欧拉公式

欧拉公式
欧拉公式

在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做 欧拉公式,它们分散在各个数学分支之中。

(1)分式里的欧拉公式: a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b) 当r=0,1时式子的值为0 当r=2时值为1 当r=3时值为a+b+c

(2)2)复变函数论里的欧拉公式: e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。 它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。 将公式里的x换成-x,得到: e^-ix=cosx-isinx,然后采用两式相加减的方法得到: sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2. 这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作∏就得到: e^i∏+1=0. 这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。

(3)(3)三角形中的欧拉公式: 设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d^2=R^2-2Rr

(4)(4)拓扑学里的欧拉公式: V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。 如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。 X(P)叫做P的拓扑不变量,是拓扑学研究的范围。

(5)(5)初等数论里的欧拉公式: 欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。 欧拉证明了下面这个式子: 如果n的标准素因子分解式是p1^a1*p2^a2*……*pm*am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有 φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm) 利用容斥原理可以证明它。

用欧拉公式证明:正多面体

正多面体只有正四面体、正八面体、正六面体、正十二面何等和正二十面体五种。

我们现在来证明,最多只有5个正多面体(如图)

至于确有5个正多面体存在,那是早就知道的事(古希腊柏拉图(Plato)时候)。图形以及制造模型方法,可以参看史泰因豪斯(Steinhaus)著《数学万花镜》。①

证明对于正多面体,假设它的各面都是正n边形,而且每一个顶角处有r个边相遇。这样就有:nF=2E (1)

rV=2E (2)

(1)的右边系数2是因为每边出现在2面中,(2)的右边系数2是因为每边通过2个顶角。把(1)和(2)代入欧拉公式中,就得到:

(3)

显然n≥3,r≥3,因为多边形至少有三边,而在每顶角处也至少有三边。但n>3,且r>3又是不可能的,因为那样就要有,可是E>0。所以r和n中至少有一个等于3。

设n=3,那末,因此r=3,4,5,由是E=6,12,30,而F=4,8,20,这就给出了正四面体,正八面体和正二十面体。

设r=3,那末,因此n=3,4,5,由是E=6,12,30,而F=4,6,12,这就给出了正四面体,正六面体(即立方体)和正十二面体。

在几何学中,欧拉公式指的是——简单多面体的顶点数V、面数F及棱数E间有关系:V+F-E=2。我们所学的几何体,如棱柱、棱锥等都是简单多面体。欧拉公式的证明方法很多。证法一:逐步减少多面体的棱数,分析V+F-E

以简单的四面体ABCD为例分析证法。去掉一个面,使它变为平面图形,四面体顶点数V、棱数V与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1。

(1)去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。

以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E=2。

对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。

证法二:计算多面体各面内角和

设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(展开图),求所有面内角总和Σα

(1)在原图中利用各面求内角总和。

设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为:Σα= [(n1-2)·1800+(n2-2)·1800+…+(nF-2) ·1800]= (n1+n2+…+nF-2F) ·1800=(2E-2F) ·1800= (E-F) ·3600 (1)

(2)在拉开图中利用顶点求内角总和。

设剪去的一个面为n边形,则其内角和为(n-2)·1800 ,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。

中间V-n个顶点处的内角和为(V-n)·3600,边上的n个顶点处的内角和(n-2)·1800。

所以,多面体各面的内角总和:Σα = (V-n)·3600+(n-2)·1800+(n-2)·1800=(V-2)·3600. (2)由(1)(2)得:(E-F) ·3600=(V-2)·3600

所以,V+F-E=2。

欧拉公式

欧拉公式 欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式,即将复数、指数函数与三角函数联系起来。拓扑学中的欧拉多面体公式。初等数论中的欧拉函数公式。欧拉公式描述了简单多面体顶点数、面数、棱数特有的规律,它只适用于简单多面体。常用的欧拉公式有复数函数e^ix=cosx+isinx,三角公式d^2=R^2-2Rr ,物理学公式F=fe^ka 等。 复变函数 e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。 欧拉公式 e^ix=cosx+isinx的证明: 因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…… cos x=1-x^2/2!+x^4/4!-x^6/6!…… sin x=x-x^3/3!+x^5/5!-x^7/7!…… 在e^x的展开式中把x换成±ix. (±i)^2=-1, (±i)^3=?i, (±i)^4=1 …… e^±ix=1±ix/1!-x^2/2!?ix^3/3!+x^4/4!…… =(1-x^2/2!+……)±i(x-x^3/3!……) 所以e^±ix=cosx±isinx 将公式里的x换成-x,得到: e^-ix=cosx-isinx,然后采用两式相加减的方法得到: sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x 取作π就得到: 恒等式 e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式” 那么这个公式的证明就很简单了,利用上面的e^±ix=cosx±isinx。那么这里的π就是x,那么e^iπ=cosπ+isinπ =-1 那么e^iπ+1=0 这个公式实际上是前面公式的一个应用。 分式 分式里的欧拉公式:

球面三角形的面积与欧拉公式

§6 球面三角形的面积与欧拉公式 问题提出 1.如何计算球面三角形的面积?球面三角形面积与平面三角形面积有什么区别? 2.如何利用球面三角形面积公式证明球面多面体的欧拉公式? 3.如何利用球面知识证明简单多面体的欧拉公式? 6.1球面二角形与三角形的面积 我们知道,若球面半径为R ,则球面面积为24S R π=,现在考虑球面上的一个小区域:球面上由两个大圆的半周所围成的较小部分叫做一个球面二角形。 如图所示,大圆半周PAP ')))和PBP '))) 所围成的阴影部分就是一个球面 二角形。显然P 和P '是对径点,大圆半周'PAP )))和'PBP ))) 称为球面二角

形的边。球面角P P '∠=∠称为球面二角形的夹角。如果大圆弧AB )) 以P 和P '为极点,AB )) 所对的球心角为α,则P P '∠=∠=α。 例1 计算地球上一个时区所占有的面积。 解 如图所示,设O 为地心,N 、S 为北极点和南极点,A 、B 为赤道上两点,且15AOB ∠=o ,地球半径为R=6400km , 根据地理知识,地球共分为24个时区,一个时区跨越地球表面 15o ,所以由经线NAS 与经线NBS 围成的二角形就是一个时区,它所 占面积为地球表面积的 151 36024 = , 即 22241 640021446605.85246 R km ππ=??≈ 如何计算一般球面二角形的面积? 1. 二角形的夹角α,就是平面PA P '与PB P '所夹的二面角的平面角; 2. 这个二角形可以看成半个大圆PAP '))) 绕直径P P '旋转

α角所生成; 3. 球面二角形的面积与其夹角成比例。 设这个二角形得面积为U ,则 42U α ππ = 即 2U α= 抽象概括:球面上,夹角为α的二角形的面积为2U α=。 如何计算球面三角形的面积? 设()S ABC 表示球面三角形ABC 的面积, 1. 对球面三角形ABC ,分别画出三条边所在的大圆。 2. 设A 、B 、C 的对径点分别是A B C '''、、,则

欧拉公式推导

欧拉公式推导: 图4.3所示的两端铰支杆件,受轴向压力N 作用而处于中性平衡微弯状态,杆件弯曲后截面中产生了弯矩M 和剪力V ,在轴线任意点上由弯矩产生的横向变形为1y ,由剪力产生的横向变形为2y ,总变形21y y y +=。 y 图4.3 两端铰支的轴心压杆临界状态 设杆件发生弯曲屈曲时截面的临界应力小于材料比例极限p f ,即p f ≤σ(对理想材料取y p f f =)。由材料力学可得: EI M dz y d -=2 12 由剪力V 产生的轴线转角为: dz dM GA V GA dz dy ?=?==ββγ2 式中 A 、I ——杆件截面面积、惯性矩; E 、G ——材料的弹性模量、剪切模量; β—— 与截面形状有关的系数。 因为 222 22dz M d GA dz y d ?=β 所以 2222122222d y d y d y M d M dz dz dz EI GA dz β=+=-+? 由 y N M ?=得: 2222dz y d GA N y EI N dz y d ?+?-=β

01=?+??? ??-''y EI N GA N y β 令 ??? ??-=GA N EI N k β12 得常系数线性二阶齐次方程 20y k y ''+= 其通解为:sin cos y A kz B kz =+ 由边界条件:;0,0==y z 0=B ,kz A y sin =。再由0,==y l z 得: 0sin =kl A 上式成立的条件是0=A 或0sin =kl ,其中0=A 表示杆件不出现任何变形,与杆件微弯的假设不符。由0sin =kl ,得πn kl =(=n 1,2,3…),取最小值=n 1,得π=kl ,即 2 221N k N l EI GA πβ==??- ??? 由此式解出N ,即为中性平衡的临界力cr N 12222222211Ι11γππβππ?+?=?+?=l ΕΙl ΕGA l ΕΙl ΕΙ N cr (4.6) 临界状态时杆件截面的平均应力称为临界应力cr σ 12 22211γλπλπσ?+?==ΕΑΕA N cr cr (4.7) 式中 1γ——单位剪力时杆件的轴线转角,)/(1GA βγ=; l ——两端铰支杆得长度; λ——杆件的长细比,i l /=λ; i ——杆件截面对应于屈曲轴的回转半径,A I i /=。 如果忽略杆件剪切变形的影响(此影响很小)则式(4.6)、(4.7)变为: 22cr E πσλ = (4.8)

欧拉公式的证明(整理)Word版

欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有: a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

选修33第三章欧拉公式与非欧几何3欧氏几何与球面几何的比较

选修33第三章欧拉公式与非欧几何3欧氏几何与球面几 何的比较 测试题 2019.9 1,已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥;②若c a c b b a ⊥⊥则,,//;③若则‖;④若a 与b 异面,且ββ与则b a ,//相交;其中真命题的序号是 .(要求写出所有真命题的序号) 2,设P 是椭圆上的一点,F 是椭圆的左焦点,且, ,则点P 到该椭圆左准线的距离为 A . B .3 C .4 D .6 3,某市提供4个企业供育才中学高二年级3个班进行社会实践活动,其中企业甲是市明星企业,必须有班级去进行实践活动,每个班级去哪个企业由班级自主在4个企业中任意选择一个,则所有不同的安排方案种数是 A .48 B .37 C . 18 D .16 4,一个质点从出发依次沿图中线段到达B 、C 、D 、E 、F 、G 、H 、 I 、J 各点,最后又回到(如图所示),其中: IJ HG EF CD AB BC AB ////////,⊥,.欲知此质点所走路 程,至少需要测量n 条线段的长度,则=n //,,a a b βααβ??=a b 221259x y +=() 1 2OM OP OF =+4 OM =5 2A A ////////BC DE FG HI JA

A .2 B .3 C .4 D .5 5,已知函数) 0(21 cos )cos sin 3()(>-+=ωωωωx x x x f 的最小正周期为π4, (1)求)(x f 的单调递增区间 (2)在A B C ?中,角A,B,C 的对边分别是c b a ,,,且满足C b B c a cos cos )2(=-, 求角B 的值,并求函数)(A f 的取值范围 6,某电视台举行电视奥运知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答 题的正确率为32 .(Ⅰ)求选手甲可进入决赛的概率;(Ⅱ)设选手甲在初赛中答题的个数为,试写出的分布列,并求的数学期望. 7,如图,四棱锥中,底面是直角梯形,, ,,侧面底面,且为等腰 直角三角形,,为的中点. (Ⅰ)求证:; (Ⅱ)求证:平面; (Ⅲ)求二面角的正切值. ξξξP ABCD -ABCD //AB CD 60DAB ∠=?2AB AD CD ==PAD ⊥ABCD PAD ?90APD ∠=?M AP AD PB ⊥//DM PCB A BC P --

欧拉公式的证明和应用

数学文化课程报告 欧拉公式的证明与应用 一.序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 极限法 --------------------------------------3 指数函数定义法-------------------------------4 分离变量积分法-------------------------------4 复数幂级数展开法-----------------------------4 变上限积分法---------------------------------5 类比求导法-----------------------------------7 三.欧拉公式的应用 求高阶导数-----------------------------------7 积分计算------------------------------------8 高阶线性齐次微分方程的通解------------------9 求函数级数展开式----------------------------9 三角级数求和函数----------------------------10 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言

欧拉公式的证明

欧拉公式的证明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

欧拉公式的证明 着名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:??? 设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是 e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有:

复数欧拉公式的证明和应用

复数欧拉公式 θθθ sin cos i e i +=的证明和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5], π是圆周率在公园前就被定义为“周长与直径的比” 。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 2.1幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 2.2复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 2.3类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造x i x x f e ix sin cos )(+= , 0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f ,使得x i x e ix sin cos += 2.4分离变量积分法 假设x i x z sin cos +=,求导得 iz dx dz =,通过分离变量得,idx z dz =,然后两边取积分得

《欧拉公式及其应用》

华北水利水电大学 题目《欧拉公式及其应用》 课程名称:高等数学(2) 专业班级:电子信息工程2012154 成员组成: 联系方式: 2013年5月31 日

摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=, 举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式,证明,应用 英文题目"Euler formula and its application" Abstract: The different methods of several in the complex domain that Euler's formula, illustrates several kinds of application of Euler's formula in mathematics, to solve the problem through the summary of many ways to look at problems of the mind, through the solution of several kinds of problems that the reader more understood the importance of Euler in learning many aspects of the theory and the mathematical formula in the. Key words: Euler formula Prove application

临界力和欧拉公式

第二节临界力和欧拉公式 浏览字体设置:10pt 放入我的网络收藏夹第二节临界力和欧拉公式 杆件所受压力逐渐增加到某个限度时,压杆将由稳定状态转化为不稳定状态。这个压力的限度称为临界力P cr。它是压杆保持直线稳定形状时所能承受的最小压力。 为了计算压杆的稳定性,就要确定临界力的大小。通过实验和理论推导,压杆临界力与各个因素有关: (1) 压杆的材料,P cr与材料的弹性模量E成正比,即 (2)压杆横截面的形状和尺寸,P cr与压杆横截面的轴惯性矩J成正比,即 (3) 压杆的长度,P cr与长度的平方l2成反比,即 (4) 压杆两端的支座形式有关,用一个系数表示,称为支座系数μ,列于表1-10。 表1-10 压杆长度系数 为计算方便,写成

细长中心受压直杆临界力的欧拉公式 对于两端铰支的细长中心受压直杆,当其在临界力 cr P ,的作用下处于不稳定直线 形式的平衡状态,若其材料仍处于理想的线弹性范围内,从力学的观点讲,这类稳定问题称为线弹性稳定问题。这是压杆稳定问题中最简单的一种。由临界力的定义可知,中心受压直杆只有在临界力的作用下才有可能在微弯形态下维持平衡(见图7-3)。现假设压杆轴线在临界力 cr P 作用下呈图7-3(b)所示的曲线形态。在图示的坐标系下,压力cr P 取正值,位移忙V=f(x)以沿y 轴正方向为正,弯矩的正负号规定同2.3节。压杆任一x 截面上弯矩为 将式(7-1a)代入挠曲线的近似微分方程(6-8h)中,并利用压杆支承处的边界 条件就可求出压杆的挠曲线的表达式,并进一步导出压杆承受的临界力cr P 。 这个临界 力实际也就是使压杆维持微弯平衡的最小压力..............。 将式(7-1a)代入公式(6-8h)可得 其中I 为压杆横截面的最小形心主惯性矩。令 公式(7-1b)可改写为如下形式的二阶常系数线性微分方程 其通解为

欧拉公式的证明方法和应用

欧拉公式 θθθ sin cos i e i +=的证明方法和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5],π是圆周率在公园前就被定义为“周长与直径的比”。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造 x i x x f e ix sin cos )(+= ,0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f , 使得x i x e ix sin cos += 分离变量积分法 假设x i x z sin cos +=,求导得 iz dx dz =,通过分离变量得,idx z dz =,然后两边取积分

多面体欧拉公式与球

第 48 讲 多面体、欧拉公式与球 (第课时) 多面体、欧拉公式与球 ????? ????? ? ? ?? ? ? ????? ????? ???????多面体的内切球 体积面积计算球面距离截面球的性质球的概念球正多面体的概念欧拉公式多面体的概念 多面体 2.欧拉公式;3.球的概念和性质。 2.了解多面体的欧拉公式;3.了解球的概念,掌握球 2.有关球的考查一般以小题出现。 围成多面体的各个多边形叫做面,两个面的公共边叫棱,棱的端点叫顶点,不在同一个面内的两个顶点间的线段叫对角线。有n 个面的多面体叫n 面体(4≥n )。 凸多面体:若把一个多面体的任意一个面沿展成平面,其余各面都在这个平面的同侧时,则称这个多面体为凸多面体。 简单多面体:表面能通过连续变形变为球面的多面体,叫做简单多面体。 2.欧拉公式 对于简单多面体,有: 顶点数(V )+面数(F)-棱数(E )= 2 。 例.一个正n 面体共有8个顶点,每个顶点处共有3条棱,则n 等于 ( ) A . 4 ; B . 5 ; C . 6 ; D . 7 。 分析: 先计算正n 面体的棱数,然后应用欧拉公式来解。

解:由题意有 8=V ,122 8 3=?= E ,则 682122=-+=-+=V E F ,故选C 。 例.已知铜的单晶的外形是简单几何体,单晶铜有三角形和八边形两种晶面,如果铜的单晶有24个顶点,每个顶点处都有3条棱,计算单晶铜的两种晶面的数目。 解 设:三角形晶面有x 个,八边形晶面有y 个。 3.正多面体 ⑴ 定义:每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体,叫做正多面体。 ⑵ 名称 面的形状 每个顶点的棱 顶点数(V ) 面数(F) 棱数(E) 正四面体 正三角形 3 4 4 6 正六面体 正方形 3 8 6 12 正八面体 正三角形 4 6 8 12 正十二面体 正五边形 3 20 12 30 正二十面体 正三角形 5 12 20 30 4.球 ⑴ 定义 ① 球面: 半圆绕它的直径旋转一周所生成的曲面叫做球面。 ② 球: 球面围成的几何体叫球。 ③球面距离:经过球面两点的大圆在这两点间的劣弧的长叫做这两点的球面距离。 ⑵ 性质 ① 球的任意截面都是圆。其中过球心的截面叫大圆,不过球心的截面叫小圆。 ② 球心和截面圆心的连线垂直于截面,并且球心到截面的距离 2 2 r R d -= ,其中R 是球半径,r 是截面半径。 ⑶ 面积公式 球面的面积:等于球的大圆面积的4倍,即 24R S π=球面 ,其中R 是球半径。 ⑷ 体积公式 球的体积:等于三分之四乘以3R π,即 33 4 R V π=球 ,其中R 是球半径。 ⑸ 球的直观图的画法 ① 如图,画三条坐标轴x 、y 、z ;

欧拉公式的证明

欧拉公式的证明(是我摘录的) 2008/10/23 16:49 看到了q239urju空间里关于欧拉公式的证明。本着为人民服务的思想,我在此做一些补充: 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的)(就是q239urju空间里的那个) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。

a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2 由1,2得ρ=1,点P[a^(it)]在单位圆上,a^(it)可表达为: a^(it)=cosθ+isinθ 3 设t=u(θ),对3微商有: [a^(it)]*(lna)*u'(θ)*i=-sinθ+icosθ整理有: [a^(it)]*(lna)*u'(θ)*i=(cosθ+isinθ)(cosπ/2+isinπ/2)约去a^(it)有: u'(θ)=logae 4 4取积分有: T=(logae)*θ+Ψ 5 θ→0时,t=limt=Ψ,带入3有: a^(iΨ)=1 即: Ψ=0 6 6代入5有: T=(logae)*θ 7 7代入3有: [a^(logae)]^(iθ)=cosθ+isinθ化简得欧拉公式: e^(iθ)=cosθ+isinθ (后两者才是真正让我震惊的!!!!)

高中数学1球面上的欧拉公式试题

高中数学1球面上的欧拉公式 试题 2019.09 1,正方体的全面积是24,则它的外接球的体积是 A. B. C.8π D.12π 2,在ABC ? 中,已知 4,1 AB AC ==,ABC ?,则 A.2± B.4± C.2 D.4 3,函数 2 sin cos y x x =+的值域是 A.41,5??-???? B.[]1,1- C.41,5?????? D. 4(,] 5-∞ 4,若偶函数()f x 在区间[]1,0-上是减函数,,αβ是锐角三角形的两个内角,且αβ≠,则下列不等式中正确的是 A.(cos )(cos )f f αβ> B.(sin )(cos )f f αβ< C.(cos )(sin )f f αβ< D.(sin )(sin )f f αβ> 5,已知向量(2,1),(,2)a b x ==-,且a b +与2a b -平行,则 x = . 6,已知函数 ()(0,1)x x f x a a a a -=+>≠且,若(1)3f =,则(2)f = . 7,已知函数()sin 2cos 2f x x k x =-的图像关于直线8x π = 对称,则k 的值 是 . 8,已知函数2 ()sin sin 2f x x x m π???? =+-+ ???????.

(1)求()f x 的最小正周期; (2)若()f x 的最大值为3,求m 的值. 9,连续掷两次骰子,以先后得到的点数,m n 为点(,)P m n 的坐标,设圆Q 的 方程为22 17x y +=. (1)求点P 在圆Q 上的概率; (2)求点P 在圆Q 外部的概率. 10,如图:正三角形ABC 与直角三角形BCD 所在平面互相垂直,且 090BCD ∠=,030CBD ∠=. (1)求证:AB CD ⊥; (2)求二面角D AB C --的正切值. 11,已知 41cos ,(,),tan()522πααππβ=- ∈-=,求tan(2)αβ-的值. 12,已知圆 22 :2610C x y x y ++-+=,直线:3l x my +=. (1)若l 与C 相切,求m 的值; (2)是否存在m 值,使得l 与C 相交于A B 、两点,且0OA OB ?=(其中O 为坐标原点),若存在,求出m ,若不存在,请说明理由.

欧拉公式的证明方法和应用

欧拉公式的证明方法和 应用 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

欧拉公式 θ θθ sin cos i e i +=的证明方法和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有 1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、 π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无 理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5],π是圆周率在公园前就被定义为“周长与直径的比”。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=,

多面体的欧拉公式球

多面体的欧拉公式球 多面体的欧拉公式: 一.重点、难点提示 1.多面体的概念若干个平面多边形围成的几何体叫做多面体.把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体.一个多面体至少有四个面. 2.正多面体每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同数目的棱的凸多面体叫做正多面体. 正多面体分别是正四面体、正六面体、正八面体、正十二面体和正二十面体共五种,其中正四面体、正八面体和正二十面体的各个面都是全等的正三角形,正六面体又叫做正方体,其各个面都是全等的正方形而正十二面体的各面是全等的正五边形. 3. 欧拉公式如果简单多面体的顶点数为V,面数为F,棱数为E,那么V+F-E=2. 二.考点指要 理解多面体、凸多面体、简单多面体和正多面体的概念,能运用欧拉公式进行有关的判断和计算. 球: 一.重点、难点提示 1.球面的概念半圆以它的直径为旋转轴,旋转所成的曲面叫做球面,半圆的圆心叫做球心.连结球心和球面上任意一点的线段叫做球半径,连结球面上两点且经过球心的线段叫做球的直径. 球面也可以看作与定点(圆心)的距离等于定长(半径)的所有点的集合,如果一个球的球心为O,我们可以把这个球记作球O. 2.球的概念球面所围成的几何体叫做球体,简称球. 3.球的截面及其性质用一个平面截一个球,截面是圆面,球的截面有如下性质: (1)球心与截面圆心的连线垂直于截面; (2)球心到截面的距离d与球的半径及及截面的半径r有下面的关系:。 4.球面上的大圆和小圆球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆,地球上的赤道就是一个大圆,北极圈就是一个小圆。 球面上两点距离的概念:

欧拉公式(总结)

在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做 欧拉公式,它们分散在各个数学分支之中。 (1)分式里的欧拉公式: a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b) 当r=0,1时式子的值为0 当r=2时值为1 当r=3时值为a+b+c (2)复变函数论里的欧拉公式: e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。 它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。 将公式里的x换成-x,得到: e^-ix=cosx-isinx,然后采用两式相加减的方法得到: sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2. 这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作∏就得到: e^i∏+1=0. 这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。 (3)三角形中的欧拉公式: 设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d^2=R^2-2Rr (4)拓扑学里的欧拉公式: V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。 如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P 同胚于一个接有h个环柄的球面,那么X(P)=2-2h。 X(P)叫做P的拓扑不变量,是拓扑学研究的范围。 (5)初等数论里的欧拉公式: 欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。欧拉证明了下面这个式子: 如果n的标准素因子分解式是p1^a1*p2^a2*……*pm*am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有 φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm) 利用容斥原理可以证明它。 此外还有很多著名定理都以欧拉的名字命名。

空间中的欧拉公式

空间中的欧拉公式 V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。 如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。 X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。 在多面体中的运用: 简单多面体的顶点数V、面数F及棱数E间有关系 V+F-E=2 这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。 平面上的欧拉公式 V+F-E=X(P),其中V是图形P的顶点个数,F是图形P内的区域数,E是图形的边数。 在非简单多面体中,欧位公式的形式为: V-E+F-H=2(C-G) 其中H指的是平面上不完整的个数,而C指的是独立的多面体的个数,G指的是多面体被贯穿的个数。 证明 (1)把多面体(图中①)看成表面是薄橡皮的中空立体。 (2)去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。假设F′,E′和V′分别表示这个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。 (3)对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。 (4)如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC。这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。 (5)如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF。这样F′减去1,E′减去2,V′减去1,因此F′-E′+V′仍没有变。 (6)这样继续进行,直到只剩下一个三角形为止,像图中⑥的样子。这时F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1。 (7)因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。 (8)如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1 个三角形,3个边和2个顶点。因此F′-E′+V′仍然没有变。 即F′-E′+V′=1 成立,于是欧拉公式: F-E+V=2 得证。

相关文档
最新文档