DC-DC电感参数选择计算

DC-DC电感参数选择计算
DC-DC电感参数选择计算

DC-DC升压和降压电路电感参数选择

注:只有充分理解电感在DC-DC电路中发挥的作用,才能更优的设计DC-DC电路。本文还包括对同步DC-DC及异步DC-DC概念的解释。

DC-DC电路电感的选择简介

在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。

理解电感的功能

电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND。

在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。

现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。

我们利用电感上电压计算公式:

V=L(dI/dt)

因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示:

通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

其中,ton是状态1的时间,T是开关周期(开关频率的倒数),DC为状态1的占空比。

警告:上面的计算是假设各元器件(MOSFET上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。

如果,器件的下降不可忽略,就要用下列公式作精确计算:

同步转换电路:

异步转换电路:

其中,Rs为感应电阻阻抗加电感绕线电阻的阻。Vf是肖特基二极管的正向压降。R是Rs加MOSFET导通电阻,R=Rs+Rm。

电感磁芯的饱和度

通过已经计算的电感峰值电流,我们可以发现电感上产生了什么。很容易会知道,随着通过电感的电流增加,它的电感量会减小。这是由于磁芯材料的物理特性决定的。电感量会减少多少就很重要了:如果电感量减小很多,转换器就不会正常工作了。当通过电感的电流大到电感实效的程度,此时的电流称为“饱和电流”。这也是电感的基本参数。

实际上,转换电路中的开关功率电感总会有一个“软”饱和度。要了解这个概念可以观察实际测量的电感VsDC电流的曲线:

当电流增加到一定程度后,电感量就不会急剧下降了,这就称为“软”饱和特性。如果电流再增加,电感就会损坏了。

注意:电感量下降在很多类的电感中都会存在。例如:toroids,gapped E-cores等。但是,rodcore电感就不会有这种变化。

有了这个软饱和的特性,我们就可以知道在所有的转换器中为什么都会规定在DC输出电流下的最小电感量;而且由于纹波电流的变化也不会严重影响电感量。在所有的应用中都希望纹波电流尽量的小,因为它会影响输出电压的纹波。这也就是为什么大家总是很关心DC输出电流下的电感量,而会在Spec中忽略纹波电流下的电感量。

开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计注意事项 在电源变压器的设计过程中,工程师们需要严格的计算并完成共模电感设计和数值选取,这直接关系到开关电源变压器的运行精度。在今天的文章中,我们将会就开关电源变压器的共模电感设计展开简要分析,看在电源变压器共模电感设计和计算过程中,都应该注意哪些问题。 在电源变压器的设计和制作过程中,工程师所要进行的共模电感设计,其所需要的基本参数主要有三个,分别是输入电流,阻抗及频率,磁芯选取。先来看输入电流。这一参数值直接决定了绕组所需的线径。在线径的计算和选取时,电流密度通常取值为400A/cm³, 但此取值须随电感温升的变化。通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。 在计算过程中,开关电源变压器共模电感的阻抗在所给的频率条件下,一般规定为最小值。串联的线性阻抗可提供一般要求的噪声衰减。但实际上,线性阻抗问题往往是最容易被人忽视的,因此设计人员经常以50W线性阻抗稳定网络仪来测试共模电感,并渐渐成为一种标准测试共模电感性能的方法。但所得的结果与实际通常有相当大的差别。实际上,共模电感在正常时角频首先会产生每八音度增加-6dB 衰减(角频是共模电感产生-3dB)的频率此角频通常很低,以便感抗能 够提供阻抗。因此,电感可以用这一公式来表达,即:Ls=Xx/2 n f

这里还有一个问题需要工程师需要注意,那就是在进行共模电感设计时须注意磁芯材料和所需的圈数问题。首先来看磁芯型号的选取问题,此时如果有规定电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取。 在确定了电源变压器的磁芯型号之后,接下来的工作就是计算磁芯所能绕最大圈数。通常来说,共模电感有两绕组,一般为单层,且每绕组分布在磁芯的每一边,两绕组中间须隔开一定的距离。双层及堆积绕组亦有偶尔使用,但此种作法会提高绕组的分布电容及降低电感的高频性能。由于铜线的线径已由线性电流的大小所决定,内圆周长可以由磁芯的内圆半径减去铜线半径计算得来。故最大圈数的就可以铜线加绝缘的线径及每个绕组所占据的圆周来计算。

共模电感的设计

EMI滤波共模电感设计 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下 单独使用共模噪声滤波器。 图1 EMI滤波器的插入 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入 线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为零。由于磁 通的阻碍,SMPS的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效率比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系

在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。 图3所示为图2中铁氧体材料的磁导率和损耗系数与频率的函数关系。由于感抗引起的下降,导致磁导率在750KHz以上的下降;由于电阻取决高频的源阻抗所以损耗系数随频率而增加。 铁氧体磁环的磁导率、损耗系数和频率的关系 图3 图4给出三种不同材料的总阻抗和频率的关系 J材料在超过1~20MHz范围内具有高的总阻抗,它最广泛地应用于共模滤波器的扼流圈。在1MHz,W材料阻抗比J材料高20-50%,当低频噪声是主要问题时经常应用J材料;K材料可用于2MHz以上,因为在此频率范围内它产生的阻抗比J材料高直至100%。在2MHz 以上或以下,对于滤波器所要求的规范,J或W是优先的。图4三种不同材料的阻抗和频率的关系。 1.2、磁芯的形状 对于共模噪声滤波器环形磁芯是最普及的,他们不贵、泄漏磁通也低。环形磁芯必须 用手绕制(或在独特的环形绕线机上绕制)。正常情况要用一个非金属的分隔板放置在两 个绕组之间,以及为了和PC板连接,这个绕制器件还需环氧化在印制板的头部。具有附件

各种电感计算公式

导线线径与电流规格表 绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导 线(铝芯/铜芯)载流量的估算 方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在省供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5 估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。(看不懂没关系,多数情况只要查上表就行了)。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。 说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l ,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。 表格为导线在不同温度下的线径与电流规格表。 (请注意:线材规格请依下列表格,方能正常使用)

电感参数计算

磁环外径 D 36.0mm 磁环内径 d 22.5mm 磁环高度 h 11.0mm 磁环导磁截面积 A 74.3mm^274.3mm^2磁环有效磁路长 l 90.2mm 90.2mm 磁环芯材磁导率 u 125125相对磁导率线圈匝数 N 88.0匝88.0匝↓↓环状线圈电感值 L 1000.92uH 1001uH 磁环电感饱 和磁通计算 ↓电感电流 I 10.00A 15319高斯1.532特斯拉 磁场强度H 9.75A/m 线径Φ1mm 股数n 1每匝线圈长度MLT 42.6mm 电阻mohm 108.59mohm 铜线总长度C 4.69m 蓝色字体为输入参数粉色字体为计算值磁环电感及饱和磁通计算 相对磁导率μr:26,40,60,75,90,125 750.6897966 磁通密度B l s N L μ2=)ln()(d D d D l -=πl iN B 0μμ=l iN H =

计算值 MPP铁镍钼合金,主要用于大电流功率电感, 抗偏流特性好,频率特性也比较好. Sendust合金(铁硅铝磁芯),是一种低损耗和相对高饱和度1.05T的材料,所 以非常适用于功率因数校正电路,以及单向驱动器应用,由于接近零磁 致伸缩,铁硅铝是消除在线噪音滤波器和电感器中的可听频率噪声的最 佳选择。 适当的成本,较低的损耗,高饱和度,接近零的磁致伸缩,无热老化 现象,软饱和,铁硅铝应用包括功率因数校正扼流圈,升压/降压稳压器,直流 输出电感器和回扫变压器.

铁镍(hi-flux),高磁通粉末磁芯是分布式气隙环形磁芯,有50%的镍和50%的铁合金粉末制成,其偏置性能在 所有粉末磁芯材料中最高 .高磁通磁芯所具备的优点,非常适用于高功率,高直流偏置以及高电源频率下的高交流偏差等的应用.与7,500高斯的标准钼坡莫合金MPP磁芯或4.500高斯的铁氧体相比,高磁通磁芯具有15,000高斯的饱和磁通密度.高磁通粉末磁芯的磁芯损耗显著低于铁粉磁芯的磁芯损耗.在大多数应用中,高磁通磁芯的尺寸可能都比铁粉芯的还要小. 高磁通磁粉芯主要应用在如开关调节电感器,在线噪音滤波器,回扫变压器,功率因数校正和脉冲变压器等。

共模电感的参数选择

开关电源EMI滤波器的设计 要使EMI滤波器对EMI信号有最佳的衰减特性,设计与开关电源共模、差模噪声等效电路端接的EMI滤波器时,就要分别设计抗共模干扰滤波器和抗差模干扰滤波器才能收到满意的效果。 1.抗共模干扰的电感器的设计 电感器是在同一磁环上由两个绕向与匝数都相同的绕组构成。当信号电流在两个绕组流过对,产生的磁场恰好抵消,它可几乎无损耗地传输信号。因此,共模电流可以认为是地线的等效干扰电压Ug所引起的干扰电流。当它流经两个绕组时,产生的磁场同相叠加,电感器对干扰电流呈现出较大的感抗,由此起到了抑制地线干扰的作用。电路如图1所示。 信号源至负载RL连接线的电阻为Rcl、Rc2,电感器自感为L1、L2,互感为M,设两绕组为紧耦合,则得到L1=L2=M。由于Rc1和RL串联且Rc1<<RL,则可以不考虑Vg,Vg 被短路可以不考虑Vg的影响。其中(Is是信号电流,Ig是经地线流回信号源的电流。由基尔霍夫定律可写出:

式(2)表明负载上的信号电压近似等于信号源电压,即共模电感传输有用信号时几乎不引入衰减。由(1)式得知,共模千扰电流Ig随f:fc的比值增大而减小。当f:fc的比值趋于无穷时,Ig=0,即干扰信号电流只在电感器的两个绕组中流过而不经过地线,这样就达到了抑制共模干扰的作用。所以,可以根据需要抑制的干扰电压频率来设置电感器截止频率。一般来说,当干扰电压频率f≥5fc时,即Vn:Vg≤0.197,就可认为达到有效抑制地线中心干扰的目的。 2.抗差模干扰的滤波器设计 差模干扰的滤波器可以设计成Π型低通滤波器,电路如图2所示。这种低通滤波器主要是设置电路截止频率人的值达到有效地抑制差模传导干扰的目的。

共模电感的设计实例讲解

共模电感的设计实例讲解 很多设计师对于共模电感的设计大多有一种感觉,那就是总觉得共模电感的设计看起来十分简单,但实际操作起来上,又有点复杂。的确共模电感的设计要考虑温度及应力等等因素。下面我就对于共模电感的设计过程与案例结合起来简单讲讲 一、设计过程: ① 选择磁芯材料(镍锌系和锰锌系) 铁氧体是一个较好的具有成本优势的材料。 ② 设定电感的阻 对于一个给定的要求衰减的频率,定义此频率下共模电感的感抗为50~100Ω,即至少50%的衰减,因此有:Z =ωL

③ 选择磁芯的形状的和尺寸 成本低漏感小的环形磁芯非常适合于共模电感,但是这种形状不容易实现机械化绕制,一般用手工绕制。磁环尺寸的大小选取有一定的随意性,通常基于PCB的尺寸选取合适的磁芯。为了减小共模电感的寄生电容,共模电感通常只用单层的线圈。若单层绕制时磁芯无法容纳所有的线圈,则选用大一号尺寸的磁环。当然也可以基于磁芯的数据手册由LI的乘积选取。 ④ 计算线圈的匝数 由磁芯的电感系数AL计算共模电感的圈数:( 106 )0.5 L N = L × A ⑤ 计算导线的线径 导线允许通过的电流密度选取为:400~800A/cm2,由此可以得到要求的线径。 二、设计案例: 在工作频率为10KHz,输入线性电流为3A(RMS)时,阻抗为100 欧的共模电感。 1)选取线径 铜线截面积=3A/400A/cm2=0.0075cm2 铜线线径 =0.98mm

取铜线线为1.0mm 2)计算最小电感值 3)假如无指定空间,任取一磁芯 内径(ID)=13.72+/-0.38=13.34mm MIN 4)计算内圆周长和最大可绕圈数 内圆周长=3.14×(13.34-1.08)=38.5mm 最大圈数=(160/360)×38.5/1.08=15.8TS或16TS 5)计算磁芯的AL值,并选取材质 磁芯的AL最小值=1.59/162=6211nH/TS2MIN 因此种磁芯AL值变化范围一般为+/-30%故磁芯的AL值取9000nH/TS2,以上述条件,即可选取一合适磁芯。

共模电感浅谈

共模电感浅谈 存储与多媒体产品线彭浩版本历史

目录 1.共模电感简介 (3) 2.共模电感用于EMI滤波器 (4) 2.1噪声测量方法 (4) 2.2滤波器电路结构分析 (4) 2.3滤波器元器件参数计算 (6) 2.4共模电感的差模电感 (7) 3.共模电感的寄生参数 (9) 3.1寄生电容C1、C2 (9) 3.2电感L LK、L C (11) 3.3等效电阻R C、R W (11) 4.磁芯材料与共模电感磁芯选型 (12) 4.1铁氧体磁芯 (12) 4.2磁粉芯与高磁通磁粉芯 (12) 4.3共模电感磁芯选型 (13) 5.共模电感的设计流程 (14) 6.共模电感安规管控 (15)

1. 共模电感简介 共模电感,也叫扼流圈,常用在开关电源中过滤共模的电磁干扰信号。共模电感是一个以铁氧体等为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,线圈的绕制方向相反,形成一个四端器件。当两线圈中流过差模电流时,产生两个相互抵消的磁场H1、H2,此时工作电流主要受线圈欧姆电阻以及可以忽略不计的工作频率下小漏感的阻尼,所以差模信号可以无衰减地通过,如图1-1所示;而当流过共模电流时,磁环中的磁通相互叠加,从而具有相当大的电感量,线圈即呈现出高阻抗,产生很强的阻尼效果,达到对共模电流的抑制作用。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。 图1-1 差模信号通过共模线圈

2. 共模电感用于EMI 滤波器 对理想的电感模型而言,当线圈绕完后,所有磁通都集中在线圈的中心内。但通常情况下环形线圈不会绕满一周,或绕制不紧密,这样会引起磁通的泄漏。共模电感有两个绕组,其间有相当大的间隙,这样就会产生磁通泄漏,并形成差模电感,因而共模电感对差模噪声也有抑制作用。实际应用中,共模电感常和X 电容、Y 电容组成EMI 滤波器,滤除差模噪声和共模噪声。 2.1 噪声测量方法 图2-1所示为典型的噪声测量结构图,噪声的测量主要通过LISN 来实现。L ISN 是指线路阻抗稳定网络,是传导型噪声测量的重要工具。 图2-1 噪声测量结构图 其内部结构如图2-1中虚线框内所示,高频时,电感相当于断路,电容短路,低频时相反。 LISN 的作用为隔离待测试的设备和输入电源,滤除由输入电源线引入的噪声及干扰,并且在50Ω电阻上提取噪声的相应信号值送到接收机进行分析。 共模负载阻抗为25Ω,差模负载阻抗为100Ω,测量到的噪声电压如式(2-1)(2-2)所示: dm cm L I I V ?+?=5025(2-1) dm cm N I I V ?-?=5025(2-2) V L 扫描和V N 扫描分别都要求满足限值要求。 2.2 滤波器电路结构分析 由X 电容、共模电感和Y 电容组成的滤波器如图2-2所示:

电感的主要参数

电感的主要参数 1)??μi(导磁率)(Permeability)---这是铁芯的一个重要参数,对于一个带铁芯的电感,铁芯的导磁率越高,电感值会越高。 2)???? L(电感值)(Inductance)---L=(4πμiN2A/l)*10-9(H),N-线圈圈数,A-磁路截面积,l-磁路平均长度。电感值与铁芯的μi值成正比,与线圈圈数的平方成正比,与测试频率有关(电感值随测试频率的变化关系常用电感的频率曲线来表示),与环境温度有关,客户通常对电感值的要求是在某一特定频率下合于某一范围。电感值通常是不用计算得出的(因为就算你算得吐血也未必算得准,磁环的可以算得大概准确),而是用仪器测出的。目录上通常是标示L值的公差范围。 3) Q(品质因素)---客户通常对Q值的要求是越高越好, Q=2πfLe/Re (Re是有效电阻,是消耗能量的部份, 有效电阻由DCR、表面效应、铁损所贡献) (Le是真实电感扣除分布电容影响后的值),电子工 程施希望所选定的频率讯号通过,而且更希望所通 过的讯号损失越少越好,故他们希望Q值越高越好。 Q值也是随测试频率而变化的,(Q值随测试频率的 变化关系常用Q值的频率曲线来表示)。目录上通常 以其最小值为标注。 4)DCR(直流电阻)(Direct Current Resistance)---电感在直流电流下测量得之电阻,客户通常对DCR值的要求是越小越好。目录上通常以其最大值为标注。 5) SRF(自共振频率)(Self-Resonant Frequency) ---电感的真实电感与电感的分布电容产生共振 时的频率,客户通常对SRF值的要求是越大 越好。目录上通常以其最小值为标注。 自共振频时电感的表现就像电阻,即 (真实)电感值的感抗(2πfL)与分布电容的容抗 (-1/2πfC d )相互抵消,即2πfL-1/2πfC d =0, 所以自共振频率f=1/2π√LC d 。自共振频时电感的Le(有效电感值)为0,所以此时的Q值为0。

共模电感尺寸及参数1

线路滤波器(共模电感) 特征: 品号说明: 1. 高安全性和可靠性 2. 可以做成立式或卧式 3. 便于在PC 板安装 4. 欢迎客户提供规格 LGHBV 22148 - 102 U 1 2 3 4 1. 线路滤波器(共模电感) “B”绕线用的BOB, “V”立式, “H” 卧式 2. 磁芯尺寸 3. 电感值:102 for 1000uH 4. 公差“U”表示最小 应用: 测试设备: 电源供应器,开关电路 晶闸管和可控硅电路 扼流线圈 L: HP4284A PRECISION LCR METER DCR: CHEN HWA 502BC OHM METER 图示和尺寸: (单位mm) 磁环尺寸: 12x6x4 12.7x7.9x4.5 12.7x7.9x5.2 12.7x7.9x7 13x7x5 14x8x4 14x8x9 14x9x5 16x9x5 16x9x8 16x10x5 16x10x8 16x12x8 18x10x7 18x10x12 19x13x6 20x10x10 20x10x12 20x12x8 20x12x10 22x14x6.5 22x14x8 31x19x8 31x19x12 31x19x15 36x23x15 37x22x10 37x22x14 38x19x13 38x22x16 9.1

图示和尺寸:(单位mm) 电气特性参数 品号 电感量 (mH )Min 直流电阻 (?) Max 103U-0.1A 10.0 8.0 802U-0.2A 8.0 6.0 502U-0.2A 5.0 4.5 502U-0.3A 5.0 3.5 202U-0.5A 2.0 1.0 LU9.8 LUH9.8 501U-1A 0.5 0.3 LU10-103U-0.3A 10.0 3.0 LU10-502U-0.5A 5.0 1.5 LU10-402U-0.7A 4.0 1.0 LU10-302U-1A 3.0 0.5 LU10-202U-1A 2.0 0.5 LU10-102U-1.5A 1.0 0.2 LU10-601U-2A 0.6 0.2 LU16-303U-0.4A 30 2.8 LU16-203U-0.5A 20 1.6 LU16-103U-0.6A 10 1.2 LU16-802U-0.8A 8.0 0.8 LU16-602U-1A 6.0 0.5 LU16-252U-1.2A 2.5 0.25 LU16-152-1.5A 1.5 0.15 LUT20-333U-0.3A 33 2.5 LUT20-223U-0.4A 22 1.7 LUT20-153U-0.5A 15 1.2 LUT20-103U-0.7A 10 0.75 LUT20-682U-0.8A 6.8 0.53 LUT20-472U-1A 4.7 0.38 LUT20-332U-1A 3.3 0.31 LUT20-222U-1.2A 2.2 0.18 LUT20-152U-1.5A 1.5 0.14 LUT20-751U-1.8A 0.75 0.12 9.2

各种电感计算公式

导线线径与电流规格表 表格为导线在不同温度下的线径与电流规格表 注意:线材规格请依下列表格,方能正常使用) 载流量 (A 安培 ) 9 14 23 32 48 60 90 100 123 150 210 238 300 估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。 (看 不懂没关系 ,多数情况只要查上表就行了 )。条件有变加折算,高温九折铜升级。穿管根数二 三四,八七六折满载流。 说明: (1) 本节口诀对各种绝缘线 (橡皮和塑料绝缘线 )的载流量 (安 全电流 )不是直接指出,而是 “截面乘上一定的倍数”来表示,通过心算而得。由表 5 3 可以 看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是 2. 5mm ' 及以下的各种截面铝芯绝缘线 ,其载流量约为截面数的 9倍。如 2.5mm '导线,载流量为 2. 5×9=22.5(A ) 。从 4mm '及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍 数逐次减 l ,即 4×8、6×7、 10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说 的是 35mm ” 的导线载流量为截面数的 3.5 倍,即 35×3.5=122.5(A ) 。从 50mm '及以上 的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减 0. 5。 即 50、70mm '导线的载流量为截面数的 3 倍;95、120mm ” 导线载流量是其截面积数的 2.5 倍, 2.5 4 6 10 16 25 35 50 70 95 120 的估算方法 以 下是绝缘导 线 (铝芯/铜芯) 载流量的估算 方法 ,这是电工 基础 ,今天把这 些知识教给大 家,以便计算车 上的导线允许 通过的电 流.(偶原在省 供电局从事电 能 计量工作 ) 铝 芯绝缘导线 载 流量与截面 的倍数关系 导线截面 (平方 毫米) 1 1.5 请 绝缘导线 ( 铝芯 /铜芯 )载流量 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5

磁芯电感的计算公式

阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH), 设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm

频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 1.针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Microl对照表。 例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≈1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2.介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中 μ0 为真空磁导率=4π*10(-7)。(10的负七次方)

电感的主要参数

电感的主要参数 1)μi(导磁率)(Permeability)---这是铁芯的一个重要参数,对于一个带铁芯的电感,铁芯的导磁率越高,电感值会越高。 2)L(电感值)(Inductance)---L=(4πμiN2A/l)*10-9 (H),N-线圈圈数,A-磁路截面积,l-磁路平均长度。电感值与铁芯的μi值成正比,与线圈圈数的平方成正比,与测试频率有关(电感值随测试频率的变化关系常用电感的频率曲线来表示),与环境温度有关,客户通常对电感值的要求是在某一特定频率下合于某一范围。电感值通常是不用计算得出的(因为就算你算得吐血也未必算得准,磁环的可以算得大概准确),而是用仪器测出的。目录上通常是标示L值的公差范围。 3) Q(品质因素)---客户通常对Q值的要求是越高越好, Q=2πfLe/Re (Re是有效电阻,是消耗能量的部份, 有效电阻由DCR、表面效应、铁损所贡献) (Le是真实电感扣除分布电容影响后的值),电子工 程施希望所选定的频率讯号通过,而且更希望所通 过的讯号损失越少越好,故他们希望Q值越高越好。 Q值也是随测试频率而变化的,(Q值随测试频率的 变化关系常用Q值的频率曲线来表示)。目录上通常 以其最小值为标注。 4)DCR(直流电阻)(Direct Current Resistance)---电感在直流电流下测量得之电阻,客户通常对DCR值的要求是越小越好。目录上通常以其最大值为标注。 5) SRF(自共振频率)(Self-Resonant Frequency) ---电感的真实电感与电感的分布电容产生共振 时的频率,客户通常对SRF值的要求是越大 越好。目录上通常以其最小值为标注。 自共振频时电感的表现就像电阻,即 (真实)电感值的感抗(2πfL)与分布电容的容抗 (-1/2πfC d )相互抵消,即2πfL-1/2πfC d =0, 所以自共振频率f=1/2π√LC d 。自共振频时电感的Le(有效电感值)为0,所以此时的Q值为0。

共模电感设计.pdf

共模电感设计 1.前言 近年来,由于政府机构或其他团体对EMC(电磁兼容)日益重视,工程师们在设计产品时亦是非常注意产品的辐射问题。特别值得一提的是:直流变换器很高的开关频率及尖峰脉冲斜波就是一典型的EMI(电磁干扰)。 共模电感就是一个重要的抗电磁干扰零件,它可以在一宽频条件下提供非常高的阻抗。大多数EMI滤波器主要部件就是一共模电感。在此文中,主要介绍共模电感的设计及磁芯选材问题。 2.基本的共模 开关电源有两种噪声:一为共模,另一为差模。与输入信号的路径相同的噪声称之为差模噪声,而每相相同的从接地到输出的尖峰信号称之为共模噪声。(详见图1A和1B) 一典型抗电磁干扰滤波器包含共模电感,差模电感及X,Y电容。Y电容和共模电感使共模噪声衰减。在高频噪声时,电感呈现高阻抗特性,并且反射和吸收噪声。然而电容呈低阻抗(至接地)且改变主线的噪声方向。(见图2) 共模电感两绕组圈数是相同的,产生两大小相等方向相反的磁通量。此两磁通相互抵消。因此使磁芯处于无偏磁状态。差模电感只有一个绕组,需要磁芯提供一完全无饱和线性电流。此与共模电感有较大的不同。为防止磁饱和,差模电感必须使用一低的有效磁导率的磁芯(有气隙的铁氧体或铁粉磁芯)。然而,共模电感可以使用一较高的磁导率磁芯且在磁芯相对小的条件下可得到一比较高的电感。

3.磁芯选材 首先,噪声是由开关电源的单位基频所产生的,再加上高频谐波。也就是表示噪声在1 0KHz到50MHz范围内都会存在。为此,电感必须有更宽的频率范围内存在高阻抗特性。共模电感的总阻抗由两部分组成:串联感抗(Xs)和串联电阻(Rs)。在低频时,阻抗呈感抗特性。但随着频率的增加,有效磁导率下降,感抗亦在下降。(见图3)由串联感抗(X s)和串联电阻(Rs)的相互作用,在整个频宽内产生一可接受的阻抗(Zs)。 对于大多数产品来讲,共模电感的磁芯都选用铁氧体(镍锌系和锰锌系)。镍锌系磁芯的特点是具有较低的初磁导率,但在非常高的频率(大于100MHz)时,仍能保持初磁导率。而锰锌系则恰恰相反,其具有很高的初磁导率,但在频率很低(20KHz)时,磁导率可能会衰减。由于镍锌系磁芯有很低的初磁导率,所以在低频时,不可产生高阻抗特性。然而锰锌系磁芯在低频时,能提供非常高的阻抗特性,且非常适用于10KHz到50MHz的抗电磁干扰。基于此,本文只集中讨论锰锌系磁芯。 锰锌系磁芯有很多种形状:环形,E形,罐形,RM形及EP形等等。但对于大多数共模电感都是使用环形磁芯。主要是有以下两种好处: 第一:环形磁芯比较便宜。因为环形只有一个就可制作,而其他形状的磁芯必须有一对才能构成共模电感所需,且在成型时,因考虑两磁芯的配对问题,还须增加研磨工序(如镜面磁芯)才能得到较高的磁导率。对于环形磁芯却不需如此。 第二:与其它形状磁芯相比环形磁芯有较高的有效磁导率。因为两配对磁芯在装配时,无论怎样作业都不可消除气隙的现象,故有效磁导率比只有单一封闭形磁芯要低。 环形磁芯有一缺点:绕线成本较高。因其他形状磁芯有一配套线架在使用,绕线都可以机器作业,而环形磁芯只可以手工作业或机器(速度较低)作业。但通常情况下,共模电感圈数较少(小于30圈),故绕线成本比较少。 基于上述原因,下面的共模电感都是对使用环形磁芯的叙述。 4.设计考虑

DCDC电容电感计算.doc

BOOST电路的电感、电容计算 升压电路的电感、电容计算 已知参数: 输入电压:12V --- Vi 输出电压:18V ---Vo 输出电流:1A --- Io 输出纹波:36mV --- Vpp 工作频率:100KHz --- f 其他参数: 电感:L 占空比:D 初始电流:I1 峰值电流:I2 线圈电流:Irms 输出电容:C 电流的变化:deltaI 整流管压降:Vd ***************************************************** 1:占空比 稳定工作时,每个开关周期导通期间电感电流的增加等于关断期间电感电流的减少,即Vi*D/(f*L)=(Vo+Vd-Vi)*(1-D)/(f*L),整理后有 D=(Vo+Vd-Vi)/(Vo+Vd),参数带入,D=0.572 2:电感量 先求每个开关周期内电感初始电流等于输出电流时的对应电感的电感量,其值为Vi*(1-D)/(f*2*Io),参数带入,Lx=38.5uH, deltaI=Vi*D/(L*f),参数带入,deltaI=1.1A 当电感的电感量小于此值Lx时,输出纹波随电感量的增加变化较明显,

当电感的电感量大于此值Lx时,输出纹波随电感量的增加几乎不再变小,由于增加电感量可以减小磁滞损耗,另外考虑输入波动等其他方面 影响取L=60uH, deltaI=Vi*D/(L*f),参数带入,deltaI=0.72A, I1=Io/(1-D)-(1/2)*deltaI, I2= Io/(1-D)+(1/2)*deltaI, 参数带入,I1=1.2A,I2=1.92A 3:输出电容: 此例中输出电容选择位陶瓷电容,故ESR可以忽略 C=Io*D/(f*Vpp),参数带入, C=99.5uF,3个33uF/25V陶瓷电容并联 4:磁环及线径: 查找磁环手册选择对应峰值电流I2=1.92A时磁环不饱和的适合磁环Irms^2=(1/3)*(I1^2+I2^2-I1*I2),参数带入,irms=1.6A 按此电流有效值及工作频率选择线径

共模电感

共模电感 工作原理 共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。 漏感差模 对理想的电感模型而言,当线圈绕完后,所有磁通都集中在线圈的中心内。但通常情况下环形线圈不会绕满一周,或绕制不紧密,这样会引起磁通的泄漏。共模电感有两个绕组,其间有相当共模电感大的间隙,这样就会产生磁通泄漏,并形成差模电感。因此,共模电感一般也具有一定的差模干扰衰减能力。 在滤波器的设计中,我们也可以利用漏感。如在普通的滤波器中,仅安装一个共模电感,利用共模电感的漏感产生适量的差模电感,起到对差模电流的抑制作用。有时,还要人为增加共模扼流圈的漏电感,提高差模电感量,以达到更好的滤波效果。 漏感综述 共模扼流圈能发挥一定的作用是由于μcm比μdm大好几个数量级的缘故,因为共模电流通常很小,可以通过使L/D保持在较低值来获得更小的μdm。 为了得到共模电感,同时又要使差模电感最小,最好是采用横截面积较大的磁芯绕制成多匝线圈。采用较大的螺旋管磁芯,也并非一定要这样的磁芯,可在共模扼流圈内并入有效的差模电感。因为差模磁通是远离磁芯(环形结构)的,因此可能会产生极强的辐射。尤其是滤波器安装在PCB板上的情况下,这种辐射可以耦合到电源线,使传导发射增强。当磁性材料被带到场内时(例如,环形磁芯放置在铁壳里),差模磁导率就可能会显著地增加,从而由于差模电流而导致磁芯的饱和。 共模电感在制作时应满足以下要求 (1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路; (2)当线圈流过瞬时大电流时,磁芯不要出现饱和; (3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿;

十种电感线圈的电感量的计算

在开关电源电路设计或电路试验过程中,经常要对线圈或导线的电感以及线圈的匝数进行计算,以便对电路参数进行调整和改进。下面仅列出多种线圈电感量的计算方法以供参考,其推导过程这里不准备详细介绍。 在进行电路计算的时候,一般都采用SI 国际单位制,即导磁率采用相对导磁率与真空导磁率的乘积,即:μ=μrμ0,其中相对导磁率μr 是一个没有单位的系数,μ0真空导磁率的单位为H/m 。 几种典型电感 1、圆截面直导线的电感 其中: L :圆截面直导线的电感[H] l :导线长度[m] r :导线半径[m] μ0:真空导磁率,μ0=4π10-7[H/m] 【说明】这是在l>>r 的条件下的计算公式。当圆截面直导线的外部有磁珠时,简称磁珠,磁珠的电感是圆截面直导线的电感的μr 倍,μr 是磁芯的相对导磁率,μr=μ/μ0,μ为磁芯的导磁率,也称绝对导磁率,μr 是一个无单位的常数,它很容易通过实际测量来求得。 大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

同轴电缆线如图2-33所示,其电感为: 其中:L :同轴电缆的电感[H]l :同轴电缆线的长度[m]r1:同轴电缆内导体外径[m]r2:同轴电缆外导体内径[m]μ0:真空导磁率,μ0=4π10-7[H/m] 【说明】该公式忽略同轴电缆外导体的厚度。 大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

其中:L :输电线的电感[H]l :输电线的长度[m]D :输电线间的距离[m]r :输电线的半径[m]μ0:真空导磁率,μ0=4π10-7[H/m] 【说明】该公式的应用条件是:l>>D ,D >>r 。 大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

技术大牛教你电感如何选型

技术大牛教你电感如何选型 器件选型是硬件工程师的基本工作,本文主要从电感的工艺和应用出发,介绍电感如何选型。一、电感的基本原理电感,和电容、电阻一起,是电子学三大基本无源器件;电感的功能就是以磁场能的形式储存电能量。以圆柱型线圈为例,简单介绍下电感的基本原理如上图所示,当恒定电流流过线圈时,根据右手螺旋定则,会形成一个图示方向的静磁场。而电感中流过交变电流,产生的磁场就是交变磁场,变化的磁场产生电场,线圈上就有感应电动势,产生感应电流:电流变大时,磁场变强,磁场变化的方向与原磁场方向相同,根据左手螺旋定则,产生的感应电流与原电流方向相反,电感电流减小;电流变小时,磁场变弱,磁场变化的方向与原磁场方向相反,根据左手螺旋定则,产生的感应电流与原电流方向相同,电感电流变大。以上就是楞次定律,最终效果就是电感会阻碍流过的电流产生变化,就是电感对交变电流呈高阻抗。同样的电感,电流变化率越高,产生的感应电流越大,那么电感呈现的阻抗就越高;如果同样的电流变化率,不同的电感,如果产生的感应电流越大,那么电感呈现的阻抗就越高。所以,电感的阻抗于两个因素有关:一是频率;二是电感的固有属性,也就电感的值,也称为电感。根据理论推导,圆柱形线圈的电感公式如下:可以看出电感的大小

与线圈的大小及内芯的材料有关。实际电感的特性不仅仅有电感的作用,还有其他因素,如:·绕制线圈的导线不是理想导体,存在一定的电阻;·电感的磁芯存在一定的热损耗;·电感内部的导体之间存在着分布电容。因此,需要用一个较为复杂的模型来表示实际电感,常用的等效模型如下:等效模型形式可能不同,但要能体现损耗和分布电容。根据等效模型,可以定义实际电感的两个重要参数。自谐振频率(Self-Resonance Frequency)由于Cp的存在,与L一起构成了一个谐振电路,其谐振频率便是电感的自谐振频率。在自谐振频率前,电感的阻抗随着频率增加而变大;在自谐振频率后,电感的阻抗随着频率增加而变小,就呈现容性。品质因素(Quality Factor)也就是电感的Q值,电感储存功率与损耗功率的比,Q值越高,电感的损耗越低,和电感的直流阻抗直接相关的参数。自谐振频率和Q值是高频电感的关键参数二、电感的工艺结构电感的工艺大致可以分为3种:2.1 绕线电感(Wire Wound Type)顾名思义就是把铜线绕在一个磁芯上形成一个线圈,绕线的方式有两种:圆柱形绕法(Round Wound)圆柱形绕法很常见,应用也很广,例如:图片来自Bing,彩虹圈,应该是出彩中国人平面形绕法(Flat Wound)平面形绕法也很常见,大家一定见过一掰就断的蚊香平面形绕法优点很明显,就是减小了器件的高度。由前文的公式可知,磁芯的磁导率越大,电感值越大,磁芯可以是·非磁

元件承认标准--共模电感

深 圳 市 炬 神 电 子 有 限 公 司
文件编号 页 次 GSP-3GC-039 1/5
元件承认标准---共模电感
制定日期: 2010 年 06 月 08 日

修订日期 版次

修 订





核准 修订
制定部门
总经理 1 1 1
品保部
副总经理 制造部 采购部 业务部 2 1 1 总经理助理 品保部 生管部 文管中心
原件保存
3 1 1 管理部 工程部 人事部
文管中心 1 1 批 准 审 核 作 成
配 布 栏
研发部 仓库部 财务部
文管中心发行

深 圳 市 炬 神 电 子 有 限 公 司
总裁 制订日期
修订日期
文件编号
GSP-3GC-039 2010-06-08 版 页 次 次 A/0 2/2
元件承认标准---共模电感
1.目的: 规范共模电感检测标准,确保共模电感性能及工艺符合生产需求,使共模电感顺利导 入,结合电源正常使用。 2.范围: 适用于本公司所有共模电感性能测试需求。 3.权责: 3.1 工程部权责: 主要对共模电感基本性能,结合电源进行测试、记录,资料审查,并对记录结果进行 判断,合格则下承认书,导入生产使用,不合格则反馈供应商改善。 3.2 研发部权责: 主要根据设计需求来选择共模电感规格型号。 4.定义: 无。 5.作业内容: 5.1 基本性能测试: 5.1.1 检测项目:感量、耐压、绕制工艺解剖、外观、尺寸,承认书。 5.1.2 检测仪器:电感测试仪、耐压测试仪、游标卡尺。 5.1.3 检测方法: 感量:按要求设置感量测试仪测试频率,电压。分别找出两绕组所对应脚位,使用 感量测试仪的夹子夹住两绕组引脚进行感量测试。 判定标准:符合共模承认书感量要求。 耐压:按要求设置耐压仪测试频率,时间,耐电压。将两绕组的引脚分别短接,使 用耐压测试仪红色夹子与黑色夹子分别夹住绕组引脚(两绕组与磁芯) ,启动耐压仪进行 测试。 判定标准:在测试中距离实物 30 公分符合耐电压 1500VAC,漏电流小于 1mA,没有 异音,不能有超漏,拉弧现象。 注:因测试耐电压高,测试人员在测试时请一定注意安全。 外观、尺寸:外观采用目视的方法进行检查(表面清洁,无损伤、变形、标签正确、锡 渣、残线、引脚,铜线无氧化等) 。尺寸采用游标卡尺进行测量。
文管中心发行

共模电感设计

共模电感设计 选择共模滤波电感规格不是一件困难和令人困惑的事情。用一个标准滤波器平面图可以用来实现一个相对简单直接的设计过程。预设的平面模型滤波器元件参数很容易被修改,从而,达到符合设计要求。 常规共模电感 线性滤波器防止过度的噪声从AC线传导到正在工作的电子设备。通常AC线为防护的重点。 图示-1所示,共模滤波器与AC线之间接阻抗匹配电路,后面再接开关变换器。共模噪声(大地为参考在两根线上同时产生的噪声大小相等方向相同)的方向是从负载流向滤波器,流向两条AC线上的共模噪声已经被充分地衰减了。其结果是从滤波器输出到AC线的共模噪声经过阻抗匹配电路衰减得非常微弱了。 共模滤波器的设计本质上是设计两个相同的差分滤波器,每个分别作用于同一个磁心,两边耦合的是两个极性一致的电感。对于一个差分输入电流(从(A)到(B)通过L1和从(B)到(A)通过L2),两电感间的磁通(大小相等方向相反)耦合为零。 任何电感通过差模信号时,两个扼流圈未能耦合。它们作为独立的元件,只有漏感响应差模信号:这个漏感会衰减差模信号。 当电感L1和L2,通过相对于大地方向相同的完全一样的信号(共模型号),每个扼流圈在同一个磁心上出力的是非零磁通。对于共模信号电感作为独立的元件运行相互间产生互感:互感的作用使共模信号变弱。

第一阶滤波器 最简单、最昂贵的滤波器设计是一阶滤波器。这种类型的滤波器采用单一的电抗结构存储某一频率段的能量,使这些能量未能传递出去。就一个低通共模滤波器来说,一个共模电感的电抗元件会被采用。 所要求扼流圈的电感量可以简单地采取负载电阻除以衰减频率(包含以上频率)的角频率。譬如,要衰减4000Hz以上的频率到50Ω的负载里面需要一个1.99mH(50/ (2π×4000) )的电感。由此产生共模滤波器结构如图示-3: 在4000Hz的衰减将是3dB,并以6dB每倍频程增加。因为主要的电感依赖的一阶滤波器,实际变化中,扼流圈电感是必须被考虑的。例如,正常电感测量误差为±20%,那个在4000Hz频率名义上的3dB,实际衰减得频率范围从3332Hz到4999Hz。这是共模电感的典型电感值被指定的一个最低要求,从而保证这个交叉频率不被改变太高。然而,一些情况应该观察到选择扼流圈作一阶低通滤波器可能限制阻塞一些有用的衰减,因为用了一个较高于典型值或极小值的电感。 二阶滤波器 一个二阶滤波器使用了两个电抗部分。比第一阶滤波器有两个优势:⑴理论上,在截点频率以后,一个二阶滤波器有12dB每倍频程(4倍于一阶滤波器)的衰减量。⑵在电感谐振频率以上提供了更大的衰减。(参见图示-4)

相关文档
最新文档