电压不稳定对电机的影响

电压不稳定对电机的影响
电压不稳定对电机的影响

电力系统中的所有电气设备都有额定工作电压和频率。电气设备在其额定电压和频率下工作时,其综合经济效果最好。例如感应电动机,若电压偏高,虽然转矩增大,但电流也增大,温度增高,将使电动机绝缘严重受损,缩短使用寿命;若电压偏低,则转矩将按电压二次方减少,而在负荷转矩要求一定的情况下,绕组电流必然增大,并使电动机绝缘受损,缩短使用寿命;若电源频率偏高或偏低,也将严重影响电动机的转矩和使用寿命。我国采用的供电频率(简称"工频”)为50Hz,频率偏差范围一般规定为±0.5Hz。又如热辐射光源,若电压偏高,其使用寿命将大大缩短;若电压偏低,则光源照度将明显变暗,严重影响工作效率和人的视力健康。可见电网电压波动将影响电气设备的正常工作和使用寿命。因此,电压、频率和供电连续可靠,是表征电能质量的基本指标。

2 影响供电电压频率稳定的因素

2.1高次谐波产生和造成的危害

高次谐波是指一个非正弦波按傅立叶级数分解后所含的频率为基波频率整数倍的所有谐波分量,而基波频率就是50Hz。高次谐波简称“谐波”。电力系统中的发电机发出的电压,一般可认为是50Hz的正弦波。但由于系统中有各种非线性元件存在,因而在系统中和用户处的线路中出现了高次谐波,使电压或电流波形发生一定程度的畸变。

系统中产生高次谐波的非线性元件很多,例如荧光灯、高压汞灯、高压钠灯等气体放电灯及交流电动机、电焊机变压器和感应电炉等.都要产生高次谐波电流,最为严重的是大型硅整流设备和大型电弧炉,它们产生的高次谐波电流最为突出,是造成电力系统中谐波干扰的最主要的“谐波源”。

当前,高次谐波的干扰已成为电力系统中影响电能质量的一大“公害”。

高次谐波电流通过变压器,可使变压器的铁心损耗明显增加,从而使变压器过热,缩短使用寿命。高次谐波电流通过交流电动机,不仅会使电动机铁心损耗明显增加,而且还将会使电动机转子发生振动,严重影响机械加工的产品质量。高次谐波对电容器的影响更为突出,含有高次谐波的电压加在电容器两端时,由于电容器对高次谐波的阻抗很小,电容器极易因过负荷而烧坏。此外,高次谐波电流可使电力线路的能耗增加,使计算电费的感应式电度表的计量不准确;还可能使电力系统发生电压谐振,在线路上引起过电压攀升,有可能击穿线路设备的绝缘。高次谐波的存在,还可能使系统的继电保护和自动装置误动或拒动,并可对附近的通信设备和线路产生信号干扰。

因此,国家标准GB/T 14549-93《电能质量·公用电网谐波》规定了公用电网中谐波电压限值和谐波电流允许值,若超过规定值就必须加以改进。

2.2高次谐波的抑制

抑制高次谐波,宜采取下列措施:

(1) 大容量的非线性负荷由短路容量较大的电网供电:电网的短路容量越大,它承受非线性负荷的能力越强。

(2) 三相整流变压器采用Yd或Dy联结:这种联结可以消除3的整数倍的高次谐波。由于电力系统中的非正弦交流对横轴(时间轴)对称,不含直流分量和偶次谐波分量,因此系统中只有影响较小的5、7、11……等次谐波分量,这是抑制整流变压器产生高次谐波于扰的最基本方法。

(3)增加整流变压器二次侧的相数:整流变压器二次侧的相数越多,整流脉冲数也随之增多,其次数较低的谐波分量被消去的也越多。例如整流相数为6相时,出现的5次谐波电流为基波电流的18.5%,7次谐波电流为基波电流的12%;如果整流相数增加为12相,则出现的5次谐波电流降为基波电流的4.5%,7次谐波电流降为基波电流的3%……,由此可见,增加整流相数对抑制高次谐波的效果相当显著。

(4)装设分流滤波器:分流滤波器又称调谐滤波器,由能对需要消除的各次谐波进行调谐的多组R—L—C串联谐振电路所组成。由于串联谐振时支路阻抗很小,因而可使有关次数的谐波电流被谐振支路分流(吸收)而不致注入电网中去。

(5)装设静止补偿装置(SVC):对大型电弧炉和硅整流设备,亦可装设SVC来吸收高次谐波电流,以减小这些用电设备对系统产生的谐波干扰。

3 影响供电电压稳定的因素及其抑制

3.1电压波动和闪变

电压波动是由于负荷急剧变动引起的。负荷的急剧变动使系统的电压损耗也相应快速变化,从而使电气设备的端电压出现波动现象。例如电焊机、电弧炉和轧钢机等冲击性负荷,都会引起电网电压波动。电压波动值用电压波动过程中相继出现的电压有效值的最大值与最小值之差对额定电压的百分值来表示,其变化速度不低于每秒0.2%。

电压波动会影响电动机的正常起动,会使同步电动机转子振动,使电子设备特别是使计算机无法正常工作,会使照明灯发生明显的闪烁现象等。其中电压波动对照明的影响最为明显。人眼对灯闪的主观感觉称为“闪变”。电压闪变对人眼有刺激作用,甚至使人无法正常工作和学习。

国家标准GBl236—90《电能质量·电压允许波动和闪变》规定了系统由冲击性负荷产生的电压波动允许值和闪变电压允许值,若超过规定值就必须加以改进。

3.2电压波动和闪变的抑制

为了降低或抑制冲击性负荷引起的电压波动和电压闪变,宜采取下列措施:

(1)采用专线或专用变压器供电:对大容量的冲击性负荷如电弧炉、轧钢机等,采用专线或专用变压器供电是降低电压波动对其他设备运行影响最简便有效的办法,

(2)降低线路阻抗:当冲击性负荷与其他负荷共用供电线路时,应设法降低供电线路的抗,

例如将单回路供电改为双回路供电,或者将架空线路供电改为电缆供电等,从而减小冲击性负荷引起的电压波动。

(3)选用短路容量较大或电压等级较高的电网供电:对大型电弧炉的炉用变压器由短路容量较大或电压等级较高的电网供电,也能有效地降低冲击性负荷引起的电压波动。

(4)采用静止补偿装置:对大容量电弧炉及其他大容量冲击性负荷,在采取上述措施尚达不到要求时,可装没能“吸收”冲击性无功功率的静止补偿装置SVC。SVC的型式有多种,而以自饱和电抗器型(SR型)的效能最好,其电子元件少,可靠性高,维护方便,我国一般变压器制造厂均能制造,是值得推广应用的一种SVC。但SVC的价格昂贵因此应首先考虑采用其他措施。

断路开关接触不良对电压的影响

关于电机功率和转矩、转速之间的关系

电机功率和转矩、转速之间的关系 功率: 物理意义 物理意义:表示物体做功快慢的物理量。 物理定义:单位时间内所做的功叫功率。说:“功率是做功快慢的物理量 公式 功率可分为电功率,力的功率等。故计算公式也有所不同。 电功率计算公式:P=W/t =UI;在纯电阻电路中,根据欧姆定律U=IR代入P=UI中还可以得到:P=I*IR=(U*U)/R 在动力学中:功率计算公式:P=W/t(平均功率);P=Fvcosa(瞬时功率) 因为W=F(f力)×S(s位移)(功的定义式),所以求功率的公式也可推导出P=F·v:P=W /t=F*S/t=F*V(此公式适用于物体做匀速直线运动) 单位 P表示功率,单位是“瓦特”,简称“瓦”,符号是“W”。W表示功,单位是“焦耳”,简称“焦”,符号是“J”。“t”表示时间,单位是“秒”,符号是“s”。 功率越大转速越高,汽车的最高速度也越高,常用最大功率来描述汽车的动力性能。最大功率一般用马力(PS)或千瓦(kW)来表示,1马力等于0.735千瓦。1W=1J/s 功率=力*速度 P=F*V---公式-------------------------------------------------1 转矩(T)=扭力(F)*作用半径(R) ------推出F=T/R---公式-------------------------------------2 线速度(V)=2πR*每秒转速(n秒) =2πR*每分转速(n分)/60 =πR*n分/30---公式-------------------3 将公式2、3代入公式1得: P=F*V=(T/R)*(πR*n分/30)= (T*π* n分)/30 (单位W) -----P=功率单位W, T=转矩单位Nm,

谐波对电器的危害

(1) 电力电容器 根据IEC标准规定一般电容器最大电流只允许35%的超载。实际运转时由于谐波的影响常发生严重过载。电容器阻抗随频率的增加而减少,故产生谐波时,电容器即成为一陷流点流人大量电流,导致过热、增加介电质的应力,甚至损坏电力电容器。当电容器与线路阻抗达到共振条件时,会发生振动短路、过电流及产生噪声。 (2) 同步发电机 变频器产生的高次谐波电流在同步发电机的激磁绕组中会产生感应电流,引起损耗增加,可能导致电机过热、绝缘降低、寿命缩短等[2>。 (3) 变压器 电流谐波将增加变压器铜损,电压谐波将增加铁损,综合效果是使变压器温度上升,影响其绝缘能力,并造成容量裕度减小。谐波也可能引起变压器绕组及线间电容之间共振,及引起铁心磁通饱和而产生噪声。 (4) 电动机 谐波会引起电动机附加发热,导致电动机额外温升,电动机往往要降额使用。如果输入电动机的波形失真,会增加其重复峰值电压,影响电动机的绝缘。(5) 电力电子设备 电力电子设备在多种场合是产生谐波的谐波源,但他自身也很容易感受谐波失真而误动作。这种设备靠着电压的过零点或电压波形来控制或操作,若电压有谐波成分时,零点移动、波形改变,造成许多误动作。 (6) 保护继电器 由于高次谐波的影响,可能引起继电器过电压、产生绝缘损坏、振动引起的机械破坏等等。对于以有效值为基准而动作的继电器,高次谐波的存在使得继电器在接近额定值处也有误动作的可能。 (7) 指示电气仪表 电能表等计量仪表会因谐波而造成感应转盘产生额外的电磁转矩,引起误差,降低精确度。20%的5次谐波将产生10%-15%的误差。过大的谐波电流,也很容易使仪器里的线圈损。

电机功率和转速的关系

电机功率与转速得关系 电机功率与转速得关系:P=T×n/9550其中P就是额定功率(KW)、n就是额定转速(分/转)、T就是额定转矩(N、m)您没给速度,假设就是3000rpm,那么电机T=9550XP/n=9550X11/3000=35N、m,35X减速比847=29645N、m输出扭矩。 三角带传动速比如何计算?传动装置:电机轴转速 n1=960转/分,减速机入轴转速n2 =514转/分,电机用皮带轮 d1=15 0mm ,求减速机皮带轮d2 =? 带轮速比i=? i=n1÷n2= 960÷514=1、87 根据d1/d2=n2/n1 d2=d1×n1÷n2=150×960÷514=280㎜ 答:减速机皮带轮直径为:280毫米;带轮速比为: 1、87。 1、减速机用在什么设备上,以便确定安全系数SF(SF=减速机额定功率处以电机功率),安装形式(直交轴,平行轴,输出空心轴键,输出空心轴锁紧盘等)等? 2、提供电机功率,级数(就是4P、6P还就是8P电机) 3、减速机周围得环境温度(决定减速机得热功率得校核)?4、减速机输出轴得径向力与轴向力得校核.需提供轴向力与径向力减速机扭矩计算公式:?速比=电机输出转数÷减速机输出转数("速比"也称”传动比")? 1、知道电机功率与速比及使用系数,求减速机扭矩如下公式:

?减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使 2、知道扭矩与减速机输出转数及使用系数,求减速机用系数? 所需配电机功率如下公式: 电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数摆线针轮减速机原理:摆线针轮减速机就是一种应用行星式传动原理,采用摆线针齿啮合得新颖传动装置.摆线针轮减速机全部传动装置可分为三部分:输入部分、减速部分、输出部分。在输入轴上装有一个错位180°得双偏心套,在偏心套上装有两个称为转臂得滚柱轴承,形成H机构、两个摆线轮得中心孔即为偏心套上转臂轴承得滚道,并由摆线轮与针齿轮上一组环形排列得针齿相啮合,以组成齿差为一齿得内啮合减速机构,(为了减小摩擦,在速比小得减速机中,针齿上带有针齿套)。当输入轴带着偏心套转动一周时,由于摆线轮上齿廓曲线得特点及其受针齿轮上针齿限制之故,摆线轮得运动成为既有公转又有自转得平面运动,在输入轴正转周时,偏心套亦转动一周,摆线轮于相反方向转过一个齿从而得到减速,再借助W输出机构,将摆线轮得低速自转运动通过销轴,传递给输出轴,从而获得较低得输出转速。 摆线针轮减速机特点与型号 1、摆线针轮减速机特点: 〇高速比与高效率单级传动,就能达到1:87得减速比,效率在90%以上,如果采用多级传动,减速比更大.

高压变频器输出谐波对电动机的影响

高压变频器输出谐波对电动机的影响 时间:2012-10-05 10:51来源:未知 作者:360期刊网 点击: 107 次 目前、髙压变频器没有统一的电路拓扑结构,由于变频器对电动机的影响主要取决于变频器逆变电路的结构和特性。因而,不同电路拓扑结构的变频器对电动机的影响也是不同的。 输出谐波对电动机的影响主要有谐波引起电动机附加发热、导致电动机额外温升,电动机要降容使用,由于输出波形失真,增加电动机的重复峰值电压,影响电动机绝缘;同时,谐波还会引起电动机转矩脉动。噪声增加。高次谐波引起的损耗增加主要表现在定子铜损耗、转子铜损耗、铁损耗以及附加损耗的增加。其中影响最为显着的是转子铜损耗,因为电动机转子是以接近基波频率旋转速度旋转的,因此对于髙次谐波电压来说,转子总是在转差率接近1 的状态下旋转,所以转子铜损耗较大,而且在这种情况下,除了直流电阻引起的铜损耗外,还必须考虑由于肌肤效应所产生的实际阻抗增加而引起的铜损耗。 普通的电流源型变频器输出电流波形和输入电流波形极为相似,都是120 度的方波,含有较大的谐波成分,总谐波电流可以达到307。左右。为了降低输出谐波,也有采用输出12脉动方案或设置输出滤波器,输出波形会有很大的改善,但系统的成本和复杂性也会大大的增加。输出滤波器换相式电流型变频器固有的滤波器可以起到一定的滤波作用,所以速度较高时,电动机电流波形有所改善。 三电平变频器与普通的电平变频器相比,由于输出相电压电平数增加,毎个电平幅值相对下降,提髙了输出电压谐波消除算法的自由度,在相同开关频率的前提下,可使输出波形质量比二电平变频器有较大的提高,但输出因谐波使电压波形失真仍达297。电动机电流谐波失真达177。必须采用专用的电动机,如果采用普通电动机,必须设置输出滤波器。 基波旋转磁动势和6倍频率的转子谐波电流共同作用,产生6倍频的脉动转矩, 所以6脉动输出电流源型变频器含有较大的6倍频率脉动转矩。电流源型变频器采用12脉动多重化后,输出电流波形有较大改善,由于5次和7次谐波基本抵消,6倍频率脉动转矩大大降低,剰下的主要为12倍频率的脉动转矩,总的转矩脉动明显降低。脉动转矩在低速时对电动机转速的影响尤为明显。对三相电动机而言,由于60± 1次谐波存在,产生的电磁转矩为。 电动机的转速脉动有以下规律:转速脉动频率分别为电动机基波角频率10.611 倍,其幅值与变频器输出的基波角频率03 或频率0成反比,即输出频率(或电动机转速)越低,转速波动越大,也就是说,电动机在低速运行情况下,为了使转速波动量维持在同一水平,对输出谐波抑制的要求更髙。转速脉动幅值与变频器输出的谐波次数0成反比,即低次谐波所引起的转速脉动比高次谐波的影响更大。所以,要使电动机的转速脉动较小,首先要消除或抑制变频器输出的低次谐波, 将输出谐波往高频推移,不失为减少转速脉动的有效办法。三电平变频器在不采用输出滤波器时,也会产生较大的转矩脉动, 采用输出滤波器后,转矩脉动可大大降低。 由于高速电力电子器件的使用,变频器输出电压变化率对电动机绝缘产生的影响越来越严重。取决于两个方面:一是电压跳变台阶的幅值,它与变频器的电压等级和主电路结构有密切的关系,二是逆变器功率器件的开关速度,开关速度

电压不稳定对电机的影响

电力系统中的所有电气设备都有额定工作电压和频率。电气设备在其额定电压和频率下工作时,其综合经济效果最好。例如感应电动机,若电压偏高,虽然转矩增大,但电流也增大,温度增高,将使电动机绝缘严重受损,缩短使用寿命;若电压偏低,则转矩将按电压二次方减少,而在负荷转矩要求一定的情况下,绕组电流必然增大,并使电动机绝缘受损,缩短使用寿命;若电源频率偏高或偏低,也将严重影响电动机的转矩和使用寿命。我国采用的供电频率(简称"工频”)为50Hz,频率偏差范围一般规定为±0.5Hz。又如热辐射光源,若电压偏高,其使用寿命将大大缩短;若电压偏低,则光源照度将明显变暗,严重影响工作效率和人的视力健康。可见电网电压波动将影响电气设备的正常工作和使用寿命。因此,电压、频率和供电连续可靠,是表征电能质量的基本指标。 2 影响供电电压频率稳定的因素 2.1高次谐波产生和造成的危害 高次谐波是指一个非正弦波按傅立叶级数分解后所含的频率为基波频率整数倍的所有谐波分量,而基波频率就是50Hz。高次谐波简称“谐波”。电力系统中的发电机发出的电压,一般可认为是50Hz的正弦波。但由于系统中有各种非线性元件存在,因而在系统中和用户处的线路中出现了高次谐波,使电压或电流波形发生一定程度的畸变。 系统中产生高次谐波的非线性元件很多,例如荧光灯、高压汞灯、高压钠灯等气体放电灯及交流电动机、电焊机变压器和感应电炉等.都要产生高次谐波电流,最为严重的是大型硅整流设备和大型电弧炉,它们产生的高次谐波电流最为突出,是造成电力系统中谐波干扰的最主要的“谐波源”。 当前,高次谐波的干扰已成为电力系统中影响电能质量的一大“公害”。 高次谐波电流通过变压器,可使变压器的铁心损耗明显增加,从而使变压器过热,缩短使用寿命。高次谐波电流通过交流电动机,不仅会使电动机铁心损耗明显增加,而且还将会使电动机转子发生振动,严重影响机械加工的产品质量。高次谐波对电容器的影响更为突出,含有高次谐波的电压加在电容器两端时,由于电容器对高次谐波的阻抗很小,电容器极易因过负荷而烧坏。此外,高次谐波电流可使电力线路的能耗增加,使计算电费的感应式电度表的计量不准确;还可能使电力系统发生电压谐振,在线路上引起过电压攀升,有可能击穿线路设备的绝缘。高次谐波的存在,还可能使系统的继电保护和自动装置误动或拒动,并可对附近的通信设备和线路产生信号干扰。 因此,国家标准GB/T 14549-93《电能质量·公用电网谐波》规定了公用电网中谐波电压限值和谐波电流允许值,若超过规定值就必须加以改进。 2.2高次谐波的抑制 抑制高次谐波,宜采取下列措施: (1) 大容量的非线性负荷由短路容量较大的电网供电:电网的短路容量越大,它承受非线性负荷的能力越强。

交-交变频交流励磁电机谐波的解析分析

交-交变频交流励磁电机谐波的解析分析 吴志敢贺益康 摘要研究交-交变频器供电励磁的发电、电动系统的谐波问题,给出多种结构和工作模式交-交变频器输出谐波的解析表达;根据交流励磁电机谐波正序、负序电路模型,导出交流励磁电机空载及并网运行时电网谐波和电机谐波转矩的分析方法。通过计算实例分析和比较了几种系统的谐波特性。 关键词:交-交变频器交流励磁谐波 An Analytical Study of the Harmonics in the AC Excited Machines fed by the Cycloconverter Wu Zhigan He Yikang (Zhejiang University 310027 China) Abstract The harmonic issue in the AC excited machines (ACEM)fed by the cycloconverter was studied.Based on the firstly presented analytical expressions of outputs generated by the various type cycloconverters operated in different modes and the positive,negative sequence harmonic equivalent circuits of ACEM,the analysis method of harmonic voltage,current as well as torque in the no load or networked ACEM was derived.The harmonic nature of various schemes were also analyzed and compared. Keywords:Cycloconverter AC excitation Harmonics 1 引言 交流励磁电机结构上是一台绕线式异步电机,转子绕组采用三相低频交流电励磁[1,2]。改变励磁电压的幅值、频率和相位即可实现对电机运行的有效调节,用作发电机可实现变速恒频发电,独立调节有功和无功功率;用作电动机可实现变频起动和功率因数控制。此项技术对于抽水蓄能发电和变落差、多泥沙水系变速发电及大中型异步电机进相运行等场合意义重大,应用前景十分广阔。但由于中大型交流励磁电机转子一般外接交-交变频器,其输出电压富含谐波,将在发电机定子侧产生大量空载谐波电压,导致并网困难,并网后大量的谐波电流污染电网;也增加电机损耗,产生各类脉振转矩,导致电机产生噪声与振动。因此研究交流励磁电机的电力谐波问题是此项新型发电技术实用化的关键。 交流励磁电机输出电力谐波问题已引起国内研究的注意,文献[3]对此作了很好的分析,但是仅讨论6脉波交-交变频器供电励磁情况,对谐波转矩的计

电机转矩与功率的关系

电机功率与转矩的关系 在一定功率的条件下,转速转速越高,扭矩就越低,反之就越高。 比如同样1.5kw电机,6级输出转矩就比4级高也可用公式M=9550P/n粗算对于交流电机:额定转矩=9550×额定功率/额定转速;对于直流电机比较麻烦因为种类太多。大概是转速与电枢电压成正比,与励磁电压成反比。 转矩与励磁磁通和电枢电流成正比。 在直流调速中调节电枢电压属于恒转矩调速(电机输出转矩基本不变) 调节励磁电压属于恒功率调速(电机输出功率基本不变) 电机的选择 电动机的功率,应根据生产机械所需要的功率来选择,尽量使电动机在额定负载下运行。选择时应注意以下两点: ①如果电动机功率选得过小.就会出现“小马拉大车”现象,造成电动机长期过载.使其绝缘因发热而损坏.甚至电动机被烧毁。 ②如果电动机功率选得过大.就会出现“大马拉小车”现象.其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。而且还会造成电能浪费。 要正确选择电动机的功率,必须经过以下计算或比较:P=F×V /1000 (P=计算功率KW,F=所需拉力N,工作机线速度m/s) 对于恒定负载连续工作方式,可按下式计算所需电动机的功率:P1(kw):P=P/n1n2 式中n1为生产机械的效率;n2为电动机的效率,即传动效率。按上式求出的功率P1,不一定与产品功率相同。因此.所选电动机的额定功率应等于或稍大于计算所得的功率。

此外.最常用的是类比法来选择电动机的功率。所谓类比法。就是与类似生产机械所用电动机的功率进行对比。具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电动机,然后选用相近功率的电动机进行试车。试车的目的是验证所选电动机与生产机械是否匹配。验证的方法是:使电动机带动生产机械运转,用钳形电流表测量电动机的工作电流,将测得的电流与该电动机铭牌上标出的额定电流进行对比。如果电功机的实际工作电流与铭脾上标出的额定电流上下相差不大.则表明所选电动机的功率合适。如果电动机的实际工作电流比铭牌上标出的额定电流低70%左右.则表明电动机的功率选得过大,应调换功率较小的电动机。如果测得的电动机工作电流比铭牌上标出的额定电流大40%以上.则表明电动机的功率选得过小,应调换功率较大的电动机。 实际上应该是考虑扭矩(转矩)、电机功率和转矩是有计算公式的。即T = 9550P/n 式中:P —功率,kW;n —电机的额定转速,r/min;T —转矩,Nm。电机的输出转矩一定要大于工作机械所需要的转矩,一般需要一个安全系数。 关于功率、转矩、转速之间关系的推导如下: 功率=力*速度 P=F*V---公式1 转矩(T)=扭力(F)*作用半径(R)------推出F=T/R---公式2 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30---公式3 将公式2、3代入公式1得: P=F*V=T/R*πR*n分/30=π/30*T*n分-----P=功率单位W,T=转矩单位Nm,n分=每分钟转速单位转/分钟

完整版电能质量对电动机经济运行的影响及改善措施

电能质量对电动机经济运行的影响及改善措施 2006年04月04日来源:不详作者:未知访问次数:83 Tags:电能质量电动机经济运行 【发表评论】【打印此文】【收藏此文】 感应电动机是工农业生产中应用最广泛的一种电动机。根据统计,在电网的总负载 中动力负载约占59%而感应电动机则占总动力负载的85%电力系统中感应电动机的励磁 与涡流消耗无功占系统无功负载的80%左右。由此可见,感应电动机在电力系统中占有重 要地位因而电动机能否经济运行,直接影响着电网的社会效益,电能质量对电动机经济运行 有很大影响。 1电动机对电能质量的要求 电能质量可用频率,电压质量,供电可靠性和电网电压正弦波形畸变率来表征。电动机对 电能质量的要求是 (1) 额定频率时电压偏差小于正负5% (2) 在额定电压时频率偏差小于正负1% (3) 电压正弦波形畸变率小于正负5% (4) 对三相电压平衡度要求电压的负序分量与正序分量之比在长期运行时小于正负 1%。在短时运行时小于正负1.5%,对于零序电压分量,不得超过正序电压分量的1%。 电能质量取决于电力系统供电质量,但电能质量与供电部门对用户用电管理也有直接关系。如用户大量采用并投入单相负荷,则三相间电压对称性就要变差。此外由于生产技术 的发展,用户大量使用非线性设备,如硅整流设备、电弧炉、轧钢及交流调压装置等投 入电网。会向电网注入高次谐波电流,给电网造成污染,导致电网波形畸变,电网三相 电压不平衡及波形畸变会增加损耗,影响电网经济运行。 目前电网电力生产基建与改造以及用户的供电系统都注意配备无功补偿设备,和采 用有载调压变压器。且考虑了电源可靠性,由于加强了系统负荷平衡的调度电网频率基本稳定。因而电能质量有很大提高,但对于系统的电压来说,由于白天高负荷时无功不足, 夜间轻负荷时无功过剩,造成系统白天电压偏低夜间,电压偏高,有些供电区由于系统 一次电压偏高。变压器额定参数不当,分接头调压范围窄,导致配电电压高于标准值。 其次大量非线性设备投入电网运行,使得电网高次谐波含量大大增加,所以当前电能质量 问题主要是电压质量与高次谐波的影响。 2电压质量对电动机运行的影响 电动机在轻负荷下为节电一般采用降压运行如把接改为Y接运行电机在高于额定电压下运行时由于铁芯饱和无功励磁电流增大导致电网功率因数降低损耗增大铁芯发热 并使电机寿命缩短故经济效益差反之电动机在低于额定负荷下运行时转矩等特性下降 电流增大导致电机发热出力降低同样也不经济电压平衡度也是电压质量标准之一不

电机功率和转速的关系

电机功率和转速的关系 电机功率和转速的关系:P=T×n/9550其中P是额定功率(KW) 、n 是额定转速(分/转) 、T是额定转矩(N.m)你没给速度,假设是3000rpm,那么电机T=9550XP/n=9550X11/3000=35N.m,35X减速比847=29645N.m输出扭矩。 三角带传动速比如何计算?传动装置:电机轴转速 n1=960转/分,减速机入轴转速n2 =514转/分,电机用皮带轮 d1=150mm ,求减速机皮带轮d2 =? 带轮速比i=? i=n1÷n2= 960÷514=1.87 根据d1/d2=n2/n1 d2=d1×n1÷n2 =150×960÷514=280㎜ 答:减速机皮带轮直径为:280毫米; 带轮速比为: 1.87。1.减速机用在什么设备上,以便确定安全系数SF(SF=减速机额定功率处以电机功率),安装形式(直交轴,平行轴,输出空心轴键,输出空心轴锁紧盘等)等 2.提供电机功率,级数(是4P、6P还是8P电机) 3.减速机周围的环境温度(决定减速机的热功率的校核) 4.减速机输出轴的径向力和轴向力的校核。需提供轴向力和径向力 减速机扭矩计算公式: 速比=电机输出转数÷减速机输出转数("速比"也称"传动比")

1.知道电机功率和速比及使用系数,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数 2.知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式: 电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数 摆线针轮减速机原理:摆线针轮减速机是一种应用行星式传动原理,采用摆线针齿啮合的新颖传动装置。摆线针轮减速机全部传动装置可分为三部分:输入部分、减速部分、输出部分。在输入轴上装有一个错位180°的双偏心套,在偏心套上装有两个称为转臂的滚柱轴承,形成H机构、两个摆线轮的中心孔即为偏心套上转臂轴承的滚道,并由摆线轮与针齿轮上一组环形排列的针齿相啮合,以组成齿差为一齿的内啮合减速机构,(为了减小摩擦,在速比小的减速机中,针齿上带有针齿套)。当输入轴带着偏心套转动一周时,由于摆线轮上齿廓曲线的特点及其受针齿轮上针齿限制之故,摆线轮的运动成为既有公转又有自转的平面运动,在输入轴正转周时,偏心套亦转动一周,摆线轮于相反方向转过一个齿从而得到减速,再借助W输出机构,将摆线轮的低速自转运动通过销轴,传递给输出轴,从而获得较低的输出转速。

电流谐波分量对永磁同步电机转矩的影响

电流谐波对电机转矩的影响 对于采用正弦控制的三相永磁同步电机来说,理论上电机输入电流和电压应该是理想的正弦波,但是在实际的工程应用中电机电流与电压波形都是近似于正弦波,其中含有大量的高次谐波分量。实际上绕组采用星型连接的三相永磁同步电机对谐波有一定的抑制效果,三次以及三的倍数次谐波在电机绕组对称的情况下由中性点是可以完全抵消掉,由此,可以避免三次及三的倍数次谐波对电机的影响,但是诸如五次、七次、十一次以及十三次等高次谐波在电机绕组中是确实存在的,这些电流中的高次谐波对电机性能会有一定的影响。 引起电机电流谐波的原因很多,主要包括:永磁磁链的畸变、电机转速变化、电机定子齿槽、电机控制方式以及由电机控制器输出造成的电流畸变等。对于控制器来说,功率器件的开关频率对电机谐波的产生有着极其重要的影响,比如对于一款极对数为6,最高转速为9000rpm的电机来说,最高转速下电机频率为150Hz,电流频率为900Hz,而控制器中IGBT 的开关频率最高为10K,MOSFET的开关频率最高为100K。在电机转速为9000rpm时一个电流周期内的IGBT开关次数为11次,其一个周期内开关次数为100次与11次的电流波形如图1所示,从图1可以看出,开关次数为11次的电流波形的谐波是十分明显的。 图1电流波形 由控制器元器件开关频率造成的谐波影响在电机不同转速下是不一样的,对比电机转速从1000rpm到9000rpm对应的一个电流周期内控制器开关次数如表1所示。 表1转速&开关次数 转速(rpm)100020003000400050006000700080009000 开关次数1005033252016141211

交流电机的谐波问题[重点]

交流电机的谐波问题

参考书籍 l[1] 肖湘宇主编,电能质量分析与控制,中国电力出版社,2004 l[2]George J. Wakileh著,徐政译,电力系统谐波-基本原理、分析方法和滤波器设计,机械工业出版社,2003 l[3] 许实章著,新型电机绕组-理论与设计,机械工业出版社,2001 l[4] 李发海,朱东起编著,电机学(第三版),科学出版社,2002 l[5] 汤蕴璆,史乃编著,电机学,机械工业出版社,2001 l[6] 汤蕴璆,张亦黄,范瑜编著,交流电动机动态分析,机械工业出版社,2004 l[7] 朱耀忠等,电机与电力拖动,北京航空航天大学出版社,2005 l[8] 李永东主编,交流电机数字控制系统,机械工业出版社,2002

阅读参考书籍后的作业 l 1 谐波的基本概念([1]: p164-201, [2]: p4~35) A。基波与谐波的定义,谐波计算方法,谐波评价指标 l 2 变压器中的谐波 B。铁心饱和时单相变压器的励磁电流([4]: p15-16)三相变压器空载运行的电动势([4]: p54-56) l 3 电机中的谐波 由于电机自身磁势、磁路以及与电机相连的电源和负载的非线性特性,实际电机中总会存在各种各样的谐波。这些谐波会影响电机的正常运行,有必要对它们产生的机理、特点及其对电机影响的情况进行介绍。

阅读参考书籍后的作业 3.1 电机中的空间谐波 电机的空间谐波是由于电机内部磁势和磁阻在空间上分布不均匀而引起的谐波磁场,例如:凸极同步电机的主极磁场、齿谐波磁场等都含有丰富的空间谐波。电机的空间谐波磁场具有相同的机械角频率但极距却各不相同。 C。凸极同步电机的主极磁场([5]: p124-125)电机中的齿谐波磁场([5]: p125-126) 3.2 电机中的时间谐波 l电机的时间谐波是由连接于电机绕组的电压或负载中的非线性特性在电机内部产生的谐波电压和电流,例如:变频器供电的感应电动机或通过HVDC输送电力的同步发电机中就含有丰富的时间谐波。由时间谐波电压或电流产生的电机磁场具有相同的极距与极对数但频率却各不相同。 D。时间谐波源([2]: p37-65)变频器供电的感应电动机([6]: p229-249)

额定功率、额定转速和额定转矩 惯量和力矩

额定功率、额定转速和额定转矩惯量和力矩 额定功率P、额定转速N和额定转矩T: 转矩T可以从功率P和转速N算得: 公式说明,同一功率下,转矩和转速成反比,即使用减速箱放大输出转矩时,同时会减少转速。 从力的做功角度,得推导过程如下: 其中: F为电机输出合力,单位为N(牛); r为力臂,单位为m(米); N为电机转速,单位为RPM(转/分)。 我们知道,转矩T的定义是力(F)乘以力臂(r),即: 故,把上式代入可得: 其中: P为电机额定功率,单位为W; T为电机额定转矩,单位为N·m; N为电机额定转速,单位为RPM。 惯量和力矩的关系: 电机有小惯量、中惯量和大惯量之分,同一功率下,电机转动惯量J越大, 则电机的输出转矩越大,但速度越低。故,小惯量电机有响应速度快的优点, 当然,这前提是其所拖负载的惯量不能太大。 惯量的单位为Kgm2,其定义如下,从能量角度: 由于式中质量和半径对于特定对象,是不变的,所以把它们提取出来,便成 为了惯量J:

从做功的角度分析,电机输出转矩做功W为: 理想下,电机转矩做功全部转化为功能,得: 故得: 即: 其中: T为转矩,单位为N·m; J为总惯量,单位为Kgm2; β为角加速度,单位为rad/s2; 从式中可得到,惯量和加速度有直接关系,在特定应用场合,如果负载惯量恒定且已知,则可从要求的加速要求算出电机的输出转矩,作为电机选型的参数之一。 总结 关于电机的额定功率、额定转矩、额定转速、转动惯量,如果为一电机安装减速箱,则电机的安额定功率不变,额定转矩增大、额定转速减少、转动惯量增大。所以,为一系统选择电机,需要知道系统的负载惯量、要求的最大转速、要求的最大加/减速时间、系统电压等要求、从而算出一系列的电机参数,再进行电机选型,从而既能满足系统要求又不构成浪费。

电机功率转换的原理

电机功率转换的原理 [ 来源:'d' | 类别:技术| 时间:2008-6-12 10:11:15 ] [字体:大中小] 引言: 电机调速实质的探讨,是关系到近代交流调速发展的重要理论问题。随着近代变频调速矢量控制及直接转矩控制等调速控制理论的提出和实践,很多有关文献和论著都把调速的转矩控制确认为调速的普遍规律,并提出调速的实质和关键在于电磁转矩控制。然而,这种观点尚缺乏理论和实践的证明,值得商榷。 本文根据电机功率转换的普遍原理,提出并证明恒转矩调速的实质在于电机的轴功率控制,转速调节是功率控制的响应,其关键为如何通过电功率控制轴功率。 一、功率控制与转矩控制 根据机电能量转换原理,凡电动机都可划分为主磁极和电枢两个功能部分。主磁极的作用是建立主磁场,电枢则是与磁场相互作用将电磁功率转换为轴功率。 直流电动机的主磁极和电枢不仅结构鲜明,而且功能独立,无疑符合以上定义。而交流(异步)电动机通常以定子、转子划分构成,需加说明。 根据所述电枢定义,异步机的轴功率产生于转子,因此,异步机真正的电枢是转子。问题在于定子,一方面定子励磁产生主磁场,故定子是主磁极。另一方面,定子又通过电磁感应为电枢(转子)输送电磁功率,却不产生轴功率,因此定子又具有电枢的部分特征,这里我们把它称为伪电枢。定子的这种复合功能,是异步机区别于直流机的主要特征。 从电枢输出角度观察,电动机的轴功率与电磁转矩机械转速的关系为: PM=MΩ (1) 或Ω=PM/M(2) 公式(2)除了给出了电机转速与轴功率和电磁转矩间的量值关系以外,同时表明,电机转速最终只能通过轴功率或电磁转矩两种控制获得调节,前者简称功率控制,后者简称转矩控制。 1. 功率控制 功率控制是以轴功率PM为调速主控量,作用对象必然是电枢或伪电枢。电磁转矩在调速稳态时,取决于负载转矩的大小。 即M=Mfz (3) 当负载转矩一经为客观工况所确定之后,电磁转矩就唯一地被决定了,因此电磁转矩不仅与调速控制无关,而且不能随意改变其量值。 电磁转矩对转速的作用表现在调速的过渡过程,转矩的变化是转速响应滞后的结果,此时,功率控制造成电磁转矩响应。 设电机调速前的稳态转速为Ω1,轴功率为PM1,调速后的稳态转速为Ω2,相应的轴功率变为PM2。由于电磁转矩: M=PM/Ω (4) 故调速时,电磁转矩变为: M=PM2/Ω 由于受惯性的作用,在t=0的调速瞬时Ω=Ω1,故 M=PM2/Ω1 t=0

电动机产生的感性无功能量及谐波对电力系统的危害

电动机产生的感性无功能量及谐波对电力系统的危害 感性无功能量是由供电系统供给的总有功电能(视在功率)通过电动机在转化成为机械能的过成中伴随着交变磁场产生的,无功电能就是由电网供给的有功电能转化而来的,其量值为:1Kvar/1KW。三相异步电动机工作运行时,它同时亦是系统中的“谐波源”(电动机产生的多次谐波),“感性无功源”。 那么这些无法被电动机利用的无功能量及谐波能量,在整个系统中起了什么作用呢?对整个系统都产生了哪些影响呢?在我具体阐述之前,首先解释两个名词:“涡流效应”和“激肤效应”: “涡流效应”,闭合铁磁体(如矽钢片)处于交变磁场中,交变的磁通量在铁磁体中,形成涡电流。很像水的旋涡,所以称做涡流。“涡流效应”在铁磁体中产生的的涡电流很大,使铁磁体温升,电流的热效应可以使铁(或金属)的温度达到很高的,甚至是铁(或金属)的熔点,使铁熔化。由此可见“涡流效应”不但会白白损耗电能,使用电设备效率降低,而且会造成用电器(如变压器铁芯)发热,严重时将影响设备正常运行。 “激肤效应”,交流电通过导体时,导体内部产生交感磁场,形成涡流,使导体内电流密度升高,对于原电场驱动的有效电流来说,导体内部阻抗很高,原电场驱动的电流只能从导体表面流过。使导体表面电流密度也加大,这种现象称为“激肤效应”,产生“激肤效应”的

原因是由于感抗的作用,导体内部比表面具有更大的电感L,因此对交流电的阻碍作用大,使得电流密集于导体表面。“激肤效应”使得导体的有效横截面减小,因而导体对交流电的有效电阻比对直流电的电阻大。 交流电的频率越高, “激肤效应”越显著(谐波能量本身就是一种表现为高频脉冲电流的能量),频率高到一定程度,可以认为电流完全从导体表面流过,使原来的导体实质上成了一个空芯导管,因此在高频交流电路中,必须考虑“激肤效应”的影响。 “涡流效应”和“激肤效应”是同时作用于导体和线路的一种现象的两种电效应,“涡流效应”表现为导体内电流密度升高,使导体温升。“激肤效应”则是由于“涡流效应”引起的原电场驱动的电流只能从导体表面流过,使导体表面电流密度升高,使导体温升。显然导体内外的电力密度都很高,造成温升加剧,电能损耗加剧。 我们了解过了:电动机的“本证特性”, 电—磁转换是电动机定子的功能,“定子”是电网终端的感性负载,它在完成电磁转换的同时,必然产生既定量的无功电能回馈给电网。 电动机转子受定子旋转磁场的牵引而运转,将磁场能量转化为转轴的扭矩,因此可以认为:磁场能量转化为机械能是通过转子来实现的。带绕组的转子以相对均匀的角速度在一个按规律交变的定子旋转磁场中运行,在转子绕组中产生一个(混频)交变电场并形成按转子

谐波对变压器的影响

谐波对变压器的影响 谐波对变压器的主要影响是温度的增加和损耗的增大,当负荷含有谐波电流时,通过阻抗形成谐波电压,谐波电压在铁心叠片中将产生涡流电流,使其产生发热和损耗,这部分损耗以引起涡流的谐波电流的频率的平方成正比增加。进而导致了变压器基波负载容量下降,在早些年运行中的变压器,运行几年都是很正常,但随着近几年电力电子装置的增多,有些变压器的基波容量明显不够,并且发热量和噪声明显增加,这里就有由于谐波的干扰而造成的。当负载含有大量的三倍频谐波时,即零序谐波时,其谐波电流在变压器的线圈和铁心中形成环流,如果变压器二次没有中性点或中性点不接地,则这些谐波磁链在箱体和铁芯中引起附加发热,如果中性点接地,则会在中性点汇集大量的3倍频谐波电流,引起负载不能正常运行。 谐波对电动机的影响 谐波同样使电动机的温度增加和损耗的增大,主要表现在谐波频率下的铁损和铜损的增加,谐波电压畸变将引起电动机的效率下降、振动和噪音增加。对于一些多台电动机的传动设备,要求这些电动机的速度和转矩必须保持一致,不同的运行速度和转矩将导致产品质量的下降,更为严重的是使整个工件报废,由于谐波含有各种特殊的频率的谐波电流,所以会产生一定的附加转矩,谐波的干扰就会使上述情况发生。 谐波对电力电容器的影响 早期的无功补偿大部分采用了串联了0.5%、1%、5%、6%电抗率的电抗器,0.5%、1%电抗率的电抗器只是作为限制合闸涌流用,对谐波没有什么吸收作用,5%、6%电抗率的电抗器对5次以上谐波有一定的吸收作用,可是效果不大,并且忽略了3次谐波的影响,电容器补偿装置盲目串接5%、6%电抗率的电抗器后,引起了三次谐波的放大甚至发生谐振,因此经常发生电容器或电抗器烧毁事件,所以在选型设计时一定要小心。 谐波对电能计量和电子设备的影响 谐波对模拟式仪表和电子式仪表在计量方面产生误差。模拟式仪表在绕组和圆盘中会出现谐波电流或涡流,由于谐波电流或涡流的存在,在圆盘上产生转矩,使电能表反映出谐波功率,进而使计量产生增加,使生产用户会因谐波的存在而增加费用。电子式仪表会把有害的谐波功率和有益的基波功率同等对待,所以据一些参考资料它的计量误差大于感应式电能表。谐波对电子设备的影响主要是由于谐波电压或谐波电流的零点和峰值发生变化,即不是真正的零点和峰值,常会使控制电路出现误动,使控制系统控制失败,进而会使整个系统发生崩溃。

电机功率和转速的关系

电机功率与转速的关系 电机功率与转速的关系:P=T×n/9550其中P就是额定功率(KW) 、n就是额定转速(分/转) 、T就是额定转矩(N、m)您没给速度,假设就是3000rpm,那么电机T=9550XP/n=9550X11/3000=35N、m,35X减速比847=29645N、m输出扭矩。 三角带传动速比如何计算?传动装置:电机轴转速 n1=960转/分,减速机入轴转速n2 =514转/分,电机用皮带轮 d1=150mm ,求减速机皮带轮d2 =? 带轮速比i=? i=n1÷n2= 960÷514=1、87 根据d1/d2=n2/n1 d2=d1×n1÷n2 =150×960÷514=280㎜ 答:减速机皮带轮直径为:280毫米; 带轮速比为: 1、87。1、减速机用在什么设备上,以便确定安全系数SF(SF=减速机额定功率处以电机功率),安装形式(直交轴,平行轴,输出空心轴键,输出空心轴锁紧盘等)等 2、提供电机功率,级数(就是4P、6P还就是8P电机) 3、减速机周围的环境温度(决定减速机的热功率的校核) 4、减速机输出轴的径向力与轴向力的校核。需提供轴向力与径向力 减速机扭矩计算公式: 速比=电机输出转数÷减速机输出转数("速比"也称"传动比")

1、知道电机功率与速比及使用系数,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数 2、知道扭矩与减速机输出转数及使用系数,求减速机所需配电机功率如下公式: 电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数 摆线针轮减速机原理:摆线针轮减速机就是一种应用行星式传动原理,采用摆线针齿啮合的新颖传动装置。摆线针轮减速机全部传动装置可分为三部分:输入部分、减速部分、输出部分。在输入轴上装有一个错位180°的双偏心套,在偏心套上装有两个称为转臂的滚柱轴承,形成H机构、两个摆线轮的中心孔即为偏心套上转臂轴承的滚道,并由摆线轮与针齿轮上一组环形排列的针齿相啮合,以组成齿差为一齿的内啮合减速机构,(为了减小摩擦,在速比小的减速机中,针齿上带有针齿套)。当输入轴带着偏心套转动一周时,由于摆线轮上齿廓曲线的特点及其受针齿轮上针齿限制之故,摆线轮的运动成为既有公转又有自转的平面运动,在输入轴正转周时,偏心套亦转动一周,摆线轮于相反方向转过一个齿从而得到减速,再借助W输出机构,将摆线轮的低速自转运动通过销轴,传递给输出轴,从而获得较低的输出转速。

电机转矩、功率、转速、电压、电流之间的关系及计算公式

电机转矩、功率、转速之间的关系及计算公式 电动机输出转矩: 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生 一定程度的扭转变形,故转矩有时又称为扭矩。 转矩与功率及转速的关系:转矩(T)=9550*功率(P)/转速(n) 即:T=9550P/n—公式【1】 由此可推导出: 转矩=9550*功率/转速《===》功率=转速*转矩/9550,即P=Tn/9550——公式【2】 方程式中: P—功率的单位(kW); n—转速的单位(r/min); T—转矩的单位(N.m); 9550是计算系数。 电机扭矩计算公式T=9550P/n 是如何计算的呢? 分析: 功率=力*速度即P=F*V---————公式【3】转矩(T)=扭力(F)*作用半径(R) 推出F=T/R---——公式【4】 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30---——公式【5】 将公式【4】、【5】代入公式【3】得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位N.m, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P=T*n 这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。 电动机转矩、转速、电压、电流之间的关系 由于电功率P=电压U*电流I,即 P=UI————公式【6】 由于公式【2】中的功率P的单位为kw,而电压U的单位是V,电流I的单位是A,而UI乘积的单位是V.A,即w,所以将公式【6】代入到公式【2】中时,UI需要除以1000以统一单位。 则: P=Tn/9550=UI/1000————公式【7】

变频器对电机影响的解决方法

变频器对电机影响的解决方法 一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显着的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。

相关文档
最新文档