数学分析期末复习提纲

合集下载

数学期末复习提纲

数学期末复习提纲

复习提纲第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法2、分部积分法(注意加 C )定积分:1、定义2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程)3、空间平面4、空间旋转面(柱面)具体内容函数收敛比如函数的极限是a,那么我们可以叫他为函数收敛于 a 性质如果函数收敛那么极限唯一。

如果函数收敛它一定有界(有界是指函数定义域存在一个数使得函数值的绝对值大于等于这个数)。

绕口令:函数有界是函数收敛的必要条件(因为可能极限不存在)证明极限的方法1求函数极限的方法定义证明设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,|Xn - a|<ε 都成立,那么就称常数a是数列|Xn|的极限,或称数列|Xn|收敛于a。

记为lim Xn = a 或Xn→a(n→∞)2利用左右极限左右极限存在并相等。

3利用极限存在准则一、单调有界准则,如单调递增又有上界者,或者单调递减又有下界者。

二、夹逼准则,如能找到比目标数列或者函数大而有极限的数列或函数并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。

4利用两个重要极限1)x->0时,sinx/x=1 2)x->无穷时,(1+1/x)^x=e x趋近0的时候5极限的运算法则。

《数学分析》考试大纲

《数学分析》考试大纲

《数学分析》考试大纲1.实数集与函数(1)掌握集合的概念与运算,区间与邻域。

理解映射与一一对应概念。

了解几个重要不等式。

理解确界原理。

(2)掌握函数概念。

掌握复合函数方法。

了解反函数存在定理。

理解初等函数。

(3)掌握函数的几种特性(单调性、有界性、奇偶性、周期性等)2. 数列极限(1)理解数列极限概念。

(2)掌握收敛数列的性质。

理解数列极限存在的条件。

3. 函数极限(1)理解函数极限概念,掌握ε-δ论证方法。

(2)掌握函数极限的性质。

理解函数极限存在的条件。

(3)掌握两个重要极限的应用。

(4)掌握无穷小与无穷大概念。

4. 函数的连续性(1)理解函数的连续与间断概念。

(2)了解连续函数的性质。

了解复合函数与反函数的连续性。

理解闭区间上连续函数的性质。

(3)理解函数的一致连续性。

理解初等函数的连续性。

5. 导数和微分(1)掌握导数概念。

(2)掌握求导法则与导数计算。

(3)理解微分概念。

(4)理解高阶导数与高阶微分6. 微分中值定理及其应用(1)理解Rolle中值定理,Lagrange中值定理,Cauchy中值定理。

(2)掌握Taylor公式和L’Hospital法则。

(3)理解函数的凸性及其性质。

(4)掌握利用导数研究函数的性态及函数作图。

7. 实数的完备性(1)理解子列概念。

理解致密性定理,区间套定理,有限覆盖定理。

理解实数连续性定理的等价性。

(2)了解上、下极限概念。

8.不定积分(1)理解原函数与不定积分概念。

掌握基本积分公式和不定积分的运算法则。

(2)掌握换元积分法与分部积分法。

(3)掌握有理函数的不定积分,三角函数的不定积分和某些无理函数的不定积分。

9. 定积分(1)理解定积分概念。

掌握Newton-Leibniz公式。

(2)了解Darboux上、下和与Darboux上、下积分。

理解可积充要条件和可积函数类。

(3)理解定积分性质。

掌握变限积分及其性质。

理解积分中值定理。

10. 定积分的应用(1)理解微元法的基本思想。

数学分析复习指南

数学分析复习指南

数学分析复习指南数学分析是大学数学系中的一门基础课程,它涵盖了微积分和数学分析的基本原理和技巧。

在学习过程中,我们需要掌握一些重要的概念和定理,并能够运用它们解决实际问题。

本文将为大家提供一些数学分析复习的指南,帮助大家更好地准备考试。

1. 极限与连续性极限和连续性是数学分析中最基础的概念之一。

在复习过程中,我们需要熟练掌握极限的定义和性质,包括极限的存在与唯一性、夹逼定理和无穷小量。

此外,还要理解连续函数的定义和性质,如中值定理、连续函数的四则运算和复合函数的连续性等。

2. 导数和微分导数是微积分中最重要的概念之一。

在学习过程中,我们需要理解导数的定义和性质,包括导数的几何意义、导数的四则运算和复合函数的求导法则。

此外,我们还需要熟悉高阶导数和隐函数求导等相关知识。

微分是导数的一个重要应用,我们需要了解微分的定义和性质,包括微分的近似计算和微分中值定理等。

3. 积分和定积分积分是微积分中另一个重要的概念。

在复习过程中,我们需要熟悉积分的定义和性质,包括不定积分和定积分的计算方法,如换元积分法、分部积分法和定积分的计算公式等。

此外,还要了解积分的几何意义和积分中值定理等。

4. 级数级数是数学分析中一个重要且有趣的概念。

在学习过程中,我们需要掌握级数的定义和性质,包括级数的敛散性、级数和的运算法则和级数收敛判别法等。

此外,还要了解常见的级数,如几何级数和调和级数等。

5. 泰勒展开和幂级数泰勒展开和幂级数是数学分析中一个重要的工具。

在复习过程中,我们需要熟悉函数的泰勒展开和幂级数的定义和性质,包括泰勒级数、收敛半径和收敛域等。

此外,还要了解常见函数的泰勒展开和幂级数表示,如指数函数、三角函数和对数函数等。

6. 多元函数微分学多元函数微分学是数学分析中一个重要而复杂的部分。

在学习过程中,我们需要掌握多元函数的偏导数、全微分和梯度等概念和计算方法。

此外,还要了解多元函数的极值和凸函数等相关知识。

综上所述,数学分析是大学数学系中一门基础且重要的课程。

数学分析期末复习提纲

数学分析期末复习提纲

2020数学分析1期末复习提纲一、极限1、熟练掌握数列极限的-N ε语言与函数极限的εδ-语言。

例如lim (,)n n a a a →∞==∞±∞,lim ()x af x b →=(,,,)(,)x a a b +-→∞±∞=∞±∞2、极限的运算法则p30-31例9,例10;p38-39习题9(1-3,6);p53习题2,4,7,8(3-4),10.3、L’Hospital 法则P165-168例1-10,p169习题1(1,2,3,5,6,10,11,12,13,19)4、无穷小量的阶(高阶,同阶,等价无穷小的定义)P167习题1二、连续函数与实数的基本定理1、连续函数的定义与性质(四则运算、反函数、复合),初等函数的连续性。

2、不连续点的类型。

3、有界闭区间上连续函数的性质(有界性,最值性,介值性,一致连续性)P60-63例3例5;p64-65习题7,9,14(1-8),16,174、实数系的六个基本定理(背下来)P79-80习题5,10,11三、导数与微分1、导数的定义,曲线的切线,基本的导数表(p103-104),左右导数P94-95习题2,5;p121习题1(1,2)。

2、导数的四则运算,反函数的导数,复合函数求导,对数求导法。

p109-111习题1-6,9,11,13.3、微分的定义、运算法则,一阶微分形式的不变性。

P114习题1(2,4),2,3(2,4),4(1,3,5)。

4、隐函数与参数方程求导P123例1~例6,p128-129习题3(1,2,3,5,8),5(1,2,5),14(1,3,4,6),15(1,3)。

5、高阶导数p128-129例1~例6;p128-129习题3(1,2,3,5,8),5(1,2,5),14(1,3,4,6),15(1,3)。

四、导数的应用1、中值定理(Fermat 引理,Rolled 、Lagrange 、Cauchy 中值定理)P135习题10、11、12、13、15.2、Taylor 公式,掌握常用的初等函数如1(,sin ,cos ,(1),ln(1),)1x a e x x x x x++-在0x =处的Taylor 展开式。

数学分析总结复习提纲

数学分析总结复习提纲

数学分析(3)总结复习提纲用词说明: 本提纲中冠以“掌握、理解、熟悉”等词的内容为较高要求内容, 冠以“会、了解、知道”等词的内容为较低要求内容。

第十二章各种积分之间的联系§1 各种积分之间的联系公式理解格林公式与高斯公式, 了解斯托克斯公式;掌握利用格林公式计算平面曲线积分和利用高斯公式计算曲面积分的方法;会用斯托克斯公式计算空间闭曲线上的曲线积分, 会用平面曲线积分计算平面图形的面积, 会用曲面积分计算立体的体积。

§2曲线积分与路径的无关性理解平面曲线积分与路径无关的四个等价条件, 了解空间曲线积分与路径无关的四个等价条件;掌握利用平面曲线积分与路径无关的条件计算平面曲线积分、以及求二元函数全微分的原函数的方法。

§3 场论初步理解场的概念;了解梯度场、散度场、及旋度场的物理意义, 会求梯度、散度与旋度。

第十三章极限与实数理论§1 各种极限的精确定义理解各种极限定义的本质, 掌握利用极限定义证明极限的基本方法;会叙述极限不等于某常数的定义, 知道数列极限存在的充要条件与归结原则。

§2关于实数的基本定理理解确界、闭区间套、有限覆盖及聚点等概念, 熟悉关于实数完备性的六个等价定理的条件和结论;会用实数完备性定理证明一些简单命题。

§3 闭区间上连续函数性质的证明理解有界性定理、最值定理、零点定理、介值定理的条件和结论, 理解一致连续的定义和一致连续性定理;会用一致连续的定义证明函数的一致连续性, 会用闭区间上连续函数的性质定理证明相关命题。

第十四章隐函数定理与重积分的换元法§1隐函数存在定理理解隐函数(组)存在惟一性定理的条件和结论;了解反函数组与坐标变换的概念和反函数组定理的条件与结论;掌握坐标变换的雅可比行列式的计算。

§2 重积分的换元法理解二重积分的坐标变换公式, 掌握用换元法计算二重积分的基本方法;了解三重积分的坐标变换公式, 会用球面坐标计算三重积分。

数学分析总结复习提纲

数学分析总结复习提纲

数学分析总结复习提纲数学分析(一)总结复习提纲用词说明:本提纲中冠以“掌握、理解、熟悉”等词的内容为较高要求内容,冠以“会、了解、知道”等词的内容为较低要求内容。

一、内容概述第一章函数、极限与连续§1函数1. 实数集的性质,2. 区间与邻域的概念及其表示,3. 函数的概念与几个特殊函数,4. 函数的奇偶性、周期性、单调性和有界性,4. 复合函数的概念与运算,5. 反函数的定义与性质,6. 初等函数的概念与基本初等函数的性质。

§2 数列极限1. 数列极限的定义以及用定义证明极限,2. 收敛数列的性质,3. 子列的概念以及收敛数列与其子列之间的关系。

§3 函数极限1. ∞x时函数的极限,2. 0x→x→时函数的极限,3. 函数极限的性质,4. 函数极限与数列极限的关系。

§4 无穷小与无穷大1. 无穷小的概念以及函数极限与无穷小的性质,2. 无穷大的概念以及无穷小与无穷大的关系。

§5 极限运算法则1. 无穷小的性质,2. 极限四则运算法则,3. 复合函数的极限运算法则,4. 加逼准则。

§6 单调有界原理与两个重要极限1. 单调有界原理,2. 几个常见不等式,3. 两个重要极限公式。

§7 无穷小的比较1. 无穷小量阶的比较概念,2. 等价无穷小的性质。

§8 函数的连续性与间断点1.函数的连续性概念,2. 函数的间断点及其分类。

§9 连续函数的运算与初等函数的连续性1. 连续函数的四则运算,2. 反函数的连续性,3. 复合函数的连续性,4. 初等函数的连续性。

§10 闭区间上连续函数的性质1. 有界性与最大值最小值定理,2. 零点定理与介值定理。

第二章导数与微分§1 导数的概念1.导数概念的引进,2. 导数的定义,3. 导数的几何意义,4. 函数的连续性与可导性的关系。

§2 函数的求导法则1.导数的四则运算法则,2. 反函数的求导公式,3. 复合函数的求导法则,4. 基本求导公式与求导法则。

数学分析复习重点前八章

数学分析复习重点前八章

数学分析(1)复习纲要一实数集与函数1、理解实数的概念,了解实数的四则运算、有序性、稠密性、阿基米德性等主要性质,会绝对值的常用不等式。

2、了解区间与邻域的概念,了解有界集及上下确界的定义并会证明, 理解确界原理。

3、理解函数的概念和表示法,了解反函数和复合函数的概念,了解基本初等函数的性质和图形。

4、了解函数的单调性、有界性、奇偶性和周期性。

典型例题:P2,例1;P6,例2。

典型习题:P4,1;P9,4(1)(3)。

二数列极限1、理解数列极限的概念,并掌握用ε—N定义证明数列极限的一般方法。

2、了解收敛数列的性质:唯一性、有界性、保号性、保不等式性、迫敛性、四则运算和子列的性质,并且掌握求数列极限的相应方法。

3、掌握单调有界定理并会用于证明数列极限的存在性,了解Cauchy收敛准则。

典型例题:P24,例3;P29,例1、2、5;P36,例2。

典型习题:P27,1,2(2);P33,1(1) (4),4(6);P39,1(1) (3),3(2)。

三函数极限1、理解函数极限的概念(当自变量趋向于无穷或有限点时以及单侧极限),并掌握“ε—δ”和“ε—M”证明的一般方法。

2、了解函数极限的性质: 唯一性, 局部有界性, 局部保号性,保不等式性和四则运算法则,并且掌握求函数极限的相应方法。

3、了解函数极限存在的条件: 归结原则, 单调有界准则和Cauchy准则。

4、掌握两个重要极限及其求极限应用。

5、了解无穷小(大)量及其阶的概念和应用;了解曲线的渐近线的概念及其求法。

典型例题:P45,例5;P50,例2、3;P53,例1;P56,例1-5;P62,例2、5。

典型习题:P47, 1(1)(2), 2;P51, 1(3)(7), 2(1);P58, 1(8)(10), 2(3), 4(1);P66, 2, 4(3)。

四函数的连续性1、理解函数在一点连续的概念(三个等价定义及左右连续),并会判断间断点的类型。

河海大学数值分析复习提纲

河海大学数值分析复习提纲

数值分析复习提纲
第一章有效数字算法设计若干准则
第二章拉格朗日插值牛顿插值插值余项插值基函数三次样条插值(概念)
第三章最佳平方逼近最佳一致逼近(用切比雪夫)曲线拟合的最小二乘法
第四章代数精度牛顿-柯特斯公式复合求积龙贝格算法高斯求积
第五章高斯列主元消元LU分解矩阵条件数
第六章雅可比迭代G-S迭代SOR迭代收敛定理
第七章不动点迭代收敛定理收敛阶牛顿法弦截法
第八章规范化幂法反幂法
第九章欧拉法后退欧拉法梯形法改进欧拉法局部截断误差与阶R-K方法。

《数学分析(3)》知识点整理

《数学分析(3)》知识点整理

《数学分析(3)》复习资料第十三章 函数列与函数项级数(5%)1.(1)函数列收敛域为(),1,2,nn f x x n == (1,1]-,极限函数为0,1,()1, 1.x f x x ⎧<⎪=⎨=⎪⎩.(2)函数列sin (),1,2,n nxf x n n == 收敛域为(,)-∞+∞,极限函数为()0f x =. 2.(1)函数列在(02(),1,2,nx n f x nxe n -== ,)+∞上不.一致收敛. (2)函数列()1,2,n f x n == 在(1,1)-上一致收敛. (3)函数列22(),1,2,1n xf x n n x ==+ 在(,上一致收敛.)-∞+∞(4)函数列(),1,2,n xf x n n== 在[0上不.一致收敛. ,)+∞(5)函数列()sin,1,2,n xf x n n== 在上不.一致收敛. (,-∞+∞)3.(1)函数项级数nn x∞=∑在(1上不.一致收敛. ,1)-(2)函数项级数2sin nx n ∑,2cos nxn ∑在上一致收敛.(,-∞+∞)(3)函数项级数(1)!nx n -∑在上一致收敛. [,]r r -(4)函数项级数122(1)(1)n nx x --+∑在(,上一致收敛. )-∞+∞(5)函数项级数n n x ∑在11r x r r ∙>⎧⎪>⎨=⎪⎩上一致收敛上不一致收敛.(6)函数项级数2nx n ∑在上一致收敛.[0,1](7)函数项级数12(1)n x n --+∑在上一致收敛.(,-∞+∞)(8)函数项级数221(1)n x x -+∑在(,上不.一致收敛. )-∞+∞第十四章 幂级数(10%)1.对于幂级数,若0n n n a x ∞=∑lim n ρ=(1limn n na a ρ+→∞=) 则(i )当0ρ=时,收敛半径R =+∞,收敛域为(,)-∞+∞;(ii )当ρ=+∞时,收敛半径,仅在0R =0x =处收敛; (iii )当0ρ<=+∞时,收敛半径1R ρ=,收敛域为(,)R R -,还要进一步讨论区间端点x R =±处的敛散性.2.幂级数展开式: (1)()2(0)(0)(0)()(0)1!2!!n nf f f f x f x x x n '''=+++++(2)011nn x x ∞==-∑,01(1)1n n n x x ∞==-+∑ (1x )<. (3)2(1)(1)(1))12!!m n m m m m m n x mx x x n ---++=+++++ (11)x -<<111],.1110101m m m ≤--⎧⎪-<<-⎨⎪>-⎩时,收敛域为(,)时,收敛域为(,]时,收敛域为[,(1(4)1110(1)(1)ln(1)(11)1n n n n n n x x x x n n -∞∞+==--+==-<≤+∑∑,1ln(1)nn x x n∞=--=∑ (11)x -≤<. (5)210(1)sin (21)!n n n x x n ∞+=-=+∑,20(1)cos (sin )(2)!n nn x x n ∞=-'==∑ ()x -∞<<+∞.(6)10(1)arctan (11)21n n n x x n ∞+=-=-≤+∑≤(7)0)!nxn x n ∞==-∞<<+∞∑e x3.幂级数的和函数(1)1)(0,1,2,k 1knn kx x x x ∞==<-)∑ = . (2)()(1)1)1knnn kx x x x ∞=--=<+)∑ . (0,1,2,k = (3)1ln(1)nn x x n∞==--∑ .(11)x -≤<(4)121111()1(1)n nn n n n x nxx x x x ∞∞∞-===''⎛⎫⎛⎫'==== ⎪ ⎪--⎝⎭⎝⎭∑∑∑ (1x )<. (5)223)21111(1)()1(1)(1n n n n n n x n n x x x x x x ∞∞∞-==='''''⎛⎫⎛⎫⎛⎫''-===== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭∑∑∑ (1x <). 第十五章 傅里叶级数(10%)()f x 是以2π为周期且在[,]ππ-上可积的函数: 1.01()(cos sin )2n n n a f x a nx b nx ∞==++∑,01()a f x πππ-=⎰dx ,1()cos n a f x nx πππ-=⎰dx ,1()sin nbf x nx πππ-=⎰dx 1,2,n ,= .2.01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,01()ll a f x l -=⎰dx , 1()cos l n l n x a f x dx πl l -=⎰,1()sin l n l n xb f x dx πl l-=⎰,1,2,n = .3.(1)偶函数的傅里叶级数:01()cos2n n a n x f x a l π∞==+∑,012()cos ()cos l l n l n x n xa f x dx f x dx πl l l l π-==⎰⎰,. 1,2,n = 01()cos 2n n a f x a nx ∞==+∑,012()cos ()cos n a f x nxdx f x nxd πππππ-==⎰⎰x ,1,2,n = .(2)奇函数的傅里叶级数:1()sinn n n x f x b lπ∞==∑,012()sin ()sin l l n l n x n xf x dx f x dx l l l l πb π-==⎰⎰1,2,,n = .1()sin n n f x b ∞==∑nx ,012()sin ()sin n b ,f x nxdx f x nxdx πππππ-==⎰⎰1,2,n = .第十六章 多元函数的极限与连续(5%)1.若累次极限00lim lim (,)x x y y f x y →→,00lim lim (,)y y x x f x y →→和重极限00(,)(,)lim (,)x y x y f x y →都存在,则三者相等.2.若累次极限00lim lim (,)x x y y f x y →→与00lim lim (,)y y x x f x y →→存在但不相等,则重极限00(,)(,)lim (,)x y x y f x y →必不存在.3.2222(,)(0,0)lim 0x y x y x y →=+,2222(,)(0,0)1lim x y x y x y →++=+∞+,22(,)lim 2x y →=,22(,)(0,0)1lim ()sin 0x y x y x y →+=+,2222(,)(0,0)sin()lim 1x y x y x y →+=+. 第十七章 多元函数微分学(20%)1.全微分:z zdz dx dy x y ∂∂=+∂∂. 2.zzz x y x yx x y yt t∂∂s t s sts∂∂∂∂∂∂∂∂∂∂z z x z y s y t∂∂∂∂∂=+s x s y z z x z t x t y ∂∂∂∂∂∂∂∂∂∂=+∂∂∂∂∂. 3.若函数f 在点可微,则0P f 在点沿任一方向的方向导数都存在,且0P 000(,,)l x y z 0000()()cos ()cos ()cos l x y z f P f P f P f P αβγ=++,其中cos α,cos β,cos γ为方向l x 的方向余弦,000(,,)y z即cos α=cos β=,cos γ=4.若(,,)f x y z 在点存在对所有自变量的偏导数,则称向量0000(,,)P x y z 000((),(),())x y z f P f P f P 为函数f 在点的梯度,记作0P 000(),()ad )z ((),x y gr f P f =P f P f .向量grad f 的长度(或模)为gra d f =.5.设,(,z f x y xy =+)f 有二阶连续偏导数,则有1211z 212()z f yf z x x y y y ∂⎛⎫∂ ⎪''∂+∂∂⎝⎭==∂∂∂∂2f f y f yf x∂'''=⋅+⋅=+∂',11122212221112221(1)()f f x f y f f x f f x y f xyf ''''''''''''''''=⋅+⋅++⋅+⋅=++++.6.设,令00()()0x y f P f P ==0()xx f P A =,0()xy f P B =,0()yy f P C =,则(i )当,时,20AC B ->0A >f 在点取得极小值; 0P (ii )当,20AC B ->0A <时,f 在点取得极大值; 0P (iii )当时,20AC B -<f 在点不能取得极值; 0P (iv )当时,不能肯定20AC B -=f 在点是否取得极值.0P 第十八章 隐函数定理及其应用(10%)1.隐函数,则有(,)0F x y =x yF dydx F =-. 2.隐函数,则有(,,)0F x y z =x z F zx F ∂=-∂,y zF z y F ∂=-∂(,,,)0(,,,)0F x y u v G x y u v . =⎧⎨3.隐函数方程组:=⎩,有x yu v xyuv F F F F F F F F x y u v G G G G GG G G x yuv ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫ ⎪⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭, 则uv uv uv F F J G G =,xv xv xv F F J G G =,uxux u x F F J G G =,y v yv y v F F J G G =,uyuy uyF F JG G =, xv uv J u x J ∂=-∂ ,ux uv J vx J ∂=-∂,yv uv J u y J ∂=-∂,uy uvJ v y J ∂=-∂. 4.平面曲线在点的切线..方程为(,)0F x y =000(,)P x y 000000(,)()(,)()0x y F x y x x F x y y y -+-=, 法线..方程为000000(,)()(,)()0y x F x y x x F x y y y -+-=. 5.空间曲线:在点处的L (,,)0(,,)0F x y z G x y z =⎧⎨=⎩0000(,,)P x y z切线..方程为00z x yz x y z x y z x y 0x x y y z z F F F F F F G G G G G G ---==⎛⎫⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝⎭⎝⎫⎪⎭00000()()()0x y z F x x F y y F z z , 法线..方程为. 00()()()yz xy zx yz xy zx F F F F F F x x y y z z G G G G G G ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6.曲面在点处的切平面...方程为(,,)0F x y z =0000(,,)P x y z -+-+-=, 法线..方程为00x y 0zx x y y z z F F F ---==. 7.条件极值例题:求函数在约束条件22u x y z =++222z x y =+与4x y z ++=下的最大值和最小值.解:令,22222(,,,,)()(4)L x y z x y z z x y x y z λμλμ=+++--+++-则由,得稳定点22220222040x yz L x x L y y L z L z x y L x y z λμλμλμλμ=-+=⎧⎪=-+=⎪⎪=++=⎨⎪=--=⎪=++-=⎪⎩00112x y z =⎧⎪=⎨⎪=⎩及228x y z =-⎧⎪=-⎨⎪=⎩,故当1x y ==,时函数在约束条件下取得最小值, 2z =22u x y z =++28z =26当,时函数在约束条件下取得最大值.2x y ==-22u x y z =++72第十九章 含参量积分(5%)1.,;10()s xs x e +∞--Γ=⎰dx 0s >(1)(s s )s Γ+=Γ;1(2Γ=;1()2n Γ+=,1()2n Γ-=. 2.1110(,)(1)p q p q x x ---⎰)dx (0,0p q >>B =;(,)(,)p q q p B =B ;1(,)(,1)1q p q p q p q -B =B -+- ;(0,1p q >>)1(,)(1,)1p p q p q -p q B =B -+-) ;(1,0p q >>(1)(1)(,)(1,1)(1)(2)p q p q p q p q p q --B =B --+-+- .(1,1p q >>)3.()()(,)()p q p q p q ΓΓB =Γ+ .(0,0p q >>)第二十章 曲线积分(5%)1.设有光滑曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,函数(,)f x y 为定义在L 上的连续函数,则(,)((),(Lf x y ds f t t βαϕψ=⎰⎰;当曲线由方程L ()y x ψ=,[,]x a b ∈表示时,(,)(,(bLaf x y ds f x x ψ=⎰⎰.2.设平面曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,其中()t ϕ,在[,]αβ上具有一阶连续导函数,且((),())A ϕαψα,((),())B ϕβψβ. 又设与为上的连续函数,则沿L 从A 到(,)P x y (,)Q x y L B 的第二型曲线积分(,)(,)[((),())()((),())()]LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ''+=+⎰⎰.第二十一章 重积分(20%)1.若(,)f x y 在平面点集}{12(,)()(),D x y y x y y x a x b =≤≤≤≤(x 型区域)上连续,其中1()y x ,2()y x 在[,上连续,则]a b 21()()(,)(,)b y x ay x Df x y d dx f x y dy σ=⎰⎰⎰⎰,即二重积分可化为先对y ,后对x 的累次积分.若}{12(,)()(),D x y x y x x y c y d =≤≤≤≤,其中1()x y ,2()x y 在]上连续,则二重积分可化为先对[,c d x ,后对y 的累次积分21()()(,)(,dx y cx y D)f x y d dy f x y σ=⎰⎰⎰⎰dx .在二重积分中,每次积分的上、下限一定要遵循“上限大,下限小”的原则,且一般来说,第一次(先)积分的上、下限一般为第二次(后)积分的积分变量的函数或常数,而第二次(后)积分的上、下限均为常数. 2.格林公式:若函数,在闭区域上连续,且有一阶偏导数,则有(,)P x y (,)Q x y D ()L DQ Pd Pdx Qdy x yσ∂∂-=+∂∂⎰⎰⎰ (或L Dx y d Pdx Q +dy P Qσ∂∂∂∂=⎰⎰⎰ D ),这里为区域的边界曲线,并取正方向. L 3.设是单连通闭区域.若函数,在内连续,且具有一阶连续偏导数,则以下四个条件等价:D (,)P x y (,)Q x y D (i )沿内任一按段光滑封闭曲线,有D L 0LPdx Qdy +=⎰;(ii )对中任一按段光滑曲线,曲线积分与路线无关,只与的起点及终点有关;D L LPdx Qdy +⎰L (iii )是内某一函数的全微分,即在内有Pdx Qdy +D (,)u x y D du Pdx Qdy =+;(iv )在内处处成立D P Qy x∂∂=∂∂. (,)4.设f x y 在极坐标变换cos ,:sin ,x r T y r θθ=⎧⎨=⎩0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域与D r θ平面上区域∆对应,则成立(,D)(cos ,sin )f x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.通常积分区域为圆形、扇形、环形或为其一部分,或积分区域的边界线用极坐标方程表示较简单,且被积函数为22()f x y +,(y f x ,(xf y,()f x y +等形式时常选用在极坐标系下计算二重积分.5(1)柱面坐标变换cos ,0,:sin ,02,.x r r T y rz z z θ,θθπ=≤⎧⎪=≤⎨⎪=-∞<<⎩<+∞≤+∞(,,)V 三重积分的柱面坐标换元公式为f x y z dxdydz ⎰⎰⎰(cos ,sin ,)V f r r z rdrd dz θθθ'=⎰⎰⎰,这里V '为V 在柱面坐标变换下的原象.(2)球坐标变换T y sin cos ,0,:sin sin ,0,cos ,02.x r r r z r ϕθϕθϕπϕθπ=≤<+∞⎧⎪=≤≤⎨⎪=≤≤⎩三重积分的球坐标换元公式(,,)Vf x y z dxdydz ⎰⎰⎰2(sin cos ,sin sin ,cos )sin V f r r r r drd d ϕθϕθϕϕϕ'=⎰⎰⎰θ,这里V '为V 在球坐标变换下的原象.DS ∆=.6.曲面面积计算公式:第二十二章 曲面积分(10%)1.设有光滑曲面),(,:(,S z z x y =)x y D ∈,(,,)f x y z 为上的连续函数,则S (,,)(,,(,SDf x y z dS f x y z x y =⎰⎰⎰⎰. 2.设R 是定义在光滑曲面:(,S z z x y )=,(,)xy x y D ∈上的连续函数,以的上侧为正侧(这时的法线方向与轴正向成锐角),则有S S z (,,),))(,,(xySD R x y z dxdy x y dxdy =⎰⎰R x y z ⎰⎰.3.高斯公式:设空间区域V 由分片光滑的双侧封闭曲面围成.若函数,,S P Q R 在V 上连续,且有一阶连续偏导数,则(VSP Q Rdxdydz Pdydz Qdzdx Rdxdy x y z ∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ ,其中取外侧. S 4.斯托克斯公式:设光滑曲面的边界是按段光滑的连续曲线.若函数,Q ,S L P R 在(连同)上连续,且有一阶连续偏导数,则S L ()(()L P =⎰ S P R Q P dydz dzdx dxdy d Q z x x y ∂∂∂∂-+-∂∂∂∂⎰⎰R Q y z ∂∂∂∂x dy +Rd +z (或-+Sdz dzdx dxdydy x y z P Q R∂∂∂∂∂∂⎰⎰ LPdx Qdy Rdz =++⎰ ),其中的侧与的方向按右手法则确定. S L。

数学分析复习资料

数学分析复习资料

数学分析复习资料数学分析是大学数学中的一门非常重要的课程,对于数学专业的学生来说尤其如此。

然而,学习数学分析需要付出大量的时间和精力,而且往往是难以理解的。

为了帮助学生更好地准备数学分析的考试,我们将探讨一些复习数学分析的资料和技巧。

1. 阅读课本和笔记首先,我们应该熟悉自己的课本和笔记。

重新阅读整本课本和笔记是非常有帮助的,因为它能帮助我们回顾教授所讲述的基础知识和关键概念。

阅读后,可以进行思维导图等笔记整理方式,理清其思路和逻辑。

同时,最好将内容分章节和分类,便于形成完整的知识图谱体系。

2. 科学运用练习题练习题是数学分析课程中的核心。

我们应该尽可能多地练习每一章的练习题,以便在考试时更好地理解和应用课程中的概念。

我们可以寻找网络或各种书籍上的题目或假设一些练习试题练习。

有预备概念题型,例题,练习题,思考题,闯关考核等。

注意分难度和知识点进行分类练习。

关键是要做并理解其中的主要思想和解题技巧。

3. 寻找优秀的视频学习网络上有大量的数学分析学习视频,寻找具有启发性的讲解视频对于理解概念和掌握方法非常有帮助。

优秀的视频讲解尤其强调要点,用简单的语言和真实生活中的例子解释数学分析。

我们应该寻找最好的来源并花费足够的时间来消化它们。

4. 借鉴其他人的笔记或教学视频除了自己的笔记以外,我们可以寻找其他人的笔记或者教学视频。

这些可以是同学,教授和网上的其他学生。

我们可以不断讨论、交流问题,加深理解,并且自己的笔记也可以分享出去,相互之间切磋,互相促进。

5. 批判性思考最后,我们应该始终保持批判性思考,尤其是在做练习题和解题过程中。

我们应该思考每个步骤的含义和其它可能的方法,以便更好地理解和掌握数学分析。

总之,数学分析课程是一门高难度、复杂度高的课程。

因此准备和复习至关重要。

阅读课本和笔记、科学运用练习题,寻找优秀的视频学习、借鉴他人笔记或教学视频,以及批判性思考等方法可以帮助我们更好地复习数学分析。

最后,我们应该保持积极、耐心的态度,相信自己,坚持到底。

数学分析(2)期末复习

数学分析(2)期末复习

数学分析(2)期末复习第一部分 各章内容基本要求第7章 实数的完备性1. 掌握区间套、聚点、开覆盖的概念。

会求指定点集的聚点,会判断一族开区间是否构成一个区间(开或半开或闭)的开覆盖。

2. 理解区间套左端点为单调递增有上界数列,右端点为单调递减有下界数列。

3. 理解聚点的三种不同刻画及其等价性,明白集合S 可能有聚点,也可能没有聚点,聚点可以在S 中,也可以不在S 中,有限点集一定没有聚点,无限点集不一定有聚点。

4. 掌握聚点原理、区间套定理、有限覆盖定理的内容,弄清其成立的条件与结论,掌握一些反例。

5. 理解实数完备性六个基本定理(确界原理、聚点原理、单调有界收敛定理、区间套定理、有限覆盖定理、Cauchy 收敛准则)的等价性及其证明思想。

6. 会用实数完备性的有关定理证明有界闭区间上连续函数的有界性、最值性、介值性和一致连续性及其相关问题。

例1. 分别求 121|1,2,3,...,[0,1)S n S n ⎧⎫===⎨⎬⎩⎭的聚点,并证明之。

例2. 验证数集()11ln nn ⎧⎫-+⎨⎬⎩⎭有且只有两个聚点11-=ξ和.12=ξ 例3. 设(){}n n b a ,是一个严格开区间套,即满足,1221b b b a a a n n <<<<<<<且().0lim =-∞→n n n a b 证明:存在唯一的一点ξ,使得 .,2,1, =<<n b a n n ξ如果没有a n 和b n 的严格单调性,结论是否成立?请说明。

例4. 设11,1,2,3H n n n⎧⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭.问(1) H 能否覆盖()1,0?(2) 能否从H 中选出有限个开区间覆盖()()1110,,11,122011⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭? 例5. 设f 在),(b a 内连续,且==→)(lim x f ax lim ()2011x bf x -→=.证明: f 在),(b a 内有最大值或最小值.例6. 设函数f 在[),+∞a 上连续, 函数g 在[),+∞a 上一致连续,且有[]lim ()()0x f x g x →+∞-=.证明:f 在[),+∞a 上一致连续. 【分段考虑,用有界闭区间上连续函数的一致连续性和上述极限】第8章 不定积分1. 掌握原函数与不定积分的概念,明白一个函数的任何两个原函数之间只相差一个常数。

数学分析提纲

数学分析提纲
有最大值与最小值。
推论 :(有界性) 若函数 f ( x) 在闭区间 [ a , b] 上连续, 则 f ( x) 在闭区间 [ a , b] 上有界。
(b)( 介值性定理 ) 若函数 f ( x) 在闭区间 [ a , b] 上连续,且 f ( a) f (b) ,若 为
f (a) 与 f (b) 介于之间的任何实数 ( f (a)
数学分析提纲
一、实数集与函数 二、数列极限
1. 数列极限的概念 2. 收敛数列的性质
(1) (唯一性 ) 若数列 { an} 收敛,则它只有一个极限.
(2)( 有界性 ) 若数列 { an } 收敛,则 { an } 为有界数列,即存在正数 M ,使得对一切正整数
有 | an | M . (3) (保号性 ) 若 lim an a 0 (或 <0),则对任何 a (0, a) (或 a
f
xn
都存在且相等.
( 2)单调有界定理 :相应于数列极限的单调有界定理,关于上述四类单侧极限也有相应
的定理.现以 x x0 这种类型为例叙述如下:设 f 为定义在 U (x0 ) 上的单调有界函数,
则右极限 lim f ( x) 存在.
x x0
(3)柯西准则:设函数
f 在 U ( x0;
) 内有定义 . lim f ( x) 存在的充要条件是 :任给 x x0
0,则 f g当 x
lim f ( x)
x x0
.
lim g ( x)
x x0
3. 函数极限存在的条件
x0 时极限存在 , 且有
( 1 )归结原则:设
f 在 U 0 x0 ;
' 内有定义.
lim f
x x0

数学分析复习资料

数学分析复习资料

数学分析复习资料2010级数学分析(1)期末复习第⼀部各章内容基本要求第⼀章实数集与函数1. 熟练掌握绝对值的三⾓不等式,理解实数的完备性、有理数的稠密性。

2. 熟练掌握上、下确界的概念及其等价刻画,明⽩上、下确界与最⼤、最⼩值的联系与区别,理解确界原理。

3. 掌握邻域、空⼼邻域的概念。

4. 掌握函数的概念及其表⽰⽅法,明⽩函数与其反函数的关系,理解函数是⼀种对应关系,函数未必都能画出图像。

5. 掌握基本初等函数与初等函数的概念。

6. 掌握函数的有界性、奇偶性、单调性、周期性,理解周期的概念。

7. 熟悉⼀些特殊的函数及其简单性质,⽐如狄莉克莱(Dirichlet )函数D(x), 取整函数[x], 符号函数sign (x)等。

例1. 分别求 121|1,2,3,...,[0,1]S n S n===?的上、下确界,并证明之。

例2. 对任⼀实数集S ,证明 sup S = sup {S ? {sup S}}。

例3. 证明,任何函数 f 都可以写成⼀个奇函数与⼀个偶函数之和。

第⼆章数列极限1. 掌握数列极限的ε-N 定义及其⼏何意义,明⽩极限是⼀种趋势,它与数列的任何有限多项⽆关。

2. 掌握数列收敛性与有界性的关系。

3. 掌握收敛数列的极限唯⼀性、数列有界性、保号性。

4. 掌握单调有界收敛准则,两边夹定理,Cauchy 收敛准则。

例4. ⽤ε-N 语⾔证明 22010lim02011n n n π→∞+=-。

例5. 证明,若lim 0n n a a →∞=>,则存在N > 0, 使得对任意 n > N 有,22n a a a ??∈。

例6. 证明,若 inf S ? S, 则存在数列 x n ∈ S ,使得(1) x n 单调递减;(2) lim inf n n x S →∞= 。

例7. 证明,若数列 { x n } 从某项开始恒满⾜ | x n - x n-1 | < 1/n 2, 则数列{ x n }收敛。

数学分析上期末复习提纲

数学分析上期末复习提纲

工科数学分析(2001年11月)一. 试完成下列各题(每小题6分,合计60分)1. 求极限)13(1lim 0-→x x x;2. 设函数)(x y y =由方程y x y x ln ln +=+确定;求dy ;3. 计算定积分⎰--+222)11(sin ππdx xx x ;4. 求xx dt t e xt x 4020sin )1(lim⎰--→;5. 已知幂级数∑∞=0n nn x a 的收敛半径2=R ,问幂级数∑∞=-0)3(n n n x a 在e x =与ex 1=处是否收敛?为什么? 6. 试判定级数∑∞=--+-211)11ln()1(n n n n 的敛散性,若收敛,请指出是绝对收敛还是条件收敛;7. 求定积分⎰-2121arcsin dx xx x 的值;8. 求方程022=+-'x y y xy 的通解;9. 设0>x 时,)()(x g x f '>',且)0()0(g f =,试证:当0>x 时,)()(x g x f >. 10. 设)(x f 是周期为3的周期函数,它在一个周期内的表达式为:⎪⎩⎪⎨⎧≤≤≤=.23||1,1;1|||,|)(x x x x f 试写出)(x f 在一个周期内的Fourier 级数和函数)(x S 的表达式,并求)2(-S ,)3(S ,)29(S 的值.二.(8分) 将函数x x x x f arctan 2111ln 41)(+-+=展开成x 的幂级数,并指出展开式成立的区间.三.(8分) 设由3ln ,0),20()1ln(==≤≤+=y x x x y 围成平面图形为D ,试求将D绕2=x 旋转而成的旋转体的体积.四.(8分) 通过静脉注射输入葡萄糖是一种常用的医疗技术.某人来注射前血液中葡萄糖含量为0Q ,现以常速率min)/(g k 注入葡萄糖.与此同时,血液中有一部分转化为其他物质或转移到其他地方,转化或转移的速率与该时刻血液中葡萄糖含量成正比.试求此人血液中葡萄糖含量随时间的变化规律. 五.(10分) 已知函数)(x f y =的导函数)(x f y '='是三次多项式,导函数的图象如图所示.(1);(2) 若)(x f y =的极大值为6,点⎪⎪⎭⎫⎝⎛934,332是曲线)(x f y =的一个拐点,试求出)(x f y =的表达式.六.(6分) 设函数)(x f 在[0,1]上可导,且.)(2)1(210⎰=dx x xf f证明: 至少存在一点)1,0(∈ξ,使ξξξ)()(f f -='.工科数学分析(2002年11月)一. 求解下列各题(每小题6分,共60分) 1. 求极限1ln 30)(sin lim +→+x x x ;x2. 求⎰+dx xxx 23cos 1cos sin ; 3. 求⎰⎰-+→x xx dtt t t dtt 040)sin )(1ln(2lim;4. 设⎩⎨⎧==ty t x csc sec ,求22dx yd ;5. 求⎰-dx xx x 21arcsin ;6. 求微分方程232++=+'x x y y x 的通解.7. 求b a ,的值.使⎪⎪⎩⎪⎪⎨⎧<=>-=⎰0cos 100sin )]1(sin[)(02x tat x x bx x e a x f xx 在0=x 处连续. 8. 求不等式20,1cos sin π≤≤≤≤x y x x 所确定平面图形的面积,并求该图形绕x 轴旋转所成旋转体的体积.9. 设)(x f 在),(b a 有连续的导数.0)()(==b f a f 且1)(2=⎰badx x f ,求⎰'badx x f x xf )()(.10. 求∑∞=++111(n n n n x )的收敛区域(要讨论端点的敛散性),并求它的和函数.二.(8分) 在曲线x x y -=2上求一点P 的坐标使P 点与定点)1,0(A 的距离最近. 三.(9分) 将1)(-=x x f 在]2,0[∈x 上展成以4为周期的傅立叶余弦级数.并求∑∞=121n n 的和. 四.(9分) 将x x x x x f -+-+=arctan 2111ln 41)(在0=x 点展开成幂级数. 五.(8分) 设曲线)(x y y =上任意点),(y x M 处的切线、x 轴及M 点与坐标原点连线围成三角形面积的二倍,等于M 点横坐标的平方,且曲线过(1,1)点,求它的方程.六.(6分) 设)(x f 在[0,2]上二阶可导,且0)2(,0)1(==f f ,证明至少存在一点)2,0(∈η使0)(3)(='+''ηηηf f .工科数学分析(2003年11月)一. 求解下列各题(每小题6分,共60分)1. 求极限xx xx x 2cos 2sin 1cos sin 1lim 0-+-+→.2. 求曲线09cos )1(33=++++y x y x π在1-=x 处的法线方程.3. 设⎩⎨⎧==ty t x 33sin cos ,求22dx y d . 4. 计算⎰-+axa x dx 022.5. 求极限423limxdt te x t x ⎰→.6. 判定级数∑∞=12n n n的敛散性. 7. 求微分方程12+=+'x e xy y 的通解. 8. 计算广义积分dx xx⎰+∞12arctan . 9. 将x x f -=1)(在[0,1]区间上展开成以2为周期的傅里叶正弦级数. 10. 设有质量为m 的物体,在空气中由静止开始下降,如果空气阻力2v F =(其中v 为物体运动的速度),试求物体下落时速度与时间的函数关系.二.(10)分 计算⎰-+21212)1(ln dx x .三.(10分) 将231)(2+-=x x x f 展开成x 的幂级数.四.(10分) 由曲线21x y -=与x 轴所围成的平面图形(1)绕x 轴旋转一周,(2) 绕直线1=x 旋转一周,计算所得两个旋转体体积分别是多少?五.(5分) 设A 是一个实数集,a 为一个实数,若a 的任何去心邻域内都含有A 中的点,则称a 是A 的一个聚点.证明:如果a 为A 的聚点,则必存在A 中点列}{n x ,使a x n n =∞→lim .六.(5分) 设)(x f 在区间[0,1]上二阶可导,0)1()0(==f f ,且2)(max 10=<<x f x ,证明:至少存在一点ξ使16)(-≤''ξf .。

数学分析(二)考试大纲

数学分析(二)考试大纲

数学分析(二)考试大纲一、说明:1.数学分析的阶段性考试(期中考试与期末考试)旨在考查基础知识、基本技能、基本方法, 考核学生的运算能力、逻辑思维能力、论证推理能力及运用所学知识、方法分析问题和解决问题的能力。

2.考试要求分五个层次, 这五个层次由低到高依次为: 识记; 理解; 应用; 分析; 综合。

3.教材: 华东师范大学数学系编, 数学分析(第三版), 高等教育出版社, 2001.二、考试内容:参阅《数学分析教学大纲》三、考试要求:7.实数的连续性理解: 确界的概念; 聚点的概念; 实数连续性定理的等价性;应用: 区间套定理; 确界的概念; 确界存在定理; 聚点的概念; 聚点定理; 致密性定理; 柯西准则; 有限覆盖定理;理解: 一致连续性的概念;应用: 闭区间连续函数的性质;8.不定积分理解: 原函数与不定积分的概念; 基本积分表; 不定积分的性质;应用: 分部积分法; 换元积分法;应用: 有理函数的积分;应用: 简单无理函数的积分; 三角函数有理式的积分;9.定积分理解: 定积分的概念; 可积的必要条件;应用: 可积的充要条件; 可积函数类;1应用: 定积分的性质( 线性性, 区间可加性, 单调性, 不等式,绝对可积性, 积分中值定理 );理解: 积分上限函数;应用: 微积分学基本定理; 牛顿─莱布尼兹公式; 分部积分与换元积分法; 定积分的近似计算( 矩形法, 梯形法, 抛物线法 );10.定积分的应用应用:平面图形的面积;平面曲线的弧长与弧微分, 曲率, 已知截面面积函数的立体体积, 旋转体的体积, 旋转体的侧面积, 函数的平均值, 变力作功, 重心, 液体压力, 转动惯量11.非正常积分理解: 无穷积分收敛与发散的概念; 无穷积分收敛的性质; 无穷积分与数项级数的关系; 绝对收敛与条件收敛的概念;应用: 无穷积分敛散性的判别( 无穷积分收敛与发散的概念, 柯西准则, 比较原则, 比式判别法, 阿贝尔判别法, 狄利克莱判别法 );12.数项级数识记: 绝对收敛级数的重排定理;理解: 级数收敛与发散的概念; 收敛级数的基本性质; 柯西准则; 绝对收敛与条件收敛的概念;应用: 正项级数敛散性的判别( 比较原则, 比式判别法与根式判别法 ); 交错级数的莱布尼兹判别法; 一般项级数的阿贝尔判别法与狄利克莱判别法;13.函数项级数理解: 函数列的收敛与一致收敛的概念; 函数项级数的收敛与一致收敛的概念;应用: 函数列一致收敛的判别( 一致收敛的概念, 柯西准则, 一致收敛原理 ); 函数列极限函数的分析性质( 连续性, 可微性, 可积性 ); 函数项级数一致收敛的判别( 一致收敛的概念, 柯西准则, 维尔斯特拉斯判别法, 一致收敛原理, 阿贝尔判别法, 狄利克莱判别法 ); 函数项级数的和函数的分析性质( 连续2性, 逐项可微性, 逐项可积性 );14.幂级数理解: 幂级数的收敛域; 泰勒级数的概念; 阿贝尔第一定理; 阿贝尔第二定理; 函数的泰勒展开条件;应用: 求幂级数的收敛半径与收敛区间; 幂级数的和函数的分析性质( 连续性, 逐项微分, 逐项积分 ); 幂级数的四则运算; 初等函数的泰勒展开; 幂级数在近似计算中的应用;15.富立叶级数识记: 三角级数的概念; 三角函数系的正交性; 傅里叶级数的概念; 贝塞尔不等式;理解: 黎曼─勒贝格定理; 傅里叶级数的部分和公式; 收敛定理; 奇函数与偶函数的富里叶级数; 一致收敛定理; 傅里叶级数的逐项微分与逐项积分;应用: 函数的傅里叶级数展开;四、命题结构和要求1、严格按照教学大纲出题,不出超纲题、偏题、怪题;2、试题以考查数学的基本概念、基本方法和基本原理为主,在此基础上,加强对考生的运算能力、抽象概括能力、逻辑思维能力、空间想象能力、综合运用所学知识解决实际问题能力的考查;3、力求试卷难度控制在0.5 ~ 0.55 之间,并确保试题具有较高的区分度,能将优秀的学生区分出来。

(整理)数学分析提纲

(整理)数学分析提纲

数学分析提纲一、实数集与函数 二、数列极限 1. 数列极限的概念 2. 收敛数列的性质(1)(唯一性) 若数列}{n a 收敛,则它只有一个极限.(2)(有界性) 若数列}{n a 收敛,则}{n a 为有界数列,即存在正数M ,使得对一切正整数有.||M a n ≤(3) (保号性) 若0lim >=∞→a a n n (或<0),则对任何),0(a a ∈' (或a '))0,(a ∈,存在正数N ,使得当N n >时有a a n '>(或a a n '<).(4)(保不等式性) 设{}n a 与{}n b 均为收敛数列.若存在正数0N ,使得当0N n >时,有n n b a <,则.lim lim n n n n b a ∞→∞→≤(5)(迫敛性) 设收敛数列{}{}n n b a ,都以a 为极限,数列{}n c 满足:存在正数0N ,当0N n >时有 n n n b c a ≤≤,则数列{}n c 收敛,且a c n n =∞→lim .3. 数列极限存在的条件(1)单调有界定理:在实数系中,有界的单调数列必有极限.(2)柯西(Cauchy)收敛准则:数列}{n a 收敛的充要条件是:对任给的0>ε,存在正整数N ,使得当N m n >,时有ε<-m n a a . 三、函数极限 1. 函数极限的概念 2. 函数极限的性质在§1中我们引入了下述六种类型的函数极限: 1)();lim x f x +∞→ 2)();lim x f x -∞→ 3)();lim x f x ∞→4)();lim 0x f x x → 5)();lim 0x f x x +→ 6)().lim 0x f x x -→下面以第4)种类型的极限为代表叙述并证明这些性质. (1) (唯一性) 若极限()x f x x 0lim →存在, 则此极限是唯一的.(2)(局部有界性) 若()x f x x 0lim →存在,则f 在0x 的某空心领域()00x U内有界(3)(局部保号性) 若()0lim 0>=→A x f x x (或0<),则对任何正数A r <(或A r -<),存在(),00x U使得对一切()00x U x ∈有 ()0>>r x f (或()0<-<r x f ).(4)定理3.5(保不等式性) 设()x f x x 0lim → 与 )(lim 0x g x x →都存在,且在某邻域);(00δ'x U 内有()x f ≤()x g ,则()x f x x 0lim →≤()x g x x 0lim →(5)定理 3.6(迫敛性) 设()(),lim lim 00A x g x f x x x x ==→→ 且在某()δ';00x U 内有()()(),x g x h x f ≤≤则().lim 0A x h x x =→(6)定理 3.7(四则运算法则) 若极限()x f x x 0lim →与()x g x x 0lim →都存在,则函数g f g f ⋅±,当0x x →时极限也存在,且1)()()[]()();lim lim lim 0x g x f x g x f x x x x x x →→→±=±2)()()[]()();lim lim lim 0x g x f x g x f x x x x x x →→→⋅=又若()0lim 0≠→x g x x ,则gf当0x x →时极限存在,且有3)()().)(lim )(lim limx g x f x g x f x x x x x x →→→= 3. 函数极限存在的条件 (1)归结原则:设f 在()'0;δx U 内有定义.()x f x x 0lim →存在的充要条件是:对任何含于()'0;δx U且以0x为极限的数列{}n x ,极限()n n x f ∞→lim 都存在且相等.(2)单调有界定理 :相应于数列极限的单调有界定理,关于上述四类单侧极限也有相应的定理.现以+→0x x 这种类型为例叙述如下:设f 为定义在)(0x U+上的单调有界函数,则右极限)(lim 0x f x x +→存在.(3)柯西准则:设函数f 在);(0δ'x U内有定义.)(lim 0x f x x →存在的充要条件是:任给0>ε,存在正数)(δδ'<,使得对任何);(,0δx U x x∈'''有ε<''-'|)()(|x f x f .4. 两个重要极限(1).1sin lim0=→x x x (2).e xx x =+∞→)11(lim .5. 无穷小量和无穷大量(1)无穷小量 (2)无穷小量阶的比较 (3)等价无穷小代换定理 (4)无穷大量 四、函数的连续性 1.连续性的概念(1)函数在一点的连续性 (2)间断点及其分类 (3)区间上的连续函数 2.连续函数的性质 (1)连续函数的局部性质(a )(局部连续性)若函数)(x f 在0x 点连续,则)(x f 在0x 点的某邻域内有界。

《数值分析复习提纲》word版

《数值分析复习提纲》word版

数值分析第一部分线性方程组的数值解法一、基本要求1、掌握每一种解法的基本思想,适用范围,收敛条件,计算公式以及误差估计.2、在应用中不同解法的异同、优劣,加深对算法的理解,最好能上机计算.二、主要概念及结果主要概念定义1.1 对于方程通过某种方法建立了迭代法(2.1.1)如果对于任何使得极限成立,则称该迭代法是收敛的.定义1.2 如果,对于,都有成立,则称A是严格对角占优的.主要算法与定理高斯(Gauss)消去法假设A的所有顺序主子式都不等于零,原来的方程组为计算步骤为1) 把上面的第一个方程除以,在分别乘上后与第k 个方程相加(),得到于是我们从第2到第n 个方程中消去了.2) 把上面的第二个方程除以,再分别乘上后与第k 个方程相加()得到于是我们从第3到第n 个方程中消去了.3) 继续这个过程直到我们得到4) 由上面的最后一个方程很容易得到,然后按相反次序回代逐一计算出方程的解.高斯(Gauss)列主元消去法 假设A 的所有顺序主子式都不等于零,原来的方程组为(1) 消元过程.对,进行以下运算: 1) 选主元.找行号,使得; 2) 交换中的ki k ,两行;3) 消元:对于; 对.(2) 回代过程.按下述公式;回代求解即可得到方程组的解.定理1.1 对于,如果A 的所有顺序主子式都不为零,则存在唯一的上三角矩阵U 和对角元素为1的下三角矩阵L,使得Doolittle 分解 根据定理1.1,对于,如果A 的所有顺序主子式都不为零,则存在唯一的上三角矩阵U 和对角元素为1的下三角矩阵L,使得.可以直接计算分解式中的诸元素.为此,我们假设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-11111,21323121n n n n l l l l l l L,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-----nn n n n n n n n n u u u u u u u u u u U ,11,121,22211,11211用U 的第k 列()乘L ,然后与A 的相应列比较,可以逐列(逐行)计算出L(U)的元素.定理1.2 设A 是一个对称正定矩阵,则存在唯一的下三角阵L ,其对角元素都是正的,使得定理1.3 设A 是一个对称正定矩阵,则存在一个单位下三角阵L和对角矩阵D,使得定理1.4 迭代法对于任意收敛的充分必要条件是,其中是迭代矩阵的谱半径.如果及假设A的对角元素,令A=D-L-U,其中D是A 的对角部分构成的矩阵.L和U分别是A的严格下(上)三角矩阵,则有以下几个具体算法:雅可比迭代法高斯-赛德尔迭代法关于这两个算法的收敛性有如下定理:定理1.5 如果方程组Ax=b的系数矩阵是严格对角占优的,则雅可比迭代法和高斯-赛德尔迭代法都收敛.定理1.6 如果方程组Ax=b的系数矩阵是对称正定的,则高斯-赛德尔迭代法收敛.第二部分非线性方程的数值解法一、基本要求掌握每种方法的基本思想、迭代公式、收敛条件以及与其他方法的差异.二、主要概念及结果主要概念定义2.1 对于方程,通过某种方法建立了迭代法(2.1)如果存在使得极限,则称该迭代法是收敛的.主要算法与定理定理2.1 设有方程,如迭代函数在有根区间[a,b]上满足:(1)当时,;(2)在[a,b]上可导,且有,则有:(1)方程在[a,b]上有唯一的根*x;(2)对任意初值,迭代公式产生的数列收敛于方程的唯一根*x,即;(3)误差估计定理2.2 设*x是方程的根,在*x的某个邻域内连续,且有,则必存在*x的一个邻域,对于任意选取的初值,迭代公式产生的数列收敛于方程的根*x.二分法假设的隔根区间为,取,计算.如果,则取,否则取.继续这个过程直到取见足够的小,就可以把最后区间的中点作为方程的近似根.此法称为二分法.牛顿法计算公式定理 2.3 如果,且在*x的某个邻域内连续,则牛顿法是局部收敛的.弦截法计算公式第三部分插值法一、基本要求1、在算法上要求熟练掌握拉格朗日插值法,等距节点插值法,牛顿插值法.2、要求能按所给条件,选用适当的近似公式求出近似函数或计算出函数的近似值,并会估计其误差.二、主要概念及结果主要概念定义3.1 设在区间上有定义,且在上的个不同的点的函数值为,若存在一个代数多项式(3.1)其中为实数,使得成立,则称为函数的插值多项式,点称为插值节点.主要算法与定理定理3.1 在个互异节点上满足插值条件的次数不高于的插值多项式存在且唯一.拉格朗日插值多项式的一般形式 其中为插值基函数, 插值余项为其中是区间中的某一个值,且和x 有关,所以牛顿插值多项式及余项)())(](,,,[))(](,,[)](,[)()(11010102100100----++--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f x f x N余项牛顿前插公式牛顿后插公式第四部分数值积分与数值微分一、基本要求掌握梯形求积公式、辛普森求积公式以及复化的梯形公式、复化的辛普森公式和龙贝格公式的构造方法.二、主要概念及结果主要概念定义4.1 若求积公式对于任意不高于次的代数多项式都准确成立,而对于次多项式却不能准确成立,则称该求积公式具有次代数精度.定义 4.2 将个节点的具有次代数精度的插值型求积公式称为高斯型求积公式,节点称为高斯点,称为高斯系数.主要算法与定理插值型求积公式其中牛顿-柯特斯公式其中梯形公式辛普森公式柯特斯公式其中复化梯形公式复化辛普森公式复化柯特斯公式其中龙贝格求积公式定理4.1 节点为高斯点的充分必要条件是以这些点为零点的多项式与任意次数不大于的多项式在上正交,即.第五部分常微分方程的数值解法一、基本要求掌握欧拉公式、经典的龙格-库塔公式二、主要概念及结果主要算法和定理显式欧拉方法隐式欧拉方法梯形公式预报-校正方法预估校正龙格-库塔方法二阶龙格-库塔公式经典的四阶龙格-库塔公式。

工科数学分析I期末复习提纲

工科数学分析I期末复习提纲

《工科数学分析I 》期末考试复习提纲1. 不定积分:原函数与不定积分的概念与基本性质,第一、二类换元积分法,分部积分法,有理函数的积分,万能变换……例1. 求下列积分:(1)42d (1)x x x +⎰ (2)22221d (1)x x x x ++⎰ (3)221d sin cos x x x ⎰ (4)sin(ln )d x x ⎰ (5) cos cos d ax bx x ⎰ (6)x x xe xd )1(2⎰+(7)2d 2sin x x-⎰(8)⎰(9)221x dx x -⎰ (10)2(23)d x x x +⎰ (11)d ln ln(ln )xx x x ⎰(12) arctan d x x x ⎰(13) 241d 1x x x++⎰ (14)x x ⎰ (15)5x(17)sin x e xdx ⎰(18) d 1sin x x -⎰ (19) 21d 1x x x x +++⎰例2. 求1cos d cos sin x I x a x b x =+⎰及 2sin d .cos sin xI x a x b x =+⎰例3. 已知x x x f 22tan 2cos )(cos '+=,20π<<x ,试求)(x f .例4. 设'()sin sin ()f x x xf x dx +=⎰,求()f x .例5. 设()2||f x x =,则()f x dx =⎰2.定积分:定积分的基本概念与基本性质,微积分基本定理,变限积分求导公式,定积分的计算,积分中值定理……例1.利用定积分定义求下列极限:(1)11lim sin()k n n k k n n π=→∞=∑ (2)111lim()12n n n n n →∞++++++例2.设221()()d 1f x x x f t t =-+⎰,求()f x .例3.设()f x 在[0,]2π上连续,且单调增加,证明2202()sin ()f x xdx f x dx πππ≥⎰⎰.例4.求下列函数的导数: (1)2()x f x =⎰(2)22sin ln(1)t xe t dt +⎰例5.求极限(1)22ln(1)limtan x x t dt x x→+⎰(2)21cos 2limt xx e dt x-→⎰例6,求下列定积分: (1)12--⎰(2)1-⎰(3)30⎰ (4)0arctan x xdx(5)220sin cos nn xdx xdx ππ⎰⎰及 (6)120111(3sin x x -+⎰(7)20sin 1cos x x dx x π+⎰(提示:使用公式00(sin )(sin )2xf x dx f x dx πππ=⎰⎰) 例7设()f x 在[,]a b 上连续,递增,证明:()()2b ba a ab xf x dx f x dx +≥⎰⎰.3.定积分的应用:定积分的几何应用:求平面图形的面积,旋转体的侧面积、体积,求已知截面面积的立体体积,求弧长……例1.求由抛物线2y x =与22y x =-所围图形面积. 例2.求二曲线sin r θ=与r θ=所围公共部分面积. 例3.求由曲线222()x y a r +-=绕x 轴旋转而得的曲面的面积. 例4.在曲线0)y x =≥上一点M 作切线,使得切线、曲线以及x 轴所围的平面图形D 的面积为13,求 (1) 切点M 的坐标; (2) 过切点M 的切线方程;(3) 平面图形D 绕x 轴旋转一周所围成的旋转体的体积.例6. 求圆的渐伸线(cos sin )(02)(sin cos )x a t t t t y a t t t π=+⎧≤≤⎨=-⎩的长度.4.数项级数:数项级数的概念与基本性质,数项级数的Cauchy 收敛原理,正项级数的比较判别法,Cauchy 根值判别法,比值判别法,交错级数的Lebnizi 判别法,一般项级数的Dirichlet 、Abel 判别法,绝对收敛与条件收敛…… 例1.讨论下列级数的敛散性并求出级数和:(1)22121(1)n n n n ∞=++∑ (2)1(21)ln (1)(21)n n n n n ∞=++-∑例2.设数列{}n na 与级数11()nn n n aa ∞+=-∑都收敛,证明级数1n n a ∞=∑也收敛.例3.若数列21nn a∞=∑,21nn b∞=∑收敛,证明级数211||,()n nn nn n a b ab ∞∞==+∑∑都收敛. 例4.判断下列级数的收敛性:(1)1(1)11n nn∞+=∑(2)21(ln )kn n n ∞=∑ (3)121ln121n n n n ∞=+--∑ (4)111()n nn n n n n+∞=+∑ (5)1n ∞=∑ (6)1!n n n n ∞=∑(7)14()31nn n n ∞=-+∑例5.判断下列级数的敛散性,如果收敛,是否绝对收敛:(1)1cos(!)(1)n n n n ∞=+∑ (2)1121n n ∞=-∑例6.判断下列级数的敛散性,如果收敛,是否绝对收敛:(1)11(1)sin nn n ∞=-∑ (2)11(1)n nn n ∞=-∑例7.判断下列级数的敛散性,如果收敛,是否绝对收敛:(1)1sin ln n nx n ∞=∑ (2)2sin n nxn ∞=+(3)22sin 1(1)(1)(5arctan )ln nnn n n n n ∞=-+-∑ (4)1cos31(1)n n n n n ∞=+∑5.广义积分:无穷积分与瑕积分收敛的定义,广义积分的基本性质,非负函数广义积分的比较判别法,广义积分收敛的Cauchy 收敛准则,Dirichlet 判别法,Abel 判别法,绝对收敛与条件收敛…… 例1.判断下列广义积分的收敛性并求出积分值: (1)201xdx x +∞+⎰ (2)10ln xdx ⎰(3)1ln p dx x x+∞⎰例2.判断下列广义积分的收敛性:(1)21(ln )1p x dx x +∞+⎰ (2)20π⎰ (3)1(0,0)p q dx p q x x+∞>>+⎰(4)20ln sin xdx π⎰例3.判断下列广义积分的敛散性,如果收敛,是条件收敛还是绝对收敛:(1)1+∞⎰ (2)11sin cos x x dx x+∞⎰(3)21sin (0)pxdx p x +∞>⎰(4)0ln sin x xdx x +∞⎰ 例4.设()f x 在[1,)+∞连续,()0f x >,ln ()limln f x xλ=-,证明:当 1λ>时,1()f x dx +∞⎰收敛.例5.设()f x 在[1,)+∞连续可微,当x →+∞时,()f x 单调递减趋于0,则1()f x dx+∞⎰收敛的充分必要条件是1'()xf x dx +∞⎰收敛.。

数学分析复习提纲(全部版)

数学分析复习提纲(全部版)

数学分析(4)复习提纲第一部分 实数理论§1 实数的完备性公理一、实数的定义在集合R 内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称R 为实数域或实数空间。

(1)域公理: (2)全序公理:(3)连续性公理(Dedekind 分割原理):设R 的两个子集A ,A '满足: 1°ΦA ΦA ≠'≠, 2°R A A ='⋃3°x x A x A x '<⇒'∈'∀∈∀,则或A 中有最大元而A '中无最小元,或A 中无最大元而A '中有最小元。

评注 域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。

二、实数的连续性(完备性)公理实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。

主要有如下几个公理: 确界原理: 单调有界定理: 区间套定理:有限覆盖定理:(Heine-Borel )聚点定理:(Weierstrass)致密性定理:(Bolzano-Weierstrass) 柯西收敛准则:(Cauchy)习题1 证明Dedekind 分割原理与确界原理的等价性。

习题2 用区间套定理证明有限覆盖定理。

习题3 用有限覆盖定理证明聚点定理。

评注 以上定理哪些能够推广到欧氏空间n R ?如何叙述?§2 闭区间上连续函数的性质有界性定理:上册P168;下册P102,Th16.8;下册P312,Th23.4 最值定理:上册P169;下册下册P102,Th16.8介值定理与零点存在定理:上册P169;下册P103,Th16.10一致连续性定理(Cantor 定理):上册P171;下册P103,Th16.9;下册P312,Th23.7 习题4 用有限覆盖定理证明有界性定理 习题5 用致密性定理证明一致连续性定理§3 数列的上(下)极限三种等价定义:(1)确界定义;(2)聚点定义;(3)N -ε定义 评注 确界定义易于理解;聚点定义易于计算;N -ε定义易于理论证明 习题6 用区间套定理证明有界数列最大(小)聚点的存在性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档