13.1 概率及其计算

13.1 概率及其计算
13.1 概率及其计算

第十三章概率与统计本章知识结构图

第一节 概率及其计算

考纲解读

1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。

2.了解两个互斥事件的概率的加法公式。

3.掌握古典概型及其概率计算公式。

4.了解随机数的意义,能运用模拟方法估计概率。

5.了解几何概型的意义。

命题趋势探究

1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。

2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。

知识点精讲

一、必然事件、不可能事件、随机事件

在一定条件下:

①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件;

③可能发生也可能不发生的事件叫随机事件。

二、概率

在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。对于必然事件A ,;对于不可能事件A ,=0.

三、基本事件和基本事件空间

在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。

四、两个基本概型的概率公式

1、古典概型

条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同

()(A)

=

()A card P A card =

Ω包含基本事件数基本事件总数

2、几何概型

条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为

A

μ.

()P A =

A

μμΩ

。 五、互斥事件的概率

1、互斥事件

在一次实验中不能同时发生的事件称为互斥事件。事件A 与事件B 互斥,则

()()()

P A B P A P B =+U 。

2、对立事件

事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。

()()

1P A p A =- 。

3、互斥事件与对立事件的联系

对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。

题型归纳及思路提示 题型176 古典概型

思路提示

首先确定事件类型为古典概型,古典概型特征有二:有限个不同的基本事件及各基本事件发生的可能性是均等的;其次计算出基本事件的总数及事件A 所包含的基本事件数;最后计算

()A P A =

包含基本事件数

基本事件总数。

例13.1 设平面向量(),1m a m =,()2,n b n = ,其中{}, 1.2,3,4m n ∈ (1)请列出有序数组(),m n 的所有可能结果;

(2) 若“使得()m m n a a b ⊥-成立的(),m n 为事件A ,求事件A 发生的概率。

分析:两向量垂直的充要条件是两向量的数量积为0,从而可得m 与n 的关系,再从以上

(),m n 的16个有序数组中筛选出符合条件的,即得事件A 包含的基本事件个数。

解析:(1)由{}, 1.2,3,4m n ∈,有序数组(),m n 的所有可能结果为()1,1 ,

()()()

1,2,1,3,1,4,

()()()()

2,1,2,2,2,3,2,4,

()()()()

3,1,3,2,3,3,3,4,

()()()()4,1,4,2,4,3,4,4 共16个。

(2)因为(),1m a m =,()2,n b n =,所以()2,1m n a b m n -=-- .又()m m n a a b ⊥-,得

()(),12,10m m n ?--= ,即22m 10m n -+-= ,所以()21n m =- 。故事件A 包含的

基本事件有()2,1和()3,4,共2个,由古典概型概率计算公式得()21168

P A =

= 。 评注:①解题时,将所有基本事件全部列出是避免重复和遗漏的有效方法,注意在列举时,必须按照某一顺序来列举;②本题以向量为载体,利用向量的运算和关系等向量的基本知识解决概率问题,是将两类知识结合得较好的一道题目。

变式1 电子钟一天显示的时间从00:00~23:59,每一时间都由4个数字组成,则一天中任取一时刻显示的4个数字之和为23的概率为( )

A.

1180 B. 1288 C.1360 D.1480

变式2 连抛两次骰子的点数分别为,m n ,记向量(),a m n =r

,向量()1,1b =-r ,a r 与b r 的

夹角为θ,则0,2πθ??

∈ ??

?

的概率是( )

A. 512

B. 12

C.7

12

D. 56

例13.2 (2012重庆理15)某艺校在一天的6节课中随机安排语文,数学,外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为____________(用数字作答)。

解析: 6节课随机安排,共有6

6720A =种不同的方法。课表上相邻两节文化课之间最多间

隔1节艺术课,有以下三种情况:①三门文化课间有2节艺术课:有321

33272A A A =种方法; ②三门文化课间有1节艺术课:有31133323216A C A A =种方法;③三门文化课间有0节艺术课:有34

34144A A =种方法。共有72+216+144=432种符合题意的安排方法,故所求概率为

4323

=7205

P =

变式1 (2012上海理11)三位同学参加跳高,跳远,铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是______________(结果用最简分数表示)。

变式2 甲乙两人一起去游“2011西安世园会”,他们约定:各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( ) A.

136 B. 19 C. 5

36

D. 16

变式3 在某地的奥运火炬传递活动中,有编号1,2,3,…,18的18名火炬手,若从中

任选3人,则选出的3名火炬手的编号能组成以3为公差的等差数列的概率为( ) A. 151 B. 168 C. 1306 D. 1408

题型177 几何概型的计算

思路提示

首先确定事件类型为几何概型并明确其几何区域(长度、面积、体积或时间),其次计算出基本事件区域的数值和事件A 包含区域数值 ,最后计算

(A)A P =

事件区域数值(长度、面积、体积或时间)

基本事件区域数值(长度、面积、体积或时间)

,解几何概型问题的关键是

画图、求面积。

例13.3 (2012辽宁理10)在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别为线段AC,CB 的长,则该矩形面积小于322cm 的概率为( ) A.

16 B. 13 C. 23 D. 45

解析: 设AC x =,则12CB x =-,且012x << ,所以()12x x -表示矩形的面积,令

()1232x x -≤,解得:4x <或8x >,如图13-1所示,

故所示的概率为442

123

P +=

= .故选C . 变式1 []

22,log A t =,{}

214240B x x x =-+≤ ,,x t R ∈ ,A B ?. (1)定义区间[]

,a b 的长度为b a -,A 的长度为3,则t =_________.

(2)某函数()f x 的值域为B ,且()f x A ∈ 的概率不小于0.6,则t 的取值范围为_______. 例13.4 (2012福建理6)如图13-2所示,在边长为1 的正方形OABC 中任取一点P ,则

点P 恰好取自阴影部分的概率为( )

A.

14 B. 15 C. 16 D. 17

解析:由题意可知,阴影部分的面积是由函数,y x y x =

=围成的几何图形的面积,利用

定积分可知: 11

00=S xdx xdx -=??阴影 32

11200211326

x x -= ,又OABC =1S 正方形,

所以由几何概型知,所求的概率为1

6

P = .故选C .

评注:利用线性规划和积分知识求面积,是解决相关的几何概型问题的常见方法.

变式1 小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于

12 ,则周末去看电影;若此点到圆心的距离小于1

4

,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为_____________.

变式 2 (2012北京石景山一模理13)如图13-3所示,圆O :222

x y π+=内正弦曲线

sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则该点A

落在区域M 内的概率是__________.

变式3 (2012湖北理8)如图13-4所示,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )

A. 2

-

B.

112π- C.2π D. 1π

例13.5 已知()[]

2

,,0,4f x x ax b a b =-+-∈ ,,a b R ∈,则()10f > 的概率为______.

解析 几何概型{

04

04,0,a b A a b ≤≤≤≤Ω?Ω->:且-1+ 作出Ω,

A 的区域图(如图13-5所示).

4

416μΩ=?= ,19

3322

A μ=??= ,则()9921632A P A μμΩ===.

变式1 =A {}

10x x -≤≤ ,{

}|210,02,13x B x ax b a b =+?-<≤≤≤≤

(1),a b N ∈,求A B ?≠? 的概率; (2),a b R ∈ ,求=A B ??的概率.

例13.6 甲乙两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方

可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内能相见的概率。

分析 由题意知,当甲乙两人到达目的地的时间相差小于或等于40分钟时两人便能在约定时间内相见。

解析 设甲乙两人分别于x 时和y 时到达约定地点,要使两人能在约定时间范围内相见,当且仅当22

33

x y -

≤-≤ .记20:00为0时,21:00为1时,两人到达约见地点的所有可能时刻(),x y 满足01

01x y ≤≤??

<≤?

,结果可用如图13-6所示的单位正方形(包括边界)内的点来

表示,两人能在约定时间内相见的时刻 (),x y 的所有可能满足2

3

23

x y y x ?

-≤??

?

?-≤??

, 可用 如图13-6所示的阴影部分(包括边界)来表示。

故所求概率为P =

11111282331=19

??

?-??? ?

??? .

评注:对问题中事件模型的认识与转化是解决问题的关键,这里涉及两个人的时间转化为二

维面积问题计算.

变式1 甲乙两艘轮船都要停靠在同一泊位,它们可能在一昼夜的任意时刻到达.如果甲乙 两船停靠泊位的时间分别为4小时和2小时,求有一艘轮船停靠泊位时必须等待一段时间的概率。

变式2 小明家的晚报在下午5:30~ 6:30之间的任何一个时刻随机地被送到,小明一家人在下午6:00~7:00之间的任何一个时刻随机地开始晚餐。

(1)你认为晚报在晚餐开始之前被送到和在晚餐开始之后被送到哪一种可能性更大?(不用计算).

(2)晚报在晚餐开始之前被送到的概率是多少?

最有效训练题53(限时40分钟)

1、甲乙丙三人随意坐下一排座位,乙正好坐中间的概率为( ) A.

12 B. 13 C. 14 D. 16

2、从{}1,2,3,4,5 中随机选取一个数为a ,从{}1,2,3 中随机选取一个数为b ,则b a >的概率是( )

A.

45 B. 35 C. 25 D. 15

3、两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为( )

A. 12

B. 13

C. 14

D. 23

4、先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为,X Y ,则2log 1X Y = 的概率为( )M

A.

16 B. 536 C. 112

D. 12 5、在边长为18cm 的线段AB 上任取一点 M ,并以线段AM 为边作正方形,则这个正

方形的面积介于362cm 与812cm 之间的概率为( ) A.

56 B. 12 C. 13 D. 16

6、甲乙分别从正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( ) A.

318 B. 418 C. 518 D. 618

7、从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得的是黑桃”,则概率()P A B ?=____________(结果用最简分数表示).

8、一个正三角形的外接圆的半径为1 ,向该圆内随机投一点P ,点 P 恰好落在正三角形外的概率是___________.

9、已知函数()()2

11f x ax b x b =+++- ,且()0,3a ∈ ,则对于任意的b R ∈ ,函数

()()F x f x x =-总有两个不同的零点的概率是_________.

10、现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是_____________.

11、在平面直角坐标系xOy 中,平面区域W 中的点的坐标(),x y 满足2

2

5x y +≤ ,从

区域W 中随机取点(),M x y .

(1),x z y z ∈∈ ,求点M 位于第四象限的概率;

(2)已知直线l :()0y x b b =-+>与圆O :22

5x y += y x b ≥-+ 的概率。

12、某商场电梯从1层出发后可以在2,3,4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2,3,4层下电梯是等可能的,求这4位乘客中至少有一名乘客在第2层下电梯的概率。

概率论与数理统计公式大全

第1章 随机事件及其概率 例1.16 设某人从一副扑克中(52张)任取13张,设A 为“至少有一张红桃”,B 为“恰有2张红桃”,C 为“恰有5张方块”,求条件概率P (B |A ),P (B |C )解 13 52 1339 1352135213391)(1)(C C C C C A P A P -=-=-=13 52 11 39 213)(C C C AB P ?=13 39 135211392131352 13 39135213521139 213)() ()(C C C C C C C C C C A P AB P A B P -=-==1352 839 513)(C C C C P =13 52626213513)(C C C C BC P =8 39 6262131352 8395131352626 213513)() ()(C C C C C C C C C C C P BC P C B P === 某种动物出生后活到20岁的概率为0.7,活到25岁的概率为0.56,求现年为20岁的这种动物活到25岁的概率. 解设A 表示事件“活到20岁以上”,B 表示事件“活到25岁以上”,显然A B ?7.0)(=A P 56.0)(=B P 56 .0)()(==B P AB P 8.07 .056 .0)()()(=== A P A B P A B P

例1.21 某工厂生产的产品以100件为一批,假定每一批产品中的次品最多不 超过4件,且具有如下的概率:一批产品中的次品数0 1 2 3 4 概率0.1 0.2 0.4 0.2 0.1 现进行抽样检验,从每批中随机抽取10件来检验,若发现其中有次品,则认 为该批产品不合格。求一批产品通过检验的概率。4 ()()() k k k P B P A P B A == ∑解设B 表示事件“一批产品通过检验”,A i (i =0,1,2,3,4)表示“一批产品含有i 件次品”,则A 0,A 1, A 2, A 3, A 4组成样本空间的一个划分, 00()0.1,()1 P A P B A ==1099 1110100 ()0.2,()0.900 C P A P B A C ===1098 2210100 ()0.4,()0.809 C P A P B A C ===1097 3310100 ()0.2,()0.727 C P A P B A C ===1096 4410100 ()0.1,()0.652 C P A P B A C ===814.0652 .01.0727.02.0809.04.0900.0.021.0≈?+?+?+?+=顾客买到的一批合格品中,含次品数为0的概率是 0004 ()(|) 0.11(|)0.123 0.814 ()(| ) i i i P A P B A P A B P A P B A =??= = ≈?∑类似可以计算顾客买到的一批合格品中,含次品数为1、2、3、4件的概率分别约 为0.221、0.398、0.179、0.080。 贝叶斯公式(Bayes) 1 ()() ()1,2,,()() k k k n i i i P A P B A P A B k n P A P B A =?= =∑L 第二章 随机变量及其分布 1离散型 随机变量 P(X=x k )=p k ,k=1,2,…, (1)0≥k p , (2)∑∞ ==1 1 k k p 2连续 型随机变量概 ? ∞-=x dx x f x F )()( (1)0)(≥x f ;(2) ? +∞ ∞ -=1 )(dx x f 。 ()=()F x f x '? =-=≤

概率计算方法

概率计算方法

概率计算方法 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)=的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件)=0;0

摸一个球,请用画树状图法,求两次摸到都是白球的概率. 解析:⑴设蓝球个数为x 个 . 由题意得2 1 1 22=++x ∴x=1 答:蓝球有1个 (2)树状图如下: ∴ 两次摸到都是白球的概率 =6 1 122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是机会均等的. 本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗列出来,便于计算结果. 黄 白2白1蓝 黄白1蓝黄白2

四.列表法 例4 (07山西)如图3,有四张编号为1,2,3,4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上. (1)从中随机抽取一 张,抽到的卡片是眼睛的概率是多少? (2)从四张卡片中随机抽取一张贴在如图4所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率. 1 2 3 图 图3

概率统计公式大全(复习重点)

第一章随机事件和概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

统计概率经典例题(含(答案)和解析)

统计与概率经典例题(含答案及解析) 1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表: ⑴表中a和b所表示的数分别为:a= .,b= .; ⑵请在图中补全频数分布直方图; ⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名? 2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统 计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图: (1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整; (2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小 型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的 2家企业恰好都是餐饮企业的概率. 3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜 色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下 颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.

根据以上信息解答下列问题: (1)求实验总次数,并补全条形统计图; (2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度? (3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%. 类别科普类教辅类文艺类其他册数(本)128 80 m 48 (1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数; (2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本? 5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。 (1)从中随机抽出一张牌,牌面数字是偶数的概率是;(3分) (2)从中随机抽出两张牌,两张牌面数字的和是5的概率是;(3分)(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树形图的方法求组成的

概率统计常见题型及方法总结

常见大题: 1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件 i A ”可以导致 B 这个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因i A 的概率问题 全概率公式: ()()() 1B |n i i i P B P A P A ==∑ 贝叶斯公式: 1(|)()() ()()n i i i j j j P A B P A P B A P A P B A ==∑|| 一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少? 解 i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=i i A 表示从第i 个口袋中任取一个球为红球, 2分 则 b a a B P += )(1, 2分 )()()()()(1111111B A P B P B A P B P A P += 111++++++++= b a a b a b b a a b a a b a a += 2分 依次类推 2分 b a a A P i += )( 二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少?

、解 记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n = = ++,()1P A B =,()1 2r P A B =―—5分 ()()1()212()()()()12 r r r n P B P A B n m n P B A n m n m P B P A B P B P A B m n m n ?+===++?+?++ 三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。现在每次从中任 取一件产品进行检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。在检验时,一件正品被误判为次品的概率为0.05,而一件次品被误判为正品的概率为0.01。(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概率。 解 设 A 表示“任取一件产品被检验为正品”, B 表示“任取一件产品是正品”,则 ()96100P B = ,()4 100 P B =,()|0.95P A B =,()|0.01P A B = (1)由全概率公式得 ()()()()()||0.9124P A P B P A B P B P A B =+= (2)这批产品被检验为合格品的概率为 ()3 3 0.91240.7596p P A ===???? 四、在电报通讯中不断发出信号‘0’和‘1’,统计资料表明,发出‘0’和‘1’的概 率分别为0.6和0.4,由于存在干扰,发出‘0’时,分别以概率0.7和0.1接收到‘0’和‘1’,以0.2的概率收为模糊信号‘x ’;发出‘1’时,分别以概率0.85和0.05收到‘1’和‘0’,以概率0.1收到模糊信号‘x ’。 (1)求收到模糊信号‘x ’的概率; (2)当收到模糊信号‘x ’时,以译成哪个信号为好?为什么? 解 设i A =“发出信号i ”)1,0(=i , i B =“收到信号i ”),1,0(x i =。由题意知 6.0)(0=A P , 4.0)(1=A P , 2.0)|(0=A B P x , 1.0)|(1=A B P x 。 (1)由全概率公式得 ) ()|()()|()(1100A P A B P A P A B P B P x x x += 4分 16.04.01.06.02.0=?+?=。 2分 (2)由贝叶斯公式得 75.016 .06 .02.0)()()|()|(000=?== x x x B P A P A B P B A P , 3分 25 .075.01)|(1)|(01=-=-=x x B A P B A P 3分

概率计算公式(精选课件)

概率计算公式 加法法则 P(A∪B)=P(A)+P(B)-P(AB 条件概率 当P(A)>0,P(B|A)=P(AB)/P(A) 乘法公式 P(AB)=P(A)×P(B|A)=P(B)×P(A|B) 计算方法 “排列组合”的方法计算 记法 P(A)=A 加法法则 定理:设A、B是互不相容事件(AB=φ),P(AB)=0。则P(A∪B)=P(A)+P(B)-P(AB)=p(A)+P(B) 推论1:设A1、A2、…、An互不相容,则:P(A1+A2+.。.+An)= P(A1) +P(A2) +…+ P(An) ...文档交流仅供参考... 推论2:设A1、 A2、…、 An构成完备事件组,则:P (A1+A2+。..+An)=1 推论3:P(A)=1—P(A') 推论4:若B包含A,则P(B—A)= P(B)—P(A) 推论5(广义加法公式):

对任意两个事件A与B,有P(A∪B)=P(A)+P(B)—P(AB) 折叠条件概率 条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B) 条件概率计算公式: 当P(A)>0,P(B|A)=P(AB)/P(A) 当P(B)>0,P(A|B)=P(AB)/P(B) 折叠乘法公式 P(AB)=P(A)×P(B|A)=P(B)×P(A|B) 推广:P(ABC)=P(A)P(B|A)P(C|AB) 折叠全概率公式 设:若事件A1,A2,…,An互不相容,且A1+A2+…+An=Ω,则称A1,A2,…,An构成一个完备事件组....文档交流仅供参考... 全概率公式的形式如下: 以上公式就被称为全概率公式。

概率论与数理统计公式定理全总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ),(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

概率及其计算

第十三章概率与统计本章知识结构图 统计 随机抽样 抽签法 随机数表法 简单随机抽样 系统抽样 分层抽样 共同特点:抽样 过程中每个个体 被抽到的可能性 (概率)相等用样本估计总体 样本频率分布 估计总体 总体密度曲线 频率分布表和频率分布直方图 茎叶图 样本数字特征 估计总体 众数、中位数、平均数 方差、标准差 变量间的相关关系 两个变量的 线性相关 散点图回归直线 正态分布 列联表(2×2)独立性分析 概率 概率的基本性质互斥事件对立事件 古典概型 几何概型 条件概率 事件的独立性 用随机模拟法求概率 常用的分布及 期望、方差 随机变量 两点分布 X~B(1,p) E(X)=p,D(X)=p(1-p) 二项分布 X~B(n,p) E(X)=np,D(X)=np(1-p) X~H(N,M,n) E(X)=n M N D(X)= nM N? ? ? ? 1- M N N-n N-1 n次独立重复试验恰好 发生k次的概率为 P n(k)=C k n p k(1-p)n-k 超几何分布 若Y=aX+b,则 E(Y)=aE(X)+b D(Y)=a2D(X) P(A+B)=P(A)+P(B) P(?A)=1-P(A) P(A B)=P(A)·P(B) P(B | A)= P(A B) P(A)

第一节 概率及其计算 考纲解读 1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。 2.了解两个互斥事件的概率的加法公式。 3.掌握古典概型及其概率计算公式。 4.了解随机数的意义,能运用模拟方法估计概率。 5.了解几何概型的意义。 命题趋势探究 1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。 2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。 知识点精讲 一、必然事件、不可能事件、随机事件 在一定条件下: ①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件; ③可能发生也可能不发生的事件叫随机事件。 二、概率 在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。对于必然事件A ,;对于不可能事件A ,=0. 三、基本事件和基本事件空间 在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。 四、两个基本概型的概率公式 1、古典概型 条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同 ()(A) = ()A card P A card = Ω包含基本事件数基本事件总数 2、几何概型 条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为 A μ.

概率计算方法全攻略

概率计算方法全攻略 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件) =0;0

最新统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

概率计算方法全攻略

概率计算方法全攻略

概率计算方法全攻略 在新课标实施以来,中考数学试题中加大了 统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)=的结果数 随机事件所有可能出现果数随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件)=0;0

解析:⑴设蓝球个数为x 个 . 由题意得2 1122=++x ∴x=1 答:蓝球有1个 (2)树状图 如下: ∴ 两次摸到都是白球的概率 =6 112 2=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果. ②无论哪种都是机会均等的 . 本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗列出来,便于计算结果. 四.列表法 例4 (07山西)如图3,有四张编号为1,2,3,4的卡 片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上. (1)从中随机抽取一张,抽到的卡片是眼睛的黄白2蓝白2白1蓝黄白1蓝黄白2

概率统计的数学计算解析

概率流程图的数学计算:瀑布算法、圆桌算法、混合算法 概率流程图的数学计算:瀑布算法、圆桌算法、混合算法解析 攻击判定流程研究:瀑布算法、圆桌算法、混合算法解析 攻击判定流程几乎是所有包含战斗玩法的游戏都无法绕过的一块内容,常见的攻击判定流程有瀑布算法、圆桌算法以及混合算法三种。本文简述了这三种判定流程的特征,以实例对比分析了瀑布算法与圆桌算法各自的优点,以期为后续其他战斗数值设计内容的论述提供一定的基础。 攻击判定流程概述 自此开始正文内容的叙述——让我们直接代入一个实例: 在一款游戏中,攻击方有命中率和暴击率两个攻击属性,而防守方有闪避率、招架率和格挡率三个防御属性。于是相应的,一次攻击有可能产生6种判定结果:未命中、普通命中、闪避、招架、格挡和暴击。当采用不同的判定流程进行攻击结算时,6种判定结果出现的频率会截然不同。 1. 瀑布算法 顾名思义,在瀑布算法中,各事件的判定顺序如同瀑布一般自上而下。如果“水流”在某个位置被截断,则后面的流程都将不再继续进行。据我所知,瀑布算法是大多数游戏所采用的攻击判定算法。 上述实例若采用瀑布算法,则会以如下方式进行判定: 瀑布算法流程图 由此我们可以得出: 先判定攻方是否命中再判定是否被守方闪避再判定是否被守方招架再判断是否被守方格挡最后判定该次攻击是否为暴击 瀑布算法特征1:多次掷骰,一次掷骰只判定单个事件的发生与否 瀑布算法特征2:后置判定依赖于前置判定的通过 注:有的游戏会将命中和闪避合并在一次掷骰中判定,这意味着将攻方命中率与守方闪避率合并计算出实际击中概率后再进行掷骰判定,仍是瀑布算法

我们再代入一些具体的数值,设攻守双方角色的面板属性如下: 攻方命中率=90% 攻方暴击率=25% 守方闪避率=20% 守方招架率=15% 守方格挡率=30% 按照上述的流程判定,6种判定结果将会按如下的概率分布: 实际未命中概率=1-命中率=1-90%=10% 实际闪避概率=命中率*闪避率=90%*20%=18% 实际招架概率=命中率*(1-闪避率)*招架率=90%*(1-20%)*15%=10.8% 实际格挡概率=命中率*(1-闪避率)*(1-招架率)*格挡率 =90%*(1-20%)*(1-15%)*30%=18.36% 实际暴击概率=命中率*(1-闪避率)*(1-招架率)*(1-格挡率)*暴击率 =90%*(1-20%)*(1-15%)*(1-30%)*25%=10.71% 实际普通命中概率=命中率*(1-闪避率)*(1-招架率)*(1-格挡率)*(1-暴击率)=90%*(1-20%)*(1-15%)*(1-30%)*(1-25%)=32.13% 瀑布算法的判定结果分布 由此我们可以得出: l 瀑布算法特征3:各事件出现的概率符合经典的概率计算方法 l 瀑布算法特征4:掷骰轮次越偏后的属性衰减程度越大,但不会出现无效的属性 2.圆桌算法 将所有可能出现的事件集合抽象成一个圆桌桌面,便是圆桌算法这一称呼的由来。圆桌算法的实质,是将所有可能发生的事件状态按优先级依次放上桌面,直至所有事件被放完或

概率统计公式大全汇总

第一章
n Pm ?
随机事件和概率
(1)排列 组合公式
n Cm ?
m! (m ? n)!
从 m 个人中挑出 n 个人进行排列的可能数。
m! 从 m 个人中挑出 n 个人进行组合的可能数。 n!(m ? n)!
(2)加法 和乘法原 理
加法原理(两种方法均能完成此事) :m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种 方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事) :m×n 某件事由两个步骤来完成, 第一个步骤可由 m 种方法完成, 第二个步骤可由 n 种 方法来完成,则这件事可由 m×n 种方法来完成。 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但 在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如 下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ? 来表示。 基本事件的全体,称为试验的样本空间,用 ? 表示。 一个事件就是由 ? 中的部分点(基本事件 ? )组成的集合。通常用大写字母 A, B,C,…表示事件,它们是 ? 的子集。 ? 为必然事件,? 为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω )的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分, (A 发生必有事件 B 发生) :
(3)一些 常见排列 (4)随机 试验和随 机事件
(5)基本 事件、样本 空间和事 件
(6)事件 的关系与 运算
A? B
如果同时有 A ? B , B ? A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。 A、B 中至少有一个发生的事件:A ? B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表 示为 A-AB 或者 A B ,它表示 A 发生而 B 不发生的事件。
1 / 33

高中数学概率统计

第八讲 概率统计 【考点透视】 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 【例题解析】 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:

① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [考查目的]本题主要考查概率的概念和等可能性事件的概率求法. [解答过程]0.3提示:1 33 5 C 33.54C 10 2 P ===? 例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 . [考查目的]本题主要考查用样本分析总体的简单随机抽样方式,同时考查概率的概念和等可能性事件的概率求法. 用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法. [解答过程]1.20 提示:51.10020P == 例3从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499 根据的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g 之间的概率约为__________. [考查目的]本题主要考查用频率分布估计总体分布,同时考查数的区间497.5g~501.5的意义和概率的求法.

概率公式总结

一、随机事件和概率 1、随机事件及其概率 运算律名称 表达式 交换律 结合律 分配律 德摩根律 2、概率的定义及其计算 公式名称 公式表达式 求逆公式 加法公式 条件概率公式 乘法公式 全概率公式 贝叶斯公式 (逆概率公式) 伯努力概型公式 两件事件相互独立相应 公式 )()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ; 1)()(=+A B P A B P 二、随机变量及其分布 1、分布函数性质 2、散型随机变量 分布名称 分布律 0–1分布),1(p B 二项分布),(p n B 泊松分布)(λP 几何分布)(p G 超几何分布),,(n M N H 3、续型随机变量 分布名称 密度函数 分布函数 均匀分布),(b a U 指数分布)(λE 正态分布),(2 σμN 标准正态分布)1,0(N 三、多维随机变量及其分布 1、离散型二维随机变量边缘分布 2、离散型二维随机变量条件分布

3、连续型二维随机变量( X ,Y )的分布函数?? ∞-∞ -= x y dvdu v u f y x F ),(),( 4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:?? ∞-+∞ ∞ -= x X dvdu v u f x F ),()( 密度函数:? +∞ ∞ -= dv v x f x f X ),()( 5、二维随机变量的条件分布 四、随机变量的数字特征 1、数学期望 离散型随机变量:∑ +∞ ==1 )(k k k p x X E 连续型随机变量:? +∞ ∞ -= dx x xf X E )()( 2、数学期望的性质 (1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E = (2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质 (1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -< (2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov 6、相关系数:) ()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关 7、协方差和相关系数的性质 (1))(),(X D X X Cov = ),(),(X Y C o v Y X C o v = (2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X a b C o v d bY c aX Cov =++ 8、常见数学分布的期望和方差 分布 数学期望 方差 0-1分布),1(p B 二行分布),(p n B 泊松分布)(λP 几何分布)(p G 超几何分布),,(n M N H 均匀分布),(b a U

概率计算方法总结3

概率计算方法总结 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事 件)=0;0