合资料中查来的规律。(1)有界性:各个随机误差的绝对值均不超过一定的界限。(2)单峰型:绝对值小的随机误差总要比绝对值打的随机误差出现的概率大。(3)对称性:等值而符号相反的随机误差出现的概率接近相等。(4)抵偿性:当精度重复测量次数n→∞时,所有测量值的随机误差的代数和为零。 随机误差的估算方法:在相同条件下,用相同的方法测量多次,将每次得到的测量值记录下来,算出平均值。当测量次数够多时,各次测量绝对误差的算术平均值就等于测量的系统误差。同时还可以计算所有数据的方差与标准差。方差表示测量数据的分散程度,标准差表示 数据的精密程度。方差的计算方法为。标准差的计算方法为。

实验 用单摆测定重力加速度 教案

实验:用单摆测定重力加速度 教案 实验目的:学会用单摆测定当地重力加速度,正确熟练使用秒表。 实验器材:①球心开有小孔的小金属球②长度大于1米的细尼龙线③铁夹④铁架台⑤游标卡尺⑥米尺⑦秒表 实验原理:根据单摆周期公式T=2πg l /,得:g=224T l 。据此,只要测得摆长l 和周期T 即可算出当地的重力加速度g 。 实验步骤 1、用细线拴好小球,悬挂在铁架台上,使摆线自由下垂,如图1。 注意:线要细且不易伸长,球要用密度大且直径小的金属球,以减小空气阻力影响。 摆线上端的悬点要固定不变,以防摆长改变。 2、用米尺和游标卡尺测出单摆摆长。 注意:摆长应为悬点到球心的距离,即l=L+D/2;其中L 为悬点到球面的摆线长,D 为球的直径。 3、用秒表测出摆球摆动30次的时间t ,算出周期T 。 注意:为减小记时误差,采用倒数计数法,即当摆球经过平衡位置时开始计数,“3,2,1,0,1,2,3……”数“0”时开始计时,数到“60”停止计时,则摆球全振动30次,T=t/30。 计时从平衡位置开始是因为此处摆球的速度最大,人在判定它经过此位置的时刻,产生的计时误差较小。 为减小系统误差,摆角a 应不大于10°,这可以用量角器粗测。 4、重复上述步骤,将每次对应的摆长l 、周期T 填于表中,按公式T=2πg l /算出每 次g ,然后求平均值。 [实验记录] 图1

注意:(1)为减小计算误差,不应先算T的平均值再求g,而应先求出每次的g值再平均。 (2)实验过程中: ①易混淆的是:摆通过平衡位置的次数与全振动的次数。 ②易错的是:图象法求g值,g≠k而是g=4π2/k;T=t/n和T=t/(n-1)也经常错用,(前者是摆经平衡位置数“0”开始计时,后者是数“1”开始计时)。 ③易忘的是:漏加或多加小球半径,悬点未固定;忘了多测几次,g取平均值。 实验结论 从表中计算的g看,与查得的当地标准g值近似相等,其有效数字至少3位。 实验变通 变通(1):变器材,用教学楼阳台代替铁架台,用数米长的尼龙细线拴好的小挂锁代替摆球,用米尺只测量摆线的一段长度,用秒表测量周期T仍能测量当地重力加速度,其简要方法如下:如下图所示,设阳台上的悬点为O,挂锁的重心为O′在摆长上离挂锁附近作一红色标记M,用米尺量OM=L1,而MO′=L2,不必测量,则: T12=4π2(L1+L2)/g……①在悬点处放松(或收起)一段线,再量OM=L2,MO′=L0不变,则T2=4π2(L2+L0)/g……② 由①②式得:g=4π2(L2+L1)/(T12-T22)(其中T1、T2测量方法同上述方法) 此实验也可以用T2-l图象法去求。 变通(2):变器材,变对象,在地球表面借助电视机,依据周期公式,用机械手表测月球表面自由落体的加速度g月。 有一位物理学家通过电视机观看宇航员登月球的情况,他发现在登月密封舱内悬挂着一个重物在那里微微摆动,其悬绳长跟宇航员的身高相仿,于是他看了看自己的手表,记下了一段时间t内重物经最低点的次数,就算出了g月,已知他记下重物由第一次经最低点开始计时数到n=30次的时间t为1分12.5秒,并估计绳长l约等于宇航员身高l。 l/计算出了g月。 由T=t/[(n-1)/2]和T=2πg

大学物理实验报告单摆测重力加速度

——利用单摆测重力加速度 班级: 姓名: 学号: 西安交通大学模拟仿真实验实验报告 实验日期:2014年6月1日 老师签字:_____ 同组者:无 审批日期:_____ 实验名称:利用单摆测量重力加速度仿真实验 一、实验简介 单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 二、实验原理 用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面内作周期运动,就成为单摆。单摆在摆角小于5°(现在一般认为是小于10°)的条件下振动时,可近似认为是简谐运动。而在实际情况下,一根不可伸长的细线,下端悬挂一个小球。当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置近似为单摆。单摆带动是满足下列公式: 进而可以推出: 式中L 为单摆长度(单摆长度是指上端悬挂点到球重心之间的距离);g 为重力加速度。如果测量得出周期T 、单摆长度L ,利用上面式子可计算出当地的重力加速度g 。 西安交通大学物理仿真实验报告

三、实验内容 1. 用误差均分原理设计单摆装置,测量重力加速度g. 设计要求: (1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2)写出详细的推导过程,试验步骤. (3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△ 米≈0.05cm;卡尺精度△ 卡 ≈0.002cm;千分尺精度△ 千 ≈0.001cm; 秒表精度△ 秒 ≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s 左右,所以实验人员开,停秒表总的反应时间近似为△ 人 ≈0.2s. 2. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否 达到设计要求. 3. 研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关 系,试分析各项误差的大小. 四、实验仪器 单摆仪,摆幅测量标尺,钢球,游标卡尺(图1-图4)

18单摆实验报告

实验:练习使用游标卡尺用单摆测定重力加速度 班级姓名座号. 一、实验目的: 1.练习使用游标卡尺,掌握读数方法。 2.用单摆测定当地的重力加速度。 二、实验原理: (一)游标卡尺 游标卡尺,是一种测量长度、内外径、深 度的量具。游标卡尺由主尺和附在主尺上 能滑动的游标两部分构成。主尺一般最小 分度值为豪米,而游标上则有10、20或50 个分格,根据分格的不同,游标卡尺可分为十分度游标卡尺、二十分度游标卡尺、五十分度格游标卡尺等,游标为10分度的有9mm,20分度的有19mm,50分度的有49mm。游标卡尺的主尺和游标上有两副活动量爪,分别是内测量爪和外测量爪,内测量爪通常用来测量内径,外测量爪通常用来测量长度和外径。 游标卡尺的读数可分为三步:第一步读出主尺的零刻度线到游标尺的零刻度线之间的整毫米数a(如右图,a=10mm);第二步根据游标尺上与主尺对齐的刻度线读出毫米以下的小数部分b(如右图,b=17×=,其中“17” 为游标尺与主尺对齐的游标尺的刻度,“”为游标卡尺的 精度);第三步把两者相加就得出待测物体的测量值c (c=a+b=).游标卡尺的读数结果一般先以毫米为单 位,然后再换算成所需要的单位。游标卡尺的读数一 般不用估读。 (二)测当地重力加速度 当单摆偏角很小时(θ<5°),单摆的运动为简谐运动,根据单摆周期T=2π l g得g =4π2l T2,因此,只需测出摆长l和周期T,便可测定g。 三、实验器材: 中心有小孔的金属小球、长约1米的细线、铁架台(带铁夹)、刻度尺、秒表、游标卡尺。 四、实验步骤: 1.制作单摆:让细线的一端穿过小球的小孔,并打一个比小孔大一些 的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放实验 桌边,使铁夹伸到桌面以外,让摆球自然下垂.且在单摆平衡位置处 作标记,如右图所示. 2.观察单摆运动的等时性. 3.测摆长:用米尺量出摆线长l′,精确到毫米,用游标卡尺测出小球

单摆测量重力加速度教案

用单摆测重力加速度 一、教学任务分析 高一学生已经学习了自由落体运动,了解了重力加速度的概念;本章前几节又学习了简谐运动,研究了单摆的振动周期,知道周期公式以及成立的条件。知识背景充足。我认为这一节课一是让学生加深对单摆简谐运动的理解和认识,二是培养学生实验技能,加强学生的科学素养,这才是这一节课最重要的目的。 二、教学目标 1、知识与技能 (1)、使学生学会用单摆测定当地的重力加速度; (2)、使学生学会处理数据的方法; (3)、让学生能正确熟练地使用秒表。 2、过程与方法 学生发散思维、探究重力加速度的测量方法──明确本实验的测量原理──组织实验器材、探究实验步骤──进行实验──分析数据,得出实验结论。这一条探究之路。 3、情感态度与价值观 (1)、通过课堂活动、讨论与交流培养学生的团队合作精神。 (2)、通过对振动次数的计数等培养学生仔细观察、严谨治学的科学素养。 三、教学重点与难点 重点: 1.了解单摆的构成。 2. 单摆的周期公式。 3. 处理数据的方法。 难点: 1. 计时的准确性。 2. 计数的准确性。 四、教学资源: 长约一米的细丝线、通过球心开有小孔的金属球、带有铁夹的铁架台、毫米刻度尺、秒表。多媒体。 五、教学设计思路 本设计的基本思路是: 第一,通过计时时刻的确定(以最低点速度最快时为计时起点)、推导用单摆测重力 加速度的公式(g= 2 2 4L T π? ? )、摆球的要求(重且小)、摆长的确定(从球重心到悬点的长 度)及单摆做简谐运动的条件(在一个平面内运动且摆角小于50)。 第二,通过探讨测量加速度的方法,编写实验步骤时要指明器材、方法和公式;根据实验原理确定器材、通过测定摆球直径了解有效数字和精确度的匹配;通过测量30-50次全振动的时间确定周期以减小偶然误差;数据处理的两种方法平均法和图像法;试着分析实验误差。 第三,用分组探究、分析讨论的方法使学生深刻体会、经历实验的过程,让学生明白做什么,为什么这样做,这样做的误差在哪里,做一个实验的设计者和操作者,而不是旁观者和执行者。切实提高学生的实验技能,培养他们对物理实验的热情和素养。最后让学生利用课堂学到的实验技能写出用打点计时器测重力加速度的实验报告,加以巩固和提高。

用单摆测定重力加速度

用单摆测定重力加速度实验注意事项及误差分析 1、实验原理 单摆的偏角很小(小于010)时,其摆动可视为简谐运动,摆动周期为 2L T g π =,由此可得224g L T π=。从公式可以看出,只要测出单摆的摆长L 和摆动周期T ,即可计算出当地的重力加速度。 实验器材:1、单摆、停表、直尺、游标卡尺、铁架台等。 2、单摆、光电门传感器、直尺、游标卡尺、铁架台等。 注意器材: 绳 —— 不可伸长,质量小,尽可能长但小于1m(不然米尺难以量) 球 —— 越小,越重为佳 长度测量:L = l 线 + r , r :游标卡尺测,精确到 l 线 :米尺测,精确到mm ,估读到 时间测量:秒表,精确到,无须估读 2、注意事项 ⑴实验所用的单摆应符合理论要求,即线要细、轻、不伸长,摆球要体积010。 ⑵单摆悬线上端要固定,即用铁夹夹紧,以免摆球摆动时摆线长度不稳定。 ⑶摆球摆动时,要使之保持在同一个竖直平面内,不要形成圆锥摆,如图1所示。若形成的圆锥摆的摆线与竖直方向的夹角为α,则摆动的周期为cos 2L T g α π =,比相同摆长的单摆周期小,这时测得的重力加速度值比标准值大。 ⑷计算单摆振动次数时,以摆通过最低位置时进行计数,且在数“零”的同时按下秒表,开始计数。这样可以减小实验误差。 ⑸为使摆长测量准确,从而减小实验误差,在不使用游标卡尺测量摆球直径的情况下,可用刻度尺按图2量出1L 和2L ,再由 121()2 L L L +=计算出摆长。 3、误差分析 ⑴本实验系统误差主要来源于单摆模型本身是否符合要求,即:悬点是否固定,是单摆还是复摆,球、线是

否符合要求,振动是圆锥摆还是在 同一竖直平面内振动以及测量哪段长度作 为摆长等等。只要注意了上面这些方面,就 可以使系统误差减小到远远小于偶然误差 而忽略不计的程度。 ⑵本实验偶然误差主要来自时间(即单摆周期)的测量上。因此,要注意测准时间(周期)。要从摆球通过平衡位置开始计时,并采用倒计时的方法,不能多记振动次数。为了减小偶然误差,应进行多次测量然后取平均值。 ⑶本实验中长度(摆线长、摆球的直径)的测量时,读数读到毫米位即可(即使用卡尺测摆球直径也需读到毫米位)。时间的测量中,秒表读数的有效数字的末位在“秒”的十分位即可。

单摆实验讲义

单摆实验讲义 一、目的 1) 验证摆长与周期之间的关系,求出重力加速度g 。 2) 测量摆角与周期之间的关系,作)2/(22θSin T -关系图,求出重力加速度g 。 二、实验原理 1) 周期与摆角的关系 在忽略空气阻力和浮力的情况下,由单摆振动时能量守恒,可以得到质量为 m 的小球在摆角为θ处动能和势能之和为常量,即: 02 2E )cos 1(mgL dt d mL 21=-+?? ? ??θθ (1) 式中,L 为单摆摆长,θ为摆角,g 为重力加速度,t 为时间,0E 为小球的总机械能。因为小球在摆幅为m θ处释放,则有: )cos 1(0m mgL E θ-= 代入(1)式,解方程得到 ?-=m 0m cos cos d g L T 4 2 θ θθθ (2) (2)式中T 为单摆的振动周期。 令)2/sin(m k θ=,并作变换?θsin )2/sin(k =有 ?-=2 /0 22sin k 1d g L 4 T π? ? 这是椭圆积分,经近似计算可得到 ?? ????+??? ??+ 2s i n 411g L 2T m 2θπ = (3) 在传统的手控计时方法下,单次测量周期的误差可达0.1-0.2s ,而多次测量又面临空气阻尼使摆角衰减的情况,因而(3)式只能考虑到一级近似,不得不 将)2 (sin 41 2m θ项忽略。但是,当单摆振动周期可以精确测量时,必须考虑摆角对

周期的影响,即用二级近似公式。在此实验中,测出不同的m θ所对应的二倍周期T 2,作出)2 ( sin 22m T θ-图,并对图线外推,从截距2T 得到周期T ,进一步可 以得到重力加速度g 。 2) 周期与摆长的关系 如果在一固定点上悬挂一根不能伸长无质量的线,并在线的末端悬一质量为m 的质点,这就构成一个单摆。当摆角θm 很小时(小于3°),单摆的振动周期T 和摆长L 有如下近似关系; g L T π 2=或g L T 224π= (4) 当然,这种理想的单摆实际上是不存在的,因为悬线是有质量的,实验中又采用了半径为r 的金属小球来代替质点。所以,只有当小球质量远大于悬线的质量,而它的半径又远小于悬线长度时,才能将小球作为质点来处理,并可用(4)进行计算。但此时必须将悬挂点与球心之间的距离作为摆长,即L=L 1+r ,其中L 1为线长。如固定摆长L ,测出相应的振动周期T ,即可由(4)式求g 。也可逐次改变摆长L ,测量各相应的周期T ,再求出T 2,最后在坐标纸上作T 2-L 图。如图是一条直线,说明T 2与L 成正比关系。在直线上选取二点P 1(L 1,T 12),P 2(L 2,2 2 T ),由二点式求得斜率1 22 12 2L L T T k --=;再从g 4k 2 π=求得重力加速度,即 2 1221 224T T L L g --=π

单摆测重力加速度实验报告

一、实验目的 1.学会秒表、米尺的正确使用。 2.理解单摆法测定重力加速的原理。 3.研究单摆振动的周期与摆长、摆角的关系。 4.学习系统误差的修正及在实验中减小不确定度的方法。 二、实验仪器 单摆装置,停表(精度为0.01s),钢卷尺(精度为0.05cm),游标卡尺(精度为0.02mm)。 三、实验原理 单摆的振动周期决定于重力加速度g和摆长L,只需要量出摆长L并测定摆动周期,就能够得到g。 如图:当θ<5?时,圆弧可近似的看成直线,f也可 近似的看成沿着这条直线,则有sinθ=,f=Fsinθ= -mg=-m x 由牛顿第二定律得:a=则有 a=-令ω=最终得单摆的运动方程为 X=A其中T==g =考虑到摆球是有大小的,故摆长L用米尺测量,摆球直径d用游标卡尺测量,周期T用停表测量。 四、实验步骤 1.测量摆长L。用米尺测量摆线支点与摆球顶点的距离l。用游标卡尺测量小球的直径d,则摆长L=l+。 2.测量摆动周期T。用手把摆球拉直偏离平衡位置5度左右,让其在

一个垂直面内自由摆动,小球越过平衡位置瞬间开始计时,连续默数100次全振动时间t,T=。 3.为了减小误差,重复测量5次将数据记录于下表中。 五、数据记录与处理

六、结果与讨论 兰州的重力加速度,结果有偏差,原因有以下几点; 1、测量单摆周期时的反应时间。 2、在测量摆线长度时对最后一位数字的估读。 3、环境方面,温度、湿度、空气阻力的变化都会影响实验结果。 4、悬线质量的影响。 5、摆角角度的影响。 七、试验问题 1、直接测量单摆往返一次的时间会受到人的反应时间的影响,通过多次测量求平均值的方法可以减小误差。 2、 3、受空气阻力影响摆幅越来越小,但其周期不变;用木球代替铜球时,因木球密度较小,受空气阻力的影响会变大。

单摆实验报告

广州大学学生实验报告 院(系)名称 物理系 班 别 姓名 专业名称 物理教育 学号 实验课程名称 普通物理实验I 实验项目名称 力学实验:单摆 实验时间 实验地点 实验成绩 指导老师签名 一、实验目的 (1)学会用单摆测定当地的重力加速度。 (2)研究单摆振动的周期和摆长的关系。 (3)观察周期与摆角的关系。 二、实验原理 如图所示,将一根不易伸长而且质量可忽略的细线上端固定,下端系一体积很小的金属小球绳长远大于小球的直径,将小球自平衡位置拉至一边(摆角小于5°),然后释放,小球即在平衡位置左右往返作周期性的摆动,这里的装置就是单摆 设摆点O 为极点,通过O 且与地面垂直的直线为极轴, 逆时针方向为角位移θ的正方向。由于作用于小球的重力和绳子张力的合力必沿着轨道的切线方向且指向平衡位置,其大小 θ sin mg f = 设摆长为L ,根据牛顿第二定律,并注意到加速度的切 向方向分量 2 2dt d l a θθ?= ,即得单摆的动力学方程 θθ sin 22mg dt d ml -= 结果得 θωθ2 2 2=-=l g dt d 由上式可知单摆作简谐振动,其振动周期 g l T π ω π 22== mg cos θ mg sin θ L θ θ mg

3 100.21 95.12 89.50 84.0 4 77.64 70.91 4 100.11 95.0 5 89.84 84.20 77.50 70.96 50(S)100.27 95.03 89.72 84.13 77.54 70.88 T T(S) 2.005 1.900 1.794 1.683 1.551 1.418 2 T(S) 4.020 3.610 3.218 2.832 2.406 2.011 由上表数据可作T2-L图线如下图所示:Array 又由图可知T2-L图线为一条直线,可求得其 斜率为:k=26.046(cm/s2) 所以 g=4π2k=10.72(m/s2)

单摆测量重力加速度实验报告

实验报告 学生姓名: 地点:三楼物理实验室 时间: 年 月 日 同组人: 实验名称:用单摆测重力加 速度 一、实验目的 1.学会用单摆测定当地的重力加速度。 2.能正确熟练地使用停表。 二、实验原理 单摆在摆角小于10°时,振动周期跟偏角的大小和摆球的质量无关,单摆的周期公式是T =2π l g ,由此得g =4π2l T 2,因此测出单摆的摆长l 和振动周期T ,就可以求出当地的重力加速度值。 三、实验器材 带孔小钢球一个,细丝线一条(长约1 m)、毫米刻度尺一把、停表、游标卡尺、带铁夹的铁架台。 四、实验步骤 1.做单摆 取约1 m 长的细丝线穿过带孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂. 2.测摆长 用米尺量出摆线长l (精确到毫米),用游标卡尺测出小球直径D ,则单摆的摆长l ′=l +D 2。

3.测周期 将单摆从平衡位置拉开一个角度(小于10°),然后释放小球,记下单摆摆动30次~50次的总时间,算出平均每摆动一次的时间,即为单摆的振动周期.反复测量三次,再算出测得周期数值的平均值。 4.改变摆长,重做几次实验。 五、数据处理 方法一:将测得的几次的周期T和摆长l代入公式g=4π2l T2中算出重力加速度g的 值,再算出g的平均值,即为当地的重力加速度的值。 方法二:图象法 由单摆的周期公式T=2π l g可得l= g 4π2T 2,因此,以摆长l为纵轴,以T2为横 轴作出l-T2图象,是一条过原点的直线,如右图所示,求出斜率k,即,可求出g值.g =4π2k,k= l T2= Δl ΔT2。 (隆德地区重力加速度标准值g=9.786m/s2) 六、误差分析

单摆实验报告

广州大学 学 生实验报告 院(系)名称 物理系 班 别 姓名 专业名称 物理教育 学号 实验课程名称 普通物理实验I 实验项目名称 力学实验:单摆 实验时间 实验地点 实验成绩 指导老师签名 一、实验目的 (1)学会用单摆测定当地的重力加速度。 (2)研究单摆振动的周期和摆长的关系。 (3)观察周期与摆角的关系。 二、实验原理 如图所示,将一根不易伸长而且质量可忽略的细线上端固定,下端系一体积很小的金属小球绳长远大于小球的直径,将小球自平衡位 置拉至一边(摆角小于5°),然后释放,小球即在平衡位置左右往返作周期性的摆动,这里的装置就是单摆 设摆点O 为极点,通过O 且与地面垂直的直线为极轴,逆时针方向为角位移θ的正方向。由于作用于小球的重力和绳子张力的合力必沿着轨道的切线方向且指向平衡位置,其大小 θ sin mg f = 设摆长为L ,根据牛顿第二定律,并注意 到加速度的切向方向分量 2 2dt d l a θ θ?= ,即得单摆的动力学方程 mg cos θ mg sin θ L θ θ mg

T(S) 2.005 1.900 1.794 1.683 1.551 1.418 2 T(S) 4.020 3.610 3.218 2.832 2.406 2.011 由上表数据可作T2-L图线如下图所示: 又由图可知T2-L图线为一条直线,可求得其 斜率为:k=26.046(cm/s2) 所以 g=4π2k=10.72(m/s2) 六、实验结果与分析 测量结果:用单摆法测得实验所在地点重力加速度为: 实验分析: 单摆法测重力加速度是一种较为精确又简便的测量重力加速度方法。本实验采用较精密的数字毫秒仪计时减小了周期测量误差。实验误差由要来源于①摆长的测量误差,但由于摆长较长,用钢卷尺测量产生的相对误差也较小,所以用钢卷尺也能达到较高的准确度;②系统误差:未

用单摆测量重力加速度

班号B2学 号 姓 名 李安逸 实验 名称 用单摆测量重力加速度 实验目的 用单摆测量重力加速度实验是进行简单设计性实验基本方法的训练,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源,提出进行修正和估算的方法。 实验原理 一、单摆的一级近似的周期公式为 由此通过测量周期T,摆长l求重力加速度. 二、不确定度均分原理 在间接测量中,每个独立测量的量的不确定度都会对最终结果的不确定度有贡献。如果已知各测量之间的函数关系,可写出不确定度传递公式,并按均分原理,将测量结果的总不确定度均匀分配到各个分量中,由此分析各物理量的测量方法和使用的仪器,指导实验。一般而言,这样做比较经济合理。对测量结果影响较大的物理量,应采用精度较高的仪器,而对测量结果影响不大的物理量,就不必追求高精度仪器。 实验内容 一. 用误差均分原理设计一单摆装置,测量重力加速度g. 设计要求: (1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2) 写出详细的推导过程,试验步骤. (3) 用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用).

假设摆长l≈;摆球直径D≈;摆动周期T≈; 米尺精度△米≈;卡尺精度△卡≈;千分尺精度△千≈;秒表精度△秒≈;根据统计分析,实验人员开或停秒表反应时间为左右,所以实验人员开,停秒表总的反应时间近似为△人≈. 二. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求. 三. 自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关系,试分析各项误差的大小. 四. 自拟试验步骤用单摆实验验证机械能守恒定律. 实验器材: 单摆仪 游标卡尺 螺旋测微器

单摆测量重力加速度实验的误差分析

图1 单摆受力分析 单摆测量重力加速度实验的误差分析 吉恒 (云南省通海县第二中学,云南,玉溪 652701) 单摆实验是普通物理的基本实验之一, 同时也是必做实验之一。其原理简单、易懂,原则上只要在同一地点进行实验,都应得到相同结果,但在实际操作过程中一些不可避免的因素会影响实验结果的精确度。为提高实验的精确度,减小各种不可避免因素给实验结果带来的影响,本文从以下几方面着手对此实验进行分析和研究。 首先,对摆角进行分析,因为随摆角大小的变化,摆遵循的运动规律是不一样的。在实验原理中,一般是把它理想化地当作简谐运动来处理,让其满足简谐运动的运动方程,然后来求解其周期公式,事实上这是有条件限制的。因此本文采用了增维精细积分的方法来讨论单摆在什么样的摆角情况下才能够做线性动力学分析,也就是单摆满足简谐运动运动规律的摆角范围。 其次,单摆摆长的测量也是引起实验误差的原因之一。本文就单摆摆长的不同测量方法带来的B 类标准不确定度(由实验仪器的精确度引进)进行计算、分析、比较,以选取最佳测量方法。 1.单摆测量重力加速度的实验原理 如图1所示,单摆就是用一根不可伸长的轻线悬挂一个小球, 使其可绕摆的支点O 做摆动, 当小球作摆角很小的摆动时就是一个单摆。 设小球的质量为m , 其质心到支点o 的距离为l (摆长) 。建立自然坐标系,根据受力分析,作用在小球上的切向力的大小为θsin mg ,方向总指向平衡点o ', 当θ 很小时, 有θθ≈sin , 此时切向力的大小近似为θmg 。 法向,绳的张力和重力的分力相平衡。根据牛顿第二 运动定律,质点动力学方程为: t ma mg θ=- 因22dt d l a t θ=,代入上式得 22d g dt l θθ=- (1) 上式即为单摆的运动微分方程。 对上式移项得到 022=+θθl g dt d 若令

大学物理实验报告范例(单摆法测重力加速度)

怀化学院 大学物理实验实验报告 系别物信系年级2009专业电信班级09电信1班姓名张三学号09104010**组别1实验日期2009-10-20 实验项目:6-单摆法测重力加速度

【实验项目】单摆法重力加速度 【实验目的】 1. 掌握用单摆法测本地生力加速度的方法。 2. 研究单摆的系统误差对测量结果的影响。 3. 掌握不确定度传递公式在数据处理中的应用。 【实验仪器】 FB327型单摆实验仪、FB321型数显计时记数毫秒仪、钢卷尺、游标卡尺 【实验原理】 如果在一固定点上悬挂一根不能伸长、无质量的细线,并在线的末端悬挂一质量为m 的质点,这就构成了一个单摆。在单摆的幅角θ很小(<5°)时,单摆的振动周期T 和摆长L 有如下关系: g l π 2=T (1) 单摆是一种理想模型。为减小系统误差,悬线的长度要远大于小球直径,同时摆角要小于5°,并保证在同一竖直平面内摆动。固定摆长,测量T 和摆长即可求出g 。 l g 224T =π 式中:d l l 21+'= (线长加半径)或d l l 2 1 -'=(悬点到小球底端距离减半径) 为减小周期测量误差,通过测量n 次全振动时间测周期,即:n t T = 重力加速度测量计算公式:2 22 4t l n g π= (3) 【实验内容与步骤】 1. 调整摆长并固定,用钢卷尺测摆线长度l ',重复测量6次。 2. 用游标卡尺测摆球直径d ,重复测量6次。 3.调单摆仪底座水平及光电门高低,使摆球静止时处于光电门中央 4.测量单摆在摆角ο 5<θ(振幅小于摆长的1/12时)的情况下,单摆连续摆动n 次(n=20)的时间t 。要保证单摆在竖起平面内摆动,防止形成圆锥摆,等摆动稳定后开始计时。 5.计算g 的平均值,并作不确定度评定。

单摆法重力加速度的测定

重力加速度的测定 单摆法 实验内容 1.学习使用秒表、米尺。 2.用单摆法测量重力加速度。 教学要求 1.理解单摆法测量重力加速度的原理。 2.研究单摆振动的周期与摆长、摆角的关系。 3.学习在实验中减小不确定度的方法。 实验器材 单摆装置(自由落体测定仪),秒表,钢卷尺 重力加速度是物理学中一个重要参量。地球上各个地区重力加速度的数值,随该地区的地理纬度和相对海平面的高度而稍有差异。一般说,在赤道附近重力加速度值最小,越靠近南北两极,重力加速度的值越大,最大值与最小值之差约为1/300。研究重力加速度的分布情况,在地球物理学中具有重要意义。利用专门仪器,仔细测绘各地区重力加速度的分布情况,还可以对地下资源进行探测。 伽利略在比萨大教堂内观察一个圣灯的缓慢摆动,用他的脉搏跳动作为计时器计算圣灯摆动的时间,他发现连续摆动的圣灯,其每次摆动的时间间隔是相等的,与圣灯摆动的幅度无关,并进一步用实验证实了观察的结果,为单摆作为计时装置奠定了基础。这就是单摆的等时性原理。 应用单摆来测量重力加速度简单方便,因为单摆的振动周期是决定于振动系统本身的性质,即决定于重力加速度g和摆长L,只需要量出摆长,并测定摆动的周期,就可以算出g值。 实验原理 单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,如图2-1所示。 f =P sinθf θ T=P cosθ P = mg L

摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。设摆长为L ,小球位移为x ,质量为m ,则 sin θ= L x f=psin θ=-mg L x =-m L g x (2-1) 由f=ma ,可知a=-L g x 式中负号表示f 与位移x 方向相反。 单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a =m f =-ω2x 可得ω= l g 于是得单摆运动周期为: T =2π/ω=2πg L (2-2) T 2 = g 2 4πL (2-3) 或 g=4π2 2 T L (2-4) 利用单摆实验测重力加速度时,一般采用某一个固定摆长L ,在多次精密地测量出单摆的周期T 后,代入(2-4)式,即可求得当地的重力加速度g 。 由式(2-3)可知,T 2 和L 之间具有线性关系, g 2 4π为其斜率,如对于各种不同的 摆长测出各自对应的周期,则可利用T 2—L 图线的斜率求出重力加速度g 。 误差分析 上述单摆测量g 的方法依据的公式是(2-2)式,这个公式的成立是有条件的,否则将使测量产生如下系统误差: 1. 单摆的摆动周期与摆角的关系,可通过测量θ<5°时两次不同摆角θ1、θ2的周期值进行比较。在本实验的测量精度范围内,验证出单摆的T 与θ无关。 实际上,单摆的周期T 随摆角θ增加而增加。根据振动理论,周期不仅与摆长L 有关,而且与摆动的角振幅有关,其公式为: T=T 0[1+(21)2sin 22θ+(4231??)2sin 22 θ+……]

大学物理实验报告-单摆测重力加速度

西安交通大学物理仿真实 验报告 ——利用单摆测重力加速度 班级: 姓名: 学号: 西安交通大学模拟仿真实验实验报告

实验日期:2014年6月1日 老师签字:_____ 同组者:无 审批日期:_____ 实验名称:利用单摆测量重力加速度仿真实验 一、实验简介 单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 二、实验原理 用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面内作周期运动,就成为单摆。单摆在摆角小于5°(现在一般认为是小于10°)的条件下振动时,可近似认为是简谐运动。而在实际情况下,一根不可伸长的细线,下端悬挂一个小球。当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置近似为单摆。单摆带动是满足下列公式: g L T π 2= 进而可以推出: 22 4T L g π=

式中L为单摆长度(单摆长度是指上端悬挂点到球重心之间的距离);g为重力加速度。如果测量得出周期T、单摆长度L,利用上面式子可计算出当地的重力加速度g。 三、实验内容 1. 用误差均分原理设计单摆装置,测量重力加速度g. 设计要求: (1) 根据误差均分原理,自行设计试验方案,合理选择测量 仪器和方法. (2) 写出详细的推导过程,试验步骤. (3) 用自制的单摆装置测量重力加速度g,测量精度要求△ g/g < 1%. 可提供的器材及参数: 游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈ 0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒

相关文档
最新文档