散热风扇高速运转故障诊断与排除

散热风扇高速运转故障诊断与排除
散热风扇高速运转故障诊断与排除

丰田92款佳美散热风扇高速运转故障诊断与排除

(黑体三号,居中)

08汽检班X号XXX(宋体五号,居中)

摘要(黑体小四,左对齐):本文针对一台丰田92款佳美轿车散热风扇出现的故障,结合该车散热系统的结构和原理,对这一故障进行比较深入的分析和探究、通过对其原理的分析,从源头查起,并一一加以排除,最终诊断出是空调没有制冷剂导致高压开关开路从而使散热风扇ECU收到一个错误信号,并造成散热风扇高速运转故障。(宋体,小四,左对齐)

关键词(黑体小四,左对齐):丰田佳美92款散热风扇故障诊断故障排除(宋体,小四,左对齐,关键词之间空两个)

一、引言(一级标题,宋体,四号,加粗,左对齐)

(正文,宋体,小四号,左对齐,1.5倍行距)

随着汽车制造技术的发展,汽车的智能化程度也是越来越高。不仅燃油及点火系统实现了电脑控制,连散热风扇也发展到了由电脑控制的程度。散热风扇ECU根据水温等信号,判断当前情况下是否要运转风扇进行散热,进而实现对散热风扇的控制。

一辆92款丰田佳美3.0轿车,搭载3VZ-FE发动机。入厂维修时,顾客反映,发动机起动后,散热器风扇始终以高速挡旋转,此故障已经在其他修理厂维修多次都未修好。由于该车经多个修理厂维修多次未修好,所以决定分别从机械故障和控制电路方面进行全面检修,根据该款车维修手册逐一排除故障。

二、92款丰田佳美3.0轿车散热风扇的结构和工作原理

1.92款丰田佳美3.0轿车散热风扇的基本结构

(二级标题,宋体,小四号,加粗,首行缩进)

该车搭载的是3VZ-FE发动机,与其它发动机散热风扇不同的是,它采用由电脑控制的液压式散热风扇。这种风扇与一般的风扇最大的不同,在于它的驱动方式。液压式散热风扇以液体流动作为动力,转动的快慢是通过控制液体流量控制的;而一般电动风扇,它是以电作为驱动力,通过调节通过电流的大小而达到控制其转速快慢的目的。图1为液压式散热风扇系统的结构图。

图图1 液压式散热风扇系统的结构图

图片清晰,全文图片标注为图1,图2以此类推,格式居中,标题在图片下方,宋体五号,图号和文字中间空一格,如1和液间空一格

2.电控液压式散热风扇系统的工作原理

发动机带动液压泵旋转产生油压,由液压油驱动散热器风扇液压电机旋转。散热器风扇控制单元根据输入的发动机转速信号、节气门位置传感器的怠速信号、发动机冷却液温度信号以及空调工作信号,通过液压油流量电磁阀控制液压油流量来实现对冷却风扇转速的控制。图2为电控液压式散热风扇系统的电路

图。

图2 电控液压式散热风扇系统的电路图

3.电控液压式散热风扇控制系统

表格要有标号,如表1,表2等等,格式居中,标题在表格上,居中,宋体五号

表1 电(1和电字中间空一格)子控制系统的工作原理表

电子控制系统的工作原理:

按下AC开关,空调运转;ECU接收到信号,因为空调冷凝器和发动机散热

器共用一个散热风扇,所以,风扇会以高速运速,来达到散热的效果。

当冷却液温度过高,比如,节温器损坏,造成散水不足时;水温传感器向

ECU发出水温过高信号,ECU接到信号后,控制风扇高速运转,来加速排放热量。

当节气门处于一个较大的位置时,ECU收到节气位置传感器信号,此时,发

动机以较大功率运转,发热较大;散热风扇以高速运转。

假如空调系统中,制冷剂漏光或冷凝器散热不足造成高压过高时,高压压力

开关断开;此时,ECU接收到信号,风扇以高速运转,加快散热。

三、故障的诊断与排除

1.造成故障的原因

(1)液压油流量控制阀损坏

此阀损坏,会造成无法控制流量,造成风扇转速过高。

(2)水温传感器损坏

水温传感器损坏,ECU收不到正确的水温信号,也会造成风扇转速过高。

(3)空调高低压开关损坏

高低压开关损坏,会给ECU发出一个错误信号,导致风扇转速过高。

2.分步排查故障

(1)排查各传感器和执行器

检查液压油流量控制阀

用举升机举起车辆,在发动机前端下部找到液压泵和液压油流量控制阀,断开液压油流量控制阀的插头,结果散热器风扇停止了转动,这说明液压油流量控制阀正常。

检查水温传感器

降下车辆,在发动机前端上部找到了发动机水温传感器,水温传感器插头的2根导线的外皮被剥开了2个小口,这应该是以前的维修人员检查时剥开的。在剥开处用万用表测量水温传感器的电阻值,并在维修手册中查找相对应的温度值,查询结果与发动机的实际水温相同,这说明水温传感器正常。将试灯的2个脚分别与水温传感器的2根导线连接,这样做会使试灯与水温传感器的综合阻值变小,等效于发动机水温升高,结果散热器风扇转得更快了,这说明水温传感器没有损坏。

到此,主要有可能故障的执行器和传感器已排查完毕,并没有发现故障。(2)排查电控电路

查看电路图,发现空调高压开关也与液压风扇控制单元相连。在发动机舱内左前部找到空调高压开关,询问客户,客户说此空调压力开关没有检查过。拔下空调高压开关连接插头并用跨接线短接,这等效于空调系统压力正常(如果只是拔下空调压力开关插头,则等效于空调系统压力过高,也就是空调管路内的制冷

剂温度过高),结果发现散热器风扇的转速降低,发动机怠速运转一段时间后,发动机温度逐渐升高到正常工作温度。图3为该车高压压力开关的位置图。

图3 高压压力开关的位置图

到此,基本故障已经摸清。由于空调制冷剂泄漏,压力不足,造成高压开关断路;从而造成ECU认为空调系统散热不足造成空市系统压力过高,进而控制散热风扇高速运转。

3.进一步找出造成该故障的根本原因

造成风扇高速运转的根本原因是制冷剂泄漏,于是填充制冷剂,用制冷剂检漏仪进行检漏。最后发现,该车空调系统软管由于老化,而造成制冷剂泄漏。最后,更换空调软管,故障再也没有出现过。

四、分析造成故障的原因

回顾该车故障,它是由一系列原因也造成的连锁反应。先是空调软管老化,造成制冷剂泄漏;制冷剂不足,造成高压开关断路,从而给ECU发出错误信号;ECU接收到高压开关断路信号,认为空调冷凝器散热不足,从而控制散热风扇高速运转。

五、注意事项

汽车空调制冷系统如长时间停置,运动部件会出现“咬死”现象,造成启动阻力矩加大,使空调电磁离合器打滑,过度磨损,还会使轴封干枯、粘连而失效,造成泄漏。因此,汽车空调制冷系统冬季维护的要点是:每月将空调制冷系统启动2至3次,每次10分钟左右,这样消耗的燃油不多,但却避免了蒸发器、压缩机的重大损失。

启动制冷系统可以选择在气温高于10℃以上有阳光的日子,在行驶途中开5-10分钟即可。

六、结束语

通过维修这辆92款丰田佳美轿车,使我较深入地了解该车电控液压式散热风扇结构、工作原理和检修方法。其次,维修这辆车,使我明白维修资料的重要性。假如没有该车的电路图,是没有办法知道风扇转速与高压开关也有关,从而将故障原因推向空调系统。再次通过维修这辆车,使我对电控系统有了更深一层的理解。任何一个故障,都有引起他的原因,这种原因,通过ECU转化成结果,故障便出来了。检修电控系统,一定要注意这样的一种因果关系;理清了这些因果关系,即使以后遇上什么故障,我都可以有条有理地排

功率因数校正之基本原理

功率因数校正之基本原理 何谓工率因数? 功率因数(power factor;pf)定义为实功(real power;P)对视在功率(apparent power;S)之比,或代表电压与电流波形所形成之相角之余弦,如图1。功率因数值可由0至1之间变化,可为电感性(延迟的、指标向上)或电容性(领先的、指标向下)。为了降低电感性之延迟,可增加电容,直到pf为1。当电压与电流波形为同相时,工率因数等于1(cos(0o)=1)。所有努力使工率因数等于1是为了使电路为纯电阻化(实功等于视在功率)。 ▲图1: 功率因数之三角关系。 实功(瓦特)可提供实际工作,此为能量转换元素(例如电能到马达转动rpm)。虚功(reactive power)乃为使实功完成实际工作所产生之磁场(损耗)。而视在功率可想成电力公司提供之总功率,如图1所示。此总功率经由电力线提供产生所需之实功。 当电压与电流皆为正弦波时,如前述定义之功率因数(简称为功因)为电压与电流波形之对应相角,但大部份之电源供应器之输入电流乃非正弦波。当电压为正弦波而电流为非正弦波时,则功因包括两个因素:1)相角位移因素,2)波形失真因素。等式1表示相角位移与波形失真因素之于功因的关系。 ----------------------------------------------------(1)

Irms(1)为电流之主成份,Irms电流之均方根值。因此功率因数校正线路是为了使电流失真最小,且使电流与电压同相。 当功因不等于1时,电流波形没有跟随电压波形,不但有功率损耗,且其产生之谐波透过电力线干扰到连接同一电力线之其它装置。功因越接近1,几乎所有功率皆包含于主频率,其谐波越接近零。 ■了解规范 EN61000-3-2对交流输入电流至第40次谐波规范。而其class D对适用设备之发射有严格之限制(图2)。其class A要求则较宽松(图3)。 ▲图2:电压与电流波形同相且PF=1(Class D)。

散热片的基本知识

散热器基础知识 铝型材散热器 目前市场上有大量各种尺寸铝型材散热器模具,并可根据要求开发生产新型材散热产品。铝型材散热器价格低廉,应用广泛,可以根据需要进行进一步的精密机械加工、安装扣具背板、附装界面导热材料以确保有效导热及安装可靠。如图: 热管散热模组 〃热管简介: 热管是一种非常高效的导热元件,其传热效率可达到金属的几十倍。自从热管技术被引入散热器制造行业,以热管为核心,配合热沉、翅片、风扇等构成的热管模组,能够解决因空间狭小或热量过于集中而导致的散热难题,克服了传统散热模式无法克服的发热功率与有效散热能力之间的矛盾。 热管可以在一定限度内被折弯及压扁,以适应不同的结构需要。在热管传热原理的基础上,还衍生出了其它的高效传热器件,如热柱(heat column)、真空冷板(vapor chamber)、回路热管(loop heatpipe)等,可以满足各种专门需要 〃穿接式热管散热模组: 穿接式热管散热模组是在热管的散热端穿接上高密度的散热翅片,翅片材料可以是铜片或铝片,鳍片与热管间通过焊接方式连接。 穿接式热管散热模组可以大幅减小产品体积,同时大大提高散热效率,其在笔记本电脑、通信设备、工控产品等领域均有广泛的应用。 〃埋嵌式热管散热模组 热管埋嵌在散热器底板内,能够起到均衡底板温度提高散热效率的作用。尤其对热源位置集中,散热器底板面积又较大的情况,均温效果非常显著。 从传热学的角度来看,整个散热器的热阻将有效的降低,近而大大改善了散热器的散热效果,使发热元器件的表面温度大幅度下降

焊接型散热器 〃焊接型散热器介绍: 随着电子产品功率的不断增高而产品体积又日益减小,催生了高密度焊接散热器的广泛应用。焊接型散热器一般由底板和翅片焊接而成,底板和翅片材料可选用铜材或铝材灵活组合。采用软钎焊技术加工能够保持材料的物理特性不变,以及满足较高的精度要求。 〃焊接型散热器特点: 鳍片密度高--大幅度增加散热面积 产品重量轻体积小--适应产品的小型或轻型化要求 铜铝混合焊接--兼取铜材传热更佳及铝材重量较轻的优势 特定区域焊接--可以仅在需要散热的区域焊接散热齿片或传热部件 模具费用低--节省大型铝型材昂贵的模具费 底板可精密加工--底板可以加工精密腔体或复杂的避让位 风琴片单折片扣合片 风扇散热模组 将风扇与散热器相组合,可以使散热器在强制对流环境下工作,从而大幅提高整个散热模组的散热效率。无论是型材散热器、焊接型散热器还是热管模组,都能方便的与风扇结合。我们可以根据您的要求选择风扇和设计散热器,并使二者达到最佳匹配。

LLC 电路基本原理分析及公式推导

Simplified Analysis and Design of Series-resonant LLC Half-bridge Converters MLD GROUP INDUSTRIAL & POWER CONVERSION DIVISION Off-line SMPS BU Application Lab I&PC Div. - Off-line SMPS Appl. Lab

Presentation Outline ?LLC series-resonant Half-bridge: operation and significant waveforms ?Simplified model (FHA approach) ?300W design example I&PC Div. - Off-line SMPS Appl. Lab

Series-resonant LLC Half-Bridge Topology and features Q1 Cr Ls Vin Q2 Lp LLC tank circuit Preferably integrated into a single magnetic structure 3 reactive elements, 2 resonant frequencies 1 f r1 2?π?Ls?Cr f>f r1r2Center-tapped output with full- wave rectification (low voltage and high current) Vout Vout Single-ended output with bridge rectifiication (high voltage and low current) Multiresonant LLCtank circuit Variable frequency control Fixed50%duty cycle for Q1&Q2 Deadtime between LGandHGto allow MOSFET’s ZVS@turnon fsw≈fr,sinusoidal waveforms:low turnofflosses,low EMI Equal voltage¤t stressfor secondary rectifiers;ZCS,then no recovery losses Nooutputchoke;cost saving Integrated magnetics:both L’scan be realized with thetransformer. Highefficiency:>96%achievable

散热风扇知识

风扇的基础知识 一、作用 用于对POWER的散热,防止POWER内部温度过高而烧坏内部零件,风扇的代号”FAN” 二、结构: 风扇由扇框、扇叶、密封盖、扣环、油圈、磁胶、硅钢片、IC绝缘架、漆包线、PC板、轴承、导线等组成 1.扇框:其形状有双面框、单面框有柱、单面框无柱、圆形等,其材质为PBT+30%GF 94V-0 2.扇叶:我司所使用的扇叶一般分七片,材质是PBT+15%GF 94V-0,扇叶形状前 面开口大,后面小,扇叶薄,其切风性较好。 3.釸钢片:规格是H23,我司所使用中转无端FAN的釸钢片,一般是6片,高转加端 FAN一般为8片 4.漆包线:分红、黄两种颜色,一般中转无端FAN的漆包线直径大约为0.07mm,高 转加端FAN其漆包线直径大约为0.11mm 5.IC:我司现用IC承认规格有276、277、276F、277F、401、M48等 6.PC板:单层印线板94V-0 7.导线:聚乙烯氯化物包铜线94V-0,线型1007#24 AWG分红黑两种颜色,红代表正 极,黑代表负极,线长一般为250±10mm,镀锡长一般为4±0.5mm 三、分类 1.按尺寸分:80*80*25mm 80*80*20mm 60*60*20mm 25*25*10mm

2.按轴承分:含油(sleeve)、单滚珠(one ball)、双滚珠(two ball) 3.按转速分:低转L(low)、中转M(medium)、高转H(high) 4.按线材规格分:加端`(2p)与无端,加大4p端 5.按材质分:阻燃(安规)94V-0、非阻燃(普通) 四、FAN生产制作流程(SLEEVE为例) 注塑机 原材料(塑料) →成型(扇叶、扇框根据客户不同要求)→定子组立(釸钢片无生锈、变形、 插PIN机绕线机 绝缘套无毛边、无残缺、无变形) →插PIN(PIN脚高度、釸钢片正反) →绕线(漆包线 沾锡机 型号、绕线匝数、溢线、松紧度、挂线、排线)→分线(首尾线头、绕线方式) →沾锡(助 阻抗机焊剂液面高度、PIN脚入锡面的深度,焊锡温度、助焊剂的比重、焊渣、沾锡时间) →测阻抗(阻抗值±3Ω)→PC板总成(下绝缘套剪胶部分均要接触PC板)→剪脚(根据需要剪 电源供应 器、示波器 得平整、光滑、高度适当) →电测(测电流与波形)→套PCB总成(PCB总成要放水平, 釸钢片凹槽对准外壳卡框)→压合铜(合铜冲压的高度)→压PCB总成(不可压坏漆包线或点油机 绝缘套) →点油(定量点油0、02克)→装扇叶(扇叶、磁框内需无杂物)→扣线(线入沟槽) 直流电源供应器 →烧机(烧机电压为13、8V,有无漏油现象) →定点检测(测试其异音、死角、间隙、突出平衡、断缘、死机、电流、波形) →测转速→贴标签→包装 五、FAN的电气性能测试 FAN主要测试项目包括:电流、死角、异音、抖动、转速、风速、烧机、外观是否与卷

散热风扇知识学习

散热风扇知识学习 本文主要针对散热风扇的原理、分类以及重要参数给予介绍。另介绍一种新型无叶风扇。 一、散热风扇的原理 原理:风扇的工作原理是按能量转化来实现的,即:电能→电磁能→机械能→动能。 二、散热风扇的分类 1. 按送风形式 (1)轴流风扇 轴流风扇的叶片推动空气以与轴相同 的方向流动。轴流风扇的叶轮和螺旋桨有 点类似,它在工作时,绝大部分气流的流 向与轴平行,换句话说就是沿轴线方向。 轴流风扇当入口气流是0静压的自由空气 时,其功耗最低,当运转时会随着气流反 压力的上升功耗也会增加。轴流风扇通常 装在电气设备的机柜上,有时也整合在电 机上,由于轴流风扇结构紧凑,可以节省 很多空间,同时安装方便,因此得到广泛 的应用。图片见右图 其特点:较高的流率,中等风压

(2)离心风扇(涡轮风扇) 2.散热风扇的常见轴承结构 散热风扇的常见轴承有:滚珠轴承,含油轴承,磁悬浮轴承。 (1)滚珠轴承 滚珠轴承(Ball Bearing )改变了轴承的摩擦方式,采用滚动摩擦,两个铁环中间有一些钢球或者钢柱,并辅以一些油脂润滑。这一方式更为有效的降低了轴承面之间的摩擦现象,有效提升了风扇轴承的使用寿命,也因此将散热器的发热量减小,使用寿命延长。所带来的缺点就是工艺更为复杂,导致成本提升,同时也带来更高的工作噪音。滚珠轴承有单滚珠轴承和双滚珠轴承。 单滚珠轴承是对传统油封轴承的改进。它的转子与定子之间用滚珠进行润 离心风扇工作时,叶片推动空气以与 轴相垂直的方向(即径向)流动,进气是 沿轴线方向,而出气却垂直于轴线方向。 大多数情况下,使用轴流风扇就可以达到 冷却效果,然而,有时候如果需要气流旋 转90度排出或者需要较大的风压时,就必 须选用离心风扇。风机严格而言,也属于 离心风扇。图片见右图 其特点:有限流率,高风压

准谐振SMPS控制器L6565功能原理及应用

准谐振SMPS控制器L6565功能原理及应用 准谐振SMPS控制器L6565功能原理及应用 1概述 ST公司在近期推出的L6565单片IC,是适用于准谐振(QR)零电压开关(ZVS)回扫变换器电流型初级控制器。QR操作依靠变压器退磁感测输入获得,变换器功率容量随主线电压变化通过线路前馈电压前馈补偿。在轻载时,L6565自动降低工作频率,但仍然尽可能保持接近ZVS 运行。 L6565的主要特点如下: QRZVS回扫拓扑电流型初级控制; 线路电压前馈控制保证交付恒定功率; 频率折弯(foldback)功能可获得最佳待机频率; 逐周脉冲与打嗝(hiccup)模式过电流保护(OCP); 超低起动电流(<70μA)和静态电流(<3.5mA); 堵塞功能(开/关控制); 25V±1%的内部基准电压; ±400mA的图腾驱动器,在欠电压闭锁(UVLO) 情况下,保持输出低电平。 L6565的主要应用包括TV/监视器开关型电源(SMPS)、AC/DC适配器/充电器、数字消费类产品、打印机、传真机和扫描设备等。 2功能与工作原理 21封装及引脚功能 L6565采用8脚DIP(L6565N)和8脚SO(L6565D)封装,引脚排列。 L6565的引脚功能分别为: 脚1(INV)误差放大器反相输入; 脚2(COMP)误差放大器输出; 脚3(VFF)线路电压前馈; 脚4(CS)电流感测输入; 脚5(ZCD)变压器退磁零电流检测输入; 脚6(GND)地; 脚7(GD)栅极驱动器输出; 脚8(VCC)电源电压。 22工作原理 图1L6565引脚排列 图2L6565电源电路 图3ZCD及相关电路 (1)电源 L6565的电源电路。IC脚VCC的导通门限电压典型值是135V,关闭门限电压典型值是9 5V。一旦VCC脚导通,IC内部栅极驱动器电压直接由VCC提供,其它内部所有电路的工作电压均由线性调节器产生的7V电压供给。一个内部25V±1%的精密电压,供给初级

肖特基二极管

肖特基二极管 肖特基二极管是以其发明人肖特基博士(Schottky)命名的,SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 简介 肖特基二极管是以其发明人肖特基博士(Schottky)命名的,SBD是肖特基势垒二极管 肖特基二极管结构原理图 (SchottkyBarrierDiode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 原理 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。

开关电源设计手册 SMPS design

开关电源设计手册

目录 1 隔离式电源设计 1.1 有源功率因数校正 1.2 反激式电源设计 1.3 正激式电源设计 2 非隔离式电源设计 2.1 非隔离式降压型电源设计

1.1 有源功率因数校正 APFC: Active Power Factor Correction 一, 功率因数校正的基本原理 理论上: P.F.= P/S=(REAL POWER)/(TOTAL APPARENT POWER)=Watts/V.A. =有功功率/视在功率 对于输入电压和电流都是理想的正弦波的情况, 如果把输入电压和输入电流的相位差定义为φ, 那么, P.F.=P/S=Cosφ. 相应的功率相量图如下: 对于非理想的正弦波, 假设输入电压为正弦波, 输入电流为周期性的非正弦波, 比如在实际的AC-DC线路中广泛应用的全波整流, 只有当输入电压大于电容的电压时, 才有市电电流给电容充电. 在这种情况下, 电压有效值Vrms=Vpeak/√2 周期性的非正弦波电流经过傅里叶变换为: (Io: 电流直流分量; I1RMS: 电流基波分量, 頻率与V 相同; I2RMS….I nRMS: 电流谐波分量, 频率为基波的 2….n 倍. ) 对于纯净的交流信号, Io=0; I1RMS基波分量有一个 同向成份I1RMSP和一个求积成份I1RMSQ. 于是电流有效值可以表达为: 有功功率P=V RMS*I1RMSP=V RMS*I1RMS*Cosφ1

(φ1: 输入电压和输入电流基波分量I1RMS的相位差) S=V RMS*IRMS total 于使功率因数Power Factor 可以表达为: P.F.=P/S= (I1RMS/I RMS total)* Cos φ1; 定义电流失真系数K= I1RMS/I RMS total = Cosθ; θ为失真角(Distortion angle); K 为与电流谐波(Harmonic) 分量有关的系数. 如果总的谐波分量为零, K 就为1. 最后, 可以表达为: P.F.=Cos φ1*Cos θ ; 功率向量图如下: φ1 是电压V与电流基波I1RMS之间的相量差; θ是电流失真角; 可见功率因数 (PF) 由电流失真系数 ( K ) 和基波电压、基波电流相移因数( Cos φ1) 决定。Cos φ1低,则表示用电电器设备的无功功率大,设备利用率低,导线、变压器绕组损耗大。同时,K值低,则表示输入电流谐波分量大,将造成输入电流波形畸变,对电网造成污染,严重时,对三相四线制供电,还会造成中线电位偏移,致使用电电器设备损坏。 由于常规整流装置常使用非线性器件(如可控硅、二极管),整流器件的导通角小于180o,从而产生大量谐波电流成份,而谐波电流成份不做功,只有基波电流成份做功。所以相移因数(Cos φ1)和电流失真系数(K)相比,输入电流失真系数(K)对供电线路功率因数 (PF) 的影响更大。 为了提高供电线路功率因数,保护用电设备,世界上许多国家和相关国际组织制定出相应的技术标准,以限制谐波电流含量。如:IEC555-2, IEC61000-3-2,EN 60555-2等标准,它们规定了允许产生的最大谐波电流。我国于1994年也颁布了《电能质量公用电网谐波》标准(GB/T14549-93)。

散热器基础知识手册

散热器基础知识手册 金旗舰散热器基础知识手册;目录;一、风扇结构;二、风扇技术术语;三、散热片材质介绍;四、热管介绍;五、测试篇章;六、超频篇章;七、CPU技术简介;八、CPUROADMAP;九、导热膏;第一章、风扇结构(工作原理);CPU散热器又称为CPU冷却器,英文名称CPUC;针对CPU而设计的散热器装臵,其目的是通过CPU;1.1风扇的分类;散热风扇是利用旋转叶片与气体的相互 散热器基础知识手册 目录 一、风扇结构 二、风扇技术术语 三、散热片材质介绍 四、热管介绍 五、测试篇章 六、超频篇章 七、 CPU技术简介 八、 CPU ROADMAP 九、导热膏 第一章、风扇结构(工作原理) CPU散热器又称为CPU冷却器,英文名称CPU COOLER,它是

针对CPU而设计的散热器装臵,其目的是通过CPU散热器的运作,将CPU之热能散发掉,以达到降低温度的效果。它通过散热片迅速将CPU之热能传导出去,再借由风扇将其热量强制吹走。 1. 1风扇的分类金旗舰铜制暖气片75*75 散热风扇是利用旋转叶片与气体的相互作用来压缩与输送气 体的,其本体主要由转子和定子组成。散热风扇一般分以下三 类: 1.1. 1轴流式风扇:气流出口方向与叶片转动方向相同,在 轴向剖面上,气流在旋转叶片的流道中沿着轴线方向流动。 1.1.2 离心式风扇:利用离心力作用实现气体输送,扇叶在电 机的驱动下高速旋转,使充满叶片间的气体沿着叶片向外甩 出,在蜗壳内将动能转换成压力能后从出风口排出。在轴向剖 面上,气流沿着半径方向流动。 1.1.3 混流式风扇:气流沿轴向进入叶轮后,近似地沿着锥面 流动,气流方向界于离心式与轴流式之间。 1. 2风扇的基本结构 一般的风冷散热器使用的主要是轴流式风扇,我们以它为例加 以说明。轴流式风扇可分为两部分 1.2.1转子:包括扇叶(含磁框)、轴芯、油圈及卡簧等 1.2.2 定子:包括电机、轴承、扇框等。 1. 3风扇运转的基本原理 根据安培右手法则,导体通过电流,周围会产生磁场,若将此

肖特基二级管

肖特基二极管 目录 简介 原理 优点 结构 特点 应用 其它 [编辑本段] 简介 肖特基二极管是以其发明人肖特基博士(Schottky)命名的,SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千安培。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 [编辑本段] 原理

肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N 型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 典型的肖特基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极使用钼或铝等材料制成阻档层。用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,如图所示。当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 [编辑本段] 优点 SBD具有开关频率高和正向压降低等优点,但其反向击穿电压比较低,大多不高于60V,最高仅约100V,以致于限制了其应用范围。像在开关电源(SMPS)和功率因数校正(PFC)电路中功率开关器件的续流二极管、变压器次级用100V以上的高频整流二极管、RCD缓冲器电路中用600V~1.2kV的高速二极管以及PFC升压用600V二极管等,只有使用快速恢复外延二极管(FRED)和超快速恢复二极管(UFRD)。目前UFRD的反向恢复时间Trr也在20ns以上,根本不能满足像空间站等领域用1MHz~3MHz的SMPS需要。即使是硬开关为100kHz的SMPS,由于UFRD的导通损耗和开关损耗均较大,壳温很高,需用较大的散热器,从而使SMPS 体积和重量增加,不符合小型化和轻薄化的发展趋势。因此,发展100V以上的高压SBD,一直是人们研究的课题和关注的热点。近几年,SBD已取得了突破性的进展,150V和200V的高压SBD已经上市,使用新型材料制作的超过1kV的SBD也研制成功,从而为其应用注入了新的生机与活力。 [编辑本段]

SMPS 交换式电源供应器概念简述

*課程內容: (一).交換式電源(以下簡稱SMPS)之用途 (二).SMPS常用之架構和種類 (三).常見之規格內容及名詞解釋 (四).如何設計SMPS及成本考量 (五).SMPS 製造流程 (六).SMPS 測試設備 1.SMPS之用途: 我們先以日常生活中會用到的電器用品來說明,清早起來打開電子式日光燈或電子式檯燈,刷牙時,充電式電動牙刷之充電器,用遙控器打開電視機看新聞,用電磁爐或微波爐加熱早餐,出門搭電梯下樓,進入辦公室時,放眼望去每一種需插電的事務機器,電話、傳真。。。,大致可以說需用到電的產品,就是SMPS的可能用途。所需的規格要求及線路架構則隨使用場所,價格上會有極大差異。 一般可分為: ●商業用( 0 - 70 ℃)------即一般日常生活所接觸到的電器用品,如電腦、影印機所使用者 ●工業用 (-25 – 125 ℃) ------工業產品所使用者,如SMD機器、CNC機器中的POWER即是 ●醫療用 (-25 – 125 ℃) ------醫療機器所使用者,如洗腎機、心電圖機中的POWER即是 ●軍事用 (-40 - 125 ℃) ------軍事用途,如飛彈、戰艦、坦克中所用到的POWER 2.SMPS 常用之架構和種類: 2.1.依輸出 / 輸入使用的電壓高低可分為:(適用於非隔離的環境*) *所謂非隔離的環境:如同下列所提的環境,都是自己形成一個系統,輸入與輸出共地,不會與其 他的系統連線,而且接地良好,不會對使用者有漏電的危險,例如其中所提 的系統輸入都屬於低電壓輸入,而且使用者接觸的機殼都是接地(GROUND), 沒有被電到的危險。 (a).降壓式 (Buck) : 輸入比輸出高 ,例如卡車之車用冰箱中的POWER將24V轉12V Fig. 2-1 (b).升壓式 (Boost) : 輸入比輸出低,例如電擊棒將電池電壓9V升高為1000V

散热风扇知识(很全)

风扇的分类:散热风扇通常分为以下三类: 1 轴流式:气流出口方向与轴心方向相同。 2 离心式:利用离心力作用将气流沿着叶片向外甩出。 3 混流式:拥有以上两种气流方式。 风扇的分类: 散热风扇通常分为以下三类: 1 轴流式:气流出口方向与轴心方向相同。 2 离心式:利用离心力作用将气流沿着叶片向外甩出。 3 混流式:拥有以上两种气流方式。 散热风扇的原理 原理:风扇的工作原理是按能量转化来实现的,即:电能→电磁能→机械能→动能。其电路原理一般分为多种形式,采用的电路不同,风扇的性能就会有差异。 轴流式风扇的组成: 扇框、扇叶、轴承、 PCB控制电路、驱动电机 贝富美直流散热风扇 5020 系列散热风扇

转速: 转速指风扇旋转的速度,通常以 1 分钟内转动的圈数来衡量,即: rpm。转速与机电绕线匝数、线径、扇叶叶轮外径与底径,叶片形状及所用轴承等因素有关,转速增大,风量相应增大。 转速值的大小,在一定程度上代表了风量的大小,在条件一定时,转速越大,则噪音及振动会相应加大,因此,在风量满足散热要求的情况下,应尽量使用低转速风扇。一般转速大小(以 DC轴流风扇为例): 2510 风扇 7000~12000rpm; 3010 风扇 5000~9000rpm; 4010 风扇 5000~ 7000rpm;5010 风扇 3500~5000rpm;6025 风扇 2600~ 4500rpm; 7025 风扇2400~3600rpm;8025风扇 2000~3500rpm;9225风扇 1600~3100rpm;12025风扇 1500~ 2500rpm; 12038 风扇2000~ 3200rpm。 风扇转速可在启动电脑时通过 BIOS测试,或通过其他主板自带的监控软件测试;也可以通过转速测试仪测试。注意:前两种方式必须是支持测速功能的风扇才能测出。风扇的轴承系统:风扇的轴承系统一般建议最好选用滚珠轴承,因为扇热风扇的寿命通常取决于其轴承的可靠性,滚珠轴承系统已被证实具有高效率与低生热的特点。滚珠轴承属滚动摩擦,由金属珠滚动,接触面小,摩擦系数小;而含油轴承为滑动摩擦,接触面大,长期使用后,油会挥发,轴承容易磨损,摩擦系数大,后期噪音较大,寿命短。品质好的风扇除了通风量大、风压高以外,可靠性也是非常重要的,风扇使用的轴承形式在此显得非常重要。高速风扇一律使用滚珠轴承( Ball bearing )而低速风

TI工程师提供开关模式电源 (SMPS) ——降压转换器拓扑结构

TI工程师提供开关模式电源 (SMPS) ——降压转换器拓扑结构 由于当前有许多不同的半导体,因此在为车载应用设计一款降压或降压模式转换器时就可能会用到广泛的拓扑结构(请参见图 1)。本文对不同的拓扑结构进行了高层次的概述。 图 1 降压转换器降压转换器拓扑结构 外部开关与集成开关 降压转换器解决方案有许多集成开关和外部开关,后者通常被称为步降或降压控制器。这两种方案具有明显的优缺点,因此在两种方案之间进行选择时必须要考虑到其各自的优缺点。许多内部开关都具有低组件数量的优势,这一优点使这些开关拥有较小的尺寸,可以用于许多低电流应用中。由于其集成性,在表现出良好 EMI 性能的同时,它们均可以在高温或其他外部可能出现的受影响的条件下得到保护。但是它们也有不足之处,即电流和散热极限问题。而外部开关则提供了更大的灵活性,电流处理能力仅受外部 FET 选择的限制。在负极侧,外部开关具有更多的组件数量且必须得到保护以免受到潜在问题的损坏。 为了处理更高的电流,当然开关也要更大些,这就使得集成更加昂贵,因为其需要占用硅芯片更大的宝贵空间并且可能需要采用更大的封装。另外功耗问题可能也是一个难题。因此,根据推理我们可以得出这样的结论:对于较高的输出电流(通常高于 5A)而言,外部开关是其上佳之选。 同步整流与异步整流 仅具有一个开关的异步或非同步整流器降压转换器要求在低位通路中有一个续流二极管,而在具有两个开关的同步整流器降压转换器中,第二个开关取代了上述续流二极管(请参见图2)。与同步解决方案相比,虽然异步整流器具有可提供较为便宜的解决方案的优点,但是其效率却不是很高。 图 2 SMPSSMPS——异步和同步整流 利用一个同步整流器拓扑并把一个外部肖特基二极管与低位开关并联将可以获得最高的效率。相对于肖特基二极管,由于在“开启”状态下存在一个较低的压降,因此这种低位开关的更高复杂度提高了效率。在停滞时间期间(两个开关均处于关闭状态),与 FET 内部背栅二极管相比,外部肖特基二极管具有更低的压降性能。 外部补偿与内部补偿 一般来说,采用外部开关的降压控制器可提供外部补偿,因为他们所适合的应用非常广泛。外部补偿有助于控制环路适应各种外部组件,如:FET、电感以及输出电容。 对于具有集成开关的转换器而言,一般都会用到外部补偿和内部补偿。集成补偿实现了极快的工艺验证周期以及较小的 PCB 解决方案尺寸。 内部补偿的优势可以概括为易用性,因为只需要对输出滤波器进行配置、快速设计、较低的组件数量以及因此带来的低电流应用小尺寸解决方案。其缺点就是灵活性较差且输出滤波器必须服从于内部补偿。然而,外部补偿却提供了更大的灵活性,可以根据所选的输出滤波器对补偿进行调整,同时,对于较大电流而言,该补偿可以是一个较小的解决方案,但是这种应用更为困难。 电流模式控制与电压模式控制 在图 1 所描述的拓扑结构中,仍然存在许多可以进一步差异化的方面。例如,调节环路的拓扑以及所使用的开关类型就可以是不同的。 调节器本身可以以电压模式或电流模式进行控制。在电压模式控制时,输出电压为控制环路提供了主反馈,且前馈补偿通常是通过使用输入电压作为一个次级控制环路来实施的,以增

散热风扇知识点 (很全)

风扇的分类:散热风扇通常分为以下三类: 1轴流式:气流出口方向与轴心方向相同。 2离心式:利用离心力作用将气流沿着叶片向外甩出。 3混流式:拥有以上两种气流方式。 风扇的分类: 散热风扇通常分为以下三类: 1 轴流式:气流出口方向与轴心方向相同。 2 离心式:利用离心力作用将气流沿着叶片向外甩出。 3 混流式:拥有以上两种气流方式。 散热风扇的原理 原理:风扇的工作原理是按能量转化来实现的,即:电能→电磁能→机械能→动能。其电路原理一般分为多种形式,采用的电路不同,风扇的性能就会有差异。 轴流式风扇的组成: 扇框、扇叶、轴承、PCB控制电路、驱动电机 贝富美直流散热风扇 5020 系列散热风扇

转速: 转速指风扇旋转的速度,通常以1分钟内转动的圈数来衡量,即:rpm。转速与机电绕线匝数、线径、扇叶叶轮外径与底径,叶片形状及所用轴承等因素有关,转速增大,风量相应增大。 转速值的大小,在一定程度上代表了风量的大小,在条件一定时,转速越大,则噪音及振动会相应加大,因此,在风量满足散热要求的情况下,应尽量使用低转速风扇。一般转速大小(以DC轴流风扇为例):2510风扇7000~12000rpm;3010风扇5000~9000rpm;4010风扇5000~7000rpm;5010风扇3500~5000rpm;6025风扇2600~4500rpm;7025风扇2400~3600rpm;8025风扇2000~3500rpm;9225风扇1600~3100rpm;12025风扇1500~2500rpm;12038风扇2000~3200rpm。 风扇转速可在启动电脑时通过BIOS测试,或通过其他主板自带的监控软件测试;也可以通过转速测试仪测试。注意:前两种方式必须是支持测速功能的风扇才能测出。 风扇的轴承系统: 风扇的轴承系统一般建议最好选用滚珠轴承,因为扇热风扇的寿命通常取决于其轴承的可靠性,滚珠轴承系统已被证实具有高效率与低生热的特点。滚珠轴承属滚动摩擦,由金属珠滚动,接触面小,摩擦系数小;而含油轴承为滑动摩擦,接触面大,长期使用后,油会挥发,

散热器的相关知识点

散热器的相关知识点 散热器的相关知识点;金旗舰散热器材质;散热器主要有两种:铝质和铜制,前者用于一般乘;散热器结构;散热器是汽车水冷发动机冷却系统中不可缺少的重;最常见的散热器的结构形式可分为直流型和横流型;散热器芯部的结构形式主要有管片式和管带式两大类;同时还必须具有足够的散热面积,来完成冷却液、空气;与管片式散热器相比,管带式散热器在同样的条件下,散热器原理;散热器的相关知识点 散热器材质 散热器主要有两种:铝质和铜制,前者用于一般乘用车,后者用于大型商用车。散热器材料与制造技术发展很快。铝散热器以其在材料轻量化上的明显优势,在轿车与轻型车领域逐步取代铜散热器的同时,铜散热器制造技术和工艺有了长足的发展,铜硬钎焊散热器在客车、工程机械、重型卡车等发动机散热器方面优势明显。国外轿车配套的散热器多为铝散热器,主要是从保护环境的角度来考虑(尤其是欧美国家)。在欧洲新型的轿车中,铝散热器占有的比例平均为64%。从我国散热器生产的发展前景看,硬钎焊生产的铝散热器逐渐增多。硬钎焊铜散热器也在公共汽车、载货汽车和其他工程设备上得到应用。 散热器结构 散热器是水冷发动机冷却系统中不可缺少的重要部件,目前,正朝着轻型、高效、经济的方向发展。散热器结构也不断适应新发展。

最常见的散热器的结构形式可分为直流型和横流型两类。 金旗舰铜制暖气片80*80芯部的结构形式主要有管片式和管带式两大类。管片式散热器芯部是由许多细的冷却管和散热片构成,冷却管大多采用扁圆形截面,以减小空气阻力,增加传热面积。散热器芯部应具有足够的通流面积,让冷却液通过,同时也应具备足够的空气通流面积,让足量的空气通过以带走冷却液传给散热器的热量。 同时还必须具有足够的散热面积,来完成冷却液、空气和散热片之间的热量交换。管带式散热器是由波纹状散热带和冷却管相间排列经焊接而成。 与管片式散热器相比,管带式散热器在同样的条件下,散热面积可以增加12%左右,另外散热带上开有扰动气流的类似百叶窗的孔,以破坏流动空气在散热带表面上的附着层,提高散热能力。 散热器原理 为了避免发动机过热,燃烧室周围的零部件(缸套、缸盖、气门等)必须进行适当的冷却。为了保证冷却效果,冷却系统一般由散热器、节温器、水泵、缸体水道、缸盖水道、风扇等组成。散热器负责循环水的冷却,它的水管和散热片多用铝材制成,铝制水管做成扁平形状,散热片带波纹状,注重散热性能,安装方向垂直于空气流动的方向,尽量做到风阻要小,冷却效率要高。

超级电容器的原理及应用

?超级电容器的原理、结构和特点 ?Maxwell超级电容器结构 超级电容的容量比通常的电容器大得多。由于其容量很大,对外表现和电池相同,因此也有称作“电容电池”。超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 超级电容器原理 电化学双层电容器(EDLC)因超级电容器被我们所熟知。超级电容器利用静电极化电解溶液的方式储存能量。虽然它是一个电化学器件,但它的能量储存机制却一点也不涉及化学反应。这个机制是高度可逆的,它允许超级电容器充电放电达十万甚至数百万次。 超级电容器可以被视为在两个极板外加电压时被电解液隔开的两个互不相关的多孔板。对正极板施加的电势吸引电解液中的负离子,而负面板电势吸引正离子。这有效地创建了两个电荷储层,在正极板分离出一层,并在负极板分离出另外一层。 传统的电解电容器存储区域来自平面,导电材料薄板。高电容是通过大量的材料折叠。可能通过进一步增加其表面纹理,进一步增加它的表面积。过去传统的电容器用介质分离电极,这些介质多数为:塑料,纸或薄膜陶瓷。电介质越薄,在空间受限的区域越可以获得更多的区域。可以实现对介质厚度的表面面积限制的定义。 超级电容器的面积来自一个多孔的碳基电极材料。这种材料的多孔结构,允许其面积接近2000平方米每克,远远大于通过使用塑料或薄膜陶瓷。超级电容器的充电距离取决于电解液中被吸引到电极的带电离子的大小。这个距离(小于10埃)远远小于通过使用常规电介质材料的距离。巨大的表面面积的组合和极小的充电距离使超级电容器相对传统的电容器具有极大的优越性。 超级电容器内部结构 超级电容器结构上的具体细节依赖于对超级电容器的应用和使用。由于制造商或特定的应用需求,这些材料可能略有不同。所有超级电容器的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。 图1. 超级电容器结构 超级电容器的部件从产品到产品可以有所不同。这是由超级电容器包装的几何结构决定的。对于棱形或正方形封装产品部件的摆放,内部结构是基于对内部部件的设置,即内部集电极是从每个电极的堆叠中挤出。这些集电极焊盘将被焊接到终端,从而扩展电容器外的电流路径。

关于风扇的基本知识和改进建议

风冷散热器相关技术浅析之风扇篇 现在使用的风扇外形是一个底面为正方形的扁柱体,四角留有安装所需的固定孔位,直流电机通过支架固定在外框上,扇叶与转子连接在一起,通过轴承安装在电机主体之上。一些“非典型”的风扇采用了较特殊的形状与设计,但整体结构与此并无太大差异。那么,我们又应通过哪些方面的数据来衡量一款风扇的品质呢? 衡量一款风扇的品质,最重要的两个方面为性能与寿命,其次便是越来越受到关注的工作噪音;此外,关系到能否正常使用,还必须注意风扇的规格与功率。 规格: 要为散热器选择合适的风扇,首先注意到的,也是必需注意的,就是风扇的尺寸规格。 风扇的尺寸规格有一套统一的标准,只要依照此套标准就可以保证与散热片或其它接口、支架之间的正常安装。尺寸规格通常用一个4位数字来描述,例如:2510、4028、6015、8025、1238等。4位数字的前两位25、40等代表风扇正方形底面的边长,单位为毫米;后两位10、28、30等则代表柱体的高度,即风扇的厚度,单位同为毫米。特别说明:92XX系列的风扇边长为92mm,但通常称作9cm;12XX或17XX系列的风扇并非12mm或17mm边长,而是12cm或17cm;常用直流无刷风扇的边长最小为25mm,而大于99mm的风扇通常舍去最低位,数值以cm为单位。下图为一款6015风扇的详细规格:

相关元素: 与底面尺寸息息相关的数据为过风面积(风扇底面积减去外框与电机占据部分所占面积的结果),进一步则影响到风扇的重要性能指标“风量”。拥有更大的底面尺寸,一般就可以获得更大的过风面积,在风速相当的情

况下,将获得更大的风量;反过来考虑,就可以降低风速却不减少风量,采用“大口径”风扇也是目前风冷散热器发展的大趋势之一。 增加风扇的高度有利于增大风扇功率、加大扇叶面积,都可以增强风扇的性能;有些风扇也会利用增加的高度在外框上添加导流片或改变扇叶旋转面方向(即非轴流风扇)等,后文将较详细说明。 用户在选择风扇时,尺寸规格方面需要考虑的问题主要有: 1.能否与散热片实现良好的结合,主要取决于底面的尺寸规格; 2.散热器能否正常安装,主要取决于风扇增加的体积是否会与其它设备或整体空间冲突; 3.风扇能否为散热片提供合适的气流,尺寸规格的改变可能会影响风扇气流的覆盖范围、走向等;但具体影响较为复杂,且涉及到多方面的因素,将在后文中相关部分分别说明。 风速: 风速是风扇重要的性能指标之一,与最重要的两项性能指标之一风量关系密切。 风速即风扇出风口或进风口的空气流动速度,单位一般为m/s;仅是某一位置的速度数值, 不能完全体现风扇的性能。风速在不同位置数值可能有较大差异,且平均值难以计算,一般不用 来表示风扇的性能,仅在详细设计分析中才会使用。 相关元素: 风速的高低主要取决于扇叶的形状、面积、高度以及转速。扇叶形状设计、面积、高度的影 响较为复杂,将在后文说明;风扇转速越快,风速越快,则是显而易见的常识,无需赘述^_^。 风速的高低会影响到风量以及噪音的大小。同样的过风面积,风速越高,风量越大;气流之 间、空气与扇叶、外框、散热片之间的摩擦都会产生噪音,同样的风扇、散热片设计,噪音必然 会随着风速的提升而增大。 由于一般并不会作为风扇类产品的性能参数被标示出来,用户选择风扇时不会见到,也就谈 不上注意事项了。 风量: 风量是风扇最重要的两项性能指标之一。 风量即单位时间内通过风扇出风口(或进风口)截面的空气体积,单位一般为cfm,即立方 英尺每分-cubic feet per minute,或cmm,即立方米每分- cubic metres per minute。风量是风扇性能 的整体衡量指标,不受到尺寸、结构、方式的限制,也不限于直流无刷风扇,可适用于任何空气 导流设备。 相关元素: 风量=平均风速x 过风面积。可见,风扇风量的大小基本取决于风速的高低与过风面积的大

相关文档
最新文档