高考数学(人教a版,理科)题库:数学归纳法(含答案)
人教A版选修2-2(十六) 数学归纳法 作业

课时跟踪检测(十六) 数学归纳法一、题组对点训练对点练一 用数学归纳法证明等式1.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )共有n 项,当n =2时,f (2)=12+13B .f (n )共有n +1项,当n =2时,f (2)=12+13+14C .f (n )共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )共有n 2-n +1项,当n =2时,f (2)=12+13+14解析:选D 结合f (n )中各项的特征可知,分子均为1,分母为n ,n +1,…,n 2的连续自然数共有n 2-n +1个,且f (2)=12+13+14.2.用数学归纳法证明:对于任意正整数n ,(n 2-1)+2(n 2-22)+…+n (n 2-n 2)=n 2(n -1)(n +1)4.证明:①当n =1时,左边=12-1=0,右边=12×(1-1)×(1+1)4=0,所以等式成立.②假设当n =k (k ∈N *)时等式成立,即(k 2-1)+2(k 2-22)+…+k (k 2-k 2)=k 2(k -1)(k +1)4.那么当n =k +1时,有[(k +1)2-1]+2[(k +1)2-22]+…+k [(k +1)2-k 2]+(k +1)[(k +1)2-(k +1)2]=(k 2-1)+2(k 2-22)+…+k (k 2-k 2)+(2k +1)(1+2+…+k )=k 2(k -1)(k +1)4+(2k +1)k (k +1)2=14k (k +1)[k (k -1)+2(2k +1)]=14k (k +1)(k 2+3k +2) =(k +1)2[(k +1)-1][(k +1)+1]4,所以当n =k +1时等式成立. 由①②知,对任意n ∈N *等式成立. 对点练二 用数学归纳法证明不等式3.用数学归纳法证明1+122+132+…+1(2n -1)2<2-12n-1(n ≥2)(n ∈N *)时,第一步需要证明( )A .1<2-12-1B .1+122<2-122-1C .1+122+132<2-122-1D .1+122+132+142<2-122-1解析:选C 第一步验证n =2时是否成立,即证明1+122+132<2-122-1.4.某同学回答“用数学归纳法证明n (n +1)<n +1(n ∈N *)”的过程如下: 证明:①当n =1时,显然命题是正确的;②假设当n =k (k ≥1,k ∈N *)时,有k (k +1)<k +1,那么当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<k 2+4k +4=(k +1)+1,所以当n =k +1时命题是正确的.由①②可知对于n ∈N *,命题都是正确的.以上证法是错误的,错误在于( ) A .从k 到k +1的推理过程没有使用假设 B .假设的写法不正确C .从k 到k +1的推理不严密D .当n =1时,验证过程不具体解析:选A 分析证明过程中的②可知,从k 到k +1的推理过程没有使用假设,故该证法不能叫数学归纳法,选A.5.用数学归纳法证明:1+12+13+…+12n -1<n (n ∈N *,n >1).证明:(1)当n =2时,左边=1+12+13,右边=2,左边<右边,不等式成立.(2)假设当n =k 时,不等式成立,即1+12+13+…+12k -1<k ,则当n =k +1时,有1+12+13+…+12k -1+12k +12k +1+…+12k +1-1<k +12k +12k+1+…+12k +1-1<k +1×2k2k =k +1,所以当n =k +1时不等式成立.由(1)和(2)知,对于任意大于1的正整数n ,不等式均成立. 对点练三 归纳—猜想—证明6.k 棱柱有f (k )个对角面,则(k +1)棱柱的对角面个数f (k +1)(k ≥3,k ∈N *)为( ) A .f (k )+k -1 B .f (k )+k +1 C .f (k )+kD .f (k )+k -2解析:选A 三棱柱有0个对角面,四棱柱有2个对角面(0+2=0+(3-1));五棱柱有5个对角面(2+3=2+(4-1));六棱柱有9个对角面(5+4=5+(5-1)).猜想:若k 棱柱有f (k )个对角面,则(k +1)棱柱有[f (k )+k -1]个对角面.故选A. 7.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1(n ∈N *). (1)求a 1,a 2;(2)猜想数列{S n }的通项公式,并给出证明.解:(1)当n =1时,方程x 2-a 1x -a 1=0有一根S 1-1=a 1-1,所以(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12,当n =2时,方程x 2-a 2x -a 2=0有一根为S 2-1=a 1+a 2-1=a 2-12,所以⎝ ⎛⎭⎪⎫a 2-122-a 2⎝ ⎛⎭⎪⎫a 2-12-a 2=0,解得a 2=16.(2)由题意知(S n -1)2-a n (S n -1)-a n =0, 当n ≥2时,a n =S n -S n -1,代入整理得S n S n -1-2S n +1=0,解得S n =12-S n -1.由(1)得S 1= a 1=12,S 2=a 1+a 2=12+16=23.猜想S n =nn +1(n ∈N *).下面用数学归纳法证明这个结论. ①当n =1时,结论成立.②假设n =k (k ∈N *)时结论成立,即S k =kk +1,当n =k +1时,S k +1=12-S k=12-kk +1=k +1k +2=k +1(k +1)+1. 所以当n =k +1时,结论也成立. 由①②可知,{S n }的通项公式为S n =nn +1(n ∈N *). 二、综合过关训练1.用数学归纳法证明“凸n 边形的内角和等于(n -2)π”时,归纳奠基中n 0的取值应为( )A .1B .2C .3D .4 解析:选C 边数最少的凸n 边形为三角形,故n 0=3.2.某个与正整数有关的命题:如果当n =k (k ∈N *)时命题成立,则可以推出当n =k +1时该命题也成立.现已知n =5时命题不成立,那么可以推得( )A .当n =4时命题不成立B .当n =6时命题不成立C .当n =4时命题成立D .当n =6时命题成立解析:选A 因为当n =k (k ∈N *)时命题成立,则可以推出当n =k +1时该命题也成立,所以假设当n =4时命题成立,那么n =5时命题也成立,这与已知矛盾,所以当n =4时命题不成立.3.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1(n ∈N *)时,等式左边应在n =k 的基础上加上( )A .k 2+1B .(k +1)2 C.(k +1)4+(k +1)22D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2解析:选D 当n =k 时,等式左边=1+2+…+k 2,当n =k +1时,等式左边=1+2+…+k 2+(k 2+1)+…+(k +1)2,故选D.4.已知命题1+2+22+…+2n -1=2n -1及其证明: (1)当n =1时,左边=1,右边=21-1=1,所以等式成立.(2)假设n =k (k ≥1,k ∈N *)时等式成立,即1+2+22+…+2k -1=2k -1成立,则当n =k +1时,1+2+22+…+2k -1+2k =1-2k +11-2=2k +1-1,所以n =k +1时等式也成立.由(1)(2)知,对任意的正整数n 等式都成立.判断以上评述( ) A .命题、推理都正确 B .命题正确、推理不正确 C .命题不正确、推理正确D .命题、推理都不正确解析:选B 推理不正确,错在证明n =k +1时,没有用到假设n =k 的结论,命题由等比数列求和公式知正确,故选B.5.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,下列关于步骤(2)的说法正确的有________(填序号).①假设当n =k (k ∈N *)时命题成立,证明当n =k +1时命题也成立; ②假设当n =k (k 是正奇数)时命题成立,证明当n =k +2时命题也成立; ③假设当n =2k -1(k ∈N *)时命题成立,证明当n =2k 时命题也成立. ④假设当n =2k -1(k ∈N *)时命题成立,证明当n =2k +1时命题也成立. 解析:因为n 为正奇数,所以步骤(2)应为:假设当n =k (k 是正奇数)时命题成立,此时n =k +2也为正奇数;也可为:假设当n =2k -1(k ∈N *)时命题成立,此时n =2k +1也为正奇数.故②④正确.答案:②④6.已知1+2×3+3×32+4×33+…+n ×3n -1=3n(na -b )+14对一切n ∈N *都成立,则a =________,b =________.解析:∵1+2×3+3×32+4×33+…+n ×3n -1=3n (na -b )+14对一切n ∈N *都成立,∴当n =1,2时有⎩⎪⎨⎪⎧1=3(a -b )+14,1+2×3=32(2a -b )+14,即⎩⎪⎨⎪⎧ 1=3a -3b +14,7=18a -9b +14,解得⎩⎪⎨⎪⎧a =12,b =14.答案:12 147.用数学归纳法证明:对一切大于1的自然数n ,不等式⎝ ⎛⎭⎪⎫1+13·⎝ ⎛⎭⎪⎫1+15·…·⎝ ⎛⎭⎪⎫1+12n -1>2n +12成立. 证明:(1)当n =2时,左边=1+13=43,右边=52,左边>右边,所以不等式成立.(2)假设n =k (k ≥2且k ∈N *)时不等式成立, 即⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1>2k +12, 那么,当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+12(k +1)-1>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=2(k +1)+12,所以,当n =k +1时不等式也成立.由(1)和(2)知,对一切大于1的自然数n ,不等式都成立.8.将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),…,分别计算各组包含的正整数的和如下,试猜测S 1+S 3+S 5+…+S 2n -1的结果,并用数学归纳法证明.S 1=1, S 2=2+3=5,S3=4+5+6=15,S4=7+8+9+10=34,S5=11+12+13+14+15=65,S6=16+17+18+19+20+21=111,…解:由题意知,当n=1时,S1=1=14;当n=2时,S1+S3=16=24;当n=3时,S1+S3+S5=81=34;当n=4时,S1+S3+S5+S7=256=44,猜想:S1+S3+S5+…+S2n-1=n4.证明:(1)当n=1时,S1=1=14,等式成立.(2)假设当n=k(k∈N *)时等式成立,即S1+S3+S5+…+S2k-1=k4.那么,当n=k+1时,S1+S3+S5+…+S2k-1+S2k+1=k4+[(2k2+k+1)+(2k2+k+2)+…+(2k2+k+2k+1)] =k4+(2k+1)(2k2+2k+1)=k4+4k3+6k2+4k+1=(k+1)4,即当n=k+1时等式也成立.根据(1)和(2),可知对于任何n∈N*,S1+S3+S5+…+S2n-1=n4都成立.。
(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。
二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3. 解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立 那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。
数学归纳法经典例题及答案

数学归纳法经典例题及答案数学归纳法是解决数学问题中常用的一种证明方法,它基于两个基本步骤:证明基准情况和证明归纳假设,通过这两个步骤逐步推导证明,从而得到结论。
下面将介绍一些经典的数学归纳法例题及其答案。
例题一:证明1 + 2 + 3 + ... + n = n(n+1)/2,其中n∈N(自然数)。
解答:首先,我们先验证这个等式在n=1时是否成立。
当n=1时,左边等式为1,右边等式为1(1+1)/2=1,两边相等,因此基准情况成立。
其次,我们假设对于任意的k∈N,当n=k时等式成立,即1+2+3+...+k=k(k+1)/2。
接下来,我们需要证明当n=k+1时等式也成立。
根据归纳假设,我们已经知道1+2+3+...+k=k(k+1)/2,现在我们要证明1+2+3+...+k+(k+1)=(k+1)(k+2)/2。
将左边等式的前k项代入归纳假设得到:(k(k+1)/2)+(k+1)=(k+1)(k/2+1)= (k+1)(k+2)/2。
所以,当n=k+1时,等式也成立。
根据数学归纳法的原理,我们可以得出结论,对于任意的n∈N,都有1+2+3+...+n=n(n+1)/2。
例题二:证明2^n > n,其中n∈N,n>1。
解答:首先,我们验证这个不等式在n=2时是否成立。
当n=2时,左边等式为2^2=4,右边等式为2,显然不等式成立。
其次,我们假设对于任意的k∈N,当n=k时不等式成立,即2^k > k。
接下来,我们需要证明当n=k+1时不等式也成立。
根据归纳假设,我们已经知道2^k > k,现在我们要证明2^(k+1) > k+1。
我们可以将左边等式进行展开得到:2^(k+1) = 2^k * 2。
由归纳假设可知,2^k > k,所以2^(k+1) = 2^k * 2 > k * 2。
我们可以观察到当k>2时,k * 2 > k + 1,当k=2时,k * 2 = k + 1。
高考数学夺高分题型大串讲:数学归纳法(理)

2014高考数学“提高分”之好题速递一、选择题1.数列{an}中,已知a1=1,当n≥2时,an -an -1=2n -1,依次计算a2,a3,a4后,猜想an 的表达式是( )A .3n -2B .n2C .3n -1D .4n -3【解析】 计算出a1=1,a2=4,a3=9,a4=16.可猜an =n2.故应选B.【答案】 B2.若凸n(n≥4)边形有f(n)条对角线,则凸n +1边形的对角线条数f(n +1)为( )A .f(n)+n -2B .f(n)+n -1C .f(n)+nD .f(n)+n +1【解析】 新增加的一个顶点与另外的不相邻的n -2个顶点连成n -2条对角线,同时对应的这条边也变为一条对角线,故共增加n -2+1=n -1条对角线.【答案】 B3.对于不等式n2+n <n +1(n ∈N*),某同学的证明过程如下:(1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k(k ∈N*)时,不等式成立. 即k2+k <k +1,则当n =k +1时,+++=k2+3k +2<+3k +++ =+=(k +1)+1,∴当n =k +1时,不等式成立.则上述证法( )A .过程全部正确B .n =1验得不正确C .归纳假设不正确D .从n =k 到n =k +1的推理不正确【解析】 用数学归纳法证题的关键在于合理运用归纳假设.【答案】 D4.利用数学归纳法证明“对任意偶数n ,an -bn 能被a +b 整除”时,其第二步论证,应该是( )A .假设n =2k 时命题成立,再证n =2k +1时命题也成立B .假设n =k 时命题成立,再证n =k +1时命题也成立C .假设n =k 时命题成立,再证n =k +2时命题也成立D .假设n =2k 时命题成立,再证n =2(k +1)时命题也成立【解析】 因为n 为偶数,故选D.【答案】 D5.(2013·济南模拟)用数学归纳法证明1+2+3+…+n2=n4+n22,则当n =k +1时左端应在n=k 的基础上加上( ) A .k2+1B .(k +1)2C.+++2D .(k2+1)+(k2+2)+(k2+3)+…+(k +1)2【解析】 当n =k 时,等式左端=1+2+…+k2,当n =k +1时,等式左端=1+2+…+k2+(k2+1)+…+(k +1)22k +1个.【答案】 D6.用数学归纳法证明1+2+3+…+(2n +1)=(n +1)(2n +1)时,从n =k 到n =k +1,左边需增添的代数式是( )A .2k +2B .2k +3C .2k +1D .(2k +2)+(2k +3)【解析】 当n =k 时,左边是共有2k +1个连续自然数相加,即1+2+3+…+(2k +1), 所以当n =k +1时,左边是共有2k +3个连续自然数相加,即1+2+3+…+(2k +1)+(2k +2)+(2k +3).【答案】 D二、填空题7.在数列{an}中,a1=13且Sn =n(2n -1)an ,通过计算a2,a3,a4,猜想an 的表达式是________.【解析】 当n =2时,a1+a2=6a2,即a2=15a1=115;当n =3时,a1+a2+a3=15a3,即a3=114(a1+a2)=135;当n =4时,a1+a2+a3+a4=28a4,即a4=127(a1+a2+a3)=163.∴a1=13=11×3,a2=115=13×5,a3=135=15×7,a4=17×9,故猜想an =1-+. 【答案】 an =1-+8.如图,这是一个正六边形的序列:则第n 个图形的边数为________.【解析】 第(1)图共6条边,第(2)图共11条边,第(3)图共16条边,…,其边数构成等差数列,则第(n)图的边数为an =6+(n -1)×5=5n +1.【答案】 5n +19.用数学归纳法证明“1+12+13+…+12n -1<2(n ∈N ,且n >1)”,第一步要证的不等式是________.【解析】 n =2时,左边=1+12+122-1=1+12+13,右边=2. 【答案】 1+12+13<2三、解答题10.已知点Pn(an ,bn)满足an +1=an·bn +1,bn +1=bn 1-4a2n(n ∈N*),且点P1的坐标为(1,-1).(1)求过点P1,P2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N*,点Pn 都在(1)中的直线l 上.【解】 (1)由题意得a1=1,b1=-1,b2=-11-4×1=13,a2=1×13=13,∴P213,13. ∴直线l 的方程为y +113+1=x -113-1,即2x +y =1.(2)①当n =1时,2a1+b1=2×1+(-1)=1成立.②假设n =k(k≥1且k ∈N*)时,2ak +bk =1成立.则2ak +1+bk +1=2ak·bk +1+bk +1=bk 1-4a2k·(2ak +1) =bk 1-2ak =1-2ak 1-2ak=1, ∴当n =k +1时,2ak +1+bk +1=1也成立.由①②知,对于n ∈N*,都有2an +bn =1,即点Pn 在直线l 上.11.(2012·山东淄博一中检测)已知f(n)=1+123+133+143+…+1n3,g(n)=32-12n2,n ∈N*.(1)当n =1,2,3时,试比较f(n)与g(n)的大小关系;(2)猜想f(n)与g(n)的大小关系,并给出证明.【解】 (1)当n =1时,f(1)=1,g(1)=1,所以f(1)=g(1);当n =2时,f(2)=98,g(2)=118,所以f(2) <g(2);当n =3时,f(3)=251216,g(3)=312216,所以f(3)<g(3).(2)由(1),猜想f(n)≤g(n),下面用数学归纳法给出证明:①当n =1,2,3时,不等式显然成立.②假设当n =k(k≥3)时不等式成立,即1+123+133+143+…+1k3<32-12k2,那么,当n =k +1时,f(k +1)=f(k)+1+<32-12k2+1+,因为1+-12k2-1+=k +3+-12k2=-3k -1+<0,所以f(k +1)<32-1+=g(k +1).由①②知,对于n ∈N*都有f(n)≤g(n).12.(2012·全国大纲高考)函数f(x)=x2-2x -3.定义数列{xn}如下:x1=2,xn +1是过两点P(4,5)、Qn(xn ,f(xn))的直线PQn 与x 轴交点的横坐标.(1)证明:2≤xn<xn +1<3;(2)求数列{xn}的通项公式.【解】 (1)用数学归纳法证明:2≤xn<xn +1<3.①当n =1时,x1=2,直线PQ1的方程为y -5=-52-4(x -4), 令y =0,解得x2=114,所以2≤x1<x2<3.②假设当n =k 时,结论成立,即2≤xk<xk +1<3.直线PQk +1的方程为y -5=+-5xk +1-4(x -4), 令y =0,解得xk +2=3+4xk +12+xk +1. 由归纳假设知xk +2=3+4xk +12+xk +1=4-52+xk +1<4-52+3=3; xk +2-xk +1=-xk ++xk +2+xk +1>0,即xk +1<xk +2.所以2≤xk +1<xk +2<3,即当n =k +1时,结论成立.由①②知对任意的正整数n,2≤xn<xn +1<3.(2)由(1)及题意得xn +1=3+4xn 2+xn. 设bn =xn -3,则1bn +1=5bn +1, 1bn +1+14=5⎝⎛⎭⎫1bn +14, 数列⎩⎨⎧⎭⎬⎫1bn +14是首项为-34,公比为5的等比数列. 因此1bn +14=-34·5n -1,即bn =-43·5n -1+1, 所以数列{xn}的通项公式为xn =3-43·5n -1+1. 四、选做题13.(2011·湖南高考)已知函数f(x)=x3,g(x)=x +x.(1)求函数h(x)=f(x)-g(x)的零点个数,并说明理由;(2)设数列{an}(n ∈N*)满足a1=a(a>0),f(an +1)=g(an),证明:存在常数M ,使得对于任意的n ∈N*,都有an≤M.【解】 (1)由题意知,x ∈[0,+∞),h(x)=x3-x -x ,h(0)=0,且h(1)=-1<0,h(2)=6-2>0,则x =0为h(x)的一个零点,且h(x)在(1,2)内有零点.因此,h(x)至少有两个零点.法一:h′(x)=3x2-1-12x -12,记φ(x)=3x2-1-12x -12,则φ′(x)=6x +14x -32.当x ∈(0,+∞)时,φ′(x)>0,因此φ(x)在(0,+∞)上单调递增,则φ(x)在(0,+∞)内至多只有一个零点.又因为φ(1)>0,φ33<0,则φ(x)在33,1内有零点,所以φ(x)在(0,+∞)内有且只有一个零点.记此零点为x1,则当x∈(0,x1)时,φ(x)<φ(x1)=0;当x∈(x1,+∞)时,φ(x)>φ(x1)=0.所以当x∈(0,x1)时,h(x)单调递减,而h(0)=0,则h(x)在(0,x1]内无零点;当x∈(x1,+∞)时,h(x)单调递增,则h(x)在(x1,+∞)内至多只有一个零点,从而h(x)在(0,+∞)内至多只有一个零点.综上所述,h(x)有且只有两个零点.法二:由h(x)=x(x2-1-x-12),记φ(x)=x2-1-x-12,则φ′(x)=2x+12x-32.当x∈(0,+∞)时,φ′(x)>0,从而φ(x)在(0,+∞)上单调递增,则φ(x)在(0,+∞)内至多只有一个零点.因此h(x)在(0,+∞)内也至多只有一个零点.综上所述,h(x)有且只有两个零点.(2)证明:记h(x)的正零点为x0,即x30=x0+x0.①当a<x0时,由a1=a,得a1<x0.而a32=a1+a1<x0+x0=x30,因此a2<x0.由此猜想:an<x0.下面用数学归纳法证明.a.当n=1时,a1<x0显然成立.b.假设当n=k(k≥2)时,ak<x0成立,则当n=k+1时,由a3k+1=ak+ak<x0+x0=x30知,ak+1<x0.因此,当n=k+1时,ak+1<x0成立.故对任意的n∈N*,an<x0成立.②当a≥x0时,由(1)知,h(x)在(x0,+∞)上单调递增,则h(a)≥h(x0)=0,即a3≥a+a,从而a32=a1+a1=a+a≤a3,即a2≤a.由此猜想:an≤a,下面用数学归纳法证明.a.当n=1时,a1≤a显然成立.b.假设当n=k(k≥2)时,ak≤a成立,则当n=k+1时,由a3k+1=ak+ak≤a+a≤a3知,ak +1≤a.因此,当n=k+1时,ak+1≤a成立.故对任意的n∈N*,an≤a成立.综上所述,存在常数M=max{x0,a},使得对于任意的n∈N*,都有an≤M.。
2014高考数学典型题精讲课件12-6数学归纳法(理)

[解析] (1)证明 ①当 n=1 时,a2+(a+1)1=a2+a+ 1 可被 a2+a+1 整除.
②假设 n=k(k∈N+)时,ak+1+(a+1)2k-1 能被 a2+a+1 整除,则当 n=k+1 时,ak+2+(a+1)2k+1=a·ak+1+(a+1)2(a +1)2k-1=a·ak+1+a·(a+1)2k-1+(a2+a+1)(a+1)2k-1
由归纳假设,f(k)能被 17 整除, 17·3·52k+1 也能被 17 整除,所以 f(k+1)能被 17 整除.
由(1)(2)可知,对任意 n∈N+,f(n)都能被 17 整除.
[点评] 用数学归纳法证明整除问题,当 n=k+1 时, 应先构造出归纳假设的条件,再进行插项、补项等变形整 理,即可得证.
用数学归纳法证明恒等式
[例 1] 用数学归纳法证明:n∈N+时,1×1 3+3×1 5 +…+2n-112n+1=2nn+1.
[解析] (1)当 n=1 时,左边=1×1 3, 右边=2×11+1=13,左边=右边.∴等式成立.
(2)假设 n=k(k≥1,k∈N+)时,等式成立 ,即有 1×1 3+3×1 5+…+2k-112k+1=2kk+1
由(1)(2)可知对一切正整数 n 都有 f(n)=(2n+7)·3n+9 能被 36 整除,m 的最大值为 36.
[点评] (1)用数学归纳法证明整除性问题,关键在于
p(k) ⇒ p(k+1)过程中归纳假设的运用,一般通过“整体
凑假设”的手段进行代数式的变形. (2)解决的关键是通过 n 的取特殊值猜想这样的正整数
答案第39讲 数学归纳法--高考数学习题和答案

f1( 2 )
4 2
,
f2( 2)
2
16 3
,
故
2
f1
( 2
)
2
f2
( 2
)
1.
(Ⅱ)证明:由已知,得 xf0 (x) sin x, 等式两边分别对 x 求导,得 f0 (x) xf0(x) cos x ,
即
f0 (x)
xf1 ( x)
cos
x
sin(x
) 2
,类似可得
2 f1(x) xf2 (x) sin x sin(x ) ,
由 an1
p
p
1
an
c p
an1
p
易知
an
0, n N *
当nk
1时
ak 1 ak
p 1 p
c p
ak p
1
1( c p akp
1)
由 ak
1
cp
0 得 1
1 p
1 p
c ( akp
1)
0
由(Ⅰ)中的结论得 ( ak1 ) p [1 1 ( c 1)]p 1 p 1 ( c 1) c
1
(1)当 n 1 时由 a1 c p 0 ,即 a1p c 可知
a2
p 1 p a1
c p
a11
p
a1[1
1c p ( a1p
1)] a1 ,
1
1
并且 a2 f (a1) c p ,从而 a1 a2 c p
1
故当 n 1 时,不等式 an an1 c p 成立。
1
(2)假设 n k(k 1, k N*) 时,不等式 ak ak1 c p 成立,则
(完整版)数学归纳法练习题

2.3数学归纳法第1课时数学归纳法1.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取().A.2 B.3 C.5 D.6解析当n取1、2、3、4时2n>n2+1不成立,当n=5时,25=32>52+1=26,第一个能使2n>n2+1的n值为5,故选C.答案 C2.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+),验证n=1时,左边应取的项是().A.1 B.1+2C.1+2+3 D.1+2+3+4解析等式左边的数是从1加到n+3.当n=1时,n+3=4,故此时左边的数为从1加到4.答案 D3.设f(n)=1+12+13+…+13n-1(n∈N+),那么f(n+1)-f(n)等于().A.13n+2B.13n+13n+1C.13n+1+13n+2D.13n+13n+1+13n+2解析∵f(n)=1+12+13+…+13n-1,∵f(n+1)=1+12+13+…+13n-1+13n+13n+1+13n+2,∴f(n+1)-f(n)=13n+13n+1+13n+2.答案 D4.用数学归纳法证明关于n的恒等式,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,表达式为________.答案1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)25.记凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)=f(k)+________.解析由凸k边形变为凸k+1边形时,增加了一个三角形图形,故f(k+1)=f(k)+π.答案π6.用数学归纳法证明:1 1×2+13×4+…+1(2n-1)·2n=1n+1+1n+2+…+1n+n.证明(1)当n=1时,左边=11×2=12,右边=12,等式成立.(2)假设当n=k(k∈N*)时,等式成立,即1 1×2+13×4+…+1(2k-1)·2k=1k+1+1k+2+…+12k.则当n=k+1时,1 1×2+13×4+…+1(2k-1)·2k+1(2k+1)(2k+2)=1k+1+1k+2+…+12k+1(2k+1)(2k+2)=1k+2+1k+3+…+12k+⎝⎛⎭⎪⎫12k+1-12k+2+1k+1=1k+2+1k+3+…+12k+12k+1+12k+2=1(k+1)+1+1(k+1)+2+…+1(k+1)+k+1(k+1)+(k+1).即当n=k+1时,等式成立.根据(1)(2)可知,对一切n∈N*,等式成立.7.若命题A(n)(n∈N*)在n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现知命题对n=n0(n0∈N*)时命题成立,则有().A.命题对所有正整数都成立B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立D.以上说法都不正确解析由已知得n=n0(n0∈N*)时命题成立,则有n=n0+1时命题成立;在n =n0+1时命题成立的前提下,又可推得n=(n0+1)+1时命题也成立,依此类推,可知选C.答案 C8.用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从n=k到n=k+1,左边增加的代数式为().A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1解析n=k时,左边=(k+1)(k+2)…(2k);n=k+1时,左边=(k+2)(k+3)…(2k+2)=2(k+1)(k+2)…(2k)(2k+1),故选B.答案 B9.分析下述证明2+4+…+2n=n2+n+1(n∈N+)的过程中的错误:证明假设当n=k(k∈N+)时等式成立,即2+4+…+2k=k2+k+1,那么2+4+…+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1,即当n=k+1时等式也成立.因此对于任何n∈N+等式都成立.__________________.答案缺少步骤归纳奠基,实际上当n=1时等式不成立10.用数学归纳法证明(1+1)(2+2)(3+3)…(n+n)=2n-1·(n2+n)时,从n=k到n =k+1左边需要添加的因式是________.解析当n=k时,左端为:(1+1)(2+2)…(k+k),当n =k +1时,左端为:(1+1)(2+2)…(k +k )(k +1+k +1), 由k 到k +1需添加的因式为:(2k +2). 答案 2k +2 11.用数学归纳法证明12+22+…+n 2=n (n +1)(2n +1)6(n ∈N *).证明 (1)当n =1时,左边=12=1, 右边=1×(1+1)×(2×1+1)6=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即 12+22+…+k 2=k (k +1)(2k +1)6那么,12+22+…+k 2+(k +1)2 =k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6,即当n =k +1时等式也成立.根据(1)和(2),可知等式对任何n ∈N *都成立.12.(创新拓展)已知正数数列{a n }(n ∈N *)中,前n 项和为S n ,且2S n =a n +1a n ,用数学归纳法证明:a n =n -n -1. 证明 (1)当n =1时.a 1=S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,∴a 21=1(a n >0),∴a 1=1,又1-0=1, ∴n =1时,结论成立.(2)假设n =k (k ∈N *)时,结论成立, 即a k =k -k -1. 当n =k +1时, a k +1=S k +1-S k=12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝⎛⎭⎪⎫a k +1+1a k +1-k∴a 2k +1+2k a k +1-1=0,解得a k +1=k +1-k (a n >0), ∴n =k +1时,结论成立.由(1)(2)可知,对n ∈N *都有a n =n -n -1.。
高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析1.若,则对于,.【答案】【解析】【考点】数学归纳法2.用数学归纳法证明:“1+a+a2++a n+1=(a≠1,n∈N*)”在验证n=1时,左端计算所得的项为( )A.1B.1+aC.1+a+a2D.1+a+a2+a3【答案】C【解析】当n=1时,左端为1+a+a2,故选C.考点:数学归纳法3.已知,,,,…,由此你猜想出第n个数为【答案】【解析】观察根式的规律,和式的前一项与后一项的分子相同,是等差数列,而后一项的分母可表示为,故答案为【考点】归纳推理.4.用数学归纳法证明1+++…+(,),在验证成立时,左式是____.【答案】1++【解析】当时,;所以在验证成立时,左式是.【考点】数学归纳法.5.利用数学归纳法证明“, ()”时,在验证成立时,左边应该是.【答案】【解析】用数学归纳法证明“, ()”时,在验证成立时,将代入,左边以1即开始,以结束,所以左边应该是.【考点】数学归纳法.6.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.)能被9整除”,要利7.用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N+用归纳法假设证n=k+1时的情况,只需展开( ).A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3【答案】A【解析】假设n=k时,原式k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3.+(k+2)3+(k+3)3为了能用上面的归纳假设,只须将(k+3)3展开,让其出现k3即可.故应选A.8.用数学归纳法证明:【答案】通过两步(n=1,n=k+1)证明即可得出结论。
【解析】解:当n=1时,等式左边为2,右边为2,左边等于右边,当n=k时,假设成立,可以得到(k+1)+(k+2)+…+(k+k)=n=k+1时等式左边与n=k时的等式左边的差,即为n=k+1时等式左边增加的项,由题意,n=k时,等式左边=(k+1)+(k+2)+…+(k+k),n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1),比较可得n=k+1时等式左边等于右边,进而综上可知,满足题意的所有正整数都成立,故证明。
高考数学专题复习题:数学归纳法

高考数学专题复习题:数学归纳法一、单项选择题(共6小题)1.利用数学归纳法证明不等式1111()2321nf n ++++<- (2n ≥,且*n ∈N )的过程,由n k =到1n k =+时,左边增加了()A .12k -项B .2k 项C .1k -项D .k 项2.用数学归纳法证明:()()()1221121n n n ++++=++ ,在验证1n =成立时,左边所得的代数式是()A .1B .13+C .123++D .1234+++3.用数学归纳法证明等式()()()3412332n n n +++++++= ()N,1n n ∈≥时,第一步验证1n =时,左边应取的项是()A .1B .12+C .123++D .1234+++4.用数学归纳法证明:11112321n n ++++<- ,()N,1n n ∈≥时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是()A .2k B .21k -C .12k -D .21k +5.已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-+⋅⋅⋅+=++⋅⋅⋅+ ⎪-++⎝⎭时,若已假设n k =(2k ≥,k 为偶数)时命题为真,则还需要再证()A .1n k =+时等式成立B .2n k =+时等式成立C .22n k =+时等式成立D .()22n k =+时等式成立6.现有命题()()()11*1112345611442n n n n n ++⎛⎫-+-+-++-=+-+∈ ⎪⎝⎭N ,用数学归纳法探究此命题的真假情况,下列说法正确的是()A .不能用数学归纳法判断此命题的真假B .此命题一定为真命题C .此命题加上条件9n >后才是真命题,否则为假命题D .存在一个无限大的常数m ,当n m >时,此命题为假命题二、多项选择题(共2小题)7.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++8.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++三、填空题(共2小题)9.在运用数学归纳法证明()121*(1)(2)n n x x n +-+++∈N 能被233x x ++整除时,则当1n k =+时,除了n k =时必须有归纳假设的代数式121(1)(2)k k x x +-+++相关的表达式外,还必须有与之相加的代数式为________.10.用数学归纳法证明:()()122342n n n -+++++= (n 为正整数,且2n )时,第一步取n =________验证.四、解答题(共2小题)11.用数学归纳法证明:()*11111231n n n n +++>∈+++N .12.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:①证明当0n n =(0n ∈N )时命题成立;②假设n k =(k ∈N ,且0k n ≥)时命题成立,推导出在1n k =+时命题也成立.用模取余运算:mod a b c =表示“整数a 除以整数b ,所得余数为整数c ”.用带余除法可表示为:被除数=除数×商+余数,即a b r c =⨯+,整数r 是商.举一个例子7321=⨯+,则7mod31=;再举一个例子3703=⨯+,则3mod 73=.当mod 0a b =时,则称b 整除a .从序号分别为0a ,1a ,2a ,3a ,…,na 的1n +个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到m (2m ≥)时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为()1,f n m +.如()1,0f m =表示当只有1个人时幸运者就是0a ;()6,24f =表示当有6个人而2m =时幸运者是4a ;()6,30f =表示当有6个人而3m =时幸运者是0a .(1)求10mod3;(2)当1n ≥时,()()()()1,,mod 1f n m f n m m n +=++,求()5,3f ;当n m ≥时,解释上述递推关系式的实际意义;(3)由(2)推测当1212k k n +≤+<(k ∈N )时,()1,2f n +的结果,并用数学归纳法证明.。
人教版【三年高考】(2016-2018)数学(理科)真题分类解析:专题14-与数列相关的综合问题(含答案)

专题14 与数列相关的综合问题考纲解读明方向分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等.2018年高考全景展示1.【2018年浙江卷】已知成等比数列,且.若,则 A. B.C.D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则,令得,所以当时,,当时,,因此, 若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.(I)求和的通项公式;(II)设数列的前n项和为,(i)求;(ii)证明.【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析.【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则.(ii)因为,裂项求和可得.详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得从而故所以数列的通项公式为,数列的通项公式为(II)(i)由(I),有,故.(ii)因为,所以.点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.4.【2018年江苏卷】设,对1,2,···,n的一个排列,如果当s<t时,有,则称是排列的一个逆序,排列的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n的所有排列中逆序数为k的全部排列的个数.(1)求的值;(2)求的表达式(用n表示).【答案】(1)2 5 2)n≥5时,【解析】分析:(1)先根据定义利用枚举法确定含三个元素的集合中逆序数为2的个数,再利用枚举法确定含四个元素的集合中逆序数为2的个数;(2)先寻求含n个元素的集合中逆序数为2与含n+1个元素的集合中逆序数为2的个数之间的关系,再根据叠加法求得结果.详解:解:(1)记为排列abc的逆序数,对1,2,3的所有排列,有,所以.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,.点睛:探求数列通项公式的方法有观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.寻求相邻项之间的递推关系,是求数列通项公式的一个有效的方法.5.【2018年江苏卷】设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
2014高考数学一轮汇总训练《数学归纳法》理 新人教A版

第七节数学归纳法[备考方向要明了][归纳·知识整合]1.数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.[探究] 1.数学归纳法证题的基本原理是什么?提示:数学归纳法是一种只适用于与正整数有关的命题的证明方法,它的表述严格而且规范,两个步骤缺一不可.第一步是递推的基础,第二步是递推的依据,第二步中,归纳假设起着“已知条件”的作用,在第二步的证明中一定要运用它,否则就不是数学归纳法.第二步的关键是“一凑假设,二凑结论”.2.用数学归纳法证明问题应该注意什么?提示:(1)第一步验证n=n0时命题成立,这里的n0并不一定是1,它是使命题成立的最小正整数.(2)第二步证明的关键是合理运用归纳假设,特别要弄清由k到k+1时命题的变化情况.(3)由假设n=k时命题成立,证明n=k+1命题也成立时,要充分利用归纳假设,即要恰当地“凑”出目标.2.数学归纳法的框图表示[自测·牛刀小试]1.在应用数学归纳法证明凸n 边形的对角线为n n -32条时,第一步检验n 等于( )A .1B .2C .3D .0解析:选C ∵n ≥3,∴第一步应检验n =3. 2.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( )A .k 2+1 B .(k +1)2C.k +14+k +122D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2解析:选D ∵当n =k 时,左侧=1+2+3+…+k 2,当n =k +1时, 左侧=1+2+3+…+k 2+(k 2+1)+…+(k +1)2, ∴当n =k +1时,左端应在n =k 的基础上加上 (k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.3.利用数学归纳法证明“(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1解析:选B 当n =k (k ∈N *)时, 左式为(k +1)(k +2)…(k +k );当n =k +1时,左式为(k +1+1)·(k +1+2)·…·(k +1+k -1)·(k +1+k )·(k +1+k +1),则左边应增乘的式子是2k +12k +2k +1=2(2k +1).4.(教材习题改编)用数学归纳法证明1+12+13+…+12n -1<n (n ∈N ,且n >1),第一步要证的不等式是________.解析:当n =2时,左边=1+12+122-1=1+12+13,右边=2,故填1+12+13<2.答案:1+12+13<25.记凸k 边形的内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+________. 解析:由凸k 边形变为凸k +1边形时,增加了一个三角形. 答案:π[例1] n ∈N *,求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .[自主解答] (1)当n =1时,左边=1-12=12,右边=11+1=12.左边=右边. (2)假设n =k 时等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k ,则当n =k +1时,⎝ ⎛⎭⎪⎫1-12+13-14+…+12k -1-12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=⎝ ⎛⎭⎪⎫1k +1+1k +2+…+12k +⎝ ⎛⎭⎪⎫12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2. 即当n =k +1时,等式也成立.综合(1),(2)可知,对一切n ∈N *,等式成立. ——————————————————— 用数学归纳法证明等式应注意的问题(1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,以及初始值n 0的值.(2)由n =k 到n =k +1时,除考虑等式两边变化的项外还要充分利用n =k 时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.1.求证:12+22+…+n 2=n n +12n +16.证明:(1)当n =1时,左边=1,右边=1·1+12+16=1,左边=右边,等式成立;(2)假设n =k (k ∈N *,且k ≥1)时,等式成立, 即12+22+…+k 2=k k +12k +16,则当n =k +1时,12+22+…+k 2+(k +1)2=k k +12k +16+(k +1)2=k +1[k +1+1][2k +1+1]6,所以当n =k +1时,等式仍然成立. 由(1)、(2)可知,对于∀n ∈N *等式恒成立.[例2] 已知数列{a n },a n ≥0,a 1=0,a 2n +1+a n +1-1=a 2n . 求证:当n ∈N *时,a n <a n +1.[自主解答] (1)当n =1时,因为a 2是方程a 22+a 2-1=0的正根,所以a 1<a 2. (2)假设当n =k (k ∈N *,k ≥1)时,0≤a k <a k +1, 则由a 2k +1-a 2k=(a 2k +2+a k +2-1)-(a 2k +1+a k +1-1) =(a k +2-a k +1)(a k +2+a k +1+1)>0, 得a k +1<a k +2,即当n =k +1时,a n <a n +1也成立.根据(1)和(2),可知a n <a n +1对任何n ∈N *都成立.把题设条件中的“a n ≥0”改为“当n ≥2时,a n <-1”,其余条件不变,求证:当n ∈N *时,a n +1<a n .证明:(1)当n =1时, ∵a 2是a 22+a 2-1=0的负根, ∴a 1>a 2.(2)假设当n =k (k ∈N *,k ≥1)时,a k +1<a k ,∵a 2k +1-a 2k =(a k +2-a k +1)(a k +2+a k +1+1),a k +1<a k ≤0, ∴a 2k +1-a 2k >0,又∵a k +2+a k +1+1<-1+(-1)+1=-1, ∴a k +2-a k +1<0,∴a k +2<a k +1, 即当n =k +1时,命题成立.由(1)(2)可知,当n ∈N *时,a n +1<a n .——————————————————— 应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法等证明.2.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图象上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N *),证明:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. 解:(1)由题意,S n =b n+r , 当n ≥2时,S n -1=bn -1+r . 所以a n =S n -S n -1=b n -1(b -1).由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列. 又a 1=b +r ,a 2=b (b -1), 故a 2a 1=b ,即b b -1b +r=b ,解得r =-1.(2)证明:由(1)知a n =2n -1,因此b n =2n (n ∈N *),所证不等式为2+12·4+14·…·2n +12n >n +1.①当n =1时,左式=32,右式=2,左式>右式,所以结论成立.②假设n =k (k ≥1,k ∈N *)时结论成立,即2+12·4+14·…·2k +12k>k +1,则当n =k +1时, 2+12·4+14·…·2k +12k ·2k +32k +1>k +1·2k +32k +1=2k +32k +1, 要证当n =k +1时结论成立, 只需证2k +32k +1≥k +2,即证2k +32≥k +1k +2,由均值不等式2k +32=k +1+k +22≥k +1k +2成立,故2k +32k +1≥k +2成立,所以,当n =k +1时,结论成立. 由①②可知,n ∈N *时,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.[例3] 已知f (n )=1+123+133+143+…+1n3,g (n )=32-12n2,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g (n )的大小关系; (2)猜想f (n )与g (n )的大小关系,并给出证明.[自主解答] (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1); 当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2);当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1),猜想f (n )≤g (n ),下面用数学归纳法给出证明.①当n =1,2,3时,不等式显然成立,②假设当n =k (k ≥3)时不等式成立,即1+12+13+14+…+1k <32-12k .那么,当n =k +1时,f (k +1)=f (k )+1k +13<32-12k 2+1k +13.因为12k +12-⎣⎢⎡⎦⎥⎤12k 2-1k +13=k +32k +13-12k 2=-3k -12k +13k2<0, 所以f (k +1)<32-12k +12=g (k +1).由①②可知,对一切n ∈N *,都 有f (n )≤g (n )成立. ——————————————————— 归纳—猜想—证明类问题的解题步骤(1)利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.(2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”.高中阶段与数列结合的问题是最常见的问题.3.设数列{a n }满足a n +1=a 2n -na n +1,n =1,2,3,….(1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式; (2)当a 1≥3时,证明对所有的n ≥1,有a n ≥n +2. 解:(1)由a 1=2,得a 2=a 21-a 1+1=3, 由a 2=3,得a 3=a 22-2a 2+1=4, 由a 3=4,得a 4=a 23-3a 3+1=5,由此猜想a n 的一个通项公式:a n =n +1(n ≥1). (2)证明:用数学归纳法证明:①当n =1时,a 1≥3=1+2,不等式成立. ②假设当n =k 时不等式成立,即a k ≥k +2,那么,a k +1=a k (a k -k )+1≥(k +2)(k +2-k )+1≥k +3, 也就是说,当n =k +1时,a k +1≥(k +1)+2. 根据①和②,对于所有n ≥1,都有a n ≥n +2.1种方法——寻找递推关系的方法(1)在第一步验证时,不妨多计算几项,并争取正确写出来,这样对发现递推关系是有帮助的.(2)探求数列通项公式要善于观察式子或命题的变化规律,观察n 处在哪个位置. (3)在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项,除此之外,多了哪些项,少了哪些项都要分析清楚.4个注意点——应用数学归纳法应注意的问题(1)数学归纳法是证明与正整数有关的命题的常用方法,特别是数列中等式、不等式的证明,在高考试题中经常出现.(2)数学归纳法证题的关键是第二步,证题时应注意:①必须利用归纳假设作基础;②证明中可利用综合法、分析法、反证法等方法;③解题时要搞清从n =k 到n =k +1增加了哪些项或减少了哪些项.(3)数学归纳法证题时,第一个值n 0不一定为1,如证明多边形内角和定理(n -2)π时,初始值n 0=3.(4)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.易误警示——应用数学归纳法解决证明问题的易误点[典例] (2013·九江模拟)设数列{a n }的前n 项和为S n ,并且满足2S n =a 2n +n ,a n >0(n ∈N *).(1)猜想{a n }的通项公式,并用数学归纳法加以证明.(2)设x >0,y >0,且x +y =1,证明:a n x +1+a n y +1≤2n +2. [解] (1)分别令n =1,2,3,得⎩⎪⎨⎪⎧2a 1=a 21+1,2a 1+a 2=a 22+2,2a 1+a 2+a 3=a 23+3.∵a n >0,∴a 1=1,a 2=2,a 3=3. 猜想:a n =n . 由2S n =a 2n +n ,①可知,当n ≥2时,2S n -1=a 2n -1+(n -1).② ①-②,得2a n =a 2n -a 2n -1+1, 即a 2n =2a n +a 2n -1-1.(ⅰ)当n =2时,a 22=2a 2+12-1, ∵a 2>0,∴a 2=2.(ⅱ)假设当n =k (k ≥2)时,a k =k ,那么当n =k +1时,a 2k +1=2a k +1+a 2k -1=2a k +1+k 2-1⇒[a k +1-(k +1)][a k +1+(k -1)]=0, ∵a k +1>0,k ≥2,∴a k +1+(k -1)>0, ∴a k +1=k +1.即当n =k +1时也成立. ∴a n =n (n ≥2).显然n =1时,也成立,故对于一切n ∈N *,均有a n =n . (2)要证nx +1+ny +1≤2n +2,只要证nx +1+2nx +1ny +1+ny +1≤2(n +2).即n (x +y )+2+2n 2xy +n x +y +1≤2(n +2),将x +y =1代入,得2n 2xy +n +1≤n +2, 即只要证4(n 2xy +n +1)≤(n +2)2, 即4xy ≤1.∵x >0,y >0,且x +y =1,∴xy ≤x +y 2=12, 即xy ≤14,故4xy ≤1成立,所以原不等式成立.[易误辨析]1.在解答本题时有以下易误点(1)在代入n =1,2,3时,不能准确求得a 1,a 2,a 3,从而猜想不出a n .(2)证明不等式时,不会应用x +y =1这一条件代换,导致无法证明不等式成立. 2.解决数学归纳法中“归纳—猜想—证明”及不等式证明问题时,还有以下几点容易造成失分(1)归纳整理不到位得不出正确结果,从而给猜想造成困难.(2)证明n =k 到n =k +1这一步时,忽略了利用假设条件去证明,造成不是纯正的数学归纳法.(3)不等式证明的过程中,不能正确合理地运用分析法、综合法来求证.另外需要熟练掌握数学归纳法中几种常见的推证技巧,只有这样,才能快速正确地解决问题.[变式训练] 若不等式1n +1+1n +2+…+13n +1>a 24对一切正整数n 都成立,求正整数a 的最大值,并证明结论.解:当n =1时,11+1+11+2+13+1>a 24,即2624>a24,所以a <26. 而a 是正整数,所以取a =25,下面用数学归纳法证明 1n +1+1n +2+…+13n +1>2524. (1)当n =1时,已证得不等式成立. (2)假设当n =k (k ∈N *)时,不等式成立, 即1k +1+1k +2+…+13k +1>2524. 则当n =k +1时, 有1k +1+1+1k +1+2+…+13k +1+1=1k +1+1k +2+…+13k +1+13k +2+13k +3+13k +4-1k +1>2524+⎣⎢⎡⎦⎥⎤13k +2+13k +4-23k +1. 因为13k +2+13k +4-23k +1=6k +13k +23k +4-23k +1=18k +12-29k 2+18k +83k +23k +43k +3=23k +23k +43k +3>0,所以当n =k +1时不等式也成立. 由(1)(2)知,对一切正整数n ,都有1n +1+1n +2+…+13n +1>2524, 所以a 的最大值等于25.一、选择题(本大题共6小题,每小题5分,共30分)1.如果命题P (n )对n =k 成立,则它对n =k +2也成立,若P (n )对n =2也成立,则下列结论正确的是( )A .P (n )对所有正整数n 都成立B .P (n )对所有正偶数n 都成立C .P (n )对所有正奇数n 都成立D .P (n )对所有自然数n 都成立解析:选B 由题意n =k 时成立,则n =k +2时也成立,又n =2时成立,则P (n )对所有正偶数都成立.2.用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1)”,在验证n =1时,左端计算所得的项为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3解析:选C ∵等式的左端为1+a +a 2+…+a n +1,∴当n =1时,左端=1+a +a 2.3.利用数学归纳法证明不等式1+12+13+…+12n -1<f (n )(n ≥2,n ∈N *)的过程,由n=k 到n =k +1时,左边增加了( )A .1项B .k 项C .2k -1项D .2k项解析:选D 1+12+13+…+12k +1-1-⎝ ⎛⎭⎪⎫1+12+13+…+12k -1=12k +12k +1+…+12k +1-1,共增加了2k项.4.用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”的第二步是( ) A .假设n =2k +1时正确,再推n =2k +3时正确(其中k ∈N *) B .假设n =2k -1时正确,再推n =2k +1时正确(其中k ∈N *) C .假设n =k 时正确,再推n =k +1时正确(其中k ∈N *) D .假设n ≤k (k ≥1)时正确,再推n =k +2时正确(其中k ∈N *) 解析:选B ∵n 为正奇数,∴n =2k -1(k ∈N *).5.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( ) A.1n -1n +1B.12n 2n +1C.12n -12n +1D.12n +12n +2解析:选C 由a 1=13,S n =n (2n -1)a n 求得a 2=115=13×5,a 3=135=15×7,a 4=163=17×9.猜想a n =12n -12n +1.6.设函数f (n )=(2n +9)·3n +1+9,当n ∈N *时,f (n )能被m (m ∈N *)整除,猜想m 的最大值为( )A .9B .18C .27D .36解析:选D f (n +1)-f (n )=(2n +11)·3n +2-(2n +9)·3n +1=4(n +6)·3n +1,当n =1时,f (2)-f (1)=4×7×9为最小值,据此可猜想D 正确. 二、填空题(本大题共3小题,每小题5分,共15分)7.用数学归纳法证明“2n >n 2+1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取________.解析:当n =1时,21=2,12+1=2;当n =2时,22=4,22+1=5;当n =3时,23=8,32+1=10;当n =4时,24=16,42+1=17;当n =5时,25=32,52+1=26,满足2n >n 2+1.故n 0应取5. 答案:58.对大于或等于2的自然数 m 的n 次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19. 根据上述分解规律,若n 2=1+3+5+…+19, m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.解析:∵依题意得 n 2=10×1+192=100, ∴n =10. 易知 m 3=21m +m m -12×2,整理得(m -5)(m +4)=0,又 m ∈N *,所以 m =5, 所以m +n =15. 答案:159.若数列{a n }的通项公式a n =1n +12,记c n =2(1-a 1)(1-a 2)…(1-a n ),试通过计算c 1,c 2,c 3的值,推测c n =________.解析:c 1=2(1-a 1)=2×⎝ ⎛⎭⎪⎫1-14=32,c 2=2(1-a 1)(1-a 2)=2×⎝⎛⎭⎪⎫1-14×⎝ ⎛⎭⎪⎫1-19=43,c 3=2(1-a 1)(1-a 2)(1-a 3)=2×⎝⎛⎭⎪⎫1-14×⎝⎛⎭⎪⎫1-19×⎝⎛⎭⎪⎫1-116=54,故由归纳推理得c n =n +2n +1. 答案:n +2n +1三、解答题(本大题共3小题,每小题12分,共36分) 10.用数学归纳法证明:12+32+52+…+(2n -1)2= 13n (4n 2-1).证明:(1)当n =1时,左边=12=1,右边=13×1×(4-1)=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即12+32+52+…+(2k -1)2=13k (4k 2-1).则当n =k +1时,12+32+52+…+(2k -1)2+(2k +1)2=13k (4k 2-1)+(2k +1)2=13k (4k2-1)+4k 2+4k +1=13k [4(k +1)2-1]-13k ·4(2k +1)+4k 2+4k +1 =13k [4(k +1)2-1]+13(12k 2+12k +3-8k 2-4k ) =13k [4(k +1)2-1]+13[4(k +1)2-1] =13(k +1)[4(k +1)2-1]. 即当n =k +1时等式也成立.由(1),(2)可知,对一切n ∈N *,等式都成立.11.设0<a <1,定义a 1=1+a ,a n +1=1a n +a ,求证:对任意n ∈N *,有1<a n <11-a .证明:(1)当n =1时,a 1=1+a >1,又a 1=1+a <11-a ,显然命题成立.(2)假设n =k (k ∈N *)时,命题成立,即1<a k <11-a. 即当n =k +1时,由递推公式,知a k +1=1a k+a ,由假设可得(1-a )+a <1a k +a <1+a <11-a .于是当n =k +1时,命题也成立,即1<a k +1<11-a. 由(1)(2)可知,对任意n ∈N *,有1<a n <11-a .12.已知数列{a n },其中a 2=6且a n +1+a n -1a n +1-a n +1=n .(1)求a 1,a 3,a 4;(2)求数列{a n }的通项公式; (3)设数列{b n }为等差数列,其中b n =a nn +c且c 为不等于零的常数,若S n =b 1+b 2+…+b n ,求1S 1+1S 2+…+1S n.解:(1)∵a 2=6,a 2+a 1-1a 2-a 1+1=1,a 3+a 2-1a 3-a 2+1=2,a 4+a 3-1a 4-a 3+1=3,解得a 1=1,a 3=15,a 4=28.(2)由上面的a 1,a 2,a 3,a 4的值可以猜想a n =n (2n -1). 下面用数学归纳法加以证明:①当n =1时,a 1=1×(2-1)=1,结论成立. ②假设当n =k 时,结论正确,即a k =k (2k -1), 则当n =k +1时,有a k +1+a k -1a k +1-a k +1=k ,∴(k -1)a k +1=(k +1)a k -(k +1)=(k +1)·k (2k -1)-(k +1)=(k +1)(2k 2-k -1) =(k +1)(2k +1)(k -1)(k -1≠0). ∴a k +1=(k +1)[2(k +1)-1]. 即当n =k +1时,结论也成立.由①②可知,{a n }的通项公式a n =n (2n -1). (3)∵{b n }是等差数列,∴2b 2=b 1+b 3, 即2a 22+c =a 11+c +a 33+c. ∵a 1=1,a 2=6,a 3=15且c ≠0, 由上式解得c =-12,∴b n =a n n -12=n 2n -1122n -1=2n .故S n =b 1+b 2+…+b n =n (n +1). ∴1S 1+1S 2+…+1S n =11×2+12×3+…+1n n +1 =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=nn +1.1.已知△ABC 的三边长都是有理数. (1)求证:cos A 是有理数;(2)求证:对任意正整数n ,cos nA 是有理数.证明:(1)由AB 、BC 、AC 为有理数及余弦定理知cos A =AB 2+AC 2-BC 22AB ·AC是有理数.(2)用数学归纳法证明cos nA 和sin A ·sin nA 都是有理数.①当n =1时,由(1)知cos A 是有理数,从而有sin A ·sin A =1-cos 2A 也是有理数. ②假设当n =k (k ∈N *)时,cos kA 和sin A ·sin kA 都是有理数. 当n =k +1时,由cos(k +1)A =cos A ·cos kA -sin A ·sin kA ,sin A ·sin(k +1)A =sin A ·(sin A ·cos kA +cos A ·sin kA ) =(sin A ·sin A )·cos kA +(sin A ·sin kA )·cos A ,由①和归纳假设,知cos(k +1)A 和sin A ·sin(k +1)A 都是有理数. 即当n =k +1时,结论成立.综合①②可知,对任意正整数n ,cos nA 是有理数.2.用数学归纳法证明11×3+13×5+…+12n -12n +1=n 2n +1(n ∈N *).证明:(1)当n =1时,左边=11×3=13,右边=12×1+1=13,左边=右边.所以n =1时等式成立. (2)假设n =k 时等式成立,即有11×3+13×5+…+12k -12k +1=k 2k +1.则当n =k +1时,11×3+13×5+…+12k -12k +1+12k +12k +3=k 2k +1+12k +12k +3 =2k 2+3k +12k +12k +3=k +12k +12k +12k +3 =k +12k +3=k +12k +1+1. 这就是说,n =k +1时等式也成立. 由(1)(2)可知,等式对一切n ∈N *都成立.3.已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.解:(1)∵当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0.∴a 1=3-1或a 1=-3-1(舍去).当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3或a 2=-5-3(舍去). 同理可得a 3=7- 5.由a 1,a 2,a 3,猜想a n =2n +1-2n -1(n ∈N *).(2)证明:①由(1)的计算过程知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1. 那么由a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k, 将a k =2k +1-2k -1代入上式并整理得a 2k +1+22k +1a k +1-2=0,解得a k +1=2k +3-2k +1, 或a k +1=-2k +3-2k +1(舍去). 即当n =k +1时,通项公式也成立. 由①和②,可知对所有n ∈N *,a n =2n +1-2n -1都成立.4.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).证明:(1)当n =2时,1+12=54<2-12=32,命题成立.(2)假设n =k 时命题成立,即 1+122+132+…+1k 2<2-1k. 当n =k +1时,1+122+132+…+1k 2+1k +12<2-1k +1k +12<2-1k +1k k +1=2-1k +1k -1k +1=2-1k +1命题成立. 由(1),(2)知原不等式在n ∈N *,n ≥2时均成立.两类不等式恒成立问题的求解策略不等式恒成立问题是数学试题中的重要题型,涉及数学中各部分知识,但主要是函数中的不等式恒成立问题和数列中的不等式恒成立问题,涉及题型一般有两类:一是已知不等式恒成立,求参数的取值范围,解决这类问题的基本方法是相同的,首选方法是利用分离参数转化为求新函数、新数列的最值问题,如果不能分离参数或者分离参数比较复杂时,一般选择函数的方法,通常利用函数的最值解决;二是证明不等式恒成立,在函数中一般选择以算代证,即通过求函数的最值证明不等式.在数列中,很多时候可以与放缩法结合起来,对所证不等式的一侧进行适当放大或缩小,下面分别举例说明.一、函数中的不等式恒成立问题函数是不等式恒成立问题的主要载体,通常通过不等式恒成立问题考查等价转化思想、函数的最值或值域,对涉及已知函数在给定区间上恒成立,求参数的取值范围、证明不等式等问题,大多数题目可以利用分离参数的方法,将问题转化为求函数的最值或值域问题.[例1] 已知两个函数f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k为实数.(1)若对任意的x∈[-3,3],都有f(x)≤g(x)成立,求k的取值范围;(2)若对任意的x1、x2∈[-3,3],都有f(x1)≤g(x2),求k的取值范围.[解] (1)令F(x)=g(x)-f(x)=2x3-3x2-12x+k.问题转化为F(x)≥0在x∈[-3,3]时恒成立,故解[F(x)]min≥0即可.∵F′(x)=6x2-6x-12=6(x2-x-2),故由F′(x)=0,得x=2或x=-1.∵F(-3)=k-45,F(3)=k-9,F(-1)=k+7,F(2)=k-20,∴[F(x)]min=k-45.由k-45≥0,解得k≥45.故实数k的取值范围是[45,+∞).(2)由题意可知当x∈[-3,3]时,都有[f(x)]max≤[g(x)]min.由f′(x)=16x+16=0,得x=-1.∵f(-3)=24-k,f(-1)=-8-k,f(3)=120-k,∴[f(x)]max=-k+120.由g ′(x )=6x 2+10x +4=0,得x =-1或x =-23.∵g (-3)=-21,g (3)=111,g (-1)=-1,g ⎝ ⎛⎭⎪⎫-23=-2827,∴[g (x )]min =-21.则120-k ≤-21,解得k ≥141. ∴实数k 的取值范围是[141,+∞).[点评] 将恒成立问题转化为求函数的最值问题来处理,一般有下面两种类型: (1)若所给函数能直接求出最值,则有:①f (x )>0恒成立⇔[f (x )]min >0;②f (x )≤0恒成立⇔[f (x )]max ≤0.(2)若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围,则有(下面的a 为参数):①f (x )<g (a )恒成立⇔g (a )>[f (x )]max ; ②f (x )>g (a )恒成立⇔g (a )<[f (x )]min .[例2] 已知函数f (x )=a ln x +x 2,(a 为实常数). (1)若a =-2,求函数f (x )的单调区间;(2)若对∀x ∈[1,e],使得f (x )≤(a +2)x 恒成立,求实数a 的取值范围. [解] (1)函数f (x )的定义域为(0,+∞),当a =-2时,f (x )=x 2-2ln x ,所以f ′(x )=2x 2-1x.令f ′(x )=2x 2-1x>0,得x <-1或x >1.且定义域为(0,+∞),所以函数f (x )的单调增区间是(1,+∞).令f ′(x )=2x 2-1x<0,得-1<x <1,且定义域为(0,+∞),所以函数f (x )的单调减区间是(0,1).(2)不等式f (x )≤(a +2)x ,可化为a (x -ln x )≥x 2-2x . 因为x ∈[1,e],所以ln x ≤1≤x 且等号不能同时取, 所以ln x <x ,即x -ln x >0.因而a ≥x 2-2xx -ln x (x ∈[1,e]).令g (x )=x 2-2xx -ln x(x ∈[1,e]),又g ′(x )=x -1x +2-2ln x x -ln x 2, 当x ∈[1,e]时,x -1≥0,ln x ≤1,x +2-2ln x >0,从而g ′(x )≥0(当且仅当x =1时取等号). 所以g (x )在[1,e]上为增函数. 故[g (x )]max =g (e)=e 2-2ee -1.所以a 的取值范围是⎣⎢⎡⎭⎪⎫e 2-2e e -1,+∞.[点评] 利用不等式与函数和方程之间的联系,将问题转化成一次函数或二次函数(二次方程)的问题研究,一般有下面几种类型:1.一次函数型问题:利用一次函数的图象特点求解. 对于一次函数f (x )=kx +b (k ≠0),x ∈[m ,n ],有(1)f (x )≥0恒成立⇔⎩⎪⎨⎪⎧f m ≥0,f n ≥0.(2)f (x )<0恒成立⇔⎩⎪⎨⎪⎧f m <0,f n <0.2.二次函数型问题:结合抛物线的形状考虑对称轴、顶点、区间端点等,列出相关的不等式,求出参数的解,下面是两种基本类型:对于二次函数f (x )=ax 2+bx +c (a ≠0,x ∈R ),有:(1)f (x )>0对x ∈R 恒成立⇔⎩⎪⎨⎪⎧ a >0,Δ<0,(2)f (x )<0对x ∈R 恒成立⇔⎩⎪⎨⎪⎧a <0,Δ<0.二、数列中的不等式恒成立问题数列是一种特殊的函数,所以解决数列中的不等式恒成立问题与函数中不等式恒成立问题的解法相同,基本方法也是利用分离参数转化为求新数列的最值问题,数列中的最值问题一般是应用数列的单调性求解;而数列中的不等式恒成立的证明,则很多时候可以与放缩法联系起来.[例3] 在数列{a n }中,a 1=1,a n +1=ca n +c n +1·(2n +1)(n ∈N *),其中实数c ≠0.(1)求{a n }的通项公式;(2)若对一切k ∈N *有a 2k >a 2k -1,求c 的取值范围.[解] (1)由a 1=1,a 2=ca 1+c 2·3=3c 2+c =(22-1)c 2+c ,a 3=ca 2+c 3·5=8c 3+c 2=(32-1)c 3+c 2, a 4=ca 3+c 4·7=15c 4+c 3=(42-1)c 4+c 3,归纳猜想a n =(n 2-1)c n +cn -1,n ∈N *.下面用数学归纳法证明: 当n =1时,等式成立;假设当n =k 时,等式成立,即a k =(k 2-1)c k +c k -1,则当n =k +1时,a k +1=ca k +c k +1(2k +1)=c [(k 2-1)c k +c k -1]+c k +1·(2k +1)=(k 2+2k )c k +1+c k =[(k +1)2-1]·ck +1+c k,综上,a n =(n 2-1)c n +c n -1对任何n ∈N *都成立.(2)由a 2k >a 2k -1,得 [(2k )2-1]c 2k+c 2k -1>[(2k -1)2-1]c2k -1+c2k -2,因c2k -2>0,所以4(c 2-c )k 2+4ck -c 2+c -1>0对k ∈N *恒成立.记f (x )=4(c 2-c )x 2+4cx -c 2+c -1,下面分三种情况讨论:①当c 2-c =0,即c =0或c =1时,代入验证可知只有c =1满足要求.②当c 2-c <0时,即0<c <1,抛物线y =f (x )开口向下,因此当正整数k 充分大时,f (k )<0,不符合题意,此时无解.③当c 2-c >0,即c <0或c >1时,抛物线y =f (x )开口向上,易知Δ>0,其对称轴x =121-c 必在直线x =1的左边.因此,f (x )在[1,+∞)上是增函数.所以要使f (k )>0对k ∈N *恒成立,只需f (1)>0即可. 由f (1)=3c 2+c -1>0,解得c <-1-136或c >-1+136.结合c <0或c >1,得c <-1+136或c >1.结合以上三种情况,c 的取值范围为⎝⎛⎭⎪⎫-∞,-1+136∪[1,+∞).[点评] 本题中关于k 的不等式,不能通过分离参数将k 与c 分离,这时的一般解法是直接利用函数知识求函数最值,只是这时的函数定义域不是连续区间,这也是数列与函数的区别.由此可见,数列中的不等式恒成立与函数中不等式恒成立的解法基本相同,不同之处就是定义域不同.。
高三数学数学归纳法练习题及答案

高三数学数学归纳法练习题及答案数学归纳法是高中数学中非常重要的一种证明方法,它在数学推理和证明中具有广泛的应用。
通过运用归纳法,我们可以推出一般性的结论,从而能够解决更加复杂的数学问题。
在高三数学的学习中,熟练掌握数学归纳法的使用对于解题至关重要。
下面将为大家提供一些高三数学数学归纳法练习题及答案,希望能帮助大家更好地掌握该方法。
练习题一:证明:对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2答案一:首先,我们需要明确归纳假设的内容。
假设当n=k时,等式成立,即1 + 2 + 3 + ... + k = k(k + 1)/2。
然后,我们需要证明当n=k+1时,等式也成立。
即1 + 2 + 3 + ... + (k+1) = (k+1)(k + 2)/2。
根据归纳假设,1 + 2 + 3 + ... + k = k(k + 1)/2。
我们需要证明:1 + 2 + 3 + ... + k + (k+1) = (k+1)(k + 2)/2。
将左边的式子进行展开得到: [1 + 2 + 3 + ... + k] + (k+1)。
由归纳假设,我们可以将其中的[1 + 2 + 3 + ... + k]替换成k(k + 1)/2,得到: k(k + 1)/2 + (k+1)。
化简该式子: k(k + 1) + 2(k+1)。
再进一步化简: (k+1)(k + 2) / 2。
可以看出,我们得到了(k+1)(k + 2)/2这个形式,就证明了当n=k+1时,等式也成立。
因此,根据数学归纳法原理,对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2。
练习题二:证明:对于任意正整数n,2^n > n^2。
答案二:同样使用数学归纳法进行证明。
首先,当n=1时,2^1 = 2,1^2 = 1,2 > 1,等式成立。
假设当n=k时,2^k > k^2 成立。
最新-数学归纳法题库解答[整理][特约] 精品
![最新-数学归纳法题库解答[整理][特约] 精品](https://img.taocdn.com/s3/m/1ed607dc5fbfc77da269b151.png)
数学归纳法题库解答编号: 年级:高二、高三 知识点:数列、极限、数学归纳法 分知识点:数学归纳法题型:选择题 难度:中等题目:1.用数学归纳法证明1+a +a 2+……+an +1=a1a 12n --+ (n ∈N ,a ≠1),在验证n =1成立时,左边所得的项为( )。
(A )1 (B )1+a (C )1+a +a 2 (D )1+a +a 2+a 3 答案:C编号: 年级:高二、高三 知识点:数列、极限、数学归纳法 分知识点:数学归纳法题型:选择题 难度:中等题目:2. 用数学归纳法证明(n +1)(n +2)……(n +n )=2n ·1·3·5·……·(2n -1)时,从k 变到k +1时,左边应增添的因式是( )。
(A )2k +1 (B )1k 1k 2++ (C )1k 3k 2++ (D ) 2(2k +1)答案:D提示:当n =k 时,左边是(k +1)(k +2)……(k +k ), 当n =k +1时, 左边应是(k +1)(k +2)……(k +k )(k +1+k )(k +1+k +1), ∴应增添的因式是1k )2k 2)(1k 2(+++=2(2k +1)编号: 年级:高二、高三 知识点:数列、极限、数学归纳法 分知识点:数学归纳法题型:选择题 难度:中等题目:3. 用数学归纳法证明某命题时,左边为121413121n -++++ 从k 变到k +1时,左边应增添的代数式是( )。
(A )1211k -+ (B )k 21+1211k -+(C )k 21+121k ++1211k -+ (D )k 21+121k ++……+1211k -+答案:D编号: 年级:高二、高三 知识点:数列、极限、数学归纳法 分知识点:数学归纳法题型:选择题 难度:中等题目:4. 用数学归纳法证明“当n 为奇数时,x n +y n 能被x +y 整除”时,第二步的归纳假设应写成( )。
高中数学数学归纳法检测试题(有答案)

高中数学数学归纳法检测试题(有答案)高中数学数学归纳法检测试题(有答案)数学归纳法及其应用举例一、选择题(共49题,题分合计245分)1.用数学归纳法证明:1+ + +…+ 1)时,由n=k(k1)不等式成立,推证n=k+1时,左边应增加的项数是A.2k-1B.2k-1C.2kD.2k+12.球面上有n个大圆,其中任何三个都不相交于同一点,设球面被这n个大圆所分成的部分为f(n),则下列猜想:①f(n)=n,②f(n)=f(n-1)+2n,③f(n)=n2-n+2中,正确的是A.①与②B.①与③C.②与③D.只有③3.某个命题与自然数m有关,若m=k(kN)时该命题成立,那么可以推得m=k+1时该命题成立,现已知当m=5时,该命题不成立,那么可推得A.当m=6时该命题不成立B.当m=6时该命题成立C.当m=4时该命题不成立D.当m=4时该命题成立4.设f(n)= (nN),那么f(n+1)-f(n)等于A. B. C. + D. -5.用数学归纳法证明1+a+a2+…+ = (nN,a1)中,在验证n=1时,左式应为A.1B.1+aC.1+a+a2D.1+a+a2+a312.用数字归纳法证明1+2+…+(2n+1)=(n+1)(2n+1)时,在验证n=1成立时,左边所得的代数式是A.1B.1+3C.1+2+3D.1+2+3+413.用数学归纳法证明当n是非负数时,34n+2+52n+1能被14整除的第二步中,为了使用归纳假设应将34k+6+52k+3变形为A.34k+281+52k+125B.34k+1243+52k125C.25(34k+2+52k+1)+5634k+2D.34k+49+52k+2514.用数学归纳法证明+ + +……+ = (nN)时,从n=k到n=k+1,等式左边需增添的项是A. B. C. D.15.利用数学归纳法证明不等式 ,(n2,nN)的过程中,由n=k 变到n=k+1时,左边增加了A.1项B.k项C.2k-1项D.2k项16.用数学归纳法证明5n-2n能被3整除的第二步中,n=k+1时,为了使用假设,应将5k+1-2k+1变形为A.(5k-2k)+45k-2kB.5(5k-2k)+32kC.(5-2)(5k-2k)D.2(5k-2k)-35k17.平面内原有k条直线,它们的交点个数记为f(k),则增加一条直线后,它们的交点个数最多为A.f(k)+1B.f(k)+kC.f(k)+k+1D.kf(k)18.已知一个命题P(k),k=2n(nN),若n=1,2,…,1000时,P(k)成立,且当n=1000+1时它也成立,下列判断中,正确的是A.P(k)对k=2019成立 B.P(k)对每一个自然数k成立C.P(k)对每一个正偶数k成立D.P(k)对某些偶数可能不成立19.用数学归纳法证明: ,从k到k+1需在不等式两边加上A. B. C. D.20.设 ,则f(2k)变形到f(2k+1)需增添项数为A.2k+1项B.2k项C.2项D.1项21.欲用数学归纳法证明:对于足够大的自然数n,总有2n >n3,n0为验证的第一个值,则A.n0=1B.n0为大于1小于10的某个整数C.n0D.n0=222.某同学回答用数字归纳法证明 n+1(nN)的过程如下:证明:(1)当n=1时,显然命题是正确的;(2)假设n=k时有 k+1那么当n=k+1时, =(k+1)+1,所以当n=k+1时命题是正确的,由(1)、(2)可知对于(nN),命题都是正确的.以上证法是错误的,错误在于A.当n=1时,验证过程不具体B.归纳假设的写法不正确C.从k到k+1的推理不严密D.从k到k+1的推理过程没有使用归纳假设23.平面上有k(k3)条直线,其中有k-1条直线互相平行,剩下一条与它们不平行,则这k条直线将平面分成区域的个数为A.k个B.k+2个C.2k个D.2k+2个24.已知凸k边形的对角线条数为f(k)(k3),则凸k+1边形的对角线条数为A.f(k)+kB.f(k)+k+1C.f(k)+k-1D.f(k)+k-225.平面内原有k条直线,它们将平面分成f(k)个区域,则增加第k+1条直线后,这k+1条直线将平面分成的区域最多会增加A.k个B.k+1个C.f(k)个D.f(k)+1个26.同一平面内有n个圆,其中每两个圆都有两个不同交点,并且三个圆不过同一点,则这n个圆把平面分成A.2n部分B.n2部分C.2n-2部分D.n2-n+2部分27.平面内有n个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,这n个圆把平面分成f(n)个部分,则满足上述条件的n+1个圆把平面分成的部分f(n+1)与f(n)的关系是A.f(n+1)=f(n)+nB.f(n+1)=f(n)+2nC.f(n+1)=f(n)+n+1D.f(n+1)=f(n)+n+228.用数学归纳法证明不等式成立时,应取的第一个值为A.1B.3C.4D.529.若,则等于A. B.C. D.30.设凸n边形的内角和为f (n),则f (n+1) - f (n) 等于A. B. C. D.31.用数学归纳法证明不等式成立,则n的第一个值应取A.7B.8C.9D.1032. 等于A. B. C. D.33.已知ab是不相等的正数,若 ,则b的取值范围是A.02B.02C.bD.b234.利用数学归纳法证明对任意偶数n,an-bn能被a+b整除时,其第二步论证,应该是A.假设n=k时命题成立,再证n=k+1时命题也成立B.假设n=2k时命题成立,再证n=2k+1时命题也成立C.假设n=k时命题成立,再证n=k+2时命题也成立D.假设n=2k时命题成立,再证n=2(k+1)时命题也成立35.用数学归纳法证明42n-1+3n+1(nN)能被13整除的第二步中,当n=k+1时为了使用假设,对42k+1+3k+2变形正确的是A.16(42k-1+3k+1)-133k+1B.442k+93kC.(42k-1+3k+1)+1542k-1+23k+1D.3(42k-1+3k+1)-1342k-136.用数学归纳法证明(n+1)(n+2)…(n+n)=2n13…(2n-1)(nN)时,从两边同乘以一个代数式,它是A.2k+2B.(2k+1)(2k+2)C.D.37.用数学归纳法证明某命题时,左式为+cos+cos3+…+cos(2n-1)(kZ,nN),在验证n=1时,左边所得的代数式为A. B. +cos C. +cos+cos 3 D. +cos+cos 3+cos 538.用数学归纳法证明(n+1)(n+2)…(n+n)=2n13…(2n-1)时,第二步n=k+1时的左边应是n=k时的左边乘以A.(k+1+k+1)B.(k+1+k)(k+1+k+1)C.D.39.设Sk= + + +……+ ,则Sk+1为A. B.C. D.40.用数字归纳法证明某命题时,左式为1- +…+ ,从n=k到n=k+1,应将左边加上A. B. C. D.41.用数学归纳法证明当n为正奇数时,xn+yn能被x+y整除时,第二步应是A.假设n=k(kN)时命题成立,推得n=k+1时命题成立B.假设n=2k+1(kN)时命题成立,推得n=2k+3时命题成立C.假设k=2k-1(kN)时命题成立,推得n=2k+1时命题成立D.假设nk(k1,kN)时命题成立,推得n=k+2时命题成立42.设p(k):1+ (k N),则p(k+1)为A.B.C.D.上述均不正确43.k棱柱有f(k)个对角面,则k+1棱柱有对角面的个数为A.2f(k)B.k-1+f(k)C.f(k)+kD.f(k)+244.已知,则等于A. B.C. D.45.用数学归纳法证明,在验证n=1等式成立时,左边计算所得的项是A. B. C. D.46.用数学归纳法证明某不等式,其中证时不等式成立的关键一步是:,括号中应填的式子是A. B. C. D.47.对于不等式,某人的证明过程如下:当时,不等式成立。
数学归纳法经典例题及参考答案

由①、②可知,对一切自然数 n 等式成立. 题型 2.证明不等式
例 2.证明不等式1 1 1 1 2 n (n∈N).
23
n
证明:①当 n=1 时,左边=1,右边=2. 左边<右边,不等式成立.
②假设 n=k 时,不等式成立,即1 1 1 1 2 k .
认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.
题型 3.证明数列问题 例 3(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(n≥2,
n∈N*). (1)当 n=5 时,求 a0+a1+a2+a3+a4+a5 的值. (2)设 bn=,Tn=b2+b3+b4+…+bn.试用数学归纳法证明:当 n≥2 时,Tn
=. 解: (1)当 n=5 时, 原等式变为(x+1)5=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-
1)5 令 x=2 得 a0+a1+a2+a3+a4+a5=35=243. (2)因为(x+1)n=[2+(x-1)]n,所以 a2=Cn2·2n-2 bn==2Cn2=n(n-1)(n≥2) ①当 n=2 时.左边=T2=b2=2, 右边==2,左边=右边,等式成立. ②假设当 n=k(k≥2,k∈N*)时,等式成立, 即 Tk=成立 那么,当 n=k+1 时, 左边=Tk+bk+1=+(k+1)[(k+1)-1]=+k(k+1) =k(k+1)= ==右边. 故当 n=k+1 时,等式成立. 综上①②,当 n≥2 时,Tn=.
例 1.用数学归纳法证明:
证明:①n=1 时,左边 1 1 ,右边 1 1 ,左边=右边,等式成立.
高二数学数学归纳法试题答案及解析

高二数学数学归纳法试题答案及解析1.观察下列各不等式:…(1)由上述不等式,归纳出一个与正整数有关的一般性结论;(2)用数学归纳法证明你得到的结论.【答案】(1)且;(2)以下用数学归纳法证明这个不等式.①当n=2时,由题设可知,不等式显然成立.②假设当n=k时,不等式成立,即那么,当n=k+1时,有.所以当n=k+1时,不等式也成立.根据①和②,可知不等式对任何且都成立.【解析】(1)由上述不等式,归纳出表达式的左侧的关系与右侧分子与分母的特征写出一个正整数,有关的一般性结论;(2)利用数学归纳法证明步骤,直接证明即可.试题解析:(1)观察上述各不等式,得到与正整数n有关的一般不等式为且.(2)以下用数学归纳法证明这个不等式.①当n=2时,由题设可知,不等式显然成立.②假设当n=k时,不等式成立,即那么,当n=k+1时,有.所以当n=k+1时,不等式也成立.根据①和②,可知不等式对任何且都成立.【考点】归纳推理;数学归纳法.2.设,其中为正整数.(1)求,,的值;(2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想.【答案】(1);(2)【解析】(1)数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学问题;(2)用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值是多少;(3)由时等式成立,推出时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,由于“猜想”是“证明”的前提和“对象”,务必保证猜想的正确性,同时必须严格按照数学归纳法的步骤书写.试题解析:解:(1) 3分(2)猜想: 4分证明:①当时,成立 5分②假设当时猜想正确,即∴由于8分∴,即成立由①②可知,对成立 10分【考点】数学归纳法及其应用.3.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第4个“金鱼”图需要火柴棒的根数为A.24B.26C.28D.30【答案】B【解析】由图形间的关系可以看出,第一个图形中有8根火柴,第二个图形中有8+6根火柴,第三个图形中有8+26根火柴,第三个图形中有8+36根火柴,即26根火柴,故选B.【考点】归纳推理.4.是否存在常数使得对一切恒成立?若存在,求出的值,并用数学归纳法证明;若不存在,说明理由.【答案】【解析】先探求出的值,即令,解得.用数学归纳法证明时,需注意格式.第一步,先证起始项成立,第二步由归纳假设证明当n="k" 等式成立时,等式也成立.最后由两步归纳出结论.其中第二步尤其关键,需利用归纳假设进行证明,否则就不是数学归纳法.解:取和2 得解得 4分即以下用数学归纳法证明:(1)当n=1时,已证 6分(2)假设当n=k,时等式成立即 8分那么,当时有10分12分就是说,当时等式成立 13分根据(1)(2)知,存在使得任意等式都成立 15分【考点】数学归纳法5.已知,不等式,,,…,可推广为,则等于 .【答案】【解析】因为,……,所以该系列不等式,可推广为,所以当推广为时,.【考点】归纳推理.6.用数学归纳法证明(),在验证当n=1时,等式左边应为A.1B.1+a C.1+a+a2D.1+a+a2+a3【答案】D【解析】注意到的左端,表示直到共n+3项的和,所以,当n=1时,等式左边应为1+a+a2+a3,选D。
高考数学解题思想方法 数学归纳法 试题

智才艺州攀枝花市创界学校五、数学归纳法归纳是一种有特殊事例导出一般原理的思维方法。
归纳推理分完全归纳推理与不完全归纳推理两种。
不完全归纳推理只根据一类事物中的局部对象具有的一共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。
完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
0“对任何自然数〔或者n≥n且n∈N〕结论都正确〞。
由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。
比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目的完成解题。
运用数学归纳法,可以证明以下问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
Ⅰ、再现性题组:1.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·2…(2n-1)〔n∈N〕,从“k到k+1〞,左端需乘的代数式为_____。
A.2k+1B.2(2k+1)C.211kk++ D.231kk++2.用数学归纳法证明1+12+13+…+121n-<n(n>1)时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的代数式的个数是_____。
A.2k-1B.2k-1C.2kD.2k+13.(k∈(94年高考)4.数列{a n}中,a1=1,当n≥2时an=an-1+2n-1,依次计算a2、a3、a4后,猜想an的表达式是_____。
A.3n-2B.n2C.3n-1D.4n-35.用数学归纳法证明342n ++521n +(n ∈N)能被14整除,当n =k +1时对于式子3412()k +++5211()k ++应变形为_______________________。
6.设k 棱柱有f(k)个对角面,那么k +1棱柱对角面的个数为f(k+1)=f(k)+_________。
【简解】1小题:n =k 时,左端的代数式是(k +1)(k +2)…(k +k),n =k +1时,左端的代数式是(k +2)(k+3)…(2k +1)(2k +2),所以应乘的代数式为()()21221k k k +++,选B ;2小题:〔2k +1-1〕-〔2k-1〕=2k,选C ;4小题:计算出a 1=1、a 2=4、a 3=9、a 4=16再猜想a n ,选B ; 5小题:答案〔342k ++521k +〕3k +521k +〔52-34〕;6小题:答案k -1。
高考数学一轮复习高效作业:《数学归纳法》(理)

时间:45分钟满分:100分班级:________姓名:________ 学号:________ 得分:________一、选择题(本大题共6小题,每小题6分,共36分,在下列四个选项中,只有一项是符合题目要求的)1.(2014·白山一模)欲用数学归纳法证明:对于足够大的正整数n,总有2n>n3,那么验证不等式成立所取的第一个n的最小值应该是( )A.1 B.9C.10 D.n>10,且n∈N*解析:210=1024>103.故应选C.答案:C2.(2014·平顶山一模)用数学归纳法证明1+2+22+…+2n-1=2n-1(n∈N*)的过程中,第二步假设当n=k(k∈N*)时等式成立,则当n=k+1时应得到( )A.1+2+22+…+2k-2+2k-1=2k+1-1B.1+2+22+…+2k+2k+1=2k-1-1+2k+1C.1+2+22+…+2k-1+2k+1=2k+1-1D.1+2+22+…+2k-1+2k=2k-1+2k解析:由n=k到n=k+1等式的左边增加了一项,故选D.答案:D3.(2014·常州一模)用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N*)能被9整除”,要利用归纳假设证n=k+1(k∈N*)时的情况,只需展开( )A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3解析:假设n=k(k∈N*)时,k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设证明,只需将(k+3)3展开,让其出现k3即可.故应选A.答案:A4.(2014·洛阳一模)凸n多边形有f(n)条对角线,则凸(n+1)边形的对角线的条数f(n +1)为( )A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-2解析:边数增加1,顶点也相应增加1个,它与它不相邻的n-2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n-1条.故选C.答案:C5.(2014·温州一模)数列{a n }中,已知a 1=1,当n≥2,且n ∈N *时,a n -a n -1=2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .3n -2B .n 2C .3n -1D .4n -3解析:计算出a 1=1,a 2=4,a 3=9,a 4=16.可猜a n =n 2(n ∈N *).故应选B. 答案:B6.(2014·山师附中质检)设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k 2成立时,总可推出f(k +1)≥(k+1)2成立”.那么,下列命题总成立的是( )A .若f(3)≥9成立,则当k≥1时,均有f(k)≥k 2成立 B .若f(5)≥25成立,则当k≤5时,均有f(k)≥k 2成立 C .若f(7)<49成立,则当k≥8时,均有f(k)<k 2成立 D .若f(4)=25成立,则当k≥4时,均有f(k)≥k 2成立解析:对于A ,若f(3)≥9成立,由题意只可得出当k≥3时,均有f(k)≥k 2成立,故A 错;对于B ,若f(5)≥25成立,则当k≥5时均有f(k)≥k 2成立,故B 错;对于C ,应改为“若f(7)≥49成立,则当k≥7时,均有f(k)≥k 2成立”,故选D.答案:D二、填空题(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上) 7.(2014·上海调研)观察下式:1=12;2+3+4=32;3+4+5+6+7=52;4+5+6+7+8+9+10=72;….则可得出第n 个式子为____________________________.解析:各式的左边是第n 个正整数到第3n -2个连续正整数的和.右边是奇数的平方,故可得出第n 个式子是:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *).答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *)8.(2014·粤西北九校联考)设S 1=12,S 2=12+22+12,…,S n =12+22+32+…+(n -1)2+n 2+(n -1)2+…+22+12,用数学归纳法证明S n =n 2n+13时,第二步从“k”到“k+1”应添加的项为________.解析:由S 1,S 2,…,S n 可以发现由n =k 到n =k +1时,中间增加了两项(k +1)2+k 2(n ,k ∈N +).答案:(k +1)2+k 29.(2014·江西八校联合模拟)若f(n)=12+22+32+…+(2n)2,则f(k +1)与f(k)的递推关系式是________.解析:∵f(k)=12+22+…+(2k)2,∴f(k +1)=12+22+…+(2k)2+(2k +1)2+(2k +2)2, ∴f(k +1)=f(k)+(2k +1)2+(2k +2)2. 答案:f(k +1)=f(k)+(2k +1)2+(2k +2)210.(2014·怀化二模)已知数组:⎝ ⎛⎭⎪⎫12,⎝ ⎛⎭⎪⎫12,21,⎝ ⎛⎭⎪⎫13,22,31,⎝ ⎛⎭⎪⎫14,23,32,41,…,⎝ ⎛⎭⎪⎫1n ,2n -1,3n -2,…,n -12,n 1,….记该数组为:(a 1),(a 2,a 3),(a 4,a 5,a 6),…,则a 200=________.解析:通过观察数组可以发现,第n 组数中共有n 个数,每个数的分子与分母的和等于n +1,又因为1+2+…+19=190<200,故a 200应是第20组中的第10个数,故应为1011.答案:1011三、解答题(本大题共3小题,共40分,11、12题各13分,13题14分,写出证明过程或推演步骤)11.(2014·海口二模)对于n ∈N *,用数学归纳法证明:1·n+2·(n-1)+3·(n-2)+…+(n -1)·2+n·1=16n(n +1)(n +2).证明:设左边=1·n+2·(n-1)+3·(n-2)+…+(n -1)·2+n·1. 右边=16n(n +1)(n +2)(1)当n =1时,左边=1,右边=1,等式成立;(2)设当n =k 时等式成立,即1·k+2·(k-1)+3·(k-2)+…+(k -1)·2+k·1=16k(k +1)(k +2),则当n =k +1时,f(k +1)=1·(k+1)+2[(k +1)-1]+3[(k +1)-2]+…+[(k +1)-2]·3+[(k +1)-1]·2+(k +1)·1=f(k)+1+2+3+…+k +(k +1) =16k(k +1)(k +2)+12(k +1)(k +1+1) =16(k +1)(k +2)(k +3). 12.(2014·湘潭二模)求证:12+13+14+…+12n -1>n -22(n≥2且n ∈N *).证明:(1)当n =2时,12>0,不等式成立.(2)假设n =k(k≥2且k ∈N *)时,原不等式成立. 即12+13+14+15+…+12k -1>k -22, 则当n =k +1时,左边=12+13+14+…+12k -1+12k -1+1+12k -1+2+…+12k -1+2k -1>k -22+12k -1+1+12k -1+2+…+12k -1+2k -1>k -22+12k +12k +…+12k =k -22+2k -12k =k -12=k +1-22.∴当n =k +1时,原不等式也成立.由(1)(2)知,原不等式对n≥2的所有的正整数都成立,即12+13+14+…+12n -1>n -22(n≥2且n ∈N *)成立.13.(2014·威海一模)设数列{a n }满足a n +1=a 2n -na n +1,n ∈N *. (1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式; (2)当a 1≥2时,证明n ∈N *,有a n ≥n+1. 解:(1)由a 1=2,得a 2=a 21-a 1+1=3, 由a 2=3,得a 3=a 22-2a 2+1=4, 由a 3=4,得a 4=a 23-3a 3+1=5. 由此猜想a n 的一个通项公式为: a n =n +1(n ∈N *).(2)证明:①当n =1时,a 1≥2,不等式成立.②假设当n =k(k ∈N *且k≥1)时不等式成立,即a k ≥k+1, 那么当n =k +1时,a k +1=a k (a k -k)+1≥(k+1)(k +1-k)+1=k +2, 也就是说,当n =k +1时,a k +1≥(k+1)+1. 根据①和②,对于所有k ∈N *, 都有a n ≥n+1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲数学归纳法一、选择题1. 利用数学归纳法证明“1+a+a2+…+a n+1=1-a n+21-a(a≠1,n∈N*)”时,在验证n=1成立时,左边应该是( )A 1B 1+aC 1+a+a2D 1+a+a2+a3解析当n=1时,左边=1+a+a2,故选C.答案 C2.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是().A.假设n=k(k∈N+),证明n=k+1命题成立B.假设n=k(k是正奇数),证明n=k+1命题成立C.假设n=2k+1(k∈N+),证明n=k+1命题成立D.假设n=k(k是正奇数),证明n=k+2命题成立解析A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数.答案 D3.用数学归纳法证明1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n,则当n=k+1时,左端应在n=k的基础上加上().A.12k+2B.-12k+2C.12k+1-12k+2D.12k+1+12k+2解析∵当n=k时,左侧=1-12+13-14+…+12k-1-12k,当n=k+1时,左侧=1-12+13-14+…+12k-1-12k+12k+1-12k+2.答案 C4.对于不等式n2+n<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即k2+k<k+1,则当n=k+1时,(k+1)2+(k+1)=k2+3k+2<(k2+3k+2)+(k+2)=(k+2)2=(k+1)+1,所以当n=k+1时,不等式成立,则上述证法().A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确解析在n=k+1时,没有应用n=k时的假设,故推理错误.答案 D5.下列代数式(其中k∈N*)能被9整除的是( )A.6+6·7k B.2+7k-1C.2(2+7k+1) D.3(2+7k)解析 (1)当k=1时,显然只有3(2+7k)能被9整除.(2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36.这就是说,k=n+1时命题也成立.由(1)(2)可知,命题对任何k∈N*都成立.答案 D6.已知1+2×3+3×32+4+33+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,则a、b、c的值为().A.a=12,b=c=14B.a=b=c=14C.a=0,b=c=14D.不存在这样的a、b、c解析∵等式对一切n∈N*均成立,∴n=1,2,3时等式成立,即⎩⎨⎧1=3(a -b )+c ,1+2×3=32(2a -b )+c ,1+2×3+3×32=33(3a -b )+c ,整理得⎩⎨⎧3a -3b +c =1,18a -9b +c =7,81a -27b +c =34,解得a =12,b =c =14. 答案 A 二、填空题7.用数学归纳法证明不等式1n +1+1n +2+…+1n +n>1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是________. 解析 不等式的左边增加的式子是12k +1+12k +2-1k +1=1(2k +1)(2k +2),故填1(2k +1)(2k +2).答案 1(2k +1)(2k +2)8. 用数学归纳法证明:121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)即可.答案k(k+1)2(2k+1)+(k+1)2(2k+1)(2k+3)=(k+1)(k+2)2(2k+3)9.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.解析本题规律:2=1+1;3=1+2=2+1;4=1+3=2+2=3+1;5=1+4=2+3=3+2=4+1;…;一个整数n所拥有数对为(n-1)对.设1+2+3+…+(n-1)=60,∴(n-1)n2=60,∴n=11时还多5对数,且这5对数和都为12,12=1+11=2+10=3+9=4+8=5+7,∴第60个数对为(5,7).答案(5,7)10.在数列{a n}中,a1=13且S n=n(2n-1)a n,通过计算a2,a3,a4,猜想a n的表达式是________.解析当n=2时,a1+a2=6a2,即a2=15a1=115;当n=3时,a1+a2+a3=15a3,即a3=114(a1+a2)=135;当n=4时,a1+a2+a3+a4=28a4,即a4=127(a1+a2+a3)=163.∴a1=13=11×3,a2=115=13×5,a3=135=15×7,a4=17×9,故猜想a n=1n-n+.答案a n=1n-n+三、解答题11.已知S n =1+12+13+…+1n (n >1,n ∈N *),求证:S 2n >1+n2(n ≥2,n ∈N *). 证明 (1)当n =2时,S 2n =S 4=1+12+13+14=2512>1+22,即n =2时命题成立; (2)假设当n =k (k ≥2,k ∈N *)时命题成立,即S 2k =1+12+13+…+12k >1+k 2, 则当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+12k +1+12k +2+…+12k +1>1+k 2+2k 2k +2k =1+k 2+12=1+k +12, 故当n =k +1时,命题成立.由(1)和(2)可知,对n ≥2,n ∈N *.不等式S 2n >1+n2都成立.12.已知数列{a n }:a 1=1,a 2=2,a 3=r ,a n +3=a n +2(n ∈N *),与数列{b n }:b 1=1,b 2=0,b 3=-1,b 4=0,b n +4=b n (n ∈N *).记T n =b 1a 1+b 2a 2+b 3a 3+…+b n a n .(1)若a 1+a 2+a 3+…+a 12=64,求r 的值; (2)求证:T 12n =-4n (n ∈N *).(1)解 a 1+a 2+a 3+…+a 12=1+2+r +3+4+(r +2)+5+6+(r +4)+7+8+(r +6)=48+4r . ∵48+4r =64,∴r =4.(2)证明 用数学归纳法证明:当n ∈N *时,T 12n =-4n .①当n =1时,T 12=a 1-a 3+a 5-a 7+a 9-a 11=-4,故等式成立. ②假设n =k 时等式成立,即T 12k =-4k ,那么当n =k +1时,T 12(k +1)=T 12k +a 12k +1-a 12k +3+a 12k +5-a 12k +7+a 12k +9-a 12k +11=-4k +(8k +1)-(8k +r )+(8k +4)-(8k +5)+(8k +r +4)-(8k +8)=-4k -4=-4(k +1),等式也成立.根据①和②可以断定:当n ∈N *时,T 12n =-4n .13.设数列{a n }满足a 1=3,a n +1=a 2n -2na n +2,n =1,2,3,…(1)求a 2,a 3,a 4的值,并猜想数列{a n }的通项公式(不需证明);(2)记S n 为数列{a n }的前n 项和,试求使得S n <2n 成立的最小正整数n ,并给出证明.解(1)a2=5,a3=7,a4=9,猜想a n=2n+1.(2)S n=n(3+2n+1)2=n2+2n,使得Sn<2n成立的最小正整数n=6.下证:n≥6(n∈N*)时都有2n>n2+2n.①n=6时,26>62+2×6,即64>48成立;②假设n=k(k≥6,k∈N*)时,2k>k2+2k成立,那么2k+1=2·2k>2(k2+2k)=k2+2k+k2+2k>k2+2k+3+2k=(k+1)2+2(k+1),即n=k+1时,不等式成立;由①、②可得,对于所有的n≥6(n∈N*)都有2n>n2+2n成立.14.数列{x n}满足x1=0,x n+1=-x2n+x n+c(n∈N*).(1)证明:{x n}是递减数列的充分必要条件是c<0;(2)求c的取值范围,使{x n}是递增数列.(1)证明先证充分性,若c<0,由于x n+1=-x2n+x n+c≤x n+c<x n,故{x n}是递减数列;再证必要性,若{x n}是递减数列,则由x2<x1可得c<0.(2)解①假设{x n}是递增数列.由x1=0,得x2=c,x3=-c2+2c.由x1<x2<x3,得0<c<1.由x n<x n+1=-x2n+x n+c知,对任意n≥1都有x n<c,①注意到c-x n+1=x2n-x n-c+c=(1-c-x n)(c-x n),②由①式和②式可得1-c-x n>0,即x n<1-c.由②式和x n≥0还可得,对任意n≥1都有c-x n+1≤(1-c)(c-x n).③反复运用③式,得c-x n≤(1-c)n-1(c-x1)<(1-c)n-1,x n<1-c和c-x n<(1-c)n-1两式相加,知2c-1<(1-c)n-1对任意n≥1成立.根据指数函数y=(1-c)n的性质,得2c-1≤0,c≤14,故0<c≤14.②若0<c ≤14,要证数列{x n }为递增数列,即x n +1-x n =-x 2n +c >0,即证x n <c 对任意n ≥1成立.下面用数学归纳法证明当0<c ≤14时,x n <c 对任意n ≥1成立. (i)当n =1时,x 1=0<c ≤12,结论成立. (ii)假设当n =k (k ∈N *)时,结论成立,即x n <c .因为函数f (x )=-x 2+x +c 在区间⎝ ⎛⎦⎥⎤-∞,12内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立. 故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.由①②知,使得数列{x n }单调递增的c 的范围是⎝ ⎛⎦⎥⎤0,14.。