步进电机

步进电机
步进电机

摘要:介绍了步进电动机的发展史,及国内的现状和步进电动机未来的应用前景。并且阐述了步进电动机转速、角度、转矩的控制原理。本文阐述了一种步进电机控制器的设计方案,并绘制了原理图和PCB板图,撰写了程序源代码。实现了对步进电动机转速、角度的控制,并完成了实物的制作。这期间主要使用protel99se软件绘制原理图和制板,使用proteus7.1软件进行程序代码的仿真和功能的理论验证。最后通过硬件的调试验证程序代码的实际功能,完成对控制器的设计。

关键词:步进电动机;控制器。

Abstract:Introduction step enter electric motor of development history, and local present condition and step enter electric motor future of application foreground.And elaborated a step to enter electric motor to turn soon, angle, turn Ju of control principle.This text elaborated a kind of step enter electrical engineering controller of design project, and drew principle diagram and PCB plank diagram, composed a procedure source a code.Realization to step enter the electric motor turn soon, angle of control, and completion real object of creation.This period main usage the protel 99 se the software draw principle diagram and make plank, usage proteus 7.1 softwares carry on an imitate of procedure code true with the theories of the function verification.The end experiment certificate procedure a code through an adjust of hardware of actual function, completion design controller.

Key words:Stepper Motor; Controller.

目录

绪论v (3)

第一章步进电机概述v (3)

1.1 步进电机发展史 (3)

1.2 步进电机的应用前景 (4)

1.3步进电机的特点 (4)

1.4步进电机的工作原理 (5)

第二章步进电机的总体设计 (5)

2 .1 功能要求 (5)

2 . 2基本方案的确定 (5)

第三章系统硬件电路的设计 (6)

3.1单片机的选择 (6)

3 . 2 AT89C51引脚及简单说明 (7)

3 .3 驱动电路的设计 (9)

3.4 LCD (10)

3 . 4.1液晶显示器工作原理 (10)

3.4.2LCD1602 (11)

第四章系统软件程序的设计 (12)

4.1 程序要求 (12)

第五章系统调试 (12)

5.1实物实现 (12)

参考文献 (12)

附录 (13)

主程序 (13)

仿真图 (19)

总结 (20)

绪论

步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率范围内通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点。

本设计通过AT89C51单片机对步进电机进行控制,主要介绍了步进电机控制器、驱动电路和LED显示电路的设计,实现了步进电机的控制。该系统具有成本低、控制方便的特点。

第一章步进电机概述

1.1步进电机发展史

步进电机又称电动机或阶跃电动机,国外一般称为 Step motor或Stepping motor 等。步进电机的机理是基于最基本的电磁铁作用,其原始模型起源于1830年至1860年间。1870年前后开始以控制为目的的尝试,应用于氩弧灯的电极输送机构中。这被认为是最初的步进电动。此后,在电话自动交换机中广泛使用了步

进电动机。不久又在缺乏交流电源的船舶和飞机等独立系统中广泛使用。

20世纪60年代后期,随着永磁性材料的发展,各种实用性步进电动机应运而生,而半导体技术的发展则推进了步进电动机在众多领域的应用。在近30年间,步进电动机迅速地发展并成熟起来。从发展趋向来讲,步进电动机已经能与直流电动机、异步电动机,以及同步电动机并列,从而成为电动机的一种基本类型。

1.1.1我国步进电机发展

我国步进电动机的研究及制造起始于本世纪50年代后期。从50年代后期到60年代后期,主要是高等院校和科研机构为研究一些装置而使用或开发少量产品。这些产品以多段结构三相反应式步进电动机为主。70年代初期,步进电动机的生产和研究有所突破。除反映在驱动器设计方面的长足进步外,对反应式步进电动机本体的设计研究发展到一个较高水平。70年代中期至80年代中期为成品发展阶段,新品种高性能电动机不断被开发。自80年代中期以来,由于对步进电动机精确模型做了大量研究工作,各种混合式步进电动机及驱动器作为产品广泛利用。1.2步进电机的应用前景

目前,随着电子技术、控制技术以及电动机本体的发展和变化,传统电机分类间的界面越来越模糊。步进电机必然会成为机电一体化元件组件的必然趋势。由于步进电机具有控制方便、体积小等特点,所以在数控系统、自动生产线、自动化仪表、绘图机和计算机外围设备中得到广泛应用。微电子学的迅速发展和微型计算机的普及与应用,为步进电动机的应用开辟了广阔前景,使得以往用硬件电路构成的庞大复杂的控制器得以用软件实现,既降低了硬件成本又提高了控制的灵活性,可靠性及多功能性。市场上有很多现成的步进电机控制机构,但价格都偏高。应用SGS公司推出的L297和L298两芯片可方便的组成步进电机驱动器,并结合Atmega16L单片机可以构成很好的步进电机控制系统。

1.3 步进电机的特点

1)一般步进电机的精度为步进角的3-5% ,且不累积。

2)步进电机外表允许的温度高。步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。

3)步进电机的力矩会随转速的升高而下降。当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。

4)步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声。步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。

1.4 步进电机的工作原理

步进电机是一种用电脉冲进行控制,将电脉冲信号转换成相位移的电机,其机械位移和转速分别与输入电机绕组的脉冲个数和脉冲频率成正比,每一个脉冲信号可使步进电机旋转一个固定的角度,脉冲的数量决定了旋转的总角度,脉冲的频率决定了电机运转的速度,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

第二章步进电机的总体设计

2.1功能要求

1.有三个键盘,分别可以进行启/停、正/反转、转速选择的参数设置。启/停按钮:低电平启动,高电平停止;正/反转按钮:高电平正转,低电平反转;

2.转速按钮:每按一次转速按钮,就切换一个转速,总共有三个转速可以切换。这三个键盘的设置情况都可以在液晶显示器上显示出来。

3. 键盘设计要求A系统启停按键:启动和停止步进电机。B系统正反转按键:控制步进电机正反转。C转速设置按键:步进电机转速设置。D复位按键:完成单片机系统复位。

2 . 2基本方案的确定

因本次设计的要求,选用步进电机,单片机选用89C51作为控制器,选取用LCD1602以显示电机转速,选用ULN2003A作为步进电机的驱动芯片。系统设

计总体框图如下所示:

图2-2系统设计总体框图

第三章 系统硬件 电路的设计

3 .1 单片机的选择

本次设计以 CPU 选用 89C5l 作为步进电机的控制芯片。89C51 的结构简单并可以在编程器上实现闪烁式的电擦写达几万次以上。使用方便等优点,而且完全兼容 MCS5l 系列单片机的所有功能。AT89C51是一种带4K 字节闪烁可编程可擦除只读存储器(FPEROM — FAlsh ProgrAmmABle And ErAsABle ReAd Only Memory )的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的 MCS-51 指令集和输出管脚相兼容。由于将多功能8位CPU 和闪烁存储器组合在单个芯片中,ATMEL 的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

3.2AT89C51的引脚及简单的引脚说明

ALE/PROG XTAL 2P3.5/T 1P3.4/T 0P3.3/INT P3.2/INT P3.1/TXD P3.0/RXD RST/V PD P1.7P1.6P1.5P1.4P1.3P1.2P1.1P1.0XTAL 1

V SS

P0.0V CC

P0.7P0.6P0.5P0.4P0.3P0.2P0.1PP /EA PSEN P2.7P2.6P2.5P2.4P2.3P2.2P2.1P2.0

图3-2 单片机的引脚图

VCC (40脚):供电电压。 GND (20脚):接地。

XTAL1(19脚):反向振荡放大器的输入及内部时钟工作电路的输入。 XTAL2(18脚):来自反向振荡器的输出。 振荡器特性:

XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

RST (9脚):复位输入。当振荡器复位器件时,要保持RST 脚两个机器周期的高电平时间。

ALE/PROG (30脚):当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH 编程期间,此引脚用于输入编程脉冲。在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据

存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN(29脚):外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP(31脚):当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

P0口(32-39脚):P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL 门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口(1-8脚):P1口是一个内部提供上拉电阻的8位双向I/O口,P1

口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。

P2口(21-28脚):P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口(10-17脚):P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

3.3驱动电路的设计

由于单片机接口信号不够大需要通过ULN2003A放大再连接到相应的电机接口,ULN2003 是高耐压、大电流、内部由七个硅NPN 达林顿管组成的驱动芯片。ULN2003 的每一对达林顿都串联一个2.7K 的基极电阻,在5V 的工作电压下它能与TTL 和CMOS 电路直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。ULN2003 工作电压高,工作电流大,灌电流可达500mA,并且能够在关态时承受50V 的电压,输出还可以在高负载电流并行运行。ULN2003A的输出结构是集电极开路的,所以要在输出端接一个上拉电阻,在输入低电平的时候输出才是高电平。在驱动负载的时候,电流是由电源通过负载灌入ULN2003A的。

ULN2003A引脚图

图3-3ULN2003A

3 .

4 LCD

3.4.1 液晶显示器工作原理

LCD技术是把液晶灌入两个列有细槽的平面之间。这两个平面上的槽互相垂直(相交成90度)。也就是说,若一个平面上的分子南北向排列,则另一平面上的分子东西向排列,而位于两个平面之间的分子被强迫进入一种90度扭转的状态。由于光线顺着分子的排列方向传播,所以光线经过液晶时也被扭转90度。但当液晶上加一个电压时,分子便会重新垂直排列,使光线能直射出去,而不发生任何扭转。

LCD是依赖极化滤光器(片)和光线本身。自然光线是朝四面八方随机发散的。极化滤光器实际是一系列越来越细的平行线。这些线形成一张网,阻断不与这些线平行的所有光线。极化滤光器的线正好与第一个垂直,所以能完全阻断那些已经极化的光线。只有两个滤光器的线完全平行,或者光线本身已扭转到与第二个极化滤光器相匹配,光线才得以穿透。

LCD正是由这样两个相互垂直的极化滤光器构成,所以在正常情况下应该阻断所有试图穿透的光线。但是,由于两个滤光器之间充满了扭曲液晶,所以在光线穿出第一个滤光器后,会被液晶分子扭转90度,最后从第二个滤光器中穿出。另一方面,若为液晶加一个电压,分子又会重新排列并完全平行,使光线不再扭转,所以正好被第二个滤光器挡住。总之,加电将光线阻断,不加电则使光线射出。

然而,可以改变LCD中的液晶排列,使光线在加电时射出,而不加电时被阻断。但由于计算机屏幕几乎总是亮着的,所以只有“加电将光线阻断”的方案才能达到最省电的目的。

从液晶显示器的结构来看,无论是笔记本电脑还是桌面系统,采用的LCD 显示屏都是由不同部分组成的分层结构。LCD由两块玻璃板构成,厚约1mm,其间由包含有液晶(LC)材料的5μm均匀间隔隔开。因为液晶材料本身并不发光,所以在显示屏两边都设有作为光源的灯管,而在液晶显示屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光物质组成的可以发射光线,其作用主要是提供均匀的背景光源。背光板发出的光线在穿过第一层偏振过滤层之后进入

包含成千上万水晶液滴的液晶层。液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。在玻璃板与液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,液晶材料的作用类似于一个个小的光阀。在液晶材料周边是控制电路部分和驱动电路部分。当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。

3.4.2 LCD1602

所谓1602是指显示的内容为16*2,即可以显示两行,每行16个字符。目前市面上字符液晶绝大多数是基于HD44780液晶芯片的,控制原理是完全相同的,因此基于HD44780写的控制程序可以很方便地应用于市面上大部分的字符型液晶。图4 是SMC1602主要技术参数及引脚功能图,字符型LCD1602通常有14条引脚线或16条引脚线的LCD,多出来的2条线是背光电源线VCC(15脚)和地线GND(16脚),其控制原理与14脚的LCD完全一样。

1602主要技术参数及引脚功能

第四章系统软件程序的设计

4.1程序要求

1.有三个键盘,分别可以进行启/停、正/反转、转速选择的参数设置。启/停按钮:低电平启动,高电平停止;正/反转按钮:高电平正转,低电平反转;

2.转速按钮:每按一次转速按钮,就切换一个转速,总共有三个转速可以切换。这三个键盘的设置情况都可以在液晶显示器上显示出来。

3. 键盘设计要求A系统启停按键:启动和停止步进电机。B系统正反转按键:控制步进电机正反转。C转速设置按键:步进电机转速设置。D复位按键:完成单片机系统复位。

主程序见附录。

第五章系统调试

5.1 实物实现

插上C51芯片通电,按下启动按钮灯正转,切换按钮反转,按下调速按钮灯速转变,数码管显示正反转和速度。

参考文献

1. 李朝青. 单片机原理及接口技术. 北京航空航天大学出版社. 2006

2.胡占齐、杨莉. 机床数控技术. 机械工业出版社. 2010

3.于晓东. 51 系列单片机丛书80C51 单片机原理、开发与应用实例. 中国电力

出版社. 2008

4.郑锋. 51 单片机应用系统典型模块开发大全. 中国铁道出版社. 2010

附录:主程序

#include "reg51.h"

#include "intrins.h"

#include "absacc.h"

#define busy 0x80

#define uchar unsigned char

#define uint unsigned int

sbit RS=P2^3;

sbit RW=P2^4;

sbit E=P2^5;

sbit KEY1=P2^0;

sbit KEY2=P2^1;

sbit KEY3=P2^2;

uchar code tab[8]={0x02,0x06,0x04,0x0C,0x08,0x09,0x01,0x03}; uchar temp;

void delay(uchar k)

{

uint i,j;

for(i=0;i

{

for(j=0;j<60;j++)

{;}

}

}

void test_1602busy()

{

P0=0xFF;

RS=0;

RW=1;

_nop_();

_nop_();

while(P0&busy)

{ E=0;

_nop_();

E=1;

_nop_();

}

E=0;

}

void write_1602Command(uchar co) { test_1602busy();

RS=0;

RW=0;

E=0;

_nop_();

P0=co;

_nop_();

E=1;

_nop_();

E=0;}

void write_1602Data(uchar Data) { test_1602busy();

P0=Data;

RW=0;

E=1;

_nop_();

E=0;

}

void init_1602(void)

{

write_1602Command(0x38);

delay(5);

write_1602Command(0x01);

delay(5);

write_1602Command(0x06);

delay(5);

write_1602Command(0x0F);

delay(5);

write_1602Command(0x0C);

}

void DisplayOneChar(uchar X, uchar Y, uchar DData) {

Y&=1;

X&=15;

if(Y)X|=0x40;

X|=0x80;

write_1602Command(X);

write_1602Data(DData);

}

void display_1602(uchar *DData,X,Y) {

uchar ListLength=0;

Y&=0x01;

X&=0x0F;

while(X<16)

{

DisplayOneChar(X,Y,DData[ListLength]); ListLength++;

X++;

}

}

void main()

{

uchar i=0;

uchar delay_v=100;

uchar flag=0;

P1=0xFF;

P2=0xFF;

init_1602();

display_1602("STA: SPD: ",0,0); display_1602("RUN: ",0,1); while(1)

{ if(KEY2==1) DisplayOneChar(4,0,'Z'); else DisplayOneChar(4,0,'F');

if(KEY3==0)

{ i++;

i=i%3;

while(KEY3==0)

{;}

}

switch(i)

{ case 0:delay_v=100; DisplayOneChar(13,0,'1');break; case 1:delay_v=75; DisplayOneChar(13,0,'2');break; case 2:delay_v=100; DisplayOneChar(13,0,'3');break; } if(KEY1==0)

{

display_1602(" RUN:on ",0,1);

if(flag==0)

{ if(KEY2==1)

{temp=0;

P1=tab[temp];

flag=1;

delay(delay_v);

}

if(KEY2==0)

{ temp=6;

P1=tab[temp];

flag=1;

delay(delay_v);

}

}

if(KEY2==1)

{ temp++;

if(temp==8)

{ temp=0;}

P1=tab[temp];

delay(delay_v);

}

if(KEY2==0)

{ temp--;

if(temp==0xFF)

{ temp=7;}

P1=tab[temp];

delay(delay_v);

}

}

else display_1602(" RUN:off ",0,1); }

}

仿真图

总结

经过为期一学期的学习和努力,本次设计顺利完成,具体结论如下:

通过此次实训我学会了很多,也懂得的很多。通过实训我又一次了解了微控制器原理,掌握了仿真和keil软件。实训的前期我们没有买芯片和元器件所以我们先仿真和编程序,在这期间我们同学增进了友谊,更加团结友好了,互相讨论、互相帮忙很快的成功了实现了仿真成功。

后面几天我们都在焊实物,元器件的排版真的考我们的,因为排版好不好关系着我们怎么焊锡,焊锡的方不方便,接线的漂亮与否。

在接线的过程中我们遇到了很多麻烦,因为此次实训的元器件都是我们掏班费买的,线,是那种很细的那种线,不过有一个好处就是它不用上锡,但是剥线特别不容易,不用劲的话皮剥不掉,用劲太猛的话线就断了。实在是考验人的一种技术,还好我有剥线钳,借用她们的剪刀剥线接线成功后时不时就不是这根线断了就是那根线断了,人都要疯了。

在接线成功后,插上C51芯片通电调试,先是灯不亮,然后是数码管不亮,后来知道了原因,按了复位按钮交通灯调试成功,但是数码管始终只亮一个,我拼命的寻找原因,检查电路。接线完美,没有任何错误,实在找不到原因。后来我只有寻求帮助,可始终找不着原因,突然间发现也有人跟我有一样的错误,后来我们互相交换见解互相检查,后来才知道原来上拉电阻是区别的,经过改良过后实物通电调试成功。让我知道同学间互相帮助,知识共享很重要,交流意见会让自己长知识。

之后的步进电机的通电调试就非常简单,在交通灯的基础上简单的添加线就可以轻松的实现。实训让我收获最大的还是勤思考,互相帮助,知识共享很重要,主动学习会让人进步。

步进电机的控制程序

mega16的,16和32管脚兼容,只不过flash大小不一样,不过中断向量号也不一样,你看下自己改改。时钟频率:内部RC 1M 芯片:ULN2003 键值:0 小角度快正转。1 小角度快倒。2 大角度快转。3 大角度快倒。4 小角度正慢转。5 小角度倒慢转。6 大角度正慢转。7 大角度倒慢转。********************************************************************/ #include #include #define uchar unsigned char #define uint unsigned int uchar a=0,b=0; uchar KEY_num=0xe1; unsigned int m=9000; const uchar f1[]={0x02,0x06,0x04,0x0c,0x08,0x09,0x01,0x03}; //正转时序3.75度 const uchar f2[]={0x04,0x06,0x02,0x03,0x01,0x09,0x08,0x0c}; //倒转时序3.75度 const uchar f3[]={0x01,0x02,0x04,0x08}; //正转时序7.5度 const uchar f4[]={0x01,0x08,0x04,0x02}; //倒转时序7.5度 void delay(int k) //延时 { int i; for(i=0;i

步进电机原理介绍

步进电机也叫步进器,它利用电磁学原理,将电能转换为机械能,人们早在20世纪20年代就开始使用这种电机。随着嵌入式系统(例如打印机、磁盘驱动器、玩具、雨刷、震动寻呼机、机械手臂和录像机等)的日益流行,步进电机的使用也开始暴增。不论在工业、军事、医疗、汽车还是娱乐业中,只要需要把某件物体从一个位置移动到另一个位置,步进电机就一定能派上用场。步进电机有许多种形状和尺寸,但不论形状和尺寸如何,它们都可以归为两类:可变磁阻步进电机和永磁步进电机。本文重点讨论更为简单也更常用的永磁步进电机。 步进电机的构造 如图1所示,步进电机是由一组缠绕在电机固定部件--定子齿槽上的线圈驱动的。通常情况下,一根绕成圈状的金属丝叫做螺线管,而在电机中,绕在齿上的金属丝则叫做绕组、线圈、或相。如果线圈中电流的流向如图1所示,并且我们从电机顶部向下看齿槽的顶部,那么电流在绕两个齿槽按逆时针流向流动。根据安培定律和右手准则,这样的电流会产生一个北极向上的磁场。

现在假设我们构造一个定子上缠绕有两个绕组的电机,内置一个能够绕中心任意转动的永久磁铁,这个可旋转部分叫做转子。图2给出了一种简单的电机,叫做双相双极电机,因为其定子上有两个绕组,而且其转子有两个磁极。如果我们按图2a所示方向给绕组1输送电流,而绕组2中没有电流流过,那么电机转子的南极就会自然地按图中所示,指向定子磁场的北极。 再假设我们切断绕组1中的电流,而按图2b所示方向给绕组2输送电流,那么定子的磁场就会指向左侧,而转子也会随之旋转,与定子磁场方向保持一致 接着,我们再将绕组2的电流切断,按照图2c的方向给绕组1输送电流,注意:这时绕组1中的电流流向与图2a所示方向相反。于是定子的磁场北极就会指向下,从而导致转子旋转,其南极也指向下方。 然后我们又切断绕组1中的电流,按照图2d所示方向给绕组2输送电流,于是定子磁场又会指向右侧,从而使得转子旋转,其南极也指向右侧。。 最后,我们再一次切断绕组2中的电流,并给绕组1输送如图2a所示的电流,

用PLC控制步进电机的相关指令说明

用PLC控制步进电机的相关指令 下面介绍的指令只适用于FX1S、FX1N系列的晶体管输出PLC,如高训的FX1N-60MT。这些指令主要是针对用PLC直接联动伺服放大器,目的是可以不借助其他扩展设备(例如1GM模块)来进行简单的点位控制,使用这些指令时最好配合三菱的伺服放大器(如MR-J2)。 然而,我们也可以用这些指令来控制步进电机的运行,如高训810室的实验台架。下面我们来了解相关指令的用法: 1、脉冲输出指令PLSY(FNC57) PLSY指令用于产生指定数量的脉冲。助记法为HZ、数目Y出来。指令执行如下: 2、带加减速的脉冲输出指令PLSR(FNC59) 3、回原点ZRN(FNC156)--------重点撑握 ZRN指令用于校准机械原点。助记法为高速、减速至原点。指令执行如下:

4、增量驱动DRVI(FNC158)--------重点撑握 DRVI为单速增量驱动方式脉冲输出指令。这个指令与脉冲输出指令类似但又有区别, 只是根据数据脉冲的正负多了个转向输出。本指令执行如下: 5、绝对位置驱动指令DRVA(FNC159) 本指令与DRVI增量驱动形式与数值上基本一样,唯一不同之处在于[S1.]: 在增量驱动中,[S1.]指定的是距离,也就是想要发送的脉冲数;而在绝对位置驱动指令中, [S1.]定义的是目标位置与原点间的距离,即目标的绝对位置。

下面以高训810室的设备为例,说明步进电机的驱动方法: 在用步进电机之前,请学员考虑一下几个相关的问题: 1、何谓步进电机的步距角?何为整步、半步?何谓步进电机的细分数? 2、用步进电机拖动丝杆移动一定的距离,其脉冲数是如何估算的? 3、在步进顺控中运用点位指令应注意什么?(切断电源的先后问题!) 步进电机测试程序与接线如下: 1、按下启动按钮,丝杆回原点,5秒钟后向中间移动,2秒后回到原点。

步进电机参数及含义

步进电机参数及含义 1、步进角: 当步进驱动器接收到一个脉冲信号,它所驱动步进电机按设定的方向转动的一个固定角度。 2、保持转矩(HOLDING TORQUE): 保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m的步进电机。 3、DETENT TORQUE: DETENT TORQUE是指步进电机没有通电的情况下,定子锁住转子的力矩。DETENT TORQUE在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。 4、精度: 一般步进电机的精度为步进角的3-5%,且不累积。 5、空载启动频率: 步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。 6、四相混合式步进电机与驱动器的串联接法和并联接: 四相混合式步进电机一般由两相驱动器来驱动,因此,连接时可以采用串联接法或并联接法将四相电机接成两相使用。串联接法一般在电机转速较的场合使用,此时需要的驱动器输出电流为电机相电流的0.7倍,因而电机发热小;并联接法一般在电机转速较高的场合使用(又称高速接法),所需要的驱动器输出电流为电机相电流的1.4倍,因而电机发热较大。 7、纹波电压: 纹波电压一般是指直流电源输出端含有交流电压是多少V,属称纹波电压或纹波系数。 8、如何确定步进电机驱动器的直流供电电源: A.电压的确定 混合式步进电机驱动器的供电电源电压一般是一个较宽的范围(比如IM483的供电电压为12~48VDC),电源电压通常根据电机的工作转速和响应要求来选择。如果电机工作转速较高或响应要求较快,那么电压取值也高,但注意电源电压的纹波不能超过驱动器的最大输入电压,否则可能损坏驱动器。 B.电流的确定 供电电源电流一般根据驱动器的输出相电流I来确定。如果采用线性电源,电源电流一般可取I的1.1~1.3倍;如果采用开关电源,电源电流一般可取I的1.5~2.0倍。

全的有关步进电机的基础知识

第一步:步进电机的保持转矩,相当于传统电机所说的“功率”。当然,他们有着本质的区别。步进电机的物理结构,完全不同于普通的交、直流电机,它的输出功率是可变的。通常根据需要的转矩大小,来选择哪种型号的步进电机。大致来说,扭力在0.8n.m以下的,一般选择28、35、39、42;扭力在1N.m左右的,选择57电机较为合适。扭力在几N.m或更大的情况下,就应当选择转矩更大的75、85、86、90、110、130等规格的步进电机。同时,我们还应考虑电机的转速。因为,电机的输出转矩,与转速成反比关系。就是说,步进电机在低速(每分钟几百转或更低转速,其输出转矩较大),在高速旋转状态的转矩就很小了。当然,有些工作环境需要高速电机,就要对步进电机的线圈电阻、电感等指标进行综合权衡。选择电感稍小一些的电机,作为高速电机,能够获得较大输出转矩。反之,要求低速大力矩的情况下,就要选择电感在十几或几十mH,电阻也要大一些为好。 第二步:步进电机空载启动频率,一般称为“空起频率”。这是选购步进电机很重要的一项指标。如果要求在瞬间频繁启动、停止,并且,转速在1000转/分钟左右或更高。最好选择反应式或永磁式步进电机,这些电机的“空起频率”都比较高。 第三步:步进电机的相数选择,这项内容,很多客户几乎没有什么重视,大多是随便购买。其实,不同相数的电机,工作效果是不同的。相数越多,步距角就能够做的比较小,工作时的振动就相对小一些。大多数场合,使用两相、三相、五相混合式步进电机的比较多。在高速大力矩的工作环境,选择三相步进电机是很实用的。

第四步:防水防腐型步进电机能够防水、防油,适用于某些特殊场合。例如水下机器人,就需要放水电机。75BYG系列步进电机大多具有防水结构。对于特种用途的电机,就要针对性选择了。 第五步:特殊规格的步进电机,通常需要和生产厂家沟通,在技术允许的范围内,加工订做。例如,出轴的直径、长短、伸出方向等。 No2.步进电机的噪音控制方法 步进电机的运转难免会有很大的噪音,在工厂这些噪音其实不算什么,工厂里多的是机械,各式各样的,一起运转,那么多的噪音,就好像在开一场演唱会,只是是我们听不懂的,很刺耳的。 噪音大听不到不要紧,但是在工厂里面的操作工难免就要遭罪了,操作工之间讲话都是问题,不用吼得是听不到了,久而久之,他们的听觉也会有一点受到影响。那该如何减少这些机器的噪声呢? 第一,可以通过改变减速比等机械传动避开共振区; 第二,可以采用带有细分功能的驱动器; 第三,可以换成步距角更小的步进电机; 第四,可以换成交流伺服电机,几乎可以完全克服震动和噪声; 第五,可以在电机轴上加磁性阻尼器。 步进电机高速不能直接使用普通的交直流电源,需要专用的伺服控制器,应注意以下特点:

步进电机基本知识

步进电机基本知识(2009-01-08 13:51:30) 1、步进电机:是一种将电脉冲转化为角位移或线位移的执行机构。其特点是没有积累误差(精度为100%),广泛应用于各种开环控制。 2、步进电机分类:永磁式(PM),反应式(VR),混合式(HB)。 3、保持转矩:是指步进电机通电,但没有转动时,定子锁住转子的力矩。 4、精度:为步进角的3~5%,且不累积。 5、细分驱动器:是通过改变相邻(A,B)电流的大小,以改变合成磁场的夹角来控制步进电机的运转的。细分功能完全是由驱动器靠精确控制电机的相电流所产生的,与电机无关。对于2,4相电机,细分后的步距角等于电机的整步步距角除以细分数。对于3相反应式电机,细分后的步距角等于电机的半步步距角除以细分数。 6、步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。0.9°/1.8°(表示半步工作时为0.9°,整步工作时为1.8°)此步距角为电机固有步距角。 7、相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 8、失步:电机运转时运转的步数,不等于理论上的步数。称之为失步。 9、最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。 10、最大空载运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。 11、步进电机最好不使用整步状态,整步状态时振动大。 12、电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。方向由导电顺序决定。控制步进脉冲信号的频率,可以对电机进行精确调速;控制步进脉冲的个数,可以对电机进行精确定位。

13、步进电机驱动器:是把计算机控制系统提供的弱信号放大为步进电机能够接受的强电流信号。 14、拍数:是完成一个磁场周期性变化所需脉冲数。指电机转过一个齿距角所需脉冲数。 15、脱机信号free:此信号为选用信号,并不是必须要用的,只有在一些特殊情况下使用,此端为低电平有效,这时电机处于无力矩状态;此端为高电平或悬空不接时此功能无效,电机可正常运行,此功能若用户不采用,只需将此端悬空即可。 16、CP脉冲宽度一般要求不小于2us。 17、CP电平方式:对于共阳接法的驱动器要求为负脉冲方式,脉冲状态为低电平,无脉冲时为高电平;对于共阴接法的驱动器要求为正脉冲方式,脉冲状态为高电平,无脉冲时为低电平。 18、dir信号:一定要在电机降速停止后再换向。 19、步进电机在启动时,必须有升速过程;在停止时必须有降速过程,一般来说升速过程和降速过程规律相同。特例:步进电机运行速度不超过突跳频率,这时不存在升降速问题。 20、自动半电流功能:驱动机在步进脉冲信号停止施加2S左右,会自动进入半电流状态,这时电机相电流为运行时的一半,以减少功耗和保护电机。 21、细分优点:完全消除了电机的低频振荡。 22、步进电机的工作性能在很大程度上取决于所使用的驱动电路的类型和参数。 23、常用的有两相,四相混合式步进电机。 24、电机是有内阻的感性负载。 25、步进电机驱动方式:恒压,恒流,恒流斩波,使同样电机输出更大速度和功率。 26、步进电机启动:A、低初速度,低加速度阶段

步进电机控制入门资料(经典) (1)

更多电子资料请登录赛微电子网https://www.360docs.net/doc/434987280.html, 步进电机原理 作者:Dan Simon,电子与计算机工程系,克里夫兰州立大学 步进电机也叫步进器,它利用电磁学原理,将电能转换为机械能,人们早在20世纪20年代就开始使用这种电机。随着嵌入式系统(例如打印机、磁盘驱动器、玩具、雨刷、震动寻呼机、机械手臂和录像机等)的日益流行,步进电机的使用也开始暴增。不论在工业、军事、医疗、汽车还是娱乐业中,只要需要把某件物体从一个位置移动到另一个位置,步进电机就一定能派上用场。步进电机有许多种形状和尺寸,但不论形状和尺寸如何,它们都可以归为两类:可变磁阻步进电机和永磁步进电机。本文重点讨论更为简单也更常用的永磁步进电机。 步进电机的构造 (图一,具有双齿槽和单绕组的定子) 如图1所示,步进电机是由一组缠绕在电机固定部件--定子齿槽上的线圈驱动的。通常情况下,一根绕成圈状的金属丝叫做螺线管,而在电机中,绕在齿上的金属丝则叫做绕组、线圈、或相。如果线圈中电流的流向如图1所示,并且我们从电机顶部向下看齿槽的顶部,那么电流在绕两个齿槽按逆时针流向流动。根据安培定律和右手准则,这样的电流会产生一个北极向上的磁场。 现在假设我们构造一个定子上缠绕有两个绕组的电机,内置一个能够绕中心任意转动的永久磁铁,这个可旋转部分叫做转子。图2给出了一种简单的电机,叫做双相双极电机,因为其定子上有两个绕组,而且其转子有两个磁极。如果我们按图2a所示方向给绕组1输送电流,而绕组2中没有电流流过,那么电机转子的南极就会自然地按图中所示,指向定子磁场的北极 (图2:双相双极电机) 然后我们切断绕组1中的电流,按照图2b所示方向给绕组2输送电流,于是定子磁场会指向左侧,从而使得转子旋转,其南极也指向左侧。

步进电机角度控制(1)

课程设计 课程名称微型计算机控制技术 题目名称步进电机角度控制(1) 学生学院自动化学院 专业班级自动化(4)班 学号 学生姓名 指导教师 2012 年 6 月26 日

一、系统设计说明 1.硬件设计 本次设计要求通过键盘按键实现对步进电机的转动次数和每次转动的角度的控制,并通过数码管显示出来。 本方案中通过按键对步进电机的转动角度进行设定,给各个按键设置不同的键值。按下按键时,给8255A一个信号设定步进电机下一步的动作。8086通过8255A的数据总线读取该信号,并作出反应,通过给8255A一系列的指令驱动其工作,从而驱动步进电机和LED 显示器 2.软件设计 3.显示模块设计说明: 为使显示程序具有通用性和灵活性,在8086内设置一个显示缓冲区,显示缓冲区的每个单元与LED的各位一一对应。当主程序需要显示,只需将要显示的字符送入显示缓冲区,然后调用显示子程序。显示子程序的任务则是逐一取出显示缓冲区中的字符、查字形表转换成相应字型码,然后通过字段口输出显示。显示模块是用四位七段数码管来显示转动次数和每次转动的角度。给八个按键设置不同的子程序,当按下按键时,根据事先设定好的各个按键对应的转动角度的值输出到数码管进行显示。 步进电机模块设计说明: 在此设计中,采用的是八拍步进电机。步进电机控制程序就是完成环形分配器的任务,从而控制电动机的转动,以达到控制转动角度和位移的目的。控制模型可以以立即数的形式一一给出。对于步进电机模块的程序设计采用循环程序设计方法。先把转动的次数和角度的控制模型存放在内存单元中,然后再逐一从单元中取出控制模块并输出。首先启动,按下按键选择步进电机的角度,然后读入转动的控制模型驱动步进电机转动。 二、程序设计流程图

步进电机 驱动器 控制器三者的关系

电机行业专业求职平台 1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况 下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机、交流电机在常规下使用。步进电机必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。它涉及到机械、电机、电子及计算机等许多专业知识。 提及此知识,希望能给予正在对电机选型的客户有所帮助。 2.力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度,则产生力 F与(dФ/dθ)成正比 S 其磁通量Ф=Br*S Br为磁密,S为导磁面积 F与L*D*Br成正比 L为铁芯有效长度,D为转子直径 Br=N·I/R N·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径 力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态) 因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 一、混合式步进电机

电机行业专业求职平台1、特点: 混合式(又称感应子式步进电机)与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。 混合式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运 行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C= A ,D=B . 一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相, 而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,更可以作二相电机绕组串联或并联使用。 2、分类 混合式步进电机可分二相、三相、四相、五相等,我公司混合式步进电机以相数可分为:二相电机、三相电机: TEB20H,TEB28H,TEB35H,TEB39H,TEB42H,TEB57H,TEB86H,TEB110 H,TEC57H,TEC86H,TEC110H,TEC130H. 3、步进电机的静态指标术语 相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半 步)。 定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

步进电机的控制1

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 自动控制原理课程设计报告 设计题目: 单位(二级学院):自动化学院 学生姓名: 专业:自动化 班级: 学号: 指导教师: 设计时间:2010 年 6 月 重庆邮电大学自动化学院制

目录 目录 (2) 一、设计题目 (3) 1题目内容 (3) 2实现目标 (3) 3设计要求 (3) 4 设计安排 (3) 二、设计报告正文 (3) 1步进电机的概论 (4) 2步进电机的驱动控制系统 (6) 3系统设计思路 (10) 4步进电机的控制电路 (13) 三、设计总结 (15) 四、参考文献 (16)

一、设计题目 1题目内容 基于51单片机的步进电机调速设计 2实现目标 1)具有与PC机串口通信的功能; 2)具有与数码管显示或者LED指示灯显示状态(数码管显示的速度并不代表电 机实际速度,只是一个感性的认识) 3设计要求 1)绘制原理图,PCB; 2)完成单片机所有代码编写; 3)设计PC机简易显示界面; 4设计安排 三个人一组,为期一周,小组成员合作,共同完成设计要求。 二、设计报告正文 摘要:步进电机是一种将电脉冲转换成相应角位移或者线位移的电磁机械装置。在非超载的情况下,电机的转速,停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。它具有快速启停能力,在电机的负荷不超过它能提供的动态转矩时,可以通过输入脉冲来控制它在一瞬间的启动或者停止。由于其精确性以及其良好的性能在实际当中得到了广泛的应用。 本文首先介绍了步进电机的分类、技术指标、步进电机的工作原理以及步进电机

完整的单片机控制步进电机程序

#include "reg52.h" #include "INTRINS.H" #include #include #define uint unsigned int #define uchar unsigned char void check_addr(void); /*地址核对*/ uchar code slave_addr[4]={00, 01, 02, 255}; /*从机地址*/ uchar idata T0low, T0high,common_count,input_order,cmd_in_permit,interval; uchar sent_ok,speed_change,start_up,start_end,address_true,i; uint y1; uint code add[100]={60006,62771,63693,64154,64430,64614,64746,64845,64922,64983,65033,65075,651 11,65141,65167,65190,65211,65229,65245,65260,65273,65285,65296,65306,65315,65323,65331 ,65339,65345,65352,65358,65363,65368,65373,65378,65382,65387,65390,65394,65398,65401,6 5404,65407,65410,65413,65416,65418,65421,65423,65425,65428,65430,65432,65434,65435,654 37,65439,65441,65442,65444,65445,65447,65448,65450,65451,65452,65453,65455,65456,65457 ,65458,65459,65460,65461,65462,65463,65464,65465,65466,65467,65468,65469,65469,65470,6 5471,65472,65472,65473,65474,65475,65475,65476,65477,65477,65478,65478,65479,65480,654 80,65481}; sbit P2_0=P2^0; /*作输入步进电机的脉冲信号发送口*/ sbit P2_2=P2^2; /*作输入步进电机的旋转方向信号发送口*/ sbit P1_0=P1^0; /*作串口输出信号的使能口, P1_0=0时接通串口,输出信号*/ sbit WD=P1^7; /*看门狗*/ main() { P2_0=0; P2_2=0; /*步进电机的旋转方向待试验后确定*/ P1_0=1; /*开机时需要关断,串口发送功能,需要时再接通*/ WD=1; /*看门狗先为1,电平翻转为喂狗*/ i=0; common_count=0; cmd_in_permit=0; input_order=0; interval=0; address_true=1; speed_change=0; start_up=0;

步进电机结构及工作原理简介

步进电机结构简介 按照励磁方式分类,步进电机可分为反应式、永磁式和感应子式。其中反应式步进电机用的比较普遍,结构也较简单。本课题采用的也是此类电机。 反应式步进电机又称为磁阻式步进电机,其典型结构如图1所示。这是一台三相电机,定子铁心由硅钢片叠成,定子上有6个磁极,每个磁极上又各有5 个均匀分布的矩形小齿。三相电机共有三套定子控制绕组,绕在径向相对的两个磁极上的一套绕组为一相。转子也是由叠片铁心构成,转子上没有绕组,而是由40个矩形小齿均匀分布在圆周上,相邻两 齿之间的夹角为9度。 下面简述其工作原理。当某相绕组通 电时,对应的磁极就会产生磁场,并与转 子形成磁路。若此时定子的小齿与转子的 小齿没有对齐,则在磁场的作用下,转子 转动一定的角度使转子齿与定子齿对应。 由此可见,错齿是促使步进电机旋转的根 本原因。例如,在单三拍运行方式中,当 A相控制绕组通电,而B、C相都不通电时, 由于磁通具有力图走磁阻最小路径的特 点,所以转子齿与A相定子齿对齐。若以此作为初始状态,设与A相磁极中心磁极的图1 步进电机剖面结构转子齿为0号齿,由于B相磁极与A相磁极相差120度,且120度/9度=13.333不为整数,所以,此时13号转子齿不能与B相定子齿对齐,只是靠近B相磁极的中心线,与中心线相差3度。如果此时突然变为B相通电,而A、C相都不通电,则B相磁极迫使13号小齿与之对齐,整个转子就转动3度。此时称电机走了一步。 同理,我们按照A→B→C→A顺序通电一周,则转子转动9度。转速取决于各控制绕组通电和断电的频率(即输入脉冲频率),旋转方向取决于控制绕组轮流通电的顺序。如上述绕组通电顺序改为A→C→B→A······则电机转向相反。 这种按A→B→C→A······方式运行的称为三相单三拍,“三相”是指步进电机具有三相定子绕组,“单”是指每次只有一相绕组通电,“三拍”是指三次换接为一个循环。 此外,三相步进电机还可以以三相双三拍和三相六拍方式运行。三相双三拍就是按AB→BC→CA→AB······方式供电。与单三拍运行时一样,每一循环也是换接3次,共有3种通电状态,不同的是每次换接都同时有两相绕组通电。三相六拍的供电方式是A→AB→B→BC→C→CA→A······每一循环换接六次,共

步进电机的学习日志

步进电机 是一种将电脉冲信号转化为角位移和线位移的开环控制元件。在非超载的情况下电机的转速和位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为"步距角",它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 特点:(1)来一个脉冲转一个布角矩 (2)改变一个脉冲的频率可以改变电机的转速 (3)改变脉冲的顺序可与改变电机的转变方向 一:步进电机的内部结构外部组成。

1.组成。 步进电机主要有两部分组成:定子和转子,它们均由磁性材料构成。以三相为例,其转子和定子均有四个六个磁极。 三相步进电机的结构简图 2.分类。 分类方式多样。常见的分类方式有按力矩产生的原理、按力矩输出的大小以及定子转子的数量进行分类。 1)反应式:转子无绕组,定转子开小齿,步角矩小,应用最广。 2)永磁式:转子极数=每相定子的极数,不开小齿,步角矩较大,力矩较大。 3)感应子式,也称混合式,转矩大,动态性能好,步角矩小。 3.工作原理。 工作方式:三相单三拍,三相单双六拍、三相双三拍等。 一:三相单三拍。

(1)连接方式为Y 形。 (2)通电顺序。 ABCA或ACBA。 (3)工作过程。 A相通电,A 方向的磁通经过转子形成闭合回路。若有转子和磁场轴线有一定的角度,则在磁场的作用下,转子被化,吸引转子,使转子的位置力图使通电相磁的磁阻最小,使转、定子对齐停止转动。A相通电使转子1、3齿和AA~对 齐。(磁阻:磁阻:就是磁通通过磁路时所 受到的阻碍作用,用R m表示。磁路中磁阻的 大小与磁路的长度l成正比,与磁路的横截面 积S成反比,并与组成磁路的材料性质有关。 m为磁导率,单位H/m,长度l和截面积 S的单位分别为m和㎡。因此,磁阻R m的 单位为1/亨(H-1)。由于磁导率m 不是常数, 所以Rm也不是常数。 与电阻根本不同之处: 1)电路中在电动势的驱动下,确实存在电荷在电路中流动,并因此引起电阻 的发热。而磁路中磁通是伴随着电流存在 的。对于恒定电流,在磁导体中,并没有物质或能量在流动,因此不会在磁导体中产生损耗。即使在交变磁场中,磁导体的损耗也不是磁通“流通”产生的。 2)电路中电流限定在铜导线和其他导电元件内,这些元件的电导率高,比电路的周围材料的电导率一般高10^12倍以上。由于没有磁绝缘材料,周围介质的磁导率只比组成磁路材料的磁导率低几个数量级。 3)导体的电导率与导体流过电流无关,而磁路中磁导率与磁通密度有关的非线性参数。

步进电机控制说明

实训名称步进电机控制 一、实训目的 1.掌握步进电机控制系统的接线、调试、操作 二、实训设备 序号名称型号与规格数量备注 1实训装置THHAJS-1 1 2实训挂箱B10 1 3导线3号若干 4 5通讯编程电缆SC-90 1 三菱 6实训指导书THHAJS-1 1 7计算机(带编程软件) 1 自备 三、面板图 + 四、控制要求 1.总体控制要求:如面板图所示,利用可编程控制器输出信号控制步进电机运行。 2.按下“SD”启动开关,系统准备运行。 3.打开“MA”手动开关,系统进入手动控制模式,选择电机旋转方向,再按动“SE”单步按钮,步进电机运行一步。 4.关闭“MA”手动开关,系统进入自动控制模式,此时步进电机开始自动运行。 5.分别按动速度选择开关“V1”、“V2”、“V3”,步进电机运行在不同的速度段上。 6.步进电机开始运行时为正转,按动“MF”开关,步进电机反方向运行。再按动“MZ”开关,步进电机正方向运行。 五、功能指令使用及程序流程图

六、 端口分配及接线图 1.端口分配及功能表 序号 PLC 地址(PLC 端子) 电气符号(面板端 子) 功能说明 1 X00 SD 启动开关 2 X01 MA 手动 3 X02 V1 速度1 4 X03 V2 速度2 5 X04 V3 速度3 6 X05 MZ 正转 7 X06 MF 反转 8 X07 SE 单步 9 Y00 A A 相 10 Y01 B B 相 11 Y02 C C 相 12 Y03 D D 相 13 面板V+ 接电源+24V 电源正端 14 主机COM 、COM0、COM1、COM2接电源GND 电源负端 2.PLC 外部接线图 七、 操作步骤 1. 检查实训设备中器材及调试程序。

步进电机工作原理1

步进电动机是一种将电脉冲信号转换成角位移或线位移的机电元件。步进电动机的输入量是脉冲序列,输出量则为相应的增量位移或步进运动。正常运动情况下,它每转一周具有固定的步数;做连续步进运动时,其旋转转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接受数字量的控制,所以特别适宜采用微机进行控制。 1.步进电动机的种类 目前常用的有三种步进电动机: (1)反应式步进电动机(VR)。反应式步进电动机结构简单,生产成本低,步距角小;但动态性能差。 (2)永磁式步进电动机(PM)。永磁式步进电动机出力大,动态性能好;但步距角大。 (3)混合式步进电动机(HB)。混合式步进电动机综合了反应式、永磁式步进电动机两者的优点,它的步距角小,出力大,动态性能好,是目前性能最高的步进电动机。它有时也称作永磁感应子式步进电动机。 2.步进电动机的工作原理 图1 三相反应式步进电动机的结构示意图 1——定子 2——转子 3——定子绕组{{分页}}

图1是最常见的三相反应式步进电动机的剖面示意图。电机的定子上有六个均布的磁极,其夹角是60o。各磁极上套有线圈,按图1连成A、B、C三相绕组。转子上均布40个小齿。所以每个齿的齿距为 θE=360o/40=9o,而定子每个磁极的极弧上也有5个小齿,且定子和转子的齿距和齿宽均相同。由于定子和转子的小齿数目分别是30和40,其比值是一分数,这就产生了所谓的齿错位的情况。若以A相磁极小齿和转子的小齿对齐,如图1,那么B相和C相磁极的齿就会分别和转子齿相错三分之一的齿距,即3o。因此,B、C极下的磁阻比A磁极下的磁阻大。若给B相通电,B相绕组产生定子磁场,其磁力线穿越B相磁极,并力图按磁阻最小的路径闭合,这就使转子受到反应转矩(磁阻转矩)的作用而转动,直到B磁极上的齿与转子齿对齐,恰好转子转过 3o;此时A、C磁极下的齿又分别与转子齿错开三分之一齿距。接着停止对B相绕组通电,而改为C相绕组通电,同理受反应转矩的作用,转子按顺时针方向再转过3o。依次类推,当三相绕组按A→B→C→A顺序循环通电时,转子会按顺时针方向,以每个通电脉冲转动3o的规律步进式转动起来。若改变通电顺序,按A→C→B→A顺序循环通电,则转子就按逆时针方向以每个通电脉冲转动3o的规律转动。因为每一瞬间只有一相绕组通电,并且按三种通电状态循环通电,故称为单三拍运行方式。单三拍运行时的步矩角θb为30o。三相步进电动机还有两种通电方式,它们分别是双三拍运行,即按AB→BC→CA→AB顺序循环通电的方式,以及单、双六拍运行,即按A→AB→B→BC→C→CA→A顺序循环通电的方式。六拍运行时的步矩角将减小一半。反应式步进电动机的步距角可按下式计算: θb=360o/NE r (1) 式中 E r——转子齿数; N——运行拍数,N=km,m为步进电动机的绕组相数,k=1或2。

步进电机基础知识_来自百度百科

步进电机是将电脉冲信号转变为角位移或线位移的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。 虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。步进电机概述 步进电机又称为脉冲电机,基于最基本的电磁铁原理,它是一种可以自由回转的电磁铁,其动作原理是依靠气隙磁导的变化来产生电磁转矩。年前后开始以控制为目的的尝试,应用于氢弧灯的电极输送机构中。这被认为是最初的步进电机。二十世纪初,在自动交换机中广泛使用了步进电机。由于西方资本主义列强争夺殖民地,步进电机在缺乏交流电源的船舶和飞机等独立系统中得到了广泛的使用。二十世纪五十年代后期晶体管的发明也逐渐应用在步进电机上,对于数字化的控制变得更为容易。到了八十年代后,由于廉价的微型计算机以 多功能的姿态出现,步进电机的控制方式更加灵活多样。 步进电机相对于其它控制用途电机的最大区别是,它接收数字控制信号电脉冲信号并 转化成与之相对应的角位移或直线位移,它本身就是一个完成数字模式转化的执行元件。而且它可开环位置控制,输入一个脉冲信号就得到一个规定的位置增量,这样的所谓增量位置 控制系统与传统的直流控制系统相比,其成本明显减低,几乎不必进行系统调整。步进电机 的角位移量与输入的脉冲个数严格成正比,而且在时间上与脉冲同步。因而只要控制脉冲的数量、频率和电机绕组的相序,即可获得所需的转角、速度和方向。 我国的步进电机在二十世纪七十年代初开始起步,七十年代中期至八十年代中期为成 品发展阶段,新品种和高性能电机不断开发,目前,随着科学技术的发展,特别是永磁材料、半导体技术、计算机技术的发展,使步进电机在众多领域得到了广泛应用。 步进电机控制技术及发展概况 作为一种控制用的特种电机,步进电机无法直接接到直流或交流电源上工作,必须使用专用的驱动电源步进电机驱动器。在微电子技术,特别计算机技术发展以前,控制器脉冲信 号发生器完全由硬件实现,控制系统采用单独的元件或者集成电路组成控制回路,不仅调试 安装复杂,要消耗大量元器件,而且一旦定型之后,要改变控制方案就一定要重新设计电路。这就使得需要针对不同的电机开发不同的驱动器,开发难度和开发成本都很高,控制难度较大,限制了步进电机的推广。

步进电机的原理,分类,细分原理

步进电机原理及使用说明 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 步进电机是将电脉冲信号转变为角位移或线位移的一种开环线性执行元件,具有无累积误差、成本低、控制简单特点。产品从相数上分有二、三、四、五相,从步距角上分有0.9°/1.8°、0.36°/0.72°,从规格上分有口42~φ130,从静力矩上分有0.1N?M~40N?M。 签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A…与齿5相对齐,(A…就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。

相关文档
最新文档