低压配电并联电容器补偿回路所串电抗器的合理选择

低压配电并联电容器补偿回路所串电抗器的合理选择
低压配电并联电容器补偿回路所串电抗器的合理选择

低压配电并联电容器补偿回路所串电抗器的合理选择

一、前言

在笔者所接触的低压配电施工图中,发现施工图中有一个共性,那就是配电变压器低压侧母线上均接入无功补偿电容器柜。但令人费解的是,所串电抗器无任何规格要求,无技术参数的注明,只是在图中画了一个电抗器的符号而已。而所标电容器的容量,也只是电容器铭牌容量而已,实际运行时,最大能补偿多少无功功率,也不得而知。

应引起注意的是,电抗器与电容器不能随意组合,它要根据所处低压电网负荷情况,变压器容量,用电设备的性质,所产生谐波的种类及各次谐波含量,应要进行谐波测量后,才能对症下药,决定电抗器如何选择。但往往是低压配电与电容补偿同期进行,根本无法先进行谐波测量,然后进行电抗器的选择。退一步说,即使电网投入运行,进行谐波测量,但用电设备是变动的,电网结构也是变化的,造成谐波的次数及大小有其随意性,复杂性。因此正确选用电容器所用的串联电抗器也成为疑难问题,这无疑是一个比较复杂的系统工程,不是随便一个电抗器的符号或口头说明要加电抗器那么简单了。不得随意配合,否则适得其反,造成谐波放大,严重时会引发谐振,危及电容器及系统安全,而且浪费了投资。有鉴于此,笔者对如何正确选用电容器串联电抗器的问题,将本人研究的一点心得,撰写成文,以候教于高明。

二、电力系统谐波分析及谐波危害

电力系统产生谐波的原因主要是用电设备的非线性特点。所谓非线性,即所施电压与其通过的电流非线性关系。例如变压器的励磁回路,当变压器的铁芯过饱和时,励磁曲线是非正弦的。当电压为正弦波时,励磁电流为非正弦波,即尖顶波,它含有各次谐波。非线性负载的还有各种整流装置,电力机车的整流设备,电弧炼钢炉,EPS,UPS及各种逆变器等。目前办公室里电子设备很多,这里存在开关电源及整流装置,其电流成分也包含有各次谐波,另外办公场所日光灯及车间内各种照明用的气体放电灯,它们也是谐波电流的制造者。日光灯铁芯镇流器及过电压运行的电机也是谐波制造者。

目前所用的配电变压器高压侧多接成“Δ”型,这样三次谐波因相序相同,即零序的感应的三次谐波电流在三角形绕组内环流,不易窜入电网。磁路过饱和而产生的谐波类似六脉动整流回路,主要产生6K±1次谐波,多为5次,7次,11次等。据有关人员实测表明,电力机车及电弧炉供电系统3次谐波较多,而办公楼及普通工厂车间5次与7次谐波为主。由于低压配电不涉及电弧炉及电力机车,这样矛盾的焦点集中于5次谐波治理抑制上了。

谐波造成的设备过载及线路损耗增加,降低了输电能力,高次谐波电流又引起系统电压畸变,从而影响其它设备的正常工作。

对于低压电网的补偿用电力电容器,危害更为严重。深圳某电子厂,由于低压电网谐波,接入的并联补偿电容器,运行不到一周,皆鼓肚损害,其接头及投切用接触器接线端子烧蚀熔化冒火,电气值班人员只得采用电气用手提灭火设备进行灭火,然后退出运行。电容器生产厂家亲赴现场用谐波测试仪实测,结果证实是谐波严重造成,而非电容器质量所致。

三、串联电抗器的作用

低压电网并联电容器补偿回路串联电抗器的作用

电抗器作用为:

1) 限制电容器投入时合闸涌流

当电容器投入的瞬间,由于电容器无充电,无反向电势,合闸瞬间,如同短路,只有线路的阻抗起限制电流作用,因此瞬时电流可达额定电流的百

倍以上,不过时间短促,仅持续毫秒或微秒级。由于接入电网的电容器为多

组组合,当投入或切除任一组电容器时,其它运行的电容器会向投切电容器

进行充放电,这也是俗称的电容器组背对背效应,增加了电容器的投切困难。

尽管目前采用电容器投切专用接触器,此接触器带有操作时接入的过渡电阻

进行限流,但还是经常损坏接触器,电容器柜内投切用接触器可谓十足的易

损元件了。

2) 防止电网谐波放大及谐振的发生

3) 限制操作过电压

4) 限制短路电流

当电容器发生短路故障时,能限制系统向电容器短路点注入短路电流。当系统其它地方发生短路或电抗器电源侧发生短路时,能限制电容器向系统的反馈电

流。

5) 抑制流向电容器的高次谐波,使之不使电容器过电流损坏。

众所周知,谐波次数越高,电容器呈现的阻抗越低,这样造成大量谐波电流涌入。若不采取措施,如对电网采取谐波控制或串联电抗器,电容器很

难胜无功补偿作用,很快由于涌波涌入造成过流而损坏。

6) 对某次谐波来说,串联电抗器与电容器的组合,只要合理搭配,可起到滤除

部分某次谐波的作用。

需要指出的,滤除某次部分谐波,只是补偿回路的一点附加作用,绝不能作为滤波器使用,否则,则影响了无功补偿的初衷。

有人会疑问,不是防止电容器过流,要限制电容器谐波涌入吗,怎么又允许某次谐波容易涌入呢?问题很容易解答,电容器允许使用在电流达1.35

倍额定电流下长期工作,可充分挖掘这部分潜力,让它兼有一点滤波的作用。

另外,电抗器与电容器要合理搭配,不得使电抗器与电容器发生串联谐波,

使之回路电流达到短路电流水平而损坏元件的设备,也不能使电抗器与电容

器串联回路呈容性,以便防止回路与系统感抗发生并联谐振而使谐波被放大

污染系统。

四、串联电抗器的正确选择

要正确选用电抗器,首先要了解所在电网谐波情况,或经测量(这对新建单位是不现实的)或根据电网结构,用电设备情况,预测电网谐波情况,然后再决定电抗器的参数。电抗器选择原则是,若想兼有滤除某次谐波作用,应使电抗与电容接近串联谐振,

而达到谐振的条件是电抗与容抗相等,即nX

L =X

c

/n ,X

L

=X

c

/n2 式中,n为谐波次数,X

L

·X

c

为电抗器与电容器工频电抗。

1. 如果电网清洁,各高次谐波含量很少,可选择电抗率K为0.1%-1%。这样,电抗

体积小,成本低,但能限制合闸涌流为额定电流的10倍以内。

2. 如果电网3次谐波突出,除限制涌流外,尚能滤除部分3次谐波,以便清洁电网。

选择的原则是,即使电容电抗接近谐振,但不能达到谐振。

如果达到谐振,对3次谐波而言,

3X

L =Xc/3, X

L

=Xc/9=0.111Xc

对于5次谐波X

L

=Xc/25=0.04Xc

对于7次谐波X

L

=Xc/49=0.0204Xc

对于9次谐波X

L

=Xc/81=0.012Xc

对于11次谐波X

L

=Xc/121=0.0083Xc

上述各式中,X

L

及Xc为基波(工频)情况下,电抗器及电容器的阻抗。满足上述条件是电抗与电容发生谐振的条件,选用时以不得发生谐振为前提,但不使谐波被放大,应使回路呈感性。

现引入一个参数,即电抗率K,它是串联回路的电抗器的电抗与电容器的容抗之比的

百分数,即K=X

L /X

C

%

由此可见,发生串联谐振时,分别对3次,5次,7次,9次及11次谐波,电抗率分别为11.1%,4%,2.04%,1.2%及0.83%。

但选择电抗器电抗率时,不但要接近谐振频率,还要使回路呈感性。这样一来,若电网3次谐波突出,选电抗率K为12%-13%。若5次谐波突出,选K为4.5%-7%。若5次与3次均突出,选取电容器组分别串电抗率K为4.5%-7%及12%-13%的电抗器。

至于电抗器的容量,它等于所串电容器容量乘以电抗率,即Q

L =KQ

C

。一般说来,只要

给出所接电容器容量及额定电压,及要求的电抗器电抗率。至于电抗器额定绝缘电压、容量及额定电流等参数,由电抗器制造厂自行合理地解决了,不必要求用户提供其它要求参数。

五、串入电抗器后,电容器端电压及补偿容量的变化

由于系统电压不变,而电抗器压降又与电容器上压降刚好相位相反,这样必然造成电容器端电压升高。由于电抗率是电抗器电抗值与电容器容抗值之比的百分数,电抗器上的压降必然为电容器上的压降乘以电抗率了。

即Uc-U

L =U

N

(Uc,U

L

,U

N

分别为电容器,电抗器及系统电压)

Uc-kUc=U

N

Uc(1-k)=U

N

Uc=U

N

/(1-k)

由此可见,串电抗后,电容器电压升高非1+k倍,而是1/(1-k),这样,串入电抗后,电容器端电压升高,其升高倍数如表所示。

弱。由于串电抗造成电容器端电压升高,必须采用适合此电压的电容器,即选用较高电压等级的电容器。这样组合下来,实际电压又不一定正巧与所选电容器额定电压一级,一般都小于电容器额定电压。由于电容器在小于额定电压下运行,实际补偿容量又低于电容器铭牌所标容量,真是一环扣一环,是一个比较复杂的系统工程了。为说明上述问题,现举例如下:

某项目,系统电压U

=400v.每回路补偿电容器为30Kvar,串入电抗率K=7%,求:电

N

容器运行时实际电压,如何选择电容器额定电压及实际补偿容量。计算步骤为:

/(1-k)=400/(1-7%)=430v

1) 电容器实际承受电压Uc=U

N

选择电容器额定电压为480v(选440v,450v的也能满足要求),电抗

=430v-400v=30v,或UL=kUc=7%*430=30v。

器实际压降为U

L

2) 额定电压480v电容器,实际承受电压为430v,实际生产的无功功率为额定

无功的(430/480)2=0.8025倍。自身发出的无功Q=30*0.8025=24.075(Kvar)

3) 电抗器吸收电容器发出的无功功率的7%

4) 电容器实际向电网发出额定功率的0.8025*(1-7%)=0.7463倍,即

30*0.7463=22.39(Kvar)

5) 电容器串入电抗器后实际电流

如上述的例子,30Kvar电容器,额定电压480v,额定电流为

=30/(*0.48)=36.1A.实际运行时,承受电压为430v。

I

N

实际电流为I=I

*(430/480)=36.1*(430/480)=32.3A

N

或者I=Q/(*0.43)=24.075/(*0.43)=32.3A

这样,选择回路导体及投切元件只能按32.3A选择,不能按系统电压400V,

电容器30Kvar求得。对于额定电压400V,容量30Kvar的电容器,其电流

都为I=30/(*0.4)=43.3A.

通过上述事例,可以看出串电抗器并联补偿电容器回路,各参数要通过计算求得。到底补偿多少,有没有达到设计要求,要有明确的交代。目前设

计单位只要求电抗器,其它不再过问,即电气成套厂更加随意,为节约投资,

电抗率选用电抗率宁低勿高,宁选铁芯电抗器而不选空芯电抗器。电容器柜

铭牌上的补偿容量按各电容器铭牌容量之和,这样一样来和实际情况差别太

远了。

六、严防补偿电容器对谐波放大

接入母线的无功补偿用电容器,电容电抗系统能与电力系统组成并联谐振回路。如果某次谐波电流频率,电容电抗会流过很大的谐振电流,可达原有电网谐波电流数十倍,电容器端电压也产生很高过电压,此种情况称为谐波放大。

当系统存在谐波时,并联补偿用电容器支路串入电抗器,而系统若忽略电阻,则安全呈感性,可用等效电感表示。等效电路图见图一。

图一. 等效阻抗图

图中I

n 为系统某次谐波电流,也看作由一恒流源发出,L

2

为系统等值电感,L

1

为电

容器所串电抗器电感,C为补偿电容的电容。流入系统的谐波电流为I

ns

,流入电容器的

谐波电流为I

ns

,由此可得

I ns =I

n

*(jωL

1

+1/jωc)/(jωL

1

+1/jωc+jωL

2

)

=I

n /﹛1-[ωL

2

/﹙1/ωc-ωL

1

﹚]﹜

如果ωL

2/(1/ωc-ωL

1

)=1时,I

ns

→∞

即1/ωc-ωL

1=ωL

2

时,进入系统的某次谐波被放大至无穷大。

L

2

是系统参数,不能人为变动,为避免谐波被放大,所选电容器与所串电抗器参数

应合理搭配。从上式也可看出,只要1/ωc-ωL

1

﹤0,即电容器串联电抗器回路只要对某次谐波呈感性,此谐波就不会被放大进入系统,流入系统的谐波小于原有系统存在的谐波,也就是说,串联电抗器回路有对某次谐波的吸收功能。当然,不希望各次谐波均涌入电容器,把电感电容回路当成滤波器,否则电容器容易烧坏,从而丧失无功补偿功能,不要忘记,此时电容器主要承担系统无功补偿功能。

并联电容器无功补偿方案

课程设计 并联电容器无功补偿方案设计 指导老师:江宁强 1010190456 尹兆京

目录 1绪论 (2) 1.1引言 (2) 1.2无功补偿的提出 (3) 1.3本文所做的工作 (3) 2无功补偿的认识 (3) 2.1无功补偿装置 (3) 2.2无功补偿方式 (4) 2.3无功补偿装置的选择 (4) 2.4投切开关的选取 (4) 2.5无功补偿的意义 (5) 3电容器无功补偿方式 (5) 3.1串联无功补偿 (5) 3.2并联无功补偿 (6) 3.3确定电容器补偿容量 (6) 4案例分析 (6) 4.1利用并联电容器进行无功功率补偿,对变电站调压 (6) 4.2利用串联电容器,改变线路参数进行调压 (13) 4.3利用并联电容器进行无功功率补偿,提高功率因素 (15) 5总结 (21) 1绪论 1.1引言 随着现代科学技术的发展和国民经济的增长,电力系统发展迅猛,负荷日益增多,供电容量扩大,出现了大规模的联合电力系统。用电负荷的增加,必然要

求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率; 降低有功功率的输出; 影响变电、输电的供电能力; 降低有功功率的容量; 增加电力系统的电能损耗; 增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。 1.2无功补偿的提出 电网输出的功率包括两部分:一是有功功率;二是无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 1.3本文所做的工作 主要对变电站并联电容器无功补偿作了简单的分析计算,提出了目前在变电站无功补偿实际应用中计算总容量与分组的方法,本文主要作了以下几个方面的工作: 对无功补偿作了简单的介绍,尤其是电容器无功补偿,选取了相关的案例进行了简单的计算和分析。 2无功补偿的认识 2.1无功补偿装置 变电站中传统的无功补偿装置主要是调相机和静电电容器。随着电力电子技术的发展及其在电力系统中的应用,交流无触点开关SCR、GTR、GTO等相继出现,将其作为投切开关无功补偿都可以在一个周波内完成,而且可以进行单相调节。如今所指的静止无功补偿装置一般专指使用晶闸管投切的无功补偿设备,主要有以下三大类型: 1、具有饱和电抗器的静止无功补偿装置; 2、晶闸管控制电抗器、晶闸管投切电容器,这两种装置统称为SVC 3、采用自换相变流技术的静止无功补偿装置——高级静止无功发生器。

CKSC-12-6-6补偿柜专用电抗器

高压电抗器|CKSC-12/6-6%|补偿柜专用电抗器 C KSC系列电抗器是用于高压无功补偿柜里面的重要元件之一 我们共同认识一下高压电抗器的作用 高压用于 3.3KV,6KV 10KV 可以说高压10000V 都称为意义上的高压里面通过的是交流,与补偿电容器串联,对稳态性谐波(5、7、11、13次)构成串联谐振。通常有5~6%电抗器,属于高感值电抗器。 高压电抗器用途是什么该产品与并联电容器组相串联,具有补偿电网无功功率、提高功率因数、抑制谐波电流、限制合闸涌流等功能,适用于电力系统、电力化铁道、冶金、石化等较高防火要求、电磁干扰要求和安装空间有限的城网变电站、地下变电站和微机控制变电站等场所 CKSC-12/6-6% 全称是6KV三相高压环氧浇注电抗器 电抗器容量是12KVAR 高压指的是6KV系统 电容柜补偿的容量是200KVAR CKSC中的S代表的是三相电抗器如果是D 代表单相电抗器6指的是电抗率,常用的电抗率有1% 6% 7% 12% 14%等

壹,以下是我公司CKSC-12/6-6%规格参数 型式串联电抗电抗率6% 容量12Kvar联结- 电压6kV电流17.5A 相数三相频率50Hz 冷却方式自冷耐压42000V 产地上海品牌昌日 贰,CKSC-12/6-6%电抗器外形示意图 参,CKSC-12/6-6% 全称是10KV三相高压环氧浇注电抗器使用场合

补偿电网无功功率、提高功率因数、抑制谐波电流、限制合闸涌流等功能,适用于电力系统、电力化铁道、冶金、石化等较高防火要求、电磁干扰要求和安装空间有限的城网变电站、地下变电站和微机控制变电站等场所 肆,CKSC-12/6-6%型号意义 伍,CKSC-12/6-6% 全称是10KV三相高压环氧浇注电抗器使用环境特点 1.眀拔高度不超过2000米。 2.运行环境温度-25℃~+45℃,相对湿度不超过90%。 3.栀围无有害气体,无易燃易爆物品。

如何选择熔断器

(1)熔断器的安秒特性 熔断器的动作是靠熔体的熔断来实现的,当电流较大时,熔体熔断所需的时间就较短。而电流较小时,熔体熔断所需用的时间就较长,甚至不会熔断。因此对熔体来说,其动作电流和动作时间特性即熔断器的安秒特性,为反时限特性,如图所示。 图熔断器的安秒特性 每一熔体都有一最小熔化电流。相应于不同的温度,最小熔化电流也不同。虽然该电流受外界环境的影响,但在实际应用中可以不加考虑。一般定义熔体的最小熔断电流与熔体的额定电流之比为最小熔化系数,常用熔体的熔化系数大于1.25,也就是说额定电流为10A的熔体在电流12.5A以下时不会熔断。熔断电流与熔断时间之间的关系如表1-2所示。 从这里可以看出,熔断器只能起到短路保护作用,不能起过载保护作用。如确需在过载保护中使用,必须降低其使用的额定电流,如8A的熔体用于10A的电路中,作短路保护兼作过载保护用,但此时的过载保护特性并不理想。 表1-2熔断电流与熔断时间之间的关系 (2)熔断器的选择 主要依据负载的保护特性和短路电流的大小选择熔断器的类型。对于容量小的电动机和照明支线,常采用熔断器作为过载及短路保护,因而希望熔体的熔化系数适当小些。通常选用铅锡合金熔体的RQA系列熔断器。对于较大容量的电动机和照明干线,则应着重考虑短路保护和分断能力。通常选用具有较高分断能力的RM10和RL1系列的熔断器;当短路电流很大时,宜采用具有限流作用的RT0和RTl2系列的熔断器。 熔体的额定电流可按以下方法选择: 1)保护无起动过程的平稳负载如照明线路、电阻、电炉等时,熔体额定电流略大于或等于负荷电路中的额定电流。 2)保护单台长期工作的电机熔体电流可按最大起动电流选取,也可按下式选取: IRN ≥(1.5~2.5)IN 式中IRN--熔体额定电流;IN--电动机额定电流。如果电动机频繁起动,式中系数可适当加大至3~3.5,具体应根据实际情况而定。 3)保护多台长期工作的电机(供电干线) IRN ≥(1.5~2.5)IN max+ΣIN IN max-容量最大单台电机的额定电流。ΣIN其余.电动机额定电流之和。 (3)熔断器的级间配合 为防止发生越级熔断、扩大事故范围,上、下级(即供电干、支线)线路的熔断器间应有良好配合。选用时,应使上级(供电干线)熔断器的熔体额定电流比下级(供电支线)的大1~2个级差。 常用的熔断器有管式熔断器R1系列、螺旋式熔断器RLl系列、填料封闭式熔断器RT0系列

熔断器种类及选择

对熔断器的选择要求是: 在电气设备正常运行时,熔断器不应熔断;在出现短路时,应立即熔断;在电流发生正常变动(如电动机起动过程)时,熔断器不应熔断;在用电设备持续过载时,应延时熔断。对熔断器的选用主要包括类型选择和熔体额定电流的确定。 选择熔断器的类型时,主要依据负载的保护特性和短路电流的大小。 例如,用于保护照明和电动机的熔断器,一般是考虑它们的过载保护,这时,希望熔断器的熔化系数适当小些。所以容量较小的照明线路和电动机宜采用熔体为铅锌合金的RC1A系列熔断器,而大容量的照明线路和电动机,除过载保护外,还应考虑短路时分断短路电流的能力。若短路电流较小时,可采用熔体为锡质的RCIA系列或熔体为锌质的RM10系列熔断器。用于车间低压供电线路的保护熔断器,一般是考虑短路时的分断能力。当短路电流较大时,宜采用具有高分断能力的RL1系列熔断器。当短路电流相当大时,宜采用有限流作用的RT0系列熔断器。 熔断器的额定电压要大于或等于电路的额定电压 熔断器的额定电流要依据负载情况而选择。 ①电阻性负载或照明电路,这类负载起动过程很短,运行电流较平稳,一般按负载额定电流的1~1.1倍选用熔体的额定电流,进而选定熔断器的额定电流。 ②电动机等感性负载,这类负载的起动电流为额定电流的4~7倍,一般选择熔体的额定电流为电动机额定电流的1.5~2.5倍。这样一般来说,熔断器难以起到过载保护作用,而只能用作短路保护,过载保护应用热继电器才行。

熔断器型号规格用途对照大全 第一位:产品字母代号(R-熔断器) 第二位:使用环境(N-户内,W-户外) 第三位:设计序号(1,2,3……) 第四位:额定电压(KV) 第五位:结构特点(H-带有限流电阻,Z-带重合闸,T-带热脱扣器) 第六位:额定电流(A) 1;熔断器型号:QX374-RN2 用于1000v以下电力设备保护 2;PW10户外跌落式熔断器 产品名称:PW10户外跌落式熔断器 产品型号:RW10-100 RW10-200 10KV-15KV 产品概述:PW10户外跌落式熔断器采用IEC60282、GB15166标准!适用于交流50Hz,额定电压为10KV ∽35KV户外架空配电系统上,作为线路或电力变压器的过载和短路保护用。

并联电容器补偿装置基础知识

并联电容器补偿装置基本知识 无功补偿容量计算的基本公式: Q = P (tg φ1——tg φ2) =P( 1cos 1 1cos 12 2 12---?? ) tg φ1、tg φ2——补偿前、后的计算功率因数角的正切值 P ——有功负荷 Q ——需要补偿的无功容量 并联电容器组的组成 1.组架式并联电容器组:并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、并联电容器专用熔断器、组架等。 2.集合式并联电容器组(无容量抽头):并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、组架等。 并联电容器支路串接串联电抗器的原因: 变电所中只装一组电容器时,一般合闸涌流不大,当母线短路容量不大于80倍电容器组容量时,涌流将不会超过10倍电容器组额定电流。可以不装限制涌流的串联电抗器。 由于现在系统中母线的短路容量普遍较大,且变电所同时装设两组以上的并联电容器组的情况较多,并联电容器组投入运行时,所受到的合闸涌流值较大,因而,并联电容器组需串接串联电抗器。 串联电抗器的另一个主要作用是当系统中含有高次谐波时,装设并联电容器装置后,电容器回路的容性阻抗会将原有高次谐波含量放大,使其超过允许值,这时应在电容器回路中串接串联电抗器,以改变电容器回路的阻抗参数,限制谐波的过分放大。 串联电抗器电抗率的选择 对于纯粹用于限制涌流的目的,串联电抗器的电抗率可选择为(0.1~1)%即可。 对于用于限制高次谐波放大的串联电抗器。其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感性而不是容性,从而消除了谐振的可能。电抗器的感抗值按下列计算: X L =K X C n 2 式中 X L ——串联电抗器的感抗,Ω; X C ——补偿电容器的工频容抗, Ω;

无功补偿电抗器的性能与作用

无功补偿用串联电抗器的性能与作用 目前工矿企业无功补偿多采用分组自动跟踪补偿,单组容量多为900kvar以下,一般都将电力电容器,串联电抗器及真空接触器等装于同一柜内,这样就要求电抗器体积小、性能好、重量轻、便于安装维护;现对无功补偿用串联电抗器的用途、性能介绍如下。 一、串联电抗器类种 1、油浸式铁芯电抗器; 2、干式铁芯电抗器; 3、干式空芯电抗器; 4、干式半芯电抗器; 5、干式磁屏蔽电抗器; 二、无功补偿电抗器用途分为: 1、限流电抗器; 2、抑制谐波电抗器; 3、滤波电抗器; 三、串联电抗器的作用是多功能的,主要有: 1、降低电容器组的涌流倍数和涌流频率,便于选择配套设备和保护电容器。根据GB50227标准要求应将涌流限制在电容器额定电流的10倍以下,为了不发生谐波放大(谐波牵引),要求串联电抗器的伏安特性尽量为线性。网络谐波较小时,采用限制涌流的电抗器;电抗率在0.1%-1%左右即:可将涌流限制在额定电流的10倍以下,以减少电抗器的有功损耗,而且电抗器的体积小、占地面积小、便于安装在电容器柜内。采用这种电抗器是即经济,又节能。 2、串联滤波电抗器,电抗器阻抗与电容器容抗全调谐后,组成某次谐波的交流滤波器。滤去某次高次谐波,而降低母线上该次谐波的电压值,使线路上不存在高次谐波电流,提高电网的电压质量。 滤波电抗器的调谐度:

XL=ωL=1/n2XC=AXC 式中A-调谐度(%) XL-电抗值(Ω) XC-容抗值(Ω) n-谐波次数 L-电感值(μH) ω----314各次谐波滤波电抗器的电抗率 3次谐波为11.12% 5次谐波为4% 7次谐波为2.04% 11次谐波为0.83% 高次谐波为0.53% 按上述调谐度配置电抗器,可满足滤除各次谐波。 3、抑制谐波的电抗器,先决条件是需要清楚电网的谐波情况,查清周围用电户有无大型整流设备、电弧、炼钢等能产生谐波的设备,有无性能不良好的高压变压器及高压电机,尽可能实测一下电网谐波的实际量值,再根据实际谐波量来配置适当的电抗器。铁芯电抗器电抗线性度不好,有噪声,空芯电抗器运行无噪声,线性度好,损耗小。 标准规定空芯电抗器容量在100KVAR以下时,每伏安损耗不大于0.03W。例如:单台12000VA电抗率6%的电抗器损耗为360W,三相有功损耗为1080W,这是一个不小的数字。电网上谐波较小时,采用限流电抗器可节省电能。 4、由于设置了串联电抗器,减少了系统向并联电容器装置或电容器装置向系统提供短路电流值。 5、可减少电容器组向故障电容器组的放电电流,保护电力电容器。 6、可减少电容器组的涌流,有利于接触器灭弧,降低操作过电压的幅值。 7、减小了由于操作并联电容器组引起的过电压幅值,有利于电网的过电压保护。 四、串联电抗器的选型原则 用电企业都有自身的特点,对设备有不同的要求,干式电抗器有噪音小、电

电力电容器及无功补偿技术手册

电力电容器及无功补偿 技术手册 沙舟编著

目录 前言 第一章基本概念 (1) §1-1 交流电的能量转换 (1) §1-2 有功功率与无功功率 (2) §1-3 电容器的串联与并联 (3) §1-4 并联电容器的容量与损耗 (3) §1-5 并联电容器的无功补偿作用 (4) 第二章并联电容器无功补偿的技术经济效益 (5) §2-1 无功补偿经济当量 (5) §2-2 最佳功率因数的确定 (7) §2-3 安装并联电容器改善电网电压质量 (8) §2-4 安装并联电容器降低线损 (11) §2-5 安装并联电容器释放发电和供电设备容量 (13) §2-6 安装并联电容器减少电费支出 (15)

前言 众所周知,供电质量主要决定于电压、频率和波形三个方面。电网频率稳定决定于电网有功平衡,波形主要决定于网络和负荷的谐波,电压稳定则决定于无功平衡。当然三者之间也具有一定的内在关系。无功平衡决定于网络中无功的产生和消耗。在系统中无功电源有同步发电机、同步调相机、电容器、电缆、输电线路电容、静止无功补偿装置和用户同步电动机,无功负荷则有电力变压器,输电线路电感和用户的感应电动机,各种感应式加热炉、电弧炉等。为了满足系统中无功电力的需求,单靠发电机、调相机、电缆和输电线路电容是不够的,静补装置中也是采用电容器等。因此电容器在系统的无功电源中占有相当比重,加之调相机为旋转设备。建设投资大,运行维护费用高。近年来世界各国都积极装设电容器,满足系统无功电力要求,维持电压稳定。但各国主要是装设并联电容器,装串联电容器者较少,因此编者主要介绍并联电容器无功补偿技术,它还广泛应用于谐波滤波装置,动态无功补偿设备和电气化铁道无功补偿装置之中,因与电力系统谐波有关。限于篇幅,准备在“谐波技术”中详述。这里主要介绍一些无功补偿技术基础。限于编者水平,加上时间仓促,不当之处难免,请读者批评指正。

熔断器选择原则

熔断器的选择 (一) 熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3) 式中Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流: IRN≥1.57 IRN ≈1.6 IRN 式中IRN 表示半导体器件的正向平均电流. (7) 降容使用 在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值.选用熔断体时应考虑到环境及工作条件,如封闭程度空气流动连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用时受环境温度变化的影响.环境温度越高,熔断体的工作温度就越高, 其寿命也就越短.相反,在较低的温度下运行将延长熔断体的寿命. (8) 在配电线路中,一般要求前一级熔体比后一级熔体的额定电流大2~3倍,以防止发生越级动作而扩大故障停电范围. 2.熔断器的选择 (1)UN熔断器≥UN线路. (2)I N熔断器≥IN 线路. (3)熔断器的最大分断能力应大于被保护线路上的最大短路电流。 熔断器在工矿企业的生产过程中和日常生活中主要用于保护低压电器设备,由于使用于不同的电气设备,其容量、大小的选择原则差别很大,在实践中必须严格按照规程规定选择配置。否则,将失去其应有的保护作用。

并联电容器对电力系统无功补偿及电压调节问题的探讨_马文成

DOI :10.3969/j.issn.1001-8972.2012.09.069 并联电容器对电力系统无功补偿及电压调节问题的探讨 马文成 固原供电局,宁夏 固原 756300 摘 要 变电站并联电容器可以对电网的无功功率进 行集中补偿。通过对无功功率的合理补偿, 从而达到调节电压、使系统经济和稳定运 行。但在实际运行中,往往由于设计原因, 无功负荷的分布不可预见性等因素导致变电 站母线并联电容器不能合理的补偿无功和调 节电压。下面就某站10kV 母线并联电容器运 行中存在的问题加以分析和探讨。 关键词 并联电容器;无功补偿;电压调节 某变电站电压等级为110/35/10kV ,两台 主变容量分别为25000kVA 和20000kVA 的有载调 压变压器,正常时20000kVA 变压器运行,另一 台主变热备用,10kV Ⅰ、Ⅱ段母线经分段开关 联成单母运行。10kV Ⅱ段母线装TBB 210- 3600/3600Kvar 成套电容器装置,电容器型号 为:BFFH 4-11/ -2×1800-1×3W 密集型电 容器,每组容量为1800Kvar ,两组共 3600Kvar ,其额定电流为89A ,串联电抗器型 号为CKGKL-12/10-1的空芯电抗器,额定电 抗率为1%。 1 运行中存在的问题 该站自2000年投运以来,因10kV 母线并联 电容器的补偿容量不合理致使电容器不能正常 投入运行,因此,10kV 母线输送的无功负荷不 能实现就地补偿,从而不利于电网运行的经济 性和稳定性。 1.1 并联电容器投入时补偿容量过剩 图例分析如下: 图1 上图数据为该站10kV 母线2011年有功、无 功负荷平均值,从图中可以看出,10kV 母线 年输送无功负荷最大值为1500Kvar ,最小值为 500Kvar ,平均值为1000Kvar 。若投入一组容量 为 的电容器时除补偿了10kV 母线输送的无功 负荷外,还向系统倒送无功容量800Kvar 。按照 规定,电力系统无功补偿应以分级补偿,就地 平衡的原则进行,向系统倒送无功时将会引起 过电压,系统稳定性受到破坏。因此,向系统 倒送无功是不允许的。 1.2 并联电容器投入时对母线电压影响较 大 若正常运行时投入一台20000kVA 的有载调 压变压器时,从图A 中可知10kV 母线年输送有 功功率最大值为6000kW ,最小值为3000kW , 平均值为4500kW 。正常运行时,在110kV 母线 确保电压合格率的情况下,35kV 及10kV 母线 通过有载调压完全可以满足各级母线电压合格 率的要求。当电容器投入时,除补偿了10kV 母线输送的无功功率外,还向系统倒送了大量 无功。此时,变压器输出的无功功率减少,导 致高压侧母线向系统输送的无功减少而电压升 高。变压器中、低压侧母线电压随之相应升 高,尤其低压侧母线电压升高较大,而并联电 容器运行时向系统补偿的无功容量与其端电压 的平方成正比,电压升高浮度越大,向系统输 送的无功容量越大,如此恶性循环,可能导致 电容器过电压保护动作跳闸,系统其它设备超 过额定电压运行时,其绝缘受到威胁。此时, 用有载调压来降低电压运行已不能满足电压合 格率的要求。 1.3 并联电容器退出运行时对系统经济运 行的影响 变电站并联电容器投入电网的目的是为 了补偿系统无功的不足,减少电源向系统输送 的无功功率,从而提高有功输送容量。因电源 向系统远距离输送无功负荷时,在线路及变压 器等感性、容性元件及阻性元件上消耗一定的 有功功率,因此,电源远距离大容量输送无功 不经济。变电站采用并联电容器通过就地无功 补偿,可以降低电源向系统及用户输送的无功 负荷,从而提高了有功输送容量。相对于电源 输送无功时,变电站并联电容器的单位容量费 用最低,有功功率损耗最小(约为额定容量的 0.3%~0.5%),一次性投资,运行维护简便。 因此用系统减少输送的无功功率来相应的提高 有功容量的输送能力,从经济性方面比较, 并联电容器投资成本小,最多1~2年可收回成 本。因此,获得了最好的经济效益。 从以上分析可以看出,当该站并联电容器 退出运行时,据查10kV 母线年输送无功电能约 760万度。因此,在当前负荷情况下,并联电容 器退出运行最不经济。 2 应采取的措施 针对以上分析,该站10kV 母线并联电容器 在电压调整、无功补偿过剩及运行经济性方面 存在着相互制约的矛盾,如何解决这一问题, 本人提出采取以下措施: 2.1 改变10kV 母线并联电容器的接线方 式,改造图如下: 图2 图3 图2为原接线,改造前当一组电容器投 入运行时向系统输送的总无功补偿容量为 Q 1=U 2ωC ,式中:U 为母线端电压,当f 为工 频时,ω为一常数,C 1=C 2,因C 1和C 2并联, 所以C=C 1+C 2,即Q 1=2U 2ωC 1。图C 为改造后 的接线图,总无功补偿容量为Q 2=U 2ωC ,式 中:U 为母线端电压,当f 为工频时,ω为一 常数,C 1=C 2,因C 1和C 2串联,所以C=C 1/2, 即Q 2=U 2ωC 1/2。所以 Q 1/Q 2=2U 2ωC 1/ U 2ωC 1/2=4,即Q 2=Q 1/4=3600/4=900(Kvar)。 通过计算可知,改造后两组电容器串联后 再三相并联接于电网时的总无功功率900Kvar 。 考虑到后期无功负荷的增长给补偿带来新 -119- 的问题,上述改造中在实际设备上可通过如图 C 所示加装一组隔离开关来实现,即通过操作 拉开G 2隔离开关,合上G 1隔离开关来实现投入 无功容量900Kvar 。后期无功负荷增长较大时, 可通过操作拉开G 1隔离开关,合上G 2隔离开关 来实现投入无功容量 1800Kvar 。 2.2 改变并联电容器的接线方式后对系统 及各元件的影响 2.2.1 对系统的无功补偿情况 图A 中,按目前年平均输送无功负荷曲线 可以看出,年平均无功输送容量为1000Kvar , 改造后并联电容器投入电网运行时补偿的无功 容量为900Kvar ,因此,可以实现就地补偿无 功的能力。对于后期无功负荷增长带来的无功 补偿不足时,可通过操作 G 1、G 2隔离开关来实 现电容器无功容量在900Kvar 与1800Kvar 之间转 换。 2.2.2 对电压质量的影响 改造后并联电容器输送的总无功容量为改 造前的一半,因此电容器投入运行时对电压的 影响相对较小,当各级母线电压变化时可通过 变压器有载调压装置调整电压,以及无功补偿 情况投退并联电容器来调整电压。 2.2.3 改造后的并联电容器运行时的经济 性 通过无功就地平衡补偿,据查可实现年累 计补偿无功负荷约760万度,相对电源系统输送 无功来说,可减少网损,提高电源输送能力, 最终达到经济效益最大化。 2.2.4 改造后对成套并联电容器装置各元 件的影响 2.2.4.1 对电容器各参数的影响 电容器额定电压为11/ kV ,改造后C1和 C2串联,当接在10kV 母线上时,C1和C2 串联 时分压,即C1与C2各承受电压为改造前端电压 的 一 半 , 电 容 器 通 过 的 电 流 为 I=Q2/2U=900/2×10=45(A)。因此,改造后的 各电容器承受的电压和通过的电流均在额定参 数内。 2.2.4.2 对电抗器的影响 因电抗器额定电压为10kV ,额定电流为 189A ,改造后均在额定值范围内。 2.2.4.3 对继电保护的影响 当并联电容器主接线改变后,其输送的电 流和各电容器承受的电压相应的发生变化,因 此,原保护定值不能满足需要,应重新计算并 整定,即可通过现有微机保护整定两套定值, 当电容器的无功容量在900Kvar 与1800Kvar 之间 转换时,切换相应的定值实现保护功能。 笔者认为通过上述改造后,可解决该站目 前10kV 母线无功负荷的补偿问题,从而实现了 该站并联电容器长时间不能投入电网运行的难 题,同时,提高了10kV 系统的功率因数,优化 了电网运行方案,提高了系统运行的经济性。 参考文献 [1] 韩祯祥,吴国炎 .电力系统分析. 浙江大学出 版社, 2002年版,227页 [2] 李坚,郭建文 .变电运行及设备管理技术问 答.中国电力出版社 ,2005年版,158页 作者简介 马文成 学历:大学 职称:工程师。

并联电抗器无功补偿

并联电抗器 1.并联电抗器在电力系统中的作用 并联电抗器无功功率补偿装置常用于补偿系统电容。它通过向超高压、大容量的电网提供可阶梯调节的感性无功功率,补偿电网的剩余容性充电无功功率控制无功功率潮流,保证电网电压稳定在允许范围内。实践证明,对于一些电压偏高的电网,安装一定数量的并联电抗器是解决系统无功功率过剩,降低电压的有效措施,特别是限制由于线路开路或轻载负荷所引起的电压升高。所以在一定的运行工况中,在超高压输电线路手段装设并联电抗器以吸收输电线路电容所产生的无功功率,称为并联电抗器补偿。 由于目前应用于电力系统的电抗器大都为固定容量的电抗器,其容量不能改变,无法随时跟踪运行工况的无功功率变化,造成电抗器容量的浪费,与目前节能减排的主题不相符合,所以,有必要研究可控电抗器这个热门话题,使得电抗器的容量可控可调,这也在一定程度上符合我国发展智能电网的要求。 2.可控并联电抗器的分类、基本原理和优缺点 图1可控并联电抗器的分类 2.1 传统机械式可调电抗器 调匝式和调气隙式是最早出现并广泛应用的可调电抗器。其基本原理是通过调节线圈匝数或调节铁芯气隙的长度来改变电抗器的磁路磁导,从而改变电抗值。调匝式可控电抗器较易实现,但是电抗值不能做的无级调整。调气隙式由于机械惯性和电机的控制问题无法在工程上应用。 2.2 晶闸管可控电抗器(TCR) 晶闸管可控电抗器,是随着电力电子技术发展起来的一种新型的可控电抗器,它采用线性电抗器与反并联晶闸管串联的接线方式,通过控制晶闸管的触发角就可以控制电抗器的等效电抗值。 TCR的控制灵活,响应速度快,缺点是在调节时会产生大量的谐波,需要加装专门的滤波装置。在高电压大容量的场合下,必须采用多个晶闸管串联的方式,造价昂贵,这使得它在超高压电网中的应用受到了相当大的限制,目前主要应用范围是35kV和10kV的配电

无功补偿考试试题 (1)

一单项选择(共10道) 1 《并联电容器装置设计规范》GB50227-2008适用于(A )kV及以下电压等级的变电站、配电站中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计。 (A)750(B)220 (C)110(D)35 2电抗率是指并联电容器装置的( C )之比,以百分数表示。 (A)串联电抗器的额定容抗与串联连接的电容器的额定感抗 (B)串联连接的电容器的额定容抗与串联电抗器的额定感抗 (C)串联电抗器的额定感抗与串联连接的电容器的额定容抗 (D)串联连接的电容器的额定感抗与串联电抗器的额定容抗 3每个串联段的电容器并联总容量不应超过( B )kvar。 (A)4200(B)3900 (C)2300 (D)1200 4 并联电容器装置总回路和分组回路的电器导体选择时,回路工作电流应按稳态过电流最大值确定,过电流倍数应为回路额定电流的(C )倍。 (A)1.1 (B)1.2 (C)1.3(D)1.5 5用于单台电容器保护的外熔断器的熔丝额定电流,应按电容器额定电流的(C )倍选择。 (A)0.83--0.95 (B)0.95--1.12 (C)1.37--1.50(D)2--5 6 并联电容器装置的放电器件应满足电容器断电后,在5s内将电容器的剩余电压降至(C )V及以下。(A)380(B)220 (C)50(D)36 7动态无功补偿装置SVC自身产生的3、5、7、11次谐波,采用角型接线,其中( C )次谐波不会流入系统。 (A)5(B)7 (C)3 (D)11 8、计算电容器额定电压是,需要考虑哪些因素(A B C) (A)系统额定电压(B)串联电抗器引起的电压抬升 (C)谐波引起的电压抬升(D)电容器内部元件额定电压 9、110kV系统允许的电压总畸变率为(C) (A)1.6% (B)2.0% (C)2.4% (D)3.0% 10、电能质量对频率指标有严格的要求,系统频率主要取决于(B) (A)有功(B)无功(C)电压(D)电流 二填空题(共10道) 1、电力系统无功电源主要有同步调相机、同步发电机、电力电容器、静止无功发生器。 2、电容器成套装置一般由高压并联电容器、串联电抗器、隔离开关、电流互感器、避雷器以及其余附件组成。 3、并联电容器成套装置回路中串联电抗器的作用是抑制谐波和限制合闸涌流。 4、TCR型静止动态无功补偿装置一般具有热管自冷、水冷两种冷却方式。 5、电力电子元器件串联使用要解决均压问题,并联使用要解决均流问题,目前最常用的均压方式为在元器件两端并联RC均压回路。 6、静止无功发生器SVG一般具有空载、感性、容性三种运行方式。 2U。三相半波可控整流电路中,晶闸管承受7、单相全波可控整流电路中,晶闸管承受的最大反向电压为2 6U。(电源相电压为U2) 的最大反向电压为2 8、磁控型动态无功补偿装置其励磁方式一般分为内励磁和外励磁两种方式。 9、电能质量指标主要包括电压、电流、波形和畸变率。

并联电容器设计要求规范

并联电容器装置设计规范(GB50227-95) 第一章总则 第1.0.1条为使电力工程的并联电容器装置设计贯彻国家技术经济政策, 做到安全可靠、技术先进、经济合理和运行检修方便,制订本规范. 第1.0.2条本规范适用于220KV及以下变电所、配电所中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计. 第1.0.3条并联电容器装置的设计, 应根据安装地点的电网条件、补偿要求、环境状况、运行检修要求和实践经验,确定补偿容量、选择接线、保护与控制、布置及安装方式. 第1.0.4条并联电容器装置的设备选型, 应符合国家现行的产品标准的规定. 第1.0.5条并联电容器装置的设计,除应执行本规范的规定外,尚应符合国家现行的有关标准和规范的规定. 第二章-1 术语 1.高压并联电容器装置 (installtion of high voltage shunt capacitors): 由高压并联电容器和相应的一次及二次配套设备组成, 可独立运行或并联运行的装置. 2.低压并联电容器装置 (installtion of low voltage shunt capacitors): 由低压并联电容器和相应的一次及二次配套元件组成, 可独立运行或并联运行的装置. 3.并联电容器的成套装置 (complete set of installation for shunt capacitors): 由制造厂设计组装设备向用户供货的整套并联电容器装置. 4.单台电容器(capacitor unit): 由一个或多个电容器元件组装于单个外壳中并引出端子的组装体. 5.电容器组(capacitor bank): 电气上连接在一起的一群单台电容器. 6.电抗率(reactance ratio): 串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示.

快速熔断器的应用

关于快速熔断器的选型应用 熔断器额定电压的选择熔断件额定电流的选择 熔断器的额定电压与电网电压相符,限流熔断器一般不宜降低电压使用,以避免熔体截断电流时,产生的过电压超过电网允许的2。5倍工作电压 ?一般用三相电路的熔断器其额定电压按相应额定线电压选择: 用于单相系统熔断器,其额定电压按最高相电压的115%选择; ?用于三相中性点绝缘系统或谐振接地系统时,因系统可能发生所谓双接地故障,即一个故障点在电源侧而另一个在负载侧,且不同相,此时熔断器的额定电压应按最高线电压选择; ?用于三相中性点直接接地或经阻抗中性点接地系统时,按最高线电压选择?熔断件熔管的额定电流应大于或等于熔体的额定电流: ?熔断件的额定电流应为负载长期工作电流的1.25倍。 ?熔断器安装在三相封闭的柜体中,或单只装在绝缘浇注 的筒内,或三相装在不封闭的柜体中时,皆要考虑适 当降低容量使用。 熔断器开断电流的选择 根据熔断器的保护作用,其量大开断电流应不小于被保护电器电路的最大短路电流;最小熔化电流应不大于被保护电路的最小短路电流. 熔断器的保存和检查熔断器的安装及更换 ?熔断器应储存在干燥合适的场所。 ?对摔落过的或受振动的熔断器在使用前应进行检验(直流电阻,零部件是否完好) ?放置久的熔断器出厂/出库时应进行再次检查其电阻值。 ?安装熔断器时,应紧固所有的零部件,防止接触部分在正常运行时过热. ?对三相安装的熔断件,即使一支动作,其他两支均应更换,因为其它两支虽未损坏,但已接近动作点,已到了易损坏的程度。 ?在更换动作过的熔断件时,应在动作10分钟后更换.如果在熔断件动作后发现管内有烟雾泄出或有噪声现象时,不应更换熔断件,需特熔断件与电源隔离后才

什么是电抗器

电抗器也叫电感器,一个导体通电时就会在其所占据的一定空间范围产生磁场,所以所有能载流的电导体都有一般意义上的感性。然而通电长直导体的电感较小,所产生的磁场不强,因此实际的电抗器是导线绕成螺线管形式,称空心电抗器;有时为了让这只螺线管具有更大的电感,便在螺线管中插入铁心,称铁心电抗器。电抗分为感抗和容抗,比较科学的归类是感抗器(电感器)和容抗器(电容器)统称为电抗器,然而由于过去先有了电感器,并且被称谓电抗器,所以现在人们所说的电容器就是容抗器,而电抗器专指电感器。 电抗分为感抗和容抗,比较科学的归类是感抗器(电感器)和容抗器(电容器)统称为电抗器,然而由于过去先有了电感器,并且被称谓电抗器,所以现在人们所说的电容器就是容抗器,而电抗器专指电感器。在电子电路常叫电感器,在电力系统中常叫电抗器。 电抗器分类: 按结构及冷却介质、按接法、按功能、按用途进行分类。 1.按结构及冷却介质:分为空心式、铁心式、干式、油浸式等,例如干式空心电抗器、干式铁心电抗器、油浸铁心电抗器、油浸空心电抗器、夹持式干式空心电抗器、绕包式干式空心电抗器、水泥电抗器等。 2.按接法:分为并联电抗器和串联电抗器。 3.按功能:分为限流和补偿。 4.按用途:按具体用途细分,例如限流电抗器、滤波电抗器、平波电抗器、功率因数补偿电抗器、串联电抗器、平衡电抗器、接地电抗器、消弧线圈、进线电抗器、出线电抗器、饱和电抗器、自饱和电抗器、可变电抗器(可调电抗器、可控电抗器)、轭流电抗器、串联谐振电抗器、并联谐振电抗器等。 电抗器与电感器 电抗器与电感器,是两个即相互联系又几乎完全不同的两个概念. 虽然电感器也可以叫电感器,但是二者的应用领域以及工作原理是完全不同的,以下介绍电抗器与电感器的区别: 首先来认识一下电感器: 电感器是用绝缘导线绕制的各种线圈称为电感器,简称为电感。电感器也是能够把电能转化为磁能而存储起来的元件。 电感的两个最主要的作用就是滤波(通直流,阻交流)和储能。 电感器的结构类似于变压器,但只有一个绕组。如果电感器中没有电流通过,则它阻止电流流过它;如果有电流流过它,则电路断开时它将试图维持电流不变。电感器又称扼流器、电抗器、动态电抗器。 电感器是一种常用的电子元器件。当电流通过导线时,导线的周围会产生一定的电磁场,并在处于这个电磁场中的导线产生感应电动势——自感电动势,我们将这个作用称为电磁感应。为了加强电磁感应,人们常将绝缘的导线绕成一定圈数的线圈,我们将这个线圈称为电感线圈或电感器,简称为电感。

用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法 无功补偿的原理:电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 集中补偿电容器作为补偿装置有两种方法:串联补偿和并联补偿。串联补偿是把直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。按电容器安装的位置不同,通常有三种方式。 1.集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。

2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端所高压或低压母线上,也称为分散补偿。这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。但是分组补偿的效果比较明显,采用得也较普遍。 3.就地补偿将电容器或电容器组装设在异步或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。这种方式既能提高为用电设备供电回路的功率因数,又能改善用电设备的电压质量,对中、小型设备十分适用。

熔断器的选择规范

电流1.2-2倍。 追问: 能说详细点吗 回答: 熔断器的选择 (一) 熔断器类型的选择 应根据使用场合选择熔断器的类型.电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器. (二) 熔断器规格的选择 1.熔体额定电流的选择 (1) 对于变压器、电炉和照明等负载,熔体的额定电流应略大于或等于负载电流. (2) 对于输配电线路,熔体的额定电流应略大于或等于线路的安全电流. (3) 在电动机回路中用作短路保护时,应考虑电动机的启动条件,按电动机启动时间的长短来选择熔体的额定电流. 对启动时间不长的电动机,可按下式决定熔体的额定电流IN熔体=Ist/(2.5~3) 式中Ist——电动机的启动电流,单位:A 对启动时间较长或启动频繁的电动机,按下式决定熔体的额定电流 IN熔体=Ist/(1.6~2) 对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算: In=(2.0~2.5)Imemax+∑Ime 注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和. 电动机末端回路的保护,选用aM型熔断器,熔断体的额定电流In稍大于电动机的额定电流; (4) 电容补偿柜主回路的保护,如选用gG型熔断器,熔断体的额定电流In约等于线路计算电流1.8~2.5倍;如选用aM 型熔断器,熔断体的额定电流In 约等于线路电流的1~2.5倍. (5) 线路上下级间的选择性保护,上级熔断器与下级熔断器的额定电流In的比等于或大于1.6,就能满足防止发生越级动作而扩大故障停电范围的需要. (6) 保护半导体器件用熔断器,熔断器与半导体器件串联,而熔断器熔体的额定电流用有效值表示,半导体器件的额定电流用正向平均电流表示,因此,应按下式计算熔体的额定电流: IRN ≥1.57 IRN ≈1.6 IRN 式中IRN 表示半导体器件的正向平均电流. (7) 降容使用 在20℃环境温度下,我们推荐熔断体的实际工作电流不应超过额定电流值.选用熔断体时应考虑到环境及工作条件,如封闭程度空气流动连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的,实际使用时受环境温度变化的影响.环境温度越高,熔断体的工作温度就越高, 其寿命也就越短.相反,在较低的温度下运行将延长熔断体的寿命. (8) 在配电线路中,一般要求前一级熔体比后一级熔体的额定电流大2~3倍,以防止发生越级动作而扩大故障停电范围. 2.熔断器的选择 (1)UN熔断器≥UN线路.

相关文档
最新文档