人教版九年级数学二次函数应用题
专题05二次函数的实际应用(含解析)2023年秋人教版数学九年级上册期中专题复习

专题05 二次函数的实际应用图形问题1.某校九年级数学兴趣小组在社会实践活动中,进行了如下的专题探究;一定长度的铝合金材料,将它设计成外观为长方形的框,在实际使用中,如果竖档越多,窗框承重就越大,如果窗框面积越大,采光效果就越好.小组讨论后,同学们做了以下试验:请根据以上图案回答下列问题:(1)在图案①中,如果铝合金材料总长度(图中所有黑线的长度和)为,当为,窗框的面积是______;(2)在图案②中,如果铝合金材料总长度为,试探究长为多少时,窗框的面积最大,最大为多少?(3)经过不断的试验,他们发现:总长度一定时,竖档越多,窗框的最大面积越小,试验证:当总长还是时,对于图案③的最大面积,图案④不能达到这个面积.2.工匠师傅准备从六边形的铁皮中,裁出一块矩形铁皮制作工件,如图所示.经测量,,与之间的距离为2米,米,米,6m AB 1m ABCD 2m 6m AB ABCD 6m ABCDEF AB DE ∥AB DE 3AB =1AF BC ==,.,,是工匠师傅画出的裁剪虚线.当的长度为多少时,矩形铁皮的面积最大,最大面积是多少?3.某建筑物的窗户如图所示,上半部分是等腰三角形,,,点、、分别是边、、的中点;下半部分四边形是矩形,,制造窗户框的材料总长为16米(图中所有黑线的长度和),设米,米.(1)求与之间的函数关系式,并求出自变量的取值范围;(2)当为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.图形运动问题4.如图(单位:cm ),等腰直角以2cm/s 的速度沿直线l 向正方形移动,直到与重合,当运动时间为x s 时,与正方形重叠部分的面积为y cm 2,下列图象中能反映y 与x 的函数关系的是( )90A B ∠=∠=︒135C F ∠=∠=︒MH H G GN MH MNGH ABC V AB AC =:3:4AF BF =G H F AB AC BC BCDE BE IJ MN CD ∥∥∥BF x =BE y =y x x x EFG V EF BC EFG V ABCD. .. ..如图,一个边长为的菱形,过点作直线沿线段向右平移,直至经过点时停止,在平移的过程中,若菱形在直线部分面积为,则与直线之间的函数图象大致为( )A . . ..的边长为,点O 为正方形的中心,出发沿运动,连接的运动速度为260︒A l AB ⊥AB l y y l 2cm BC 2cm/s....销售利润问题.某公司经销一种绿茶,每千克成本为元,市场调查发现,在一段时间内,销售量(千克)随销售单价x(元/千克)的变化而变化,具体关系如图所示,设这种绿茶在(1)求y与x的函数关系式;(2)如果物价部门规定这种绿茶的销售单价不得高于得2000元的销售利润,销售单价应定为多少元?(3)求销售单价为多少时销售利润最大?最大为多少元?8.某公司生产的某种时令商品每件成本为投球问题水平距离竖直高度(1)根据题意,填空:________________;(1)某运动员第一次发球时,测得水平距离与竖直高度水平距离竖直高度①根据上述数据,求抛物线解析式;增长率问题(m)x 0123(m)y 0 3.567.5=a x /mx 02461112/m y 2.38 2.62 2.7 2.62 1.721.4213.据省统计局公布的数据,合肥市2021年第一季度总值约为2.4千亿元人民币,若我市第三季度总值为千亿元人民币,平均每个季度增长的百分率为,则关于的函数表达式是( )A. B . C . D . 14.某厂家2022年2月份生产口罩产量为180万只,4月份生产口罩的产量为461万只,设从2月份到4月份该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .B .C .D .15.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是,降价后的价格为元,原价为元,则y 与之间的函数关系式为( )A .B .C .D .16.目前,随着新冠病毒毒力减弱,国家对新冠疫情防控的政策更加科学化,人们对新冠病毒的认识更加理性.佩戴口罩可以阻断传播途径,在一定程度上能够有效防止感染新型冠状病毒肺炎.某药品销售店将购进一批A 、B 两种类型口罩进行销售,A 型口罩进价m 元每盒,B 型口罩进价30元每盒,若各购进m 盒,成本为1375元.(1)求A 型口罩的进价为多少元?(2)设两种口罩的售价均为x 元,当A 型口罩售价为30元时,可销售60盒,售价每提高1元,少销售5盒;B 型口罩的销量y (盒)与售价x 之间的关系为;若B 型口罩的销售量不低于A 型口罩的销售量的10倍,该药品销售店如何定价?才能使两种口罩的利润总和最高.17.重庆潼南某一蔬菜种植基地种植的一种蔬菜,它的成本是每千克元,售价是每千克元,年销量为万千克多吃绿色蔬菜有利于身体健康,因而绿色蔬菜倍受欢迎,十分畅销.为了获得更好的销量,保证人民的身体健康,基地准备拿出一定的资金作绿色开发,根据经验,若每年投入绿色开发的资金万元,该种蔬菜的年销量将是原年销量的倍,它们的关系如下表:GDP GDP y GDP x y x ()2.412y x =+()22.41y x =-()22.41y x =+()()2.4 2.41 2.41y x x =++++()21801461x -=()21801461x +=()24611180x -=()24611180x +=x y a x ()12y a x =-()21y a x =-()21y a x =-()21y a x =-3005y x =-2310.X m参考答案:,,米,四边形是平行四边形,又,90A B ∠=∠=︒Q AF BC ∴P 1AF BC ==Q ∴ABCF 90A B ∠=∠=︒Q重叠部分为三角形,面积如图,当时,重叠部分为梯形,面积∴图象为两段二次函数图象,第一段开口向上,第二段开口向下,函数的最大值为纵观各选项,只有C 选项符合.y =510x <≤12y =⨯,图象开口向上的抛物线的一部分;②当时,如图,③当时,如图,故选:.【点睛】此题考查了动点图象问题,涉及到解直角三角形等知识,解题的关键是不同取值范围内,图象和图形的对应关系,进而求解.6.D21332y x x x =⨯=12x <≤()1133132y x =⨯⨯+-=23x <≤()23323322y x =⨯--=-A∴,由题得,,∴,∵,由题得,∴.故选D .【点睛】本题考查了动点问题的函数图象的应用,求出分段函数的解析式是解题的关键.PE AD ⊥cm BQ t =cm AE PE t ==2cm QE AB ==cm BP BQ t ==212s t =(3)根据,即可作答.【详解】(1)解:设y 与x 的函数关系式为:,把,代入解析式得:,解得,∴y 与x 的函数关系式为;(2)根据题意,得;当时,,解得:,,∵这种商品的销售价不得高于90元/千克,∴,∴应将销售价定为70元/千克;(3),∵,∴当销售单价时,销售利润w 的值最大,最大值为2450元.【点睛】本题考查了二次函数的应用,属于常考题型,正确理解题意、得出二次函数的关系式是解题的关键.8.(1)(2)第18天的日销售利润最大为450元(3),1500元【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式,故可利用待定系数法可求解;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围,进而求解即可.()222340120002852450w x x x =-+-=--+()0y kx b k =+≠()50,140()80,80501408080k b k b +=⎧⎨+=⎩2240k b =-⎧⎨=⎩2240y x =-+()()()250502240234012000w x y x x x x =-⋅=--+=-+-2000w =22340120002000x x -+-=170x =2100x =70x =()222340120002852450w x x x =-+-=--+20-<85x =296m x =-+1a =②不能.当时,,该运动员第一次发球能过网,故答案为:不能;(2)判断:没有出界.第二次发球:,令,则,,解得舍,,,该运动员此次发球没有出界.【点睛】本题考查二次函数的应用,解题关键是正确求出函数解析式.13.C【分析】根据平均每个季度增长的百分率为,第二季度季度总值约为元,第三季度总值为元,则函数解析式即可求得.【详解】解:根据题意得:关于的函数表达式是:,故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.14.B【分析】利用4月份该厂家口罩产量月份该厂家口罩产量从2月份到4月份该厂家口罩产量的平均月增长率,即可得出关于x 的一元二次方程,此题得解.【详解】解:根据题意得,故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9x =()20.0294 2.7 2.2 2.24y =--+=<∴20.02(5) 2.88y x =--+0y =20.02(4) 2.880x --+=17(x =-)217x =21718x =<Q ∴GDP x GDP ()2.41x +GDP ()22.41x +y x ()22.41y x =+2=(1⨯+2)()21801461x +=。
人教版九年级上册数学第二十二章二次函数应用题训练(含答案)

人教版九年级上册数学第二十二章二次函数应用题训练1.某品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨0.5元/个,则月销售量将减少5个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?2.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系y=﹣80x+560,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)如果每天获得160元的利润,销售单价为多少元?(2)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?3.某批发商以每件40元的价格购进600件T恤,第一个月以单价60元销售,售出了200件,第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出20件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余T恤清仓销售,清仓时单价为30元,设第二个月单价降低x 元.(1)填表(不需要化简)(2)若批发商希望通过销售这批T恤获利7680元,则第二个月的单价应是多少元?(3)如果批发商希望通过销售这批T恤获利达到了最大值,则第二个月的单价应是多少元?可获利多少元?4.一大型商场经营某种品牌商品,该商品的进价为每件6元,根据市场调查发现,该商品每周的销售量y (件)与售价x (元件)(x 为正整数)之间满足一次函数关系,表格记录的是某三周的有关数据:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于17元/件,若某一周该商品的销售最不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于17元/件时,每销售一件商品便向某慈善机构捐赠m 元(16m ≤≤),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m 的取值范围.5.南浔区某校增设拓展课程之“开心农场”,如图,准备利用现成的一堵“L ”字形的墙面(粗线ABC 表示墙面,已知AB ⊥BC ,AB =3米,BC =1米)和总长为11米的篱笆围建一个“日”字形的小型农场DBEF (细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图1),也可能在线段BA 的延长线上(如图2),点E 在线段BC 的延长线上.(1)当点D 在线段AB 上时,⊥设DF的长为x米,请用含x的代数式表示EF的长;⊥若要求所围成的小型农场DBEF的面积为9平方米,求DF的长;(2)DF的长为多少米时,小型农场DBEF的面积最大?最大面积为多少平方米?6.某经销商销售一种新品种壶瓶枣,这种新品种进价每千克50元(规定每千克销售利润不低于5元且不高于25元),现在以75元/千克的售价卖出,则每周可卖出80千克.该经销商通过对当地市场调查发现:若每千克降价5元,则每周多卖出20千克;因疫情原因,该经销商决定暂时降价销售,设每千克销售价降低x元,每周销售利润为y元.(1)当售价为每千克65元时,每周销售量为千克,利润为元.(2)求y与x之间的函数关系式并直接写出自变量x的取值范围.(3)当销售单价定为多少元时,该经销商每周可获得最大利润?最大利润是多少元?7.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?8.在双十二活动期间,商店将对某商品进行促销活动.已知进价为每件6元,平时以单价10元的价格售出一天可卖100件.根据调查单价每降低1元,每天可多售出50件;设商品单价降低x元(售价不低于进价),这批商品的日利润为y元(利润=售价-成本),请解决以下问题:(1)当商品的销售单价降低多少元时,销售这批商品的日利润最大,最大值为多少?(2)当日利润达到400元时,求x的值.(3)若商店以第(2)问中的方式销售2天后,第三天单价再减a元,当天的销售量不低于前两天总和的70%,求第三天的日利润最大值.9.某商品的进价为每件33元,现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.(1)商场要想平均每星期盈利8500元,每件商品的售价应为多少元?(2)商场要想平均每星期获得最大利润,每件商品的售价应为多少元?10.某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似看成一次函数y=-2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间的函数解析式.(2)当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门的规定,这种电子产品的销售单价不得高于32元,如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本是多少万元?11.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间有如表关系:(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)该商店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为保证捐款后销售该商品每天获得的利润不低于650元,则每天的销售量最少应为多少件?12.成绵苍巴高速正在修建中,某单向通行隧道设计图由抛物线与矩形的三边组成,尺寸如图所示,隧洞限高4米,隧洞道路正中间标有一条实线.(1)水平安置一根限高杆,两端固定在洞门上,求限高杆的最小长度.(2)某卡车若装载一集装箱箱宽3m,车与车箱共高3.8m,此车能否不跨越标线通过隧道(标线宽度不计)?说明理由.13.某超市计划共进货50件饮料,其中A款饮料成本为每件20元;当B款饮料进货10件时,成本为每件48元,且每多进货1件,平均每件B款饮料成本降低2元.为保证饮料x x 件.的多样性,规定A款饮料必须进货至少20件,设进货B款饮料(10)(1)根据信息填表:(2)设总成本为W元,写出W关于x的函数关系式,并写出自变量x的取值范围;(3)为了增加盈利,降低进货成本,该超市如何进货才能使得进货总成本最低,最低成本是多少元.14.如图,在一块正方形ABCD木板上要贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,⊥ABE部分贴B型墙纸,其余部分贴C型墙纸.A型、B型、C型三种墙纸的单价分别为每平方60元、80元、40元.(1)探究1:如果木板边长为2米,FC=1米,则一块木板用墙纸的费用需_____元;(2)探究2:如果木板边长为1米,当FC的长为多少时,一块木板需用墙纸的费用最省?最省是多少元?(3)探究3:设木板的边长为a(a为整数),当正方形EFCG的边长为多少时,墙纸费用最省?15.某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为60元时,可售出300套.应市场变化需上调第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x元,填写表格:(2)若商店预计要在第二个月的销售中获利4000元,则第二个月销售定价每套多少元?(3)若要使第二个月利润达到最大,应定价为多少?此时第二个月的最大利润是多少?16.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y(袋)与销售单价x(元)之间的函数关系式______;所得销售利润w(元)与销售单价x(元)之间的函数关系式______.(2)销售单价定为多少元时,所得销售利润最大,最大利润是多少?17.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)假设每千克涨价x元,商场每天销售这种水果的利润是y元,请写出y关于x的函数解析式;(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?(3)当每千克涨价为多少元时,每天的盈利最多?最多是多少?18.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现:若每箱以50元的价格出售,平均每天销售80箱,价格每提高1元,平均每天少销售2箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?19.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价25元/件时,每天的销售量是250件;销售单价每提高1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价提高x(元)之间的函数关系式.(2)求销售单价提高多少元时,该文具每天的销售利润最大?20.戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.参考答案:1.(1)该品牌头盔销售量的月增长率为20%;(2)该品牌头盔的实际售价应定为50元/个2.(1)如果每天获得160元的利润,销售单价为4元(2)当销售单价定为5元时,每天的利润最大,最大利润是240元3.(1)60﹣x ;200+20x ;600﹣200﹣(200+20x )(2)该T 恤第二个月单价为54或46元,该批T 恤总获利为7680元(3)降价10元,单价为50元,获利8000元4.(1)50012000y x =-+(2)这一周该商场销售这种商品获得的最大利润为54000元,售价为12元(3)36m ≤≤5.(1)⊥(12﹣3x )米;⊥3米(2)饲养场的宽DF 为52米时,饲养场DBEF 的面积最大,最大面积为758平方米 6.(1)120;1800(2)24202000y x x =-++(0≤x ≤20)(3)当销售单价定为72.5元时,该经销商每周可获得最大利润,最大利润是2025元 7.(1)2200y x =-+()3060x ≤≤(2)当销售单价为60元时,销售这种童装每月获得的利润最大,最大为1950元 8.(1)当商品的销售单价降低1元时,销售这批商品的日利润最大,最大值为450元(2)x =2(3)第三天的日利润最大值为1129.(1)50元或58元(2)54元10.(1)221361800z x x =-+-;(2)当销售单价为34元时,厂商每月能够获得最大利润,最大利润是512万元;(3)制造这种产品每月的最低制造成本是648万元.11.(1)y =﹣2x +160(2)20件12.(1)(2)能不跨越标线通过隧道13.(1)50-x ;68-2x(2)W =22x -+48x +1000(10≤x ≤30)(3)当A 款饮料进货20件,B 款饮料进货30件时进货总成本最低,最低成本是640元 14.(1)220;(2)当FC 的长为12m 时,一块木板需用墙纸的费用最省,最省是55元; (3)当正方形EFCG 的边长为12a 时,墙纸费用最省. 15.(1)60x +,30010x -(2)第二个月销售定价每套应为80元(3)要使第二个月利润达到最大,应定价为65元,此时第二个月的最大利润是6250元 16.(1)10500y x =-+;21070010000w x x =-+-(2)销售单价定为35元时,所得销售利润最大,最大利润是2250元17.(1)2202004000y x x =-++(2)每千克应涨价3元(3)当每千克涨价为5元时,每天的盈利最多,最多是4500元18.(1)y =﹣2x +180(2)w =﹣2x 2+260x ﹣7200(3)55元,1050元19.(1)2102001250w x x =-++(2)10元20.(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元。
人教版九年级上册数学 第十二章 二次函数 常考应用题总结

人教版九年级上册数学第十二章二次函数常考应用题总结一、销售问题1、某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为6000元,同时又可使顾客得到实惠,每千克应涨价为多少元?2、商场某商品现在售价为每件600元,每星期可卖出3000件,市场调查反映;如果上调价格,每涨价1元,每星期要少卖出10件,已知商品的进价为每件400元,设每星期的销量为y件,每件商品的售价为x(x≥600)元.(1)求y与x的函数关系;(2)每件商品的售价为多少时,每星期所获总利润最大,最大利润是多少元?3、某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式(利润=售价﹣制造成本);(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?4、将进货单价为 70 元的某种商品按零售价 100 元一个售出时,每天能售出 20 个.若这种商品的零售价在一定范围内每降价 1 元,其日销售量就增加 1 个,为了获得最大利润,则应降价多少元?5、某租赁公司拥有汽车100 辆,当每辆车的月租金为3000 元时,可全部租出.当每辆车的月租金每增加50 元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150 元,未租出的车每辆每月需要维护费50 元.(1)当每辆车的月租金为3 600 元时,能租出辆;(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?6、某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.公司每日租出x辆车时,每辆车的日租金为多少元(用含x的代数式表示);(1)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(2)当每日租出多少辆时,租赁公司的日收益不盈也不亏?7.我区的某公司,用1800万元购得某种产品的生产技术、生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到200元之间为合理.当单价在100元时,销售量为20万件,当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少1万件;设销售单价为x(元),年销售量为y(万件),年获利为W(万元).(年利润=年销售总额﹣生产成本﹣投资成本)(1)直接写出y与x之间的函数关系式;(2)求第一年的年获利W与x之间的函数关系式,并请说明不论销售单价定为多少,该公司投资的第一年肯定是亏损的,最小亏损是少?(3)在使第一年亏损最小的前提下,若该公司希望到第二年的年底,弥补第一年的亏损后,两年的总盈利为1490万元,且使产品销售量最大,销售单价应定为多少元?8. 在创新素质实践行活动中,某位同学参加了超市某种水果的销售调查工作.已知该水果的进价为8元/千克,下面是他们在调查结束后的对话:A:如果以10元/千克的价格销售,那么每天可以售出300千克;B:如果以13元/千克的价格销售,那么每天可获利750元;C:通过调查验证,我发现每天的销售量与销售单价之间存在一次函数关系.(1)设超市每天该水果的销售量是y(kg),销售单价是x(元),写出y与x的关系;(2)在进货成本不超过1200元时,销售单价定为多少元可获得最大利润?最大利润是多少?(3)如果要使该水果每天的利润不低于600元,销售单价应在什么范围内?二、面积问题1、如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB为多少米时,矩形土地ABCD的面积最大.2、用12m长的栅栏围成一个中间被隔断的鸭舍(栅栏占地面积忽略不计).(1)如图1,当AB=________m,BC=________m时,所围成两间鸭舍的面积最大,最大值为________m2;(2)如图2,若现有一面长4m的墙可以利用,其余三方及隔断使用栅栏,所围成两间鸭舍面积和的最大值是多少?3、在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是 2:1.已知镜面玻璃的价格是每平方米 120 元,边框的价格是每米 30 元,另外制作这面镜子还需加工费 45 元.设制作这面镜子的总费用是 y 元,镜子的宽度是 x 米.(1)求 y 与 x 之间的关系式.(2)如果制作这面镜子共花了 195 元,求这面镜子的长和宽.三、图像问题1、如图,△ABC 是一块锐角三角形材料,边 BC=6cm,高 AD=4cm,要把它加工成一个矩形零件,使矩形的一边在 BC 上,其余两个顶点分别在 AB、AC 上,要使矩形 EGFH 的面积最大,求 EG 的长.2、如图是一个横断面为抛物线形状的拱桥,当水面宽 4 米时,拱顶(拱桥洞的最高点)离水面 2 米,水面下降 1 米时,水面的宽度为多少米.3.如图,足球比赛中,一球员从球门正前方10 m 处将球射向球门.当球飞行的水平距离为6 m 时球到达最高点,此时球离地面3 m.若球运动的路线为一条抛物线,球门的高A B 为2.44 m,球能否被射进球门?4、如图,琪琪的父亲在相距2 米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是 2.5 米,绳子自然下垂呈抛物线状,身高 1 米的琪琪距较近的那棵树0.5 米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为多少米?5.跳绳时,绳甩到最高处时的形状为抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB 为6m,到地面的距离A O 和B D 均为0.9 m.身高为1.4 m 的小丽站在距点O的水平距离为1 m 的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为 y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果小华站在O D 之间,且离点O的距离为3m,当绳子甩到最高处时,刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4 m 的小丽站在O D 之间,且离点O的距离为t m,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围:.6、如图:河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB=6m,建立如图所示的坐标系.(1)当水位上升0.5m时,求水面宽度CD为多少米?(结果可保留根号)(2)有一艘游船它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行,若这船宽(最大宽度)2米,从水面到棚顶高度为1.8米.问这艘船能否从桥下洞通过?7.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图①所示;种植花卉的利润与投资量成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?。
人教版九年级上册数学二次函数应用题练习

人教版九年级上册数学二次函数应用题练习1.某机械租赁公司有同一型号的机械设备40套,经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出,在此基础上,当每套设备的月租金提高10元时,这种设备就少租一套,且未租出一套设备每月需要支出费用(维护费、管理费等)20元.(1)设每套设备的月租金为x(元),用含x的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用;(2)租赁公司的月收益能否达到11040元?此时应该出租多少套机械设备?每套月租金是多少元?请简要说明理由;(3)租赁公司的月收益能否在11040元基础上再提高?为什么?2.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?3.如图,从某建筑物9米高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直),如果抛物线的最高点M离墙1米,离地面12米,建立平面直角坐标系,如图.(1)求抛物线的解析式;(2)求水流落地点B离墙的距离OB.4.元旦期间,某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若房价定为200元时,求宾馆每天的利润;(2)房价定为多少时,宾馆每天的利润最大?最大利润是多少?5.学校要围一个矩形花圃, 其一边利用足够长的墙, 另三边用篱笆围成, 由于园艺需要, 还要用一段篱笆将花圃分隔为两个小矩形部分(如图所示), 总共36米的篱笆恰好用完(不考虑损耗).设矩形垂直于墙面的一边AB的长为x米(要求AB<AD), 矩形花圃ABCD 的面积为S平方米.(1)求S与x之间的函数关系式, 并直接写出自变量x的取值范围;(2)要想使矩形花圃ABCD的面积最大, AB边的长应为多少米?6.跳绳时,绳甩到最高处时的形状是抛物线. 正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0. 9米,身高为1. 4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E. 以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为20.9=++.y ax bx(1)求该抛物线的解析式;(2)如果身高为1. 85米的小华也想参加跳绳,问绳子能否顺利从他头顶越过?请说明理由;(3)如果一群身高在1. 4米到1. 7米之间的人站在OD之间,且离点O的距离为t米, 绳子甩到最高处时必须超过..他们的头顶,请结合图像,写出t的取值范围_______________.7.某公司经销一种商品,每件商品的成本为50元,经市场调查发现,在一段时间内,销售量w (件)随销售单价x (元/件)的变化而变化,具体关系式为2240w x =-+,设这种商品在这段时间内的销售利润为y (元),解答如下问题:(1)求y 与x 之间的函数表达式;(2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种商品的销售单价不得高于80元/件,公司想要在这段时间内获得2250元的销售利润,那么销售单价应定为多少?8.为鼓励大学生毕业后自主创业,我市出台了相关政策:由政府协调,本市企业按成本价提供产品给应届毕业生自主销售,成本价与出厂价之间的差价由政府承担.赵某按照相关政策投资销售本市生产的一种新型“儿童玩具枪”.已知这种“儿童玩具枪”的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=−10x+500.(1)赵某在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设赵某获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种“儿童玩具枪”的销售单价不得高于28元.如果赵某想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元9.某商场将进货价30元的书包以40元售出,平均每月能售出600个.市场调查发现:这种书包的售价每上涨1元,其销售量就减少10个.(1)请写出每月销售书包的利润y (元)与每个书包涨价x (元)之间的函数关系;(2)设某月的利润为10000元.10000元是否为每月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并求出此时书包的定价应为多少元.(3)请分析售价在什么范围内商家就可获利.10.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x (元)与该士特产的日销售量y (袋)之间的关系如表:若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?11.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?12.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?13.柑橘“红美人”汁多味美,入口即化,柔软无渣,经过试验,柑橘“红美人”单位面积的产量与单位面积的种植株数构成一种函数关系,每亩种植100株时,平均单株产量为20kg,每亩种植的株树每增加1株,平均单株产量减少0.1kg.(1)求平均单株产量y与每亩种植株数x的函数表达式;(2)今年柑橘“红美人”的市场价为40元/kg,并且每亩的种植成本为3万元,每亩种植多少株时,才能使得利润达到最大?最大为多少元?14.已知京润生物制品厂生产某种产品的年产量不超过800吨,生产该产品每吨所需相关费为10万元,且生产出的产品都能在当年销售完.产品每吨售价y(万元)与年产量x(吨)之间的函数关系如图所示(1)当该产品年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣相关费用)(2)当该产品年产量为多少吨时,该厂能获得当年销售的是大毛利润?最大毛利润多少万元.15.某商店经营一种水产品,成本为每千克40元,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,请回答下列问题:(1)当销售单价为每千克55元时,计算销售量和月利润.(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式.(3)销售单价定为多少元时,获得的利润最多?16.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.17.某电商在购物平台上销售一款小电器,其进价为45元/件,每销售一件需缴纳平台推广费5元,该款小电器每天的销售量y(件)与每件的销售价格x(元)满足函数关系:y=﹣2x+200.为保证市场稳定,供货商规定销售价格不得低于75元/件.(1)写出每天的销售利润w(元)与销售价格x(元)的函数关系式(不必写出x的取值范围);(2)每件小电器的销售价格定为多少元时,才能使该款小电器每天获得的利润是1200元?138.心理学家发现,在一定时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y值越大,表示接受能力越强.(1)当x在什么范围内时,学生的接受能力逐步增强?在什么范围内学生的接受能力逐步减弱?(2)若用10分钟提出概念,学生的接受能力y的值是多少?(3)如果用8分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.19.某商场经营某种品牌的计算器,购进时的单价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是600个,而销售单价每上涨1元,就会少售出10个.(1)不妨设该种品牌计算器的销售单价为x元(x>30),请你分别用x的代数式来表示销售量y个和销售该品牌计算器获得利润w元,并把结果填写在表格中:(2)在第(1)问的条件下,若计算器厂规定该品牌计算器销售单价不低于35元,且商场要完成不少于500个的销售任务,求:商场销售该品牌计算器获得最大利润是多少?20.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由。
人教版九年级上册 第二十二章 二次函数应用题 练习(含答案)

二次函数应用题一、利用二次函数解决利润最大化问题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. (1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?解:(1) (130-100)×80=2400(元)(2)设应将售价定为x 元,则销售利润 130(100)(8020)5xy x -=-+⨯ 24100060000x x =-+-24(125)2500x =--+.当125x =时,y 有最大值2500. ∴应将售价定为125元,最大销售利润是2500元. 2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 解:(1)(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭,即2224320025y x x =-++. (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. 得12100200x x ==,.要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. (3)对于2224320025y x x =-++,当241502225x =-=⎛⎫⨯- ⎪⎝⎭时,150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.3、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 5.831 5.916 6.083 6.164) 解:(1)设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得3.954.3.k b k b +=⎧⎨+=⎩,解得0.13.8.k b =⎧⎨=⎩,所以,0.1 3.8p x =+. 设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+.化简,得25709800w x x =-++,所以,25(7)10125w x =--+.当7x =时,w 取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元. (2)去年12月份每台的售价为501226002000-⨯+=(元), 去年12月份的销售量为0.112 3.85⨯+=(万台),根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=. 令%m t =,原方程可化为27.514 5.30t t -+=.t ∴==.10.528t ∴≈,2 1.339t ≈(舍去) 答:m 的值约为52.8.4、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围. 解:(1)根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,.所求一次函数的表达式为120y x =-+.(2)(60)(120)W x x =--+ 21807200x x =-+- 2(90)900x =--+,抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤,∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤.5、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
人教版九年级上册数学第二十二章二次函数综合应用题综合训练

人教版九年级上册数学第二十二章二次函数综合应用题综合训练1.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后利润分别为W1,W2(单位:元).①求W1,W2关于x的函数关系式;①当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少元?2.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg.设公司销售板栗的日获利为w(元).(1)请求出日销售量y与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w不低于42000元?3.商场某种商品平均每天可销售20件,每件可获利40元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)每件商品降价多少元时,商场日销售额可达到1200元?(2)若商场平均每天赢利最多,应降价多少元?获得的最大利润为多少?4.“水幕电影”的工作原理是把影像打在抛物线状的水幕上,通过光学原理折射出图象,水幕是由若干个水嘴喷出的水柱组成的,如图所示,水柱的最高点为M ,2m AB =,10m BM =,水嘴高6m AD =,以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴建立平面直角坐标系,求出图中抛物线的表达式.5.一小球M 从斜坡OA 上的点O 处抛出,球的抛出路线是抛物线的一部分,建立如图所示的平面直角坐标系,斜坡可以用一次函数12y x =刻画.若小球到达最高点的坐标为(4,8).(1)求抛物线的函数解析式(不写自变量x 的取值范围);(2)小球在斜坡上的落点A 的垂直高度为________米;(3)若要在斜坡OA 上的点B 处竖直立一个高4米的广告牌,点B 的横坐标为2,请判断小球M 能否飞过这个广告牌?通过计算说明理由;(4)求小球M 在飞行的过程中离斜坡OA 的最大高度.6.如图,有长为30m 的篱笆,现一面利用墙(墙的最大可用长度a 为9m )围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB 为m x ,面积为2m S .(1)求S 与x 的函数关系式,并写出x 的取值范围;(2)如果围成花圃的面积为263m ,那么AB 应确定多长?7.“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”形成的一种生机勃勃的销售方式.农村电商小李在某电商平台上直播销售一种农产品,每件农产品的成本为40元,每销售一件农产品,需向电商平台缴纳推广费2元.物价部门规定,该农产品的销售单价不高于成本价的2倍,经市场调研发现,每月的销售量y (件)与销售单价x (元)满足如图所示的一次函数关系.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)当农产品的销售单价定为多少元时,每月的销售利润最大?最大利润是多少?。
人教版九年级上册二次函数与实际应用题------- 销售利润问题

二次函数与实际应用题------- 销售利润问题知识点:销售利润问题中常出现的量有:售价、标价、进价、销量、利润、利润率、折扣等。
涉及的等量关系有:售价=折扣数×10%×标价,利润率=进价售价-进价进价利润=,总利润=(销售单价-进货单价)×销售量。
1.湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做做优做响湘莲等特色农产品品牌。
小亮调查了一家湘潭特产店A ,B 两种湘莲礼盒一个月的销售情况,A 种湘莲礼盒进价72元/盒,售价120元/盒,B 种湘莲礼盒进价40元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元。
(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调查发现,A 种湘莲礼盒售价每降3元可多卖1盒。
若B 种湘莲礼盒的售价和销量不娈,当A 种湘莲礼盒降价多少元/盒时,这两种湘莲盒平均每天的总利润最大,最大是多少元?2.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y 本与每本纪念册的售价x 元之间满足一次函数关系:当销售单价为22元时,销售量为35本;当销售单价为24元时,销售量为32本。
(1)请直接写出y 与x 的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设文具店每周销售这种纪念册所获得的利润为W 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?利润是多少?3.某超市销售一种文具,进价为5元/件。
售价为6元/件时,当天的销售量为100件。
在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件。
设当天销售单价统一为x元/件(x≥6,且x是按90.5元的倍数上涨),当天销售利润为y元。
(1)求y与x的函数关系式(不要求写出自变量的取值范围)(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润。
人教版九年级上册《二次函数实际应用》训练题

人教版九年级上册《二次函数实际应用》训练题限时练习一:30分钟1.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.2.如图,一块矩形田地长100m,宽80m,现计划在田地中修2条互相垂直且宽度为x(m)的小路,剩余面积种植庄稼,设剩余面积为y(m2),求y关于x的函数表达式,并写出自变量的取值范围.3.某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:①每个零件的成本价为40元;②若订购量在100个以内,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;③实际出厂单价不能低于51元.根据以上信息,解答下列问题:(1)当一次订购量为个时,零件的实际出厂单价降为51元.(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).4.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为S.求S与x之间的函数表达式,并求自变量x的取值范围.5.如图,在靠墙(墙长为20m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为50m,设鸡场垂直于墙的一边长x(m),求鸡场的面积y(m2)与x(m)的函数关系式,并求自变量的取值范围.限时练习二:30分钟6.某厂要制造能装250mL(1mL=1cm3)饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是0.02cm,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm 的易拉罐用铝量是y cm3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y与x间的函数关系式.7.如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ的面积S的函数关系式,求出t的取值范围.8.大闸蟹上市,某水厂批发商批发阳澄湖大闸蟹2000只,进价为每只70元,他先计划售价定为每只200元,经市场调查发现,不降价每天销售50只,若每只降10元,则每天的销售只数将增加5只,每只只能降10元的整数倍,还剩下的大闸蟹每天的保存费用为10元(不计只数),因大闸蟹的保存时间只有20天,过期的立即一次性全部处理掉,每只处理价为30元,设这2000只大闸蟹每只售价定为x元(x≥100).(1)用x的代数式表示每天销售只数;(2)用x的代数式表示所获得的利润.9.一条隧道的横截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长为2.5米.如果隧道下部的宽度大于5米但不超过10米,求隧道横截面积S(平方米)关于上部半圆半径r(米)的函数解析式及函数的定义域.10.如图1,有一个抛物线的拱形隧道,隧道的最大高度为6m,跨度为20m,将抛物线放在图2所给的直角坐标系中,求抛物线的解析式.参考答案1.解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.2.解:由题意可得:y=(100﹣x)(80﹣x)=﹣x2﹣180x+8000(0<x<80)3.解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x个,则x=100+=550 因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.故答案为:550;(2)当0<x≤100时,P=60当100<x<550时,P=60﹣0.02(x﹣100)=62﹣当x≥550时,P=51所以P=;(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则L=(P﹣40)x=当x=500时,L=22×500﹣=6000(元);当x=1000时,L=(51﹣40)×1000=11000(元),因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.4.解:∵AB=xm,∴BC=(28﹣x)m,S=AB•BC=x(28﹣x)=﹣x2+28x,∵篱笆的长为28m,∴0<x<28,即S=﹣x2+28x(0<x<28).5.解:由题意可得:y=x(50﹣2x),∵墙长为20m,∴50﹣2x≤20,解得:x≥15,故自变量的取值范围是:15≤x<25.6.解:∵底面半径是x cm,∴底面周长为2πx,底面积为πx2,∵易拉罐的体积为250mL,∴高为,∴侧面积为2πx×=,∴y=πx2×0.02+πx2×0.02×3+×0.02=x2+.7.解:∵PB=6﹣t,BE+EQ=6+t,∴S=PB•BQ=PB•(BE+EQ)=(6﹣t)(6+t)=﹣t2+18,∴S=﹣t2+18(0≤t<6).8.解:(1)由题意可得:设这2000只大闸蟹每只售价定为x元,则每天销售只数为:50+5×=150﹣;(2)所获得的利润为:(x﹣70)×(150﹣)×20﹣200﹣(70﹣30)[2000﹣(150﹣)×20]=﹣10x2+3300x﹣170200.9.解:半圆的半径为r,矩形的另一边长为2r,则:隧道截面的面积S=πr2+2r×2.5,即S=πr2+5r;∵5<2r≤10,∴2.5<r≤5.10.解:设抛物线解析式为:y=ax2+6,将(10,0)代入得出:0=100a+6,解得:a=﹣0.06.故抛物线解析式为:y=﹣0.06x2+6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的??
[???? ]
A.第8秒????
B.第10秒??
C.??第12秒????
D.第15秒
二、填空题
13.把一根长为100 cm的铁丝剪成两段,分别弯成两个正方形,设其中一段长为xcm,两个正方形的面积的和为S cm2,则S与x的函数关系式是(???????),自变量x的取值范围是(????? ).
16.在距离地面2m高的某处把一物体以初速度vo(m/s)竖直向上抛出,在不计空气阻力的情况下,其 上升高度s(m)与抛出时间t(s)满足: (其中g是常数,通常取10m/s),若v0=10 m/s,则该物体在运动过程中最高点距离地面(???? )m
三、计算题
17.求下列函数的最大值或最小值.
(l) ;
19.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.?
?(1)写出商场卖这种商品每天的销售利润y与每件的销售价x之间的函数关系式.
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?能力提升
≥ 且m≠0
C.m=
m≠0
9.某种产品的年产量不超过1 000吨,该产品的年产量(吨)与费用(万元)之间函数的图象是顶点在原点的抛物线的一部分,如图①所示;该产品的年销售量(吨)与销售单价(万元/吨)之间的函数图象是线段,如图②所示,若生产出的产品都能在当年销售完,则年产量是(?? )吨时,所获毛利润最大.(毛利润=销售额-费用)??
[???? ]
A.72 m??
B.36 m
C.36 m??
D.18 m
6.童装专卖店销售一种童装,若这种童装每天获利y(元)与销售单价x(元)满足关系y=-x2+50x-500,则要想获得最大利润,销售单价为
[???? ]
A.25元????
B.20元??
C.30元????
D.40元
7.中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从米高(球门距横梁底侧高)入网.若足球运行的路线是抛物线y=ax2+bx+c所示,则下列结论正确的是
①????????????????????????????????????????????????????? ②
[???? ]
A.1 000????
B.750??
C.?? 725????
D.500????????
10.某大学的校门是一抛物线形水泥建筑物,如图所示,大门的地面宽度为8m,两侧距地面4m高处各有一个挂校名匾用的铁环,两铁环的水平距离为6m,则校门的高为(精确到,水泥建筑物的厚度忽略不计)
[???? ]
A.过点(3,0)?
B.顶点是(2,-1)?
C.在x轴上截得的线段的长是3??
D.与y轴的交点是(0,3)
3.某幢建筑物,从10 m高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直),如图,如果抛物线的最高点M离墙1m,离地面 m,则水流落地点B离墙的距离OB是???
20.如图所示,一边靠学校院墙,其他三边用40 m长的篱笆围成一个矩形花圃,设矩形ABCD的边AB =x m,面积为Sm2
(1)写出S与x之间的函数关系式,并求当S=200 m2时,x的值;
A.2m????
B.3m??
C .4 m????
D.5 m
4.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是 ,则该运动员此次掷铅球的成绩是
[???? ]
A.6 m????
B.8m????
C.? 10 m??
D.12 m
5.某人乘雪橇沿坡度为1: 的斜坡笔直滑下,滑下的距离S(m)与时间t(s)间的关系为S=l0t+2t2,若滑到坡底的时间为4s,则此人下降的高度为????
①a< ;② <a<0;③ a-b+c>0;④ 0<b<-12a
[???? ]
A.①③????????????????????
B.①④
C.②③????????????????????
D.②④
8.关于x的二次函数y=2mx2+(8m+1)x+8m的图象与x轴有交点,则m的取值范围是??
[???? ]
A.m<
[???? ]
A.m????
B.??
C.m????
D.m
11.图(1)是一个横断面为抛物线形状的拱桥,当水面在如图(1)时,拱顶(拱桥洞的最高点)离水面2m,水面宽4 m.如图(2)建立平面直角坐标系,则抛物线的关系式是????
[???? ]
?A.? y= - 2x2??
B.y=2x2??
C.? ?y=-2 x2??????
14.如图所示,是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下,建立如图所示的坐标系,如果喷头所在处A(0,,水流路线最高处B(1,,则该抛物线的表达式为(???? ).如果不考虑其他因素,那么水池的半径至少要(???? ),才能使喷出的水流不致落到池外.
15.如图,一桥拱呈抛物线状,桥的最大高度是16 m,跨度是40 m,在线段AB上离中心M处5m的地方,桥的高度是(???? )m .
(2)y=3(x+l) (x-2).
四、解答题
18.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6 m.??
(1)求抛物线的解析式;
?(2)如果该隧道内设双行道,现有一辆货运卡车高为m,宽为m,这辆货运卡车能否通过该隧、单选题
1.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为?
[???? ]
?A.28米?
?B.48米
?C.? 68米??
?D.88米
2.由于被墨水污染,一道数学题仅能见到如下文字:y=ax2+bx+c的图象过点(1,0)……求证这个二次函数的图象关于直线x=2对称.,题中的二次函数确定具有的性质是???