《智能控制》-模糊控制实验报告

《智能控制》-模糊控制实验报告
《智能控制》-模糊控制实验报告

课程名称:智能控制

实验名称:模糊控制

一、实验目的:

(1)了解在Simulink 仿真环境下建立控制系统方框图的方法,熟悉Matlab 和Simulink 仿真环境

(2)掌握模糊控制器的设计方法。 (3)比较PID 控制和模糊控制的特点。

二、实验内容和步骤 已知s

e s s s G 2.02

1

4820)(-++=

,分别设计PID 控制与模糊控制,使系统达到较好性能,并比较两种方法的结果。结构如下图。

(1)模糊控制规则设计

针对该定位系统,设计二维模糊控制规则,使性能达到最佳。模糊控制规则如下:

(2)设计未加PID或FUZZY控制器时,设计系统如下:

输入阶跃信号,观测与分析仿真结果。

(3)加入PID控制器如下:

对应的仿真结构图为:

调整参数,观测与分析仿真结果。PID控制的仿真曲线如下:

(4)设计FUZZY控制器

在simulink仿真环境下,设计模糊控制系统,包括模糊控制规则、隶属函数、比例因子、量化因子、论域等参数设计。

FUZZY控制仿真结构图如下:

其中黄色部分具体为:

利用simulink设计的模糊控制的仿真结构图为:

其中对于模糊控制器的设计:

E=[-6 6] EC=[-6 6] U=[-6 6],并且其隶属函数分别为:

E的隶属函数

EC的隶属函数

U的隶属函数

再将其中一个学生的比较好的实验结果作为参考实例:

首先仿真图如下:

模糊控制器的设计:

E=[-6 6] EC=[-6 6] U=[-6 6],并且其隶属函数分别为:

E和EC的隶属函数

U的隶属函数

控制规则:

设计好模糊控制器后,运行仿真图形,得到的仿真曲线如下(step time=1):

模糊控制的仿真曲线

由仿真可知,通过选择合适的PID参数可以达到较好的控制性能。但是,由于PID控制是建立在已知精确的系统模型基础上的,所以当系统模型存在较大的不确定性时,PID的控制性能就会大大降低,甚至造成系统发散,而模糊控制则受系统模型影响较小。由图可知,在此设计的模糊控制器的控制性能不是很好(没有PID的控制性能好),稳态时存在一定幅度的振荡。这可能是由于量化因子、比例因子及模糊规则的选择不是很恰当所造成的。但在此情况下,模糊控制器受系统模型的精确度影响已经很小,改变系统模型时,仍能够保证系统稳定。

仿真结果显示,两种控制方式下,系统的超调时间,超调量和稳态误差均较小,可见PID控制器和FUZZY控制器都能很好改善系统性能。但是,可以验证:PID对对象参数变化敏感,对模型结构基本没有适应能力,而FC对被控对象参数适应能力强,且在模型结构有较大改变时,也能有很好的控制效果。

五、本实验的难点和知识点

(1)模糊控制器的设计,要在模糊控制箱的集成环境下进行,然后在Simulink 工作空间中连接。

(2)模糊控制规则的简化和调整,常规的定位系统模糊控制规则(二维输入),共有56条,一般可以简化。

(3)隶属函数的选择,一般选三角或正态分布形状,其参数可调整。

(4)模糊控制中的比例和量化因子在模糊控制设计中的作用,并比较PID控制参数的作用。

六、思考题

(1)模糊控制规则的总结和简化方法。

对于二维模糊控制器,针对定位控制,并以性能指标为依据,总结出56条规则,根据模糊推理的逻辑关系可简化为28条。

(2)针对非线性模型,模糊控制为何获得较好的动态性能。

模糊控制是依据人的经验,基于模糊逻辑的一种控制方法,完全适应模型参数和结构的变化,具有较好的动态性能。

七、实验过程中的常见问题

1在模糊控制设计中,多数人的matlab会报错,是格式不兼容问题,将simulink 里面的设置修改一下就可以,具体方法是:simulink->simulation->simulation parameters->boolean logic signals->选择OFF.

2 有些同学会忘记将设计的模糊控制器export到WORKSPACE,这样仿真时也会报错。

智能控制技术作业

3-1 模糊逻辑控制器由哪几部分组成?各完成什么功能? 答:模糊控制系统的主要部件是模糊化过程、知识库(数据库和规则库)、推理决策和精确化计算。 1、模糊化过程 模糊化过程主要完成:测量输入变量的值,并将数字表示形式的输入量转化为通常用语言值表示的某一限定码的序数。 2、知识库 知识库包括数据库和规则库。 1)、数据库 数据库提供必要的定义,包含了语言控制规则论域的离散化、量化和正规化以及输入空间的分区、隶属度函数的定义等。 2)、规则库 规则库根据控制目的和控制策略给出了一套由语言变量描述的并由专家或自学习产生的控制规则的集合。它包括:过程状态输入变量和控制输出变量的选择,模糊控制系统的建立。 3、推理决策逻辑 推理决策逻辑是利用知识库的信息模拟人类的推理决策过程,给出适合的控制量。(它是模糊控制的核心)。 4、精确化过程 在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值的过程称为精确化过程。

{模糊控制器采用数字计算机。它具有三个重要功能: 1)把系统的偏差从数字量转化为模糊量(模糊化过程、数据库两块); 2)对模糊量由给定的规则进行模糊推理(规则库、推理决策完成); 3)把推理结果的模糊输出量转化为实际系统能够接受的精确数字量或模拟量(精确化接口)。} 3-2 模糊逻辑控制器常规设计的步骤怎样?应该注意哪些问题? 答:常规设计方法 设计步骤如下: 1、确定模糊控制器的输入、输出变量 2、确定各输入、输出变量的变化范围、量化等级和量化因子 3、在各输入和输出语言变量的量化域内定义模糊子集。 4、模糊控制规则的确定 5、求模糊控制表 3-3 已知由极大极小推理法得到输出模糊集为:0.30.810.50.112345 C = ++++-----.试用重心法计算出此推理结果的精确值z 。 重心法 重心法 是取模糊隶属度函数的曲线与横坐标围城面积的重心为模糊推理最终输出值。 连续:0()()v V v V v v dv v v dv μμ=??

《模糊控制》实验指导书

《模糊控制》实验指导书李士勇沈毅周荻邱华洲袁丽英 实验名称: 实验地点: 指导教师: 联系电话: Harbin Institute of Technology 2005.3

模糊控制实验指导书 一、 实验目的 利用Matlab 软件实现模糊控制系统仿真实验,了解模糊控制的查询表方法和在线推理方法的基本原理及实现过程,并比较模糊控制和传统PID 控制的性能的差异。 二、 实验要求 设计一个二维模糊控制器分别控制一个一阶被控对象1 1 )(11+=s T s G 和二阶被控对象) 1)(1(1 )(212++= s T s T s G 。先用模糊控制器进行控制,然后改变控制对 象参数的大小,观察模糊控制的鲁棒性。为了进行对比,再设计PID 控制器,同样改变控制对象参数的大小,观察PID 控制的鲁棒性。也可以用其他语言编制模糊控制仿真程序。 三、 实验内容 (一)查询表式模糊控制器实验设计 查询表法是模糊控制中的最基本的方法,用这种方法实现模糊控制决策过程最终转化为一个根据模糊控制系统的误差和误差变化(模糊量)来查询控制量(模糊量)的方法。本实验利用了Matlab 仿真模块——直接查询表(Direct look-up table )模块(在Simulink 下的Functions and Tables 模块下去查找),将模糊控制表中的数据输入给 Direct look-up table ,如图1所示。设定采样时间(例如选用0.01s ),在仿真中,通过逐步调整误差量化因子Ke ,误差变化的量化因子Kec 以及控制量比例因子Ku 的大小,来提高和改善模糊控制器的性能。

模糊控制详细讲解实例

一、速度控制算法: 首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h 设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制 ② 否则:先将油门控制量置0,再选择刹车控制 0

19春北理工《智能控制基础》在线作业答案

(单选题)1: 一般认为,人工神经网络适用于() A: 线性系统 B: 多变量系统 C: 多输入多输出系统 D: 非线性系统 正确答案: (单选题)2: 递阶控制系统的结构是根据下列原理设计的() A: 精度随智能降低而提高 B: 精度随智能提高而提高 C: 精度随智能降低而降低 D: 精度与智能无关 正确答案: (单选题)3: 智能控制成为国际上独立新学科的时间为20世纪() A: 60年代 B: 70年代 C: 80年代 D: 90年代 正确答案: (单选题)4: 基于模式识别的控制系统属于() A: 学习控制系统 B: 专家控制系统 C: 进化控制系统 D: 模糊控制系统 正确答案: (单选题)5: 能够在系统运行过程中估计未知信息,并据之进行优化与控制,以便逐步改进系统性能的控制叫做() A: 最优控制 B: 反馈控制 C: 随机控制 D: 学习控制 正确答案: (单选题)6: 最早提出人工神经网络思想的学者是() A: McCulloch-Pitts B: Hebb C: Widrow-Hoff D: Rosenblatt 正确答案: (单选题)7: 解决自动控制面临问题的一条有效途径就是把人工智能等技术用于自动控制系统,其核心是() A: 控制算法 B: 控制结构 C: 控制器智能化 D: 控制系统仿真 正确答案: (单选题)8: 智能控制的“四元交集结构”的四元,指的是() A: 计算机科学、自动控制、人工智能、神经网络 B: 人工智能、自动控制、信息论、系统论 C: 人工智能、自动控制、信息论、机器学习 D: 自动控制、人工智能、信息论、运筹学 正确答案: (单选题)9: 模糊控制是以模糊集合为基础的,提出模糊集合的科学家是()

在线推理法模糊控制器实验报告

在线推理式模糊逻辑控制器设计实验报告 学院:电力学院 专业:自动化 学号: 姓名: 时间:2013年11月16日

一、实验目的 利用Matlab软件实现模糊控制系统仿真实验,了解模糊控制的在线推理方法的基本原理及实现过程。 二、实验要求 以matlab模糊工具箱中提供的一个水位模糊控制系统仿真的实例,定义语言变量的语言值,设置隶属度函数,根据提供的规则建立模糊逻辑控制器。最后启动仿真,观察水位变化曲线。 三、实验步骤 叙述在线推理模糊控制的仿真的主要步骤。 1)在matlab命令窗口输入:sltank,打开水位控制系统的simulink仿真模型图,如图; 2)在matlab的命令窗口中,输入指令:fuzzy,便打开了模糊推理系统编辑器(FIS Editor),如图;

3)利用FIS Editor编辑器的Edit/Add variable/input菜单,添加一条输入语言变量,并将两个输入语言和一个输出语言变量的名称分别定义为:level;rate;valve。其中,level代表水位(三个语言值:低,高,正好),rate代表变化率(三个语言值:正,不变,负),valve代表阀门(五个语言变量:不变,迅速打开,迅速关闭,缓慢打开,缓慢关闭); 4)①利用FIS Editor编辑器的Edit/membership function菜单,打开隶属度函数编辑器,如下图,将输入语言变量level的取值范围(range)和显示范围(display range)设置为[-1,1],隶属度函数类型(type)设置为高斯型函数(gaussmf),而所包含的三条曲线的名称(name)和参数(parameters)([宽度中心点])分别设置为:high,[0.3 -1];okay [0.3 0];low [0.3 1]。其中high 、okay、low分别代表水位高、正好、低; ②将输入语言变量rate的取值范围(range)和显示范围(display range) 设置为[-0.1,0.1],隶属度函数类型(type)设置为高斯型函数(gaussmf),而 所包含的三条曲线的名称(name)和参数(parameters)([宽度中心点])分

智能控制作业

1、已知某一炉温控制系统,要求温度保持在600 度恒定。 针对该控制系统有以下控制经验: (1)若炉温低于600 度,则升压;低的越多升压越高。 (2)若炉温高于600 度,则降压;高的越多降压越低。 (3)若炉温等于600 度,则保持电压不变。设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7 级,取5 个模糊集。试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。 解:1)确定变量 定义理想温度为600 C,实际温度为T,则温度误差为 E=600-T。 将温度误差E 作为输入变量 2)输入量和输出量的模糊化 将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将偏差E 的变化分为7 个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1 所示。

表1温度变化E划分表 控制电压也分为个模糊集:、、、、,分 别为负小、负大、零、正小、正大。将电压u的变化分为7 个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。 表2电压变化u划分表

表3 模糊控制规则表 E PB PS ZO NS NB u PB PS ZO NS NB Edit or: Un+ it 1 e J. 歼cw OptigT

叮叮小文库

叮叮小文库 2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态 误差为 零,超调量不大于 1%,输出上升时间w 0.3s 。假定被 控对象的传递函数分别为: Gg e 0亦 (s 1)2 G2(S ) 4.228 (s 0.5)( s 2 1.64 s 8.456) 解: 在matlab 窗口命令中键入 fuzzy ,得到如下键面: 设e 的论域范围为[-1 1] , de 的论域范围为[-0.1 0.1] , u 的论 域范围为[ 0 2]。 将e 分为8个模糊集,分别为 NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; u 分为7个模糊集,分别为 NB ,NM ,NS, Z ,PS ,PM ,PB;

温度模糊控制实验

温度模糊控制实验(选学) 一、实验目的 1.认识Labview 虚拟仪器在测控电路的应用; 2.通过实验,改变P 的参数,观察对整个温度测控系统的影响; 3.进一步认识固态继电器和温度变送器,了解其工作原理; 4.了解什么是模糊控制理论。 二、预习要点 1.了解模糊控制理论的由来及应用; 2.Labview 虚拟仪器图形软件(本实验指导书附录中对使用环境详细介绍)。 三、实验原理 温度还是通过固态继电器的导通关断来实现加热过程的,控制周期即是一个 加热和冷却周期,PID 调节的实现也是通过这个周期实现的,在远离温度预设值 的时固态继电器在温度控制周期中持续加热(假设导通时间是T),在接近温度 预设值时通过PID 得到的值来控制这一周期内固态继电器的开关时间(假设导通 时间是1/2T)维持温度(假设导通时间是1/4T)。 本实验暂时用的是模糊控制原理中的的比例控制钟摆无限接近的控制理论, 所以温度预设值不能超过(最大温度+实验开始前温度)/2,例如实验开始前温度为25 度,最大为100 度,那么预设最大为62.5 度,当然这样可能几天温度才能被控制好,所以建议温度不超过实验开始温度5 度,同时我们在将来的升级中 会用更好的模糊理论代替现有的较差的控制理论,这里还要指出好的模糊控制理 论在一定程度上比好的PID 控制还要稳定,做的好的模糊控制是经验与理论的最 完美结合。 四、实验项目 用模糊PID 控制水箱温度。 五、实验仪器 ZCK-II 型智能化测控系统。

六、实验步骤及操作说明 1.打开仪器面板上的总电源开关,绿色指示灯亮起表示系统正常; 2.打开仪器面板上的液位电源开关,绿色指示灯亮起表示系统正常; 3,确保贮水箱内有足够的水,参照图2(图见第三章)中阀门位置设置阀门开关,将阀门1、3、5、6 打开,阀门2、4 关闭; 4.参看变频器操作说明书将其设置在手动操作挡; 5.单击控制器RUN 按钮,向加热水箱注水,直到水位接近加热水箱顶部,完全 淹没加热器后单击STOP 按钮结束注水; 6.关闭仪器面板上的液位电源开关,红色指示灯亮起表示系统关闭; 7.打开仪器面板上的加热电源开关,绿色指示灯亮起表示系统正常; 8.打开计算机,启动ZCK-II 型智能化测控系统主程序; 12 9.用鼠标单击温度控制动画图形进入温度控制系统主界面,小组实验无须在个人信息输入框填写身份,直接确定即可; 10.在温度系统控制主界面中,单击采集卡测试图标,进入数据采集卡测试程序。 一切设置确认无误后即可单击启动程序图标,观察温度和电压的变化,也可以单 击冷却中左边的开关按钮进入加热程序,观察温度上升曲线及电流表和电压表变 化,确认传感器正常工作后点击程序结束,等待返回主界面图标出现即可返回温 度控制主界面进入下一步实验。 11.在温度系统控制主界面中,单击传感器标定图标,进入传感器标定程序。本 程序界面基本和数据采集卡测试程序界面基本相同,操作请参照步骤10 进行,一切设置确认无误后即可单击启动程序图标,观察温度和电压的变化,同时用温 度计测量加热箱内水温,并用传感器标定控制图标完成精确标定。标定完成后加 热水箱到30 摄氏左右时程序结束,等待返回主界面图标出现即可返回温度控制主界面进入下一步实验; 12.在温度系统控制主界面中,单击模糊PID 系统图标,进入模糊PID 温度控制系统程序。点击控制参数图标,进入控制参数设定界面,按照参数表4 中的小 组1 给定的预设参数填写。确定返回后点击采集参数图标按照参数表4 中的小组

模糊控制器的设计知识讲解

模糊控制器的设计 一、 PID 控制器的设计 我们选定的被控对象的开环传递函数为3 27 ()(1)(3)G s s s = ++,采用经典 的PID 控制方法设计控制器时,由于被控对象为零型系统,因此我们必须加入积分环节保证其稳态误差为0。 首先,我们搭建simulink 模型,如图1。 图1simulink 仿真模型 由于不知道Kp ,Kd ,Ki ,的值的大致范围,我们采用signal constraints 模块进行自整定,输入要求的指标,找到一组Kp ,Kd ,Ki 的参数值,然后在其基础上根据经验进行调整。当选定Kp=2,Kd=0.95,Ki=0.8时,可以得到比较好的响应曲线。调节时间较短,同时超调量很小。响应曲线如图2所示。 图2 PID 控制响应曲线

将数据输出到工作空间,调节时间ts =2.04s ,超调量%0σ=。可以看出,PID 控制器的调节作用已经相当好。 二、 模糊控制器的设计 1、模糊控制器的结构为: 图3 模糊控制器的结构 2、控制参数模糊化 控制系统的输入为偏差e 和偏差的变化率ec ,输出为控制信号u 。首先对他们进行模糊化处理。 量化因子的计算max min ** max min x x k x x -= - 比例因子的计算**max min max min u u k u u -=- 其中,*max x ,* min x 为输入信号实际变化范围的最大最小值;max x ,min x 为输入信号论域的最大最小值。*max u ,* min u 为控制输出信号实际变化范围的最大最小 值,max u ,min u 输出信号论域的最大最小值。 相应的语言值为NB ,NM ,NS ,ZO ,PS ,PM ,PB 。分别表示负大、负中、负小、零、正小、正中、正大。 3、确定各模糊变量的隶属函数类型 语言值的隶属度函数就是语言值的语义规则,可分为连续式隶属度函数和离散化的隶属度函数。本系统论域进行了离散化处理,所以选用离散量化的隶属度函数。

智能控制作业

1、已知某一炉温控制系统,要求温度保持在600度恒定。针对该控制系统有以下控制经验: (1)若炉温低于600度,则升压;低的越多升压越高。(2)若炉温高于600度,则降压;高的越多降压越低。(3)若炉温等于600度,则保持电压不变。 设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7级,取5个模糊集。试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。 解:1)确定变量 定义理想温度为600℃,实际温度为T,则温度误差为E=600-T。 将温度误差E作为输入变量 2)输入量和输出量的模糊化 将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将偏差E的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1所示。

表1 温度变化E划分表 控制电压u也分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将电压u的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。 表2 电压变化u划分表

表3 模糊控制规则表 E PB PS ZO NS NB u PB PS ZO NS NB

2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态误差为零,超调量不大于1%,输出上升时间≤0.3s 。假定被控对象的传递函数分别为: 2 55 .01)1()(+=-s e s G s ) 456.864.1)(5.0(228 .4)(22+++= s s s s G 解: 在matlab 窗口命令中键入fuzzy ,得到如下键面: 设e 的论域范围为[-1 1],de 的论域范围为[-0.1 0.1],u 的论域范围为[0 2]。 将e 分为8个模糊集,分别为NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; u 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB;

LabVIEW的模糊控制系统设计(DOC 8页)

LabVIEW的模糊控制系统设计(DOC 8页)

基于LabVIEW的模糊控制系统设计 摘要 本文以LabVIEW为开发环境进行设计模糊控制器,将设计出的模糊控制器应用到温度控制系统中,实现了在有干扰作用的情况下对烤箱温度的控制,取得较好的控制效果。 关键词:虚拟仪器模糊控制热电偶Abstract This paper is design issue is the use of LabVIEW fuzzy control, through the design of fuzzy control procedures to control the plant (oven) temperature. Finally, it comes ture control the temperature of oven even if there has disturb. Keywords: 1引言 虚拟仪器(LabVIEW),就是在以通用计算机为核心的硬件平台上,由用户设计定义虚拟面板,测控功能由软件实现的一种计算机仪器系统。虚拟仪器的实质是利用计算机显示器的显示功能来模拟传统的控制面板,以多种形式表达输出结果,利用计算机强大的软件功能实现数据的运算、分析、处理和保存,利用I/O接口设备完成信号采集、测量与控制。 模糊控制的基本思想是利用计算机来实现人的控制经验,而这些经验多是用语言表达的具有相当模糊性的控制规则。因为引入了人类的逻辑思维方式,使得模糊控制器具有一定的自适应控制能力,有很强的鲁棒性和稳定性,因而特别适用于没有精确数学模型的实际系统。 本文将模糊控制的基本思想应用到基于虚拟仪器的温度控制系统中。通过热电偶测量烤箱实际温度,与给定值比较。当测量温度与设定温度之间存在较大的偏差(e≥6℃)时,定时器产生占空比较大的脉冲序列,全力加热。当系统温度与设定温度之间偏差小于6摄氏度,采用模糊控制算法。模糊控制器根据误差和误差变化率,经过模糊推理输出脉冲序列的占空比的大小,经过固态继电器控制烤箱电源得通断,从而实现对烤箱温度的控制。 2系统组成

实验一--模糊控制器的MATLAB仿真

实验一 模糊控制器的MATLAB 仿真 一、实验目的 本实验要求利用MATLAB/SIMULINK 与FUZZYTOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则;比较其与常规控制器的控制效果;研究改变模糊控制器参数时,系统响应的变化情况;掌握用 MATLAB 实现模糊控制系统仿真的方法。 实验时数:3学时。 二、实验设备:计算机系统、Matlab 仿真软件 三、实验原理 模糊控制器它包含有模糊化接口、规则库、模糊推理、清晰化接口等部分,输人变量是过程实测变量与系统设定值之差值。输出变量是系统的实时控制修正变量。模糊控制的核心部分是包含语言规则的规则库和模糊推理。模糊推理就是一种模糊变换,它将输入变量模糊集变换为输出变量的模糊集,实现论域的转换。工程上为了便于微机实现,通常采用“或”运算处理这种较为简单的推理方法。Mamdani 推理方法是一种广泛采用的方法。它包含三个过程:隶属度聚集、规则激活和输出总合。模糊控制器的体系结构如图1所示。 图1 模糊控制器的体系结构 四、实验步骤 (1)对循环流化床锅炉床温,对象模型为 ()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。 (2)确定模糊语言变量及其论域:模糊自整定PID 为2输入3输出的模糊控制器。该模糊控制器是以|e|和|ec|为输入语言变量,Kp 、Ki 、Kd 为输出语言变量,其各语言变量的论域如下:

误差绝对值:e={0,3,6,10}; 误差变化率绝对值:ec={0,2,4,6}; 输出Kp:Up={0,0.5,1.0,1.5}; 输出Ki:Ui={0,0.002,0.004,0.006}; 输出Kd:Ud={0,3,6,9}。 (3)语言变量值域的选取:输入语言变量|e|和|ec|的值域取值“大”(B)、“中”(M)、“小”(s)和“零”(Z) 4种;输出语言变量Kp、Ki、Kd的值域取值为“很大”(VB)、“大”(B)、“中”(M)、“小”(s) 4种。 (4)规则的制定:根据PID参数整定原则及运行经验,可列出输出变量Kp、Ki、Kd 的控制规则表。 (5)推理方法的确定 隐含采用“mamdani”方法:max-min; 推理方法,即“min”方法; 去模糊方法:面积中心法; 选择隶属函数的形式:三角型。

选取一个模糊控制的实例讲解

选取一个模糊控制的实例讲解,有文章,有仿真,有详细的推导过程。 一.实验题目:基于模糊控制系统的单级倒立摆 二.实验目的与要求: 倒立摆是联结在小车上的杆,通过小车的运动能保持竖立不倒的一种装置,它是一个典型的非线性、快速、多变量和自然不稳定系统,但是我们可以通过对它施加一定的控制使其稳定。对它的研究在理论上和方法上都有其重要意义。倒立摆的研究不仅要追求增加摆的级数,而且更重要的是如何发展现有的控制方法。同时, 它和火箭的姿态控制以及步行机器 人的稳定控制有很多相似之处,由此研究产生的理论和方法对一般工业过程也有广泛用途。 本文研究了倒立摆的控制机理,用Lagrange 方法推导了一级倒立摆的数学模型,这为研究多级和其它类型的倒立摆甚至更高层次的控制策略奠定了一个良好的基础。对系统进行了稳定性、可控性分析,得出倒立摆系统是一个开环不稳定但可控的系统的结论。 本文主要研究用极点配置、最优控制和模糊控制方法对倒立摆进行稳定控制。最优控制方法是基于状态反馈,但能实现输出指标最优的一种控制方法,方法和参数调节较简单,有着广泛的应用。模糊控制有不依赖于数学模型、适用于非线性系统等优点,所以本文尝试了用模糊控制对倒立摆进行控制,以将先进的控制方法用于实际中。 同时,对倒立摆系统的研究也将遵循从建模到仿真到实控,软硬件结合的系统的控制流程。在这过程中,借助数学工具Matlab7及仿真软件Simulink,作了大量的仿真研究工作,仿真结果表明系统能跟踪输入,并具有较好的抗干扰性。最后对实验室的倒立摆装置进行了软、硬件的调试,获得了较好的控制效果。 三.实验步骤: 1.一级倒立摆系统模型的建立 在忽略了空气阻力、各种摩擦之后(这也是为了保证Lagrange 方程的建立),可 将一级倒立摆系统抽象为由小车和匀质杆组成的系统,本系统设定如下: 小车质量M;摆杆质量m,长为l;小车在x 轴上移动;摆与竖直方向夹角为θ,规定正方向如图所示;加在小车x 轴上的力为F;

智能控制(神经网络)-作业

智能控制作业 学生: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2) 1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts;

u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j))^2); end for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation end end w1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1 % jacobian information yu=0; for j=1:1:6 yu=yu+w2(j)*w1(1,j)*FI(j); end dyu(k)=yu; x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn');

模糊控制器设计的基本方法

第5章 模糊控制器设计的基本方法 5.1 模糊控制器的结构设计 结构设计:确定输入、输出变量的个数(几入几出)。 5.2 模糊控制规则设计 1. 语言变量词集 {}PB PM PS O NS NM NB ,,,,,, 2. 确立模糊集隶属函数(赋值表) 3. 建立模糊控制规则,几种基本语句形式: 若A 则B c R A B A E =?+? 若A 则B 否则C c R A B A C =?+? 若A 或B 且C 或D 则E ()()R A B E C D E =+?+????????? 4. 建立控制规则表 5.3 模糊化方法及解模糊化方法 模糊化方法 1. 将[]b a ,内精确量离散化为[]n n +-,内的模糊量 2. 将其区间精确量x 模糊化为一个单点集,即0)(,1)(==x x μμ 模糊推理及非模糊化方法 1. MIN-MAX ——重心法 11112222n 00R and R and R and and '? n n n A B C A B C A B C x y c →→→→= 三步曲: 取最小 1111'()()()()c A o B o C z x y z μμμμ=∧∧ 取最大 12''''()()()()n c c c c z z z z μμμμ=∨∨∨ 2. 最大隶属度法 例: 10.3 0.80.5 0.511234 5 C =+----- +++,选3-=*u

20.30.80.40.21101234 5 C =+ +++ + ,选 5.12 21=+=*u 5.4 论域、量化因子及比例因子选择 论域:模糊变量的取值范围 基本论域:精确量的取值范围 误差量化因子:e e x n k /= 比例因子:e y k u u /= 误差变化量化因子:c c x m k /= 5.5 模糊控制算法的流程 m j n i C u B EC A E ij j i ,,2,1;,,2,1 then then if ===== 其中 i A 、 j B 、ij C 是定义在误差、误差变化和控制量论域X 、Y 、Z 上的模糊集合,则该语句所表示的模糊关系为 j i ij j i C B A R ,??= m j n i j i C B A R z y x z y x ij j i ===== ,1 ,1)()()(),,(μμμ μ 根据模糊推理合成规则可得:R B A U )(?= Y y X x B A R U y x z y x z ∈∈=)()(),,()(μμμμ 设论域{}{}{}l m n z z z Z y y y x x x X ,,,,,,,Y ,,,,212121 ===,则X ,Y ,Z 上的模糊集合分别为一个n ,m 和l 元的模糊向量,而描述控制规则的模糊关系R 为一个m n ?行l 列矩阵。 由i x 及i y 可算出ij u ,对所有X ,Y 中元素所有组合全部计算出相应的控制量变化值,可写成矩阵()ij n m u ?,制成的表即为查询表或称为模糊控制表。 * 模糊控制器设计举例(二维模糊控制器) 1. 结构设计:二维模糊控制器,即二输入一输出。 2. 模糊控制规则:共21条语句,其中第一条规则为 t h e n o r and or if :1 PB u NM NB EC NM NB E R === 3. 对模糊变量E ,EC ,u 赋值(见教材中的表)

模糊实验报告洪帅

控制理论与控制工程 《智能控制基础》 课程实验报告 专业:控制理论和控制工程 班级:双控研2016 姓名:洪帅 任课教师:马兆敏 2016年12 月4 日

第一部分:模糊控制 实验一模糊控制的理论基础实验 实验目的: 1 练习matlab中隶属函数程序的编写,同时学习matlab数据的表达、格式、文件格式、存盘 2 学习matlab中提供的典型隶属函数及参数改变对隶属度曲线的影响 3 模糊矩阵合成仿真程序的学习 4 模糊推理仿真程序 实验内容 (1)要求自己编程求非常老,很老,比较老,有点老的隶属度函数。 1隶属函数编程 试验结果如图1-1 图1-1隶属度函数曲线 (2)完成思考题P80 2-2 写出W及V两个模糊集的隶属函数,并绘出四个仿真后的曲线。 仿真曲线见图1-2,

图1-2隶属度函数曲线 2 典型隶属函数仿真程序 学习下列仿真程序,改变各函数中的参数,观察曲线的变化,并总结各种隶属函数中其参数变化是如何影响曲线形状变换的。 M=1 M=3 M=3 M=4

M=5 M=6 图1-3 M在1、2、3、4、5、6时的图形 2 模糊矩阵合成仿真程序:学习P31例2-10,仿真程序如下, (1)完成思考题P81 2-5,并对比手算结果。完成思考题P81 2-4,并对比手算结果。 (2)2-5: (1)Matlab结果如下 ① ② ③ P81 2-5手算结果:

P=? ? ? ? ? ? 7.0 2.0 9.0 6.0 Q=? ? ? ? ? ? 4.0 1.0 7.0 5.0 R=? ? ? ? ? ? 7.0 7.0 3.0 2.0 S=? ? ? ? ? ? 5.0 6.0 2.0 1.0 (P Q) R=? ? ? ? ? ? 4.0 4.0 6.0 6.0 (PUQ) S=? ? ? ? ? ? 5.0 6.0 5.0 6.0 (P S)U(Q S)=? ? ? ? ? ? 5.0 6.0 5.0 6.0 总结:手算结果和MATLAB运行结果一致。 (2) (2)思考题P81 2-4 Matlab运行结果如下: P81 2-4题手算结果如下: () 30 20 10 4.0 1 10 4.0 20 30 + + + + - + - + - = e ZE μ () 30 20 3.0 10 1 3.0 10 20 30 + + + + - + - + - = e PS μ ()() 30 20 10 4.0 3.0 10 20 30 + + + + - + - + - = ?e e PS ZE μ μ ()() 30 20 3.0 10 1 1 10 4.0 20 30 + + + + - + - + - = ?e e PS ZE μ μ 总结:手算结果和MATLAB运行结果一致。 4 模糊推理仿真程序:学习P47 例2-16,仿真程序如下。(1)完成思考题2-9,并对比手算结果。 Matlab结果如下

智能控制题目及解答

智能控制题目及解答 第一章绪论作业 作业内容 1.什么就是智能、智能系统、智能控制? 2.智能控制系统有哪几种类型,各自的特点就是什么? 3.比较智能控制与传统控制的特点。 4.把智能控制瞧作就是AI(人工智能)、OR(运筹学)、AC(自动控制)与 IT(信息论)的交集,其根据与内涵就是什么? 5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理与 控制性能。 1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作与思维。 智能系统:就是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。 智能控制:智能控制就是控制理论、计算机科学、心理学、生物学与运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理与自适应的能力。就是将传统的控制理论与神经网络、模糊逻辑、人工智能与遗传算法等实现手段融合而成的一种新的控制方法。 2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应与自组织的功能。 (2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。 (3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解与规划、环境建模、传感器信息分析与低层的反馈控制任务。 3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制与大系统的控制问题;而智能控制主要解决高度非线性、不确定性与复杂系统控制问题。 在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常就是学习积累非精确知识;传统控制通常就是用数学模型来描述系统,而智能控制系统则就是通过经验、规则用符号来描述系统。 在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的与行为就是否达到。 但就是,智能控制与传统的或常规的控制有密切的关系,互相取长补短,而并非互相排斥。基于智能控制与传统控制在应用领域方面、理论方法上与性能指标等方面的差异,往往将常规控制包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。 4 答:人工只能(AI)就是一个用来模拟人思维的知识处理系统,具有学习、记忆、信息处理、形式语言、启发推理等功能;自动控制(AC)描述系统的动力学特性,就是一种动态反馈;运筹学(OR)就是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策与多目标优化方法等;信息论(IT)信息论就是运用概率论与树立统计的方法研究信息、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。 早期产生的的二元结构被发现就是很大程度上局限于符号主义的人工智能,无助于智能控制的

基于MATLAB的模糊控制系统设计

实验一基于MATLAB的模糊控制系统设计 1.1实验内容 (1)基于MATLAB图形模糊推理系统设计,小费模糊推理系统; (2)飞机下降速度模糊推理系统设计; (3)水箱液位模糊控制系统设计及仿真运行。 1.2实验步骤 1小费模糊推理系统设计 (1)在MATLAB的命令窗口输入fuzzy命令,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Madmdani模糊推理系统。 (2)增加一个输入变量,将输入变量命名为service、food,输出变量为tip,这样建立了一个两输入单输出模糊推理系统框架。 (3)设计模糊化模块:双击变量图标打开Membership Fgunction Editor 窗口,分别将两个输入变量的论域均设为[0,10],输出论域为[0,30]。 通过增加隶属度函数来进行模糊空间划分。 输入变量service划分为三个模糊集:poor、good和excellent,隶属度函数均为高斯函数,参数分别为[1.5 0]、[1,5 5]和[1.5 10]; 输入变量food划分为两个模糊集:rancid和delicious,隶属度函数均为梯形函数,参数分别为[0 0 1 3]和[7 9 10 10]; 输出变量tip划分为三个模糊集:cheap、average和generous,隶属度函数均为三角形函数,参数分别为[0 5 10]、[10 15 20]和[20 25 30]。

(4)设置模糊规则:打开Rule Editor窗口,通过选择添加三条模糊规则: ①if (service is poor) or (food is rancid) then (tip is cheap) ②if (service is good) then (tip is average) ③if (service is excellent) or (food is delicious) then (tip is generous) 三条规则的权重均为 1.

模糊控制的应用实例与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师 日期 2011 年 9 月 20 日

在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意义重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现 场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对 那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易 导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控 制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。(5)模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱, 尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值 ,输出变量为电机的电压变化量u。图2为电机调试之间的差值e及其变化率e c 输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 000r/s时,电机能很快稳定运行于2 000r/s;当设定转速下降到1 000r/s时,转速又很快下降到1 000r/s稳定运行。 图1

相关文档
最新文档