KAZR云雷达的云检测新方法及SACOL云物理特性的研究

目录

中文摘要 (Ⅰ)

英文摘要 (Ⅱ)

第一章绪论 (1)

1.1 研究背景与意义 (1)

1.2 云雷达研究进展 (2)

1.3 本文主要内容 (3)

1.4 本文创新点 (4)

第二章仪器及数据介绍 (5)

2.1 KAZR云雷达介绍 (5)

2.2 KAZR观测数据介绍 (7)

2.2.1 反射率因子 (7)

2.2.2 多普勒速度 (8)

2.2.3 速度谱宽 (9)

2.2.4 线性退偏比 (9)

2.3 卫星数据介绍 (10)

第三章云检测算法 (11)

3.1 ARM算法介绍 (12)

3.2 高斯滤波信号识别算法 (13)

3.3 基于双边滤波的云检测新算法 (19)

3.4 本章小结 (30)

第四章SACOL站上空云物理特性研究 (31)

4.1 SACOL站上空云宏观统计特性 (32)

4.2 KAZR与卫星观测结果对比 (35)

4.3 云滴粒子终端末速度的反演 (37)

4.3.1 反演方法介绍 (38)

IV

万方数据

4.3.1 反演结果分析 (39)

4.4 本章小结 (42)

第五章总结与展望 (43)

参考文献 (45)

在学期间的研究成果 (50)

致谢 (51)

V

万方数据

激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案 0、引言 1、 当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。 1、雷达原理 目标标记: 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: 1、目标的斜距R; 2、方位角α;仰角β。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。 图1.1 用极(球)坐标系统表示目标位置

系统原理: 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 图1.2 雷达系统原理图 测量方法 1).目标斜距的测量 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为 R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或 2 r ct R

雷达大数据处理步骤及效果展示

雷达数据处理步骤及效果展示 一、隧道衬砌质量检测数据处理步骤 1、打开软件RADAN,选择文件夹View→Customize→Directories; 2、打开文件File→Open(*.dzt); 3、扫描信息预编辑:选择一段扫描剖面,切除多余扫描信息Cut,保存特定扫描剖面; 4、文件测量方向反转:打开文件,选择File→Save As ,打勾,另存; 5、距离信息编辑:(1)编辑文件头内的距离信息Edit→File Header, 扫描/ 米[scans/m], 米/标记[m/mark],(2)编辑用户标记,(3)距离归一化处理; 6、里程编辑:Edit→File Header →3D option→X start输入里程起点坐标; 7、水平幅度调整:Process→Horizontal scale(叠加stacking、抽道skipping、加密stretching); 8、调整地面反射信号位置:方法有两种,(1)Edit→File Header→position(ns),(2)Process→Correct Position→delta pos (ns); 9、介电常数调整:利用经验或钻孔获得介电常数,通过Edit→File Header→DielConstant调整; 10、增益调整:Process→Range Gain,增益点数易选5个; 11、水平滤波:Process→FIR Filter; 12、背景去除:Process→FIR Filter; 13、一维频率滤波Process→IIR Filter; 14、反褶积、一维频率滤波:Process→Deconvolution;Process→IIR Filter; 15、文件拼接:选择File→Append files;

基于ArcGIS的排水管网在线监测与分析系统开发与应用

基于ArcGIS的排水管网在线监测与分析系统开发与应用2012-05-08 作者:毛楠聂新宇张志轶赵冬泉来源:北京清华城市规划设计研究院 1 引言 具体情随着城市的发展,城市地下排水管网建设迅速扩张,传统的纸图和经验式管理已经无法满足城市发展和排水系统现代化运营管理的需要。地理信息系统(Geographical Information System,简称GIS)强大的空间分布可视化和海量信息存储管理能力,结合暴雨管理模型(Storm Water Management Model,简称SWMM)专业的排水系统水文水力分析优势,为城市排水管网高效运营和科学决策提供了有效工具。同时,为了及时掌握管网运行状态,需要合理部署管道监测网络。在国外,排水管道流量监测设备的发展已经有三十多年的历史,很多城市建立了流量监控网络,用于排污收费、入流入渗消除和溢流控制等。如:美国马里兰州通过排水管网平台和排水管道流量监测以减少入流和入渗现象的发生;田纳西州诺克斯维尔市建立FlowAlert预警系统,用于监控液位变化以消除污水溢流的发生,该系统利用包含100台流量计的监控网络,指导了223处管道修复工程,减少了77%的合流制管网溢流(CSOs)和78%的污水管网溢流(SSOs)。1990年,澳大利亚悉尼市建成了超过400台流量计的监测网络,有效的保证了悉尼的排水安全。 ArcGIS Engine是一个创建定制的GIS桌面应用程序的开发产品。ArcGIS Engine包括构建ArcGIS产品ArcGIS Desktop和 ArcGIS Server的所有核心组件。ArcGIS Engine 提供了COM、.NET和C++的应用程序编程接口(API)。这些编程接口不仅包括了详细的文档,还包括一系列高层次的组件,使得编程人员能够较快的创建ArcGIS应用程序。所以,排水管网在线监测与分析系统以ArcGIS为开发平台,集成排水管网模型,配合管道在线监测网络的合理部署,能够实现排水管网信息实时采集、动态监测和决策分析,不仅可以为管网应急事故处理处置、管网运行状态评估、运行调度和防洪决策等行为提供技术支持,还可以为排水模型的率定和验证提供数据支撑,实现模拟分析,从而大大提高城市排水设施的安全输配性、管理服务水平和效率,实现排水系统管理的科学化、智能化和联动性。 2 在线监测与分析系统设计开发 基于ArcGIS的排水管网在线监测与分析系统采用C/S结构,以满足对GIS图形数据的大量复杂操作和对系统响应时间的要求,系统逻辑结构如图1所示,管网实时运行数据由现场监测设备进行采集,通过无线或有线方式传至管网数据采集工作站,通过软件平台进行实时显示、控制、数据管理、数据存储等工作,并通过接口程序将实时数据存进管网运行数据服务器的数据库中。根据管网运行数据库的监测数据,向相关部门分发相应的数据,更新频率可以根据程序具体使用要求设定。管理调控人员由监控工作站软件系统通过调用管网运行数据服务器的实时数据库数据进行生产监控和管理工作。系统主要包括监测信息实时查询显示、在线报警和数据统计分析等功能。 图 1排水管网在线监测与分析系统逻辑结构

利用激光点云数据计算采石场开采量方法研究

利用激光点云数据计算采石场开采量方法研究 发表时间:2018-08-09T10:41:29.817Z 来源:《新材料.新装饰》2018年2月下作者:李光 [导读] 为了调查矿山开采现状,估算矿山保有资源量,政府定期要对采石场资源储量进行核实。一般采用免棱镜全站仪进行测量评估,但因地形复杂,测量误差难以避免。而激光扫描技术克服了这些缺点,为储量监测提供了快捷的途径。应用激光扫描技术在土方量计算、矿山地形快速测量、土方变化量监测等方面一些学者进行了系统研究。 (齐齐哈尔矿产勘察开发总院,黑龙江省齐齐哈尔市 161000) 摘要:为了调查矿山开采现状,估算矿山保有资源量,政府定期要对采石场资源储量进行核实。一般采用免棱镜全站仪进行测量评估,但因地形复杂,测量误差难以避免。而激光扫描技术克服了这些缺点,为储量监测提供了快捷的途径。应用激光扫描技术在土方量计算、矿山地形快速测量、土方变化量监测等方面一些学者进行了系统研究。使用三维激光扫描仪对矿堆进行了扫描,对扫描数据进行三维建模后测算矿堆的矿方量。本文分析了利用激光点云数据计算采石场开采量方法。 关键词:激光点云数据;计算采石场;开采量方法; 利用三维激光扫描技术可以获得高密度点云数据进行体积计算,解决了复杂矿山开采与储量的测量精度问题。近年来国内一些学者进行了相关研究,基于三维激光扫描技术的土方量算满足精度要求,给出了在土方量算应用中的相关定量指标。目前采用地面三维激光扫描技术针对采石场的开采量变化研究非常少,计算方法也不太相同。 一、点云数据获取 某采石场开采量的详细数据为了达到扫描的目的和精度要求,结合采石场的环境和地形本身复杂的结构特点,扫描仪获取数据的特点,决定采用全站仪模式对采石场进行扫描?为了保证前后两期坐标的一致性,两期数据都是利用RTK 测量控制点坐标?根据采石场的地形和范围,根据地形情况,将扫描路线设置为闭合导线,共有导线点12 个,每站架设仪器进行扫描,采用中等分辨率 (10 cm/100 m),每站操作时间大约为30 min ,大约测量7 h完成采石场的数据采集工作?一是噪声处理与范围的统一?将扫描的激光点云数据导入随机数据处理软件Cyclone ,对软件自动拼接的点云数据进行质量检查,证明点云数据完整可用。利用软件去噪功能,通过放大与旋转操作,对研究区域外点云粗略删除。计算采石场开采量利用RTK 测量的数据与三维激光扫描的点云数据进行对比,在进行数据处理时,要保证两者范围的一致性,主要以地形图数据为基准,利用CASS 软件确定范围边界线,将处理后的数据保存为txt 格式文件,再导入Cyclone软件,删除研究区域范围以外的点云数据?二是点云数据均一化处理?为了地形图数据精度上大致保持相同,对三维激光扫描的数据进行抽稀处理?在Cyclone软件中,对点云数据进行均一化处理?为了与传统方法保持精度基本一致,便于数据间的研究对比,确定点云间隔为5 m 进行点云均一化处理(见图2)?三是点云数据的精简?利用Cyclone 软件对点云数据去噪处理后,点云数据仍然存在一些噪声点?体外孤点等影响点云质量的因素,可以采用Geomagic 软件进行点云数据的精简?将Cyclone 软件处理得到的结果保存为xyz 格式文件,在Geomagic 软件进行数据精简的主要过程:“数据导入— 点云数据着色—去除体外孤点及非连接项—减少噪音—数据采样— 数据封装”,将处理后的数据保存为vtx 格式文件? 二?利用激光点云数据计算采石场开采量方法 1. 开采量的方法?为了获取采石场两期间进行精确计算的开采量,要对采石场的开采区域范围进行精确的确定,根据点云数据的范围来确定矿山采集区域的模型的区域范围,从而确保建立的矿山采集区域模型范围与实际矿山范围尽量一致来保证矿山开采量的准确性?一是Cyclone 软件求取开采量?Cyclone 软件是具有处理点云数据与建模的功能?依据Cyclone软件提供的计算体积的功能,不能将两期的数据直接进行叠加求差值,需要分别计算每期的体积,然后求差,差值即为采石场开采量?Cyclone 软件求取体积的主要技术:将Geomagic 精简处理后的vtx格式文件后缀修改为txt 格式,然后打开文件,选择所有点云数据,创建TIN 模型;执行命令,软件自动计算点云到参考面的挖方量和填方量,其中挖方量(Cut V olume)为1252641 m3即为计算开采量所需要的数据?因为两期数据计算挖方量的差值为开采量,要求取数据的挖方量,因为提供的数据文件格式是dat 格式,将dat 格式的文件转换为txt 格式,再导入Cyclone 软件,按照以上方法,计算挖方量为1006949 m3 ,将两期的挖方量求差值即为采石场开采量,?二是HD‐3LS‐SCENE 软件求取开采量?HD‐3LS‐SCENE软件支持点云渲染?点云选择?量测分析?堆体体积计算?此次研究主要是根据需求以及数据的密度,设置网格大小,求取每一期堆体体积,然后做差,差值即为采石场的开采量?HD‐3LS‐SCENE 软件主要技术思路:将Geomagic 精简处理后的格式文件后缀修改为txt 格式,再用Cyclone 软件打开,保存为xyz 格式文件?利用导入经Cyclone软件处理后的xyz 格式文件,保存为文件,再打开格式文件,转换为格式文件,通过软件加载格式文件,点击菜单中“点云分析”设置投影点云参数生成DEM ,求取体积,将格式的数据利用Excel 表格处理转换为txt 格式文件,再导入Cyclone 软件,然后保存为xyz 格式文件,按照上述求取体积的步骤求取地形图数据的体积,三是CASS 软件求取开采量?CASS 软件一套集地形?地籍?空间数据建库?工程应用?土石方量算等功能为一体的软件系统?CASS 提供了多种土方计算方法,对不同工程条件可灵活地采用合适的土方计算模型?CASS 软件主要技术思路是:将Geomagic 精简保存的5m点云数据vtx 格式文件后缀修改为格式,再利用Excel 表格将格式文件转换为dat 格式文件保存,利用CASS 软件打开格式文件,将数据转换为格式文件,根据利用CASS 软件将数据转换为格式文件?在CASS 软件选择DTM 法计算两期土方? 2.开采量计算结果分析?针对以上计算结果,从计算开采量的技术可行性?计算的精度?软件操作的难易程度等方面进行对比分析?针对三种软件的性能及计算开采量结果的精度,详细的对比分析阐述如下:1)Cyclone 软件?Cyclone 软件是具有较高知识产权的随机数据处理软件,普通用户获取难?该软件的界面与软件说明书都是英文的,如果没有专门的培训或相关人员的指导,软件使用上比较困难?操作步骤比较繁琐,软件功能比较强大,能够计算采石场开采量?Cyclone在计算开采量方面误差较小?对比三种软件可知:Cyclone 软件在求取开采量方面精度最高,满足工程测量需要?2)HD‐3LS‐SCENE 软件?HD‐3LS‐SCENE 软件在获取方面比较困难,正版软件花费较高,软件试用期都是短暂的?软件操作上比较复杂,计算时间需要40 min ,在三种软件中计算速度最慢?在精度方面相比于其他两个软件,在相同的条件下,精度最低,因此在对精度要求不是很高的情况下,能够使用HD‐3LS‐SCENE 软件计算开采量?3)CASS 软件?该软件运用比较普遍,能够识别多种格式的数据文件?该软件操作简单快捷,在短时间内求取土方量,而且在求取两期土方量的过程中,实现一步到位,减少了后期大量的手工计算。在计算精度方面,CASS 软件获取较高的精度,所以在精度要求不是很高的情况下,CASS软件能够快速求取体积,作为优先考虑的软件。 通过对采石场开采量计算结果表明:利用激光点云数据的采石场开采量计算技术可行、精度满足工程需要。Cyclone 软件使用难度大,

管道检测设备介绍及检测方案

1、需求分析: 根据本次的总体系统规划需求,充分考虑**地区“智慧城管”整体规划的特点,设备将提供的功能模块涵盖排水管道地理空间位置信息采集、排水管道属性信息采集、排水管道内部检测视频、声纳数据采集。 利用雷达检测排水管道地理空间信息以及排水管道属性信息;利用管道机器人采集管道内部视频;利用全景镜头采集管道2D图像,可进行量化分析管道各种缺陷尺寸;利用管道声纳检测系统,用于检测在管道水量达到一半以上时的管道内部状况检测,检测管道的变形、破碎、淤泥含量,利用软件技术,还原管道三维声纳图,直观展示管道淤积、变形、破碎等特种状况。 2、设备设计方案 2.1设备信息表 2.2设备详细资料方案介绍 2.2.1载车 车辆改装总则:

车身表面为工程黄涂装,并安装有作业警示灯,整车结构及外形不进行大的改动。主要将车厢分为二大部分三个区域,即操作区(设备安装室)、监控区(设备操控室)、驾驶区(驾驶室),其中监控区和驾驶区为一个部份并配置空调,操作区为独立部份,拆除了部份空调风道。如下图所示: 2.2.1.1操作区 1、车厢改装(如上图所示) 车厢通过中间隔板分为二个部份,三个区域。中间隔板的中间开有过道门(用户可选)以便操作人员进入操作区,并开有观察窗及电源控制盒。 中间隔板在顶上隔断二侧空调通风道进入操作区并利用监控区二侧空调通风道中间的空间加设顶隔窗以便工作人员放置办公或私人用品。 为了更好利用空间,将操作区地板将通过钢架结构抬高至车轮挡泥板齐平。并设置三个底隔窗以便放置2米的伸缩梯、长杆等辅助操作工具。 操作区地板采用3mm铁板加铺防绣铝板。

2、工作台、旋转吊臂及电动钢丝绳绞盘(如下图所示) 工具箱安装在操作区的右前侧,主要用来放置一些维修工具备件。 旋转吊臂安装在操作区的左后侧,车底安装加强骨和埋铁,保证其刚底工强度。收藏时旋转吊臂向后门靠近并固定,工作状态时转向后车门,吊臂梁可自由伸缩,吊臂的转动半径内不得有干涉物。 电动钢丝绳绞盘配置左右各一个(用户可选择)。 3、可移动部件的放置或固定(如下图所示)

CARD-1中利用点云数据(激光雷达数据)进行项目设计使用说明

如何在CARD/1中利用点云数据进行项目设计 点云数据是利用激光雷达或其他专业测量仪器对实地进行扫描得到的带有颜色和三维坐标的大量点数据的集合。点云数据是目前国内外使用的最先进的测量数据形式。此数据可以真实的反映地形地貌,让设计者如同置身实地进行工程设计。点云数据,根据测量仪器的不同,点云数据有很多种格式,国外常见的有徕卡、瑞格、天宝等,国内常用的是激光雷达数据,其后缀为LAS。CARD/1能直接读取上述格式的点云数据。下面介绍如何在CARD/1中利用点云数据进行工程设计。 一、导入点云数据 首先,进入【测量】--【管理点云】,弹出边菜单,选择“新建”,弹出建立新点云的窗口, 输入一个名称(由字母和阿拉伯数字组成),可以给一个用于以后辨认的描述,点击确定,弹出读取点云数据的边菜单,这里可以读入多种格式的点云数据,需要根据已有点云数据的格式选择使用,现有点云数据位LAS格式,点击变菜单中的LAS格式进行读入,会弹出选择点云数据文件的对话框,选择窗体菜单中的外部文件,找到需要读入的LAS点云数据,点击打开。

出现导入点云数据的进度条,导入结束会提示导入的总点数,点击确定。 选择边菜单中的“预处理”,弹出对话框, 坐标及高程范围是系统自动获取的,无需修改,块大小是指系统将整个点云数据进行分块管理,每一个分块的面积大小,最小点数/最大点数指的是每一个分块管理的点个数。默认参数可以不用修改,也可以根据点云数据的大小情况来修改。点击确定,系统就会对点云数据进行分块处理。这一步必须做,否则系统无法显示点云数据。 二、显示点云数据 完成上述操作,点云数据就被成果导入到系统中。进入平面视图,设置数据显示,边菜单中勾选“点云数据”,即可看到点云数据平面图。 如果点云数据太大,显示速度慢,可以换一种方式显示,即绘制点云平面图,然后显示绘图对象,这样显示速度会快很多。可以进入【绘制图表】--【平面分页】,建立一个绘图需要的平面分页,可以建一个比较大的分页,包含整个点云区域。然后进入【绘制图表】--【建立点云平面】,在边菜单中点击“点云·选

排水管网排口监测系统方案

排水管网排口监测系统解决方案 系统概述 排水管网排口监测系统通过在雨污水排口布设排口流量计、水质监测仪等设备,实时掌握排口流量、水质、河道液面高度以及现场视频状况,实现雨污水排口状态的实时感知和城域化汇集管理,并通过传输网络将采集到的数据接入到各个应用系统中,实现实时监测告警,通过现场真实画面反馈排口运行情况。 系统架构 1、感知层 感知层的设备通过传感网络获取感知信息。感知层是物联网的核心,是信息采集的关键部分。 2、网络层 网络层是数据通信的核心,是数据传输的主要通道,网络层主要采用NB-IoT通信网络,具备覆盖广、连接多、速率快、成本低、功耗低、架构优等特点。 3、通信服务层 通信服务层由物联网设备管理平台组成,实现数据的汇集与管理,为管网监测平台及其他应用平台提供专业、便捷的数据接口服务。

4、应用层 应用层为运维部门、管线权属单位、大数据局、运维管理、决策分析等信息服务。 系统功能 1、实时监测告警 实时监测排水管网气象状况,根据预先设定报警规则,实现气象异常情况告警。 2、GIS地图展示 在电子地图上显示监测点位、基本信息、实时状态等。 3、调度运行 对排水管网分区气象异常分析、处理,高效协调相关部门的协同工作。 4、视频监控 获取有效数据、图像或声音信息,对突发性异常事件的过程进行及时的监视和记忆。 5、数据分析 对大量的排口监测数据进行重组、汇总及对比分析,挖掘出有利于提升排水管网排口管理水平和效率的有价值数据。 系统特点 1、易于集成 系统提供设备底层通讯协议及多种语言的数据接入解析demo程序、协议解析库,30分钟即可完成设备数据调用接口集成。 2、扩展性强 系统对传感器监测项做了对应的扩展预留设计;系统的管理业务流程具备可扩展性;软件平台应用子系统预留了接口具备扩展性。 3、实时性高 基于4G无线传输,传输距离远、信号强度高、数据传输稳定。在现式实时上传监测数据,

机载激光雷达数据后处理软件(LiDAR_Suite)简介

机载激光雷达数据后处理软件(LiDAR_Suite)简介 LiDAR_Suite是武汉天擎空间信息技术有限公司在国家高新技术发展计划项目基础上,开发的具有完全自主知识产权的机载LiDAR 数据后处理软件(如图1)。 图1:LiDAR_Suite 系统界面 LiDAR_Suite 综合考虑了当前机载激光雷达数据处理与应用的实际,形成了一套从原始点云数据到高质量行业产品、成熟高效的机载LiDAR数据处理工艺流程。LiDAR_Suite 功能齐全,性能稳定,提供了涵盖机载激光雷达数据预处理、基础共性处理和专业应用处理等三个处理层次的丰富功能。具体包括: 1)机载LiDAR 点云数据、影像、矢量及DEM 等多源空间数据的存取与可视 化,提供了和主流LiDAR 数据处理软件、遥感影像处理软件以及GIS软件的数据接口; 2)机载LiDAR 数据质量控制;机载LiDAR 系统检校、点云数据精度评价 和点云数据的无缝航带拼接; 3)海量点云数据的工程化组织管理及其自动批处理;集群环境下的点云数据快 速处理; 4)多种点云数据的自动滤波、分类算法,基于多模式和多视图的点云编辑精细

分类,多模式和可视化的分类精度评价; 5)基于机载LiDAR 点云的高质量数字高程模型和等高线生产; 6)面向机载LiDAR 同机航空数码相机的整区域快速正射影像生产;机载 LiDAR点云与非同机遥感影像的配准; 7)电力行业应用:电力线提取与建模、电力设施周边地物要素采集、危险点间 距量测等; 8)数字城市应用:独立的子模块Building Modeler,实现城市建筑物三维模型的 自动、半自动建立。 LiDAR_Suite采用了当前机载LiDAR最新数据处理技术,采用了模块化设计思想以及插件集成技术,在可视化、人机交互、易操作性、处理精度与效率等方面与现有商业化的主流机载激光雷达数据处理软件相比均具有一定的技术优势,并提供了灵活方便的、面向行业的二次开发功能。LiDAR_Suite兼顾了先进算法自动化处理和人机交互的作用,使系统更具实用性;面向专业应用提供了测绘生产、数字城市建模、电力行业应用等功能。目前,该软件已应用于实际的高精效测绘生产中,完成从原始点云数据到基础测绘产品生产(含DEM、DOM、等高线、部分DLG)以及产品精度评价的全部流程,效果良好(图2为数据生产工程管理示意图,图3为多模式和多视图的点云精细分类编辑示意图,图4为点云自动分类结果,图5为高精度DEM渲染结果,图6为电力悬链线的提取与建模,图7为建筑物半自动建模)。目前,LiDAR_Suite的生产处理成果已应用于国土、交通、水利等领域,并可望在更多领域如资源、环境、灾害、电力、农林等得到广泛应用。

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 - 0 - 西安电子科技大学

一、雷达工作原理 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、线性调频(LFM)信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation)信号,接收时采用匹配滤波器(Matched Filter)压缩脉冲。 LFM信号的数学表达式: - 1 -

- 2 - (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: ( 2.2) 其中B K T =是调频斜率,信号的瞬时频率为()22c T T f Kt t + -≤≤,如图 (图2.1.典型的LFM 信号(a )up-LFM(K>0)(b )down-LFM(K<0)) 将式1改写为: (2.3) 其中

激光雷达回波信号仿真模拟

激光雷达回波信号仿真模拟研究 摘要 关键字 第一章绪论 第一节引言 激光雷达(Lidar:Li ght D etection A nd R anging),是一种用激光器作为辐射源的雷达,是激光技术与雷达技术完美结合的产物。激光雷达的最基本的工作原理与我们常见的普通雷达基本一致,即由发射系统发射一个信号,信号到达作用目标后会产生一个回波信号,我们将回波信号经过收集处理后,就可以获得所需要的信息。与普通雷达不同的是,激光雷达的发射信号是激光而普通雷达发射的信号是无线电波,两者在波长上相比,激光信号要短的多。由于激光的高频单色光的特性,激光雷达具有了许多普通雷达无法比拟的特点,比如分辨率高,测量、追踪精度高,抗电子干扰能力强,能够获得目标的多种图像,等等。因此,利用激光雷达对大气进行监测,收集、分析数据,建立一个大气环境预测理论模型,这将会成为研究气候变化和寻求解决对策的一项重要武器。 第二节本文的选题意义 由于投入巨大,在研制激光雷达实物之前,我们需要进行模拟与仿真研究,预测即将研制的激光雷达的各性能指标,评价总体方案的可行性。激光雷达回拨信号仿真模拟就是利用现代仿真技术,逼真的复现雷达回波信号的动态过程,它是现代计算机技术、数字模拟技术和激光雷达技术相结合的产物。仿真模拟的对象是激光雷达的探测没标以及它所处的环境,模拟的手段是利用计算机和相关设备以及相关程序,模拟的方式是复现包含着激光雷达目标和目标环境信息的雷达信号。通过激光雷达回波信号的仿真模拟,进而产生回波信号,我们可以在实际雷达系统前端不具备条件的情况下,对激光雷达系统的后级设备进行调试。 第三节本文的研究思路和结构安排 本文主要研究面向气象服务应用的大气激光雷达。笔者在熟悉激光雷达的基本工作原理的前提下,学习和熟悉各种参数对大气回波能量的影响,进而学习和掌握matlab编程语言,并且根据给定的激光雷达系统参数、大气参数和光学参数,以激光雷达方程为基础,通过仿真模拟得到理想状态下的大气回波信号。但是,在实际测量工作中,由于大气中的各种干扰,我们获得的回波信号并不和理想状态下的大气回波信号一致,因此,在本文的后期工作中,笔者根据已有的大量激光雷达实测信号与模拟信号对比,既能验证仿真模拟结果的准确性,又能应用于激光雷达的性能指标等方面的分析上,具有比较高的实际应用价值。 第二章激光雷达的原理 第一节激光雷达系统 一个标准的激光雷达系统应该包含以下部件:激光器、发射系统、接收系统、光学系统、信号处理系统以及显示系统。它的工作原理图我们可以用下图表示:

机载激光雷达数据处理流程

机载激光雷达数据处理 编制:深圳飞马机器人科技有限公司版本号:V0.1 日期:2019-3-22

版权声明 本文档版权由深圳飞马机器人科技有限公司所有。任何形式的拷贝或部分拷贝都是不允许的,除非是出于有保护的评价目的。 本文档由深圳飞马机器人科技有限公司提供。此信息只用于软件业务项目管理的成员或咨询专家。特别指出的是,本文档的内容在没有得到深圳飞马机器人科技有限公书面允许的情况下不能把全部或部分泄露给任何其它单位。

目录 机载激光雷达数据处理 (1) 1.概述 (5) 2.软件准备 (5) 3.数据整理 (6) 3.1.GPS数据 (6) 3.2.LIDAR原始数据 (7) 3.3.影像数据...........................................错误!未定义书签。 3.4.数据整理与存放..............................错误!未定义书签。 4.差分解算 (7) 4.1.GPS数据格式转换 (7) 4.2.影像POS数据处理..........................错误!未定义书签。 4.3.点云轨迹解算 (10) 5.影像数据处理..............................................错误!未定义书签。 6.点云数据预处理 (26) 6.1.新建项目 (26) 6.2.点云解算 (30) 6.3.数据检核 (31) 6.4.特征提取 (33) 6.5.航带平差 (34) 6.6.点云赋色 (35)

6.7.坐标转换 (36) 6.8.点云标准格式(LAS)导出 (38) 7.点云数据后处理 (39) 7.1.数据分块 (39) 7.2.噪声点滤除 (40) 7.3.分类编辑 (41) 7.4.DEM输出 (44) 7.5.EPS采集DLG (45) 7.6.基于点云采集DLG (51) 8.成果精度检查与汇交 (57) 8.1.点云精度检查 (58) 8.2.成果提交(只列出点云成果,不含影像) (58)

三维激光扫描数据处理操作说明

三维激光扫描数据处理操作说明 中国地质大学三峡中心 钟成 2015年12月

1. 配置要求 扫描要求:密度高,扫描全面,站间重叠度高。 系统配置:XP系统,32位,有D盘盘符。 软件安装: ILIRS-3D软件包(绿色) polyworks_10_0_3_32bit.exe, chanzhuang.exe和配套库, Geomagic Studio10, TexCapture1.1。 Matlab 10.0 2. 数据预处理 2.1. 数据转换 2.1.1. 数据导入 打开ILIRS-3D软件包中Parser 5.0.1.4中Parser.exe,界面如图2.1.1: 图2.1.1 点击Add找到笔记本中存储扫描数据的文件夹:

出现以下界面: 图2.1.3 工具栏中放大缩小按钮可用于观察扫描范围。 2.1.2. 基本设置 然后点击setting对解压过程进行设置,出现如2.1.4界面。

图2.1.4 其中,Outputfile界面,主要设置输出路径和格式。默认路径在保存点云文件夹下,不用改。默认选择PIF格式,24-bit texture,也就是有颜色信息的点云,如果是8-bit scaled 则是点云强度信息。PIF格式是polyworks支持的格式。如果选择XYZ格式,则以ASCII码形式输出,也可以定义是否需要输出颜色信息。该格式可直接被Geomagic打开。 图2.1.5 2.1. 3. 颜色设置 然后,在最左边列表里选择Color Channel,出现如下界面:

选中, 默认的在会出现相应的照片信息,如果没有,则检查存储扫描数据的文件夹里是否有照片文件。 在里,默认是没有文件内容的,点击,到“ILIRS-3D”软件包,找到文件“10384 CameraCalParam.txt”即可。 2.1.4. 平移参数设置 然后在最左边列表里选择Pan tilt Transform,出现如下界面:

专业雷达数据分析模块

专业雷达数据分析模块 PCI Geomatica 高级SAR数据滤波:包括增强的Frost, Lee, Kuan 滤波功能 极化SAR数据分析:读取、分析并校准JPL aircraft SAR Stokes和散射矩阵数据. SAR 数据校准:包括生产校准的后向散射系数和雷达亮度。 SAR 数据分析:包括特征提取和变化检测 EarthView 产品系列 EarthView 套装软件提供从航天SAR数据生成高质量影像、DEM及变形图的完整的软件包。套装软件目前由四个产品组成: 1) EarthView APP v3.1 -- 完整解释为The Advanced Precision Processor,可将原始航天SAR数据转换为高质量影像产品。 2) EarthView InSAR v3.1 -- 干涉测量工作站可从处理的航天SAR影像生成DEM及变形图。CTM模块-- EarthView InSAR v3.1新增了CTM模块,CTM InSAR用来对连续性的目标进行变化监测。 3) EarthView Hypac -- 高光谱处理软件包,用来进行大数据量的高光谱图像处理。 4) EarthView Stereo v3.1 -- 三维模块应用一对SAR影像,生成区域的数字地形高程模型。产品特点 Atlantis致力于现代化其生产线,提供新水平的集成与交互操作能力、改进的易用性、常用的“look and feel”、对所有支持平台的可移植性。产品的几个主要特点包括: 1) 采用多CPU增强生产的能力; 2) 更新的生产“look and feel”以确保直观的版面、更新的设计及改进的交互生产连贯性; 3) 新的借助于硬件加速能力的可视化技术; 4) 简化的安装和授权程序; 5) 教育版,包含所有操作模式,但只支持有限数量的训练数据(注意教育版只能在Windows NT/2000下操作)。

基于Terra Solid的机载激光雷达点云数据处理应用

基于Terra Solid的机载激光雷达点云数据处理应用 发表时间:2019-06-20T11:45:12.637Z 来源:《基层建设》2019年第9期作者:姚思贤 [导读] 摘要:机载激光雷达(light detection and ranging,LiDAR)是于20世纪80年代发展起来的一种集全球定位系统、惯性导航系统与激光测距技术于一体的新型主动式空间信息获取技术。 中科遥感科技集团有限公司天津市 300300 摘要:机载激光雷达(light detection and ranging,LiDAR)是于20世纪80年代发展起来的一种集全球定位系统、惯性导航系统与激光测距技术于一体的新型主动式空间信息获取技术。它可直接获取地面目标的三维坐标,不受阴影和太阳高度角影响,并可与数字航摄仪相结合获取地物光谱、纹理信息,具有控制测量依赖性少、受天气影响小、自动化程度高、成图周期短等特点,基于TerraSolid系列软件构建完整的用于机载激光雷达点云数据处理的详细技术流程,通过优化处理流程提高其数据处理的效率和精度。对4组实验数据的处理结果表明,该技术具有较好的可行性和较高的工作效率。 关键词:基于Terra Solid;机载激光雷达;点云数据;处理应用 1、前言 近几年,随着机载激光雷达硬件系统的快速发展,其产生的点云数据也变得更加精确,更加海量。在整个激光雷达的数据处理过程中,占60%~80%的点云数据分类工作已经成为制约LiDAR进一步应用发展的瓶颈问题,设计高效、高精度的海量点云数据处理流程意义十分重大。 2、基于Terra Solid的点云数据处理流程 目前的LiDAR数据处理技术、流程和方法还很不完善,使用TerraSolid软件实现机载LiDAR点云数据的处理,直至生成DEM产品的过程主要可以归为以下五大步骤。 2.1导入原始数据并建立项目流程 导入原始点云数据和建立项目是后面所有操作的阶石,具体操作步骤顺序如下: 1)设置坐标系。 2)导入飞行航线。 3)导入机载LiDAR点云数据,检查覆盖情况,确定点密度及单个作业Block大/]、(2GBRAM:5百万个点,4GBRAM:1.O~1.5千万个点)。 4)定义作业区。 5)裁切飞行航线(值得注意的是,航线不能自相交)。 6)定义项目(新建后要注意保存)。 7)定义作业分区Block(定义后,删除并在指定层重画Block)。 8)导入机载LiDAR点云数据点,生成分区存储的机载LiDAR数据点文件。 9)推测航线号并检查正确性。 2.2数据校正流程 原始数据在使用之前需要进行适当的数据校正处理,任何一个技术环节把握不当都将直接导致项目的失败。TerraSolid主要是用宏命令的方式帮助校正、平差、纠正相关数据项。详细流程如下: 1)创建用于数据校正的项目文件(注意只选择几个有不同坡向或多坡的Block区进行测试)。 2)装载TerraMatch模块。 3)运行“Measurematch”命令,量测相邻航线间的匹配差值。 4)运行“Findmatch”命令,计算3个角度偏转误差及镜向比例误差,保存改正数及误差报告。 5)运行“Applycorrection”命令,用上一步保存的改正数纠正整个项目区数据。 6)检查改正效果。 7)运行“Findmatch”计算Z误差(整个测区),保存改正数及误差报告。 8)选择整个项目,Solvefor:individuallines。 9)如果需要,对误差较大的航线调整其质量属性。 10)运行“Applycorrection”命令,用上一步保存的Z改正数纠正整个项目区数据。 11)检查改正效果。 12)运行“Findfluctuation”量测整个测区重叠部分的波动较差,保存改正数及误差报告。 13)对整个测区进行波动较差改正。 14)检查改正效果。 15)检查整体匹配效果。 2.3机载LiDAR点云数据的自动分类流程 机载LiDAR的点云数据的分类处理概括地分为自动分类处理和手动分类两部分。这项工作在整个机载LiDAR的数据后处理过程中占六到八成的T作量。下面详细介绍自动分类处理的流程: 1)删除重叠点(有的项目不需要删除)。 2)创建宏命令进行单航线地面点分类,由4个命令组成:①“Lowpointclassification”ingroups,即成组的低点分类。主要指明显低于地面的点,如在开着的检修井里的点、反射错误的点等。②“Lowpointclassification”singlepoints,即单个的低点分类。③“Groundclassification”,即地面点分类。④“Belowsurface”,即低于表面的点分类,在非常粗糙的区域稍低于地面的点。 3)运行于一个区,检查结果。在利用宏进行数据分类时,由于分类宏参数设置的偏差,会导致房屋有些地方分的不到位,有一些不属于房屋的点进入。这样在后期处理时就要多注意一些。所以宏的参数设置很重要,需要多试验几次再确定。

三维激光扫描仪点云数据处理与建模

三维激光扫描仪点云数据处理与建模点云的预处理由于三维激光扫描仪在扫描过程中,外界环境因素对扫描目标的阻挡和遮掩,如移动的车辆、行人树木的遮挡,及实体本身的反射特性不均匀,需要对点云经行过滤,剔除点云数据内含有的不稳定点和错误点。实际操作中,需要选择合适的过滤算法来配合这一过程自动完成。 点云配准使用控制点配准,将点云配准到控制网坐标系下;靶标缺失的点云,利用公共区域寻找同名点对其进行两两配准,当同名点对不能找到时,利用人工配准法。后两种方法均为两两配准,为了将所有点云转换到统一的控制网坐标系下与控制点配准法得到点云配在一起,两两配准时要求其中一站必须为已经配到控制网坐标系下的点云。 点云拼接外业采集的数据导入至软件时会根据坐标点自动拼接,但由于人为操作和角架的误差,一些点云接合处不太理想,这时需要进行手动拼接,对一些无坐标补扫面的拼接也需手动处理。手动拼接时对点云应适当压缩,选择突出、尖角、不同平面的特征点,以降低操作误差。如采用1cm激光间隔扫描时拼接后的误差在3mm以下较为理想。 建立三维模型当建筑物数字化为大量离散的空间点云数据后,在此基础上来构造建筑物的三维模型。

点云的漏洞修复由于点云本身的离散性,会导致模型存在一定缺陷,需要在多边形阶段对其进行修补、调整等操作后,才能得到准确的实物数字模型。由于建筑物形状复杂多样,所以目前网格的修补难以实现全自动化。三维激光扫描仪点云数据的漏洞修复主要采用两种方法:当空洞出现在平面区域内,比如窗户或者墙面上的洞,可采用线性插值的方法填补空洞数据;当空洞出现在非平面区域,如圆柱上出现的漏洞,可采取二次曲面插值方法。

基于三维激光雷达技术的大比例尺地形图解决方案

基于三维激光雷达技术的大比例尺地形图解决方案 一激光雷达技术 1.1 综述 激光雷达测量技术(LiDAR)是当今测绘业界先进的遥感测量手段,是继GPS空间定位系统之后又一项测绘技术新突破。自20世纪60年代末世界第一部激光雷达诞生以来,激光雷达技术作为一种重要的航空遥感技术,与成像光谱、成像雷达共同被誉为对地观测三大核心技术。迄今为止,激光雷达的研究与应用均取得了相当大的进展,已成为航空遥感领域主流之一,其应用已超出传统测量、遥感以及近景测量所覆盖的范围,成为一种独特的数据获取方式。LIDAR技术具有高精度、高分辨率、高自动化且高效率的优势,集激光扫描、全球定位系统和惯性导航系统技术于一身,同时配备高分辨率数码相机,可实现对目标的同步测量,生成高密度激光点云数据,已成为世界各国进行大面积地表数据采集的重要主流与趋势。与传统摄影测量技术相比,激光雷达技术生成三维信息更快、更准确,特别能穿透地表覆盖的森林植被快速获取地形信息的能力,具有其他技术无可比拟的优势。采用激光雷达技术获取地面及其覆盖物(植被、电力线等)的精确三维坐标,生成高精度地形信息,可作为土地利用、工程建设规划、城市管理、河海地形、水库大坝、山坡检测、防灾、矿业、农业、林业、公共管理等方面数字化、自动化等应用基础。 1.2 激光雷达技术基本原理 激光雷达是一种有效的主动遥感技术,通过发射激光脉冲及精准的量测回波所经过的时间计算传感器与目标物之间的距离,再结合飞行器姿态信息、位置信息进行相关解算和坐

标转换可以得到高精度的三维数据。机载激光雷达系统主要由飞行平台、激光测距系统、全球定位系统(GPS)、惯性导航系统(INS)以及相关的控制存储单元组成。 激光测距系统是激光雷达的核心组成部分,通过发射、接收激光信号可以精确测量发射器和目标物的距离。激光测距一般采用方式:脉冲测距和连续波的相位差测距。连续波激光器市场上较为少见,因此现有的激光雷达系统多采用脉冲测距的方式。通过激光器发射一束窄脉冲,与目标物接触后产生反射,并通过接收器接收回波信号。由于脉冲的速度已知(光速),接收器可以精确测量脉冲发射到接收到反射信号的时间,从而获得目标物与激光器的距离,其测量精度常常可以达到毫米级。 随着激光雷达技术的发展,激光雷达的飞行平台可以根据需要和实际作业条件进行多种选择,目前常见的搭载平台有小型飞机、固定翼飞机、直升飞机、无人机、动力三角翼、无人飞艇等。 激光雷达系统工作原

相关文档
最新文档