高中数学竞赛讲义-直线和圆、圆锥曲线(练习题)

高中数学竞赛讲义-直线和圆、圆锥曲线(练习题)
高中数学竞赛讲义-直线和圆、圆锥曲线(练习题)

§18直线和圆,圆锥曲线

课后练习

1.已知点A 为双曲线122=-y x 的左顶点,点B 和点C 在双曲线的右支上,ABC ?是等边三角形,则ABC ?的面积是

(A )

33 (B )2

33 (C )33 (D )36 2.平面上整点(纵、横坐标都是整数的点)到直线5

4

35+=x y 的距离中的最小值是

(A )17034 (B )8534 (C )201 (D )30

1

3.若实数x, y 满足(x + 5)2+(y – 12)2=142,则x 2+y 2的最小值为 (A) 2 (B) 1 (C)

3 (D) 2

4.直线13

4=+y

x 椭圆191622=+y x 相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有

(A) 1个 (B) 2个 (C) 3个 (D) 4个 5.设a ,b ∈R ,ab ≠0,那么直线ax -y +b =0和曲线bx 2+ay 2=ab 的图形是

A B 6.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60o 的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于P 点,则线段PF 的长等于

A .

3

16 B .

3

8 C .

3

3

16 D .38

7.方程

13

cos 2cos 3sin 2sin 2

2=-+-y x 表示的曲线是 A. 焦点在x 轴上的椭圆 B. 焦点在x 轴上的双曲线 C. 焦点在y 轴上的椭圆

D. 焦点在y 轴上的双曲线

8.在椭圆)0(122

22>>=+b a b

y a x 中,记左焦点为F ,右顶点为A ,短轴上方的端点为B 。若

该椭圆的离心率是

2

1

5-,则ABF ∠= 。 9.设F 1,F 2是椭圆14

92

2=+y x 的两个焦点,P 是椭圆上的点,且|PF 1| : |PF 2|=2 : 1,则三

角形?PF 1F 2的面积等于______________.

10.在平面直角坐标系XOY 中,给定两点M (-1,2)和N (1,4),点P 在X 轴上移动,当MPN ∠取最大值时,点P 的横坐标为___________________。

11.若正方形ABCD 的一条边在直线172-=x y 上,另外两个顶点在抛物线2

x y =上.则该正方形面积的最小值为 .

12.已知0C :12

2

=+y x 和1C :)0(122

22>>=+b a b

y a x 。试问:当且仅当a ,b 满足什么条

件时,对1C 任意一点P ,均存在以P 为顶点、与0C 外切、与1C 内接的平行四边形?并证明你的结论。

13. 设曲线C 1:12

22=+y a

x (a 为正常数)与C 2:y 2=2(x+m)在x 轴上方公有一个公共点P 。

(1)实数m 的取值范围(用a 表示);

(2)O 为原点,若C 1与x 轴的负半轴交于点A ,当0

2

1

时,试求⊿OAP 的面积的最大值(用a 表示)。

14.已知点)2,0(A 和抛物线42

+=x y 上两点C B ,使得BC AB ⊥,求点C 的纵坐标的取值范围.

15.一张纸上画有半径为R 的圆O 和圆内一定点A ,且OA =a . 拆叠纸片,使圆周上某一点A / 刚好与A 点重合,这样的每一种拆法,都留下一条直线折痕,当A /取遍圆周上所有点时,求所有折痕所在直线上点的集合.

16.(04,14)在平面直角坐标系xoy 中,给定三点4(0,),(1,0),(1,0)3

A B C -,点P 到直线BC 的距离是该点到直线AB ,AC 距离的等比中项。 (Ⅰ)求点P 的轨迹方程;

(Ⅱ)若直线L 经过ABC ?的内心(设为D ),且与P 点的轨迹恰好有3个公共点,求L 的斜率k 的取值范围。

17.过抛物线2

x y =上的一点A (1,1)作抛物线的切线,分别交x 轴于D ,交y 轴于B.点C 在抛物线上,点E 在线段AC 上,满足

1λ=EC AE ;点F 在线段BC 上,满足2λ=FC

BF

,且121=+λλ,线段CD 与EF 交于点P .当点C 在抛物线上移动时,求点P 的轨迹方程.

课后练习答案

1.C

2.B

3.B

4.B

5.B

6.A

7.C

8.90o

9.

3

3

2 10.设椭圆的长轴、短轴的长及焦矩分别为2a 、2b 、2c ,则由其方程知a =3,b =2,c =5,故,|PF 1|+|PF 2|=2a =6,又已知[PF 1|:|PF 2|=2:1,故可得|PF l |=4,|PF 2|=2.在△PF l F 2中,三边之长分别为2,4,25,而22+42=(25)2,可见△PF l F 2是直角三角形,且两直角边的长为2和4,故△PF l F 2的面积=4.

11. 解:经过M 、N 两点的圆的圆心在线段MN 的垂直平分线y=3-x 上,设圆心为 S (a ,3-a ),则圆S 的方程为:2

2

2

()(3)2(1)x a y a a -+-+=+

对于定长的弦在优弧上所对的圆周角会随着圆的半径减小而角度增大,所以,当MPN ∠取最大值时,经过M ,N ,P 三点的圆S 必与X 轴相切于点P ,即圆S 的方程中的a 值必须满足2

2

2(1)(3),a a +=-解得 a=1或a=-7。

即对应的切点分别为'

(1,0)(7,0)P P -和,而过点M ,N ,'p 的圆的半径大于过点M ,N ,

P 的圆的半径,所以'MPN MP N ∠>∠,故点P (1,0)为所求,所以点P 的横坐标为1。 12.解:设正方形的边AB 在直线172-=x y 上,而位于抛物线上的两个顶点坐标为),(11y x C 、

),(22y x D ,则CD 所在直线l 的方程,2b x y +=将直线l 的方程与抛物线方程联立,得

.1122,12+±=?+=b x b x x

令正方形边长为,a 则).1(20)(5)()(2

212

212

212

+=-=-+-=b x x y y x x a ① 在172-=x y 上任取一点(6,,5),它到直线b x y +=2的距离为5

|

17|,b a a +=

∴②.

①、②联立解得,80.63,3221=∴==a b b 或.80.12802

min 2=∴=a a

13.利用极坐标解决:以坐标原点为极点,x 轴为极轴建立极坐标系,则椭圆的极坐标方程为

2

22

22

sin cos 1

b

a

θθρ

+

=

------(1)

显知此平行四边形ABCD 必为菱形,设A ),(1θρ,则B )90,(2θρ+? 代入(1)式相加:

2

2

2

2

2

1111

1

b

a

+

=

+

ρρ

由于该菱形必与单位圆相切,故原点到AB 的距离为1,

∴2

221111ρρρρ+?=,从而

11

1

2

2

2

1=+

ρρ,∴

1112

2

=+

b

a

14. 解:(1)由??

???+==+)(21

22

22m x y y a x 消去y 得:0222222=-++a m a x a x ①

设222222)(a m a x a x x f -++=,问题(1)化为方程①在x ∈(-a ,a )上有唯一解或等根. 只需讨论以下三种情况:

1°△=0得:2

1

2+=a m ,此时x p =-a 2,当且仅当-a <-a 2<a ,即0<a <1时适合;

2°f (a )f (-a )<0,当且仅当-a <m <a ;

3°f (-a )=0得m =a ,此时x p =a -2a 2,当且仅当-a <a -2a 2<a ,即0<a <1时适合. f (a )=0得m =-a ,此时x p =-a -2a 2,由于-a -2a 2<-a ,从而m ≠-a . 综上可知,当0<a <1时,2

1

2+=a m 或-a <m ≤a ;

当a ≥1时,-a <m <a .

(2)△OAP 的面积p ay S 2

1

= ∵0<a <

2

1

,故-a <m ≤a 时,0<m a a a 2122-++-<a , 由唯一性得 m a a a x p 2122-++-=

显然当m =a 时,x p 取值最小.由于x p >0,从而y p =2

21a x p -

取值最大,此时

22a a y p -=,∴2a a a S -=.

当21

2+=a m 时,x p =-a 2,y p =21a -,此时212

1a a S -=.

下面比较2a a a -与212

1

a a -的大小:

令22121a a a a a -=-,得31

=a

故当0<a ≤31时,2a a a -≤2121a a -,此时212

1

a a S max -=.

当2

131<

a a a a a ->-,此时2a a a S max -=.

15.解:设B 点坐标为),4(12

1y y -,C 点坐标为),4(2

y y -.

显然042

1≠-y ,故21

421

2

11+=--=

y y y k AB

由于BC AB ⊥,所以)2(1+-=y k BC

从而?????+=--+-==4

)]4()[2(22

111x y y x y y y ,消去x ,注意到1y y ≠得:

01))(2(11=+++y y y ?0)12()2(2121=++++y y y y

由0≥?解得:0≤y 或4≥y .

当0=y 时,点B 的坐标为)1,3(--;当4=y 时,点B 的坐标为)3,5(-,均满足是题意.故点C 的纵坐标的取值范围是0≤y 或4≥y .

16.解:如图,以O 为原点,OA 所在直线为x 轴建立直角坐标系,则有A (a ,0).设折叠时,

⊙O 上点A /(ααsin ,cos R R )与点A 重合,而折痕为直线MN ,则 MN 为线段AA /的中垂线.设P (x ,y )为MN 上任一点,则|PA /|=|PA | 5分 ∴2222)()sin ()cos (y a x R y R x +-=-+-α 即ax a R y x R 2)sin cos (222+-=+αα 10分 ∴

2

2

222

2

22sin cos y

x R ax a R y

x y x ++-=

++α

α

可得:)cos ,(sin 22)sin(2

2

2

2

22

22y

x y y

x x y

x R ax a R +=

+=

++-=

+θθθα

2

2

2222y

x R ax a R ++-≤1 (此不等式也可直接由柯西不等式得到) 15分

平方后可化为 22222

)2

()2()2()

2(a R y R a x -+-

≥1,

即所求点的集合为椭圆圆22222

)2

()2()2()2(a R y R a x -+-=1外(含边界)的部分.

20分

17. 解:(Ⅰ)直线AB 、AC 、BC 的方程依次为44

(1),(1),033

y x y x y =

+=--=。点(,)P x y 到AB 、AC 、BC 的距离依次为12311

|434|,|434|,||55

d x y d x y d y =-+=+-=。依设,

2222123,|16(34)|25d d d x y y =--=得,即

22222216(34)250,16(34)250x y y x y y --+=---=或,化简得点P 的轨迹方程为

圆S :2

2

2

22320171280x y y y y ++-=-+-=2

与双曲线T:8x (Ⅱ)由前知,点P 的轨迹包含两部分

圆S :22

22320x y y ++-= ① 与双曲线T :2

171280y y -+-=2

8x

因为B (-1,0)和C (1,0)是适合题设条件的点,所以点B 和点C 在点P 的轨迹上,且点P 的轨迹曲线S 与T 的公共点只有B 、C 两点。

ABC ?的内心D 也是适合题设条件的点,由123d d d ==,解得1

(0,)2

D ,且知它在圆S 上。

直线L 经过D ,且与点P 的轨迹有3个公共点,所以,L 的斜率存在,设L 的方程为

1

2

y kx =+

(i )当k=0时,L 与圆S 相切,有唯一的公共点D ;此时,直线1

2

y =

平行于x 轴,表明L 与双曲线有不同于D 的两个公共点,所以L 恰好与点P 的轨迹有3个公共点。......10分

(ii )当0k ≠时,L 与圆S 有两个不同的交点。这时,L 与点P 的轨迹恰有3个公共点只能有两种情况:

情况1:直线L 经过点B 或点C ,此时L 的斜率1

2

k =±

,直线L 的方程为(21)x y =±-。代入方程②得(34)0y y -=,解得54(,)33E 54或F(-,)33

。表明直线BD 与曲线T 有2个交点B 、E ;直线CD 与曲线T 有2个交点C 、F 。 故当1

2

k =±时,L 恰好与点P 的轨迹有3个公共点。

情况2:直线L 不经过点B 和C (即1

2

k ≠±),因为L 与S 有两个不同的交点,所以L 与

双曲线T 有且只有一个公共点。即方程组2281712801

2

x y y y kx ?-+-=?

?=+??有且只有一组实数解,消去y 并化简得2

2

25(817)504

k x kx ---

= 该方程有唯一实数解的充要条件是2

8170k -= ④

或2

2

25

(5)4(817)

04

k k -+-=

解方程④得17

k =±

,解方程⑤得2k =±。

综合得直线L 的斜率k

的取值范围是有限集1{0,,,}2172

±

±±。

18.解一:过抛物线上点A 的切线斜率为:∴=='=,2|21x x y 切线AB 的方程为

D B x y 、∴-=.12的坐标为D D B ∴-),0,2

1

(),1,0(是线段AB 的中点.

设),(y x P 、),(2

00x x C 、),(11y x E 、),(22y x F ,则由1λ=EC

AE 知,

;

11,1112

111011λλλλ++=++=x y x x ,2λ=FC

BE

.11,12

20

222022λλλλ++-=+=x y x x

∴EF 所在直线方程为:

,111111111111

12021

0112

01220212

01λλλλλλλλλλλλ++-

+++-

=++-++-++-x x x x x x x y 化简得.1]3)[()]1()[(2

020********x x x x y x λλλλλλ-++--=+--…①

当21

0≠x 时,直线CD 的方程为:1

2202020--=x x x x y …②

联立①、②解得02

133x x x y +?

=????=??

,消去0x ,得P 点轨迹方程为:.)13(312

-=x y 当210=

x 时,EF 方程为:CD x y ,4123)34141(23212λλλ-+--=-方程为:2

1=x ,联立解得???

?

??????????==.121,21y x 也在P 点轨迹上.因C 与A 不能重合,∴.32,10

≠∴≠x x ∴所求轨迹方程为).3

2

()13(312≠-=

x x y 解二:由解一知,AB 的方程为),0,2

1

(),1,0(,12D B x y --=故D 是AB 的中点. 令,1,1,2211λλγ+==+===

CF

CB

t CE CA t CP CD 则.321=+t t 因为CD 为ABC ?的中线, .22CBD CAD CAB S S S ???==∴

,2

3,232)11(212212*********=∴=+=+=+==??=??????γγγγγt t t t t t t t S S S S S S CB CA CF CE t t CBD CFP CAD CEP CAB CEF

P ∴是ABC ?的重心.

设),,(),,(2

00x x C y x P 因点C 异于A ,则,10≠x 故重心P 的坐标为

,3311),32(,313102

02000x x y x x x x =++-=≠+=++=消去,0x 得.)13(3

12-=x y

故所求轨迹方程为).3

2

()13(312≠-=x x y

高中数学人教版选修1-1(文科) 第二章 圆锥曲线与方程 2.2.1 双曲线及其标准方程(I)卷

高中数学人教版选修1-1(文科)第二章圆锥曲线与方程 2.2.1 双曲线及其标准方 程(I)卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共8题;共16分) 1. (2分)过已知双曲线-=1(b>0)的左焦点F1作⊙O2:x2+y2=4的两条切线,记切点为A,B,双曲线的左顶点为C,若∠ACB=120°,则双曲线的离心率为() 【考点】 2. (2分)(2018·石嘴山模拟) 已知双曲线的左、右焦点分别为,以 为直径的圆与双曲线渐近线的一个交点为,则双曲线的方程为() A . B . C . D . 【考点】 3. (2分) (2019高二上·四川期中) 已知圆:(为圆心),点,点 是圆上的动点,线段的垂直平分线交线段于点,则动点的轨迹是() A . 两条直线 B . 椭圆 C . 圆 D . 双曲线 【考点】 4. (2分) (2017高二下·新疆开学考) 过椭圆的左焦点F1作直线l交椭圆于A,B两点,F2是椭圆右焦点,则△ABF2的周长为() A . 8

B . 4 C . 4 D . 【考点】 5. (2分)(2017·常德模拟) 已知双曲线C: =1(a>0,b>0)的渐近线方程为y=± x,则双曲线C的离心率为() A . B . C . D . 【考点】 6. (2分)“”是“直线与圆相切”的() A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 【考点】 7. (2分)双曲线的渐近线方程是() 【考点】 8. (2分) (2019高二下·南山期末) 直线l过点且与双曲线仅有一个公共点,这样的直线有()条. A . 1 B . 2

2019-2020年高中数学选修2-1圆锥曲线

2019-2020年高中数学选修2-1圆锥曲线 教学目标 (1)通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义; (2)通过用平面截圆锥面,感受、了解双曲线的定义; (3)能用数学符号或自然语言描述双曲线的定义. 教学重点,难点 (1)椭圆、抛物线、双曲线的定义; (2)用数学符号或自然语言描述三种曲线的定义. 教学过程 一.问题情境 1.情境: 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题: 2.问题: 用平面去截圆锥面能得到哪些曲线?这些曲线具有哪些几何特征? 二.学生活动 学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于第一种情况,可在圆锥截面的两侧分别放置一球,使它们 都与截面相切(切点分别为,),且与圆锥面的侧面相切, 两球与圆锥面的侧面的公共点分别构成圆和圆. (图) 设点是平面与圆锥面的截线上任意一点,过M点作圆锥面的一条母 线,分别交圆,圆与,两点,则和,和分别是上下两球的切线.因 为过球外一点作球的切线长相等,所以,, 所以 12 MF MF MP MQ PQ +=+=. 因为,而,是常数,所以是一个常数.即截线上任意一点到两个定 点,的距离的和等于常数. 可直接给出放进双球后的图形,再由学生发现"到感知、认同即可. 三.建构数学 1.椭圆的定义: 平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 说明: 图

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

高考文科数学真题大全圆锥曲线老师版

试题解析:(Ⅰ)椭圆C 的标准方程为2 213x y +=.所以3a =,1b =,2c =.所以椭圆C 的 离心率6 3 c e a = = . (Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -. 直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 所以直线BM 的斜率11 2131 BM y y k -+= =-. 17.(2015年安徽文)设椭圆E 的方程为22 221(0),x y a b a b +=>>点O 为坐标原点,点A 的坐标 为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 的斜率为510 。 (1)求E 的离心率e; (2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB 。 ∴a b 3 231=5525451511052 222222=?=?=-?=?e a c a c a a b (Ⅱ)由题意可知N 点的坐标为(2,2b a -)∴a b a b a a b b K MN 56 65232213 1==-+=

a b K AB -= ∴1522-=-=?a b K K AB MN ∴MN ⊥AB 18.(2015年福建文)已知椭圆22 22:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线 :340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于 4 5 ,则椭圆E 的离心率的取值范围是( A ) A . 3(0, ]2 B .3(0,]4 C .3[,1)2 D .3[,1)4 1 19.(2015年新课标2文)已知双曲线过点() 4,3,且渐近线方程为1 2 y x =±,则该双曲线的标 准方程为 .2 214 x y -= 20.(2015年陕西文)已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( B ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【解析】试题分析:由抛物线22(0)y px p =>得准线2 p x =- ,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程. 21.(2015年陕西文科)如图,椭圆22 22:1(0)x y E a b a b +=>>经过点(0,1)A -,且离心率为22. (I)求椭圆E 的方程;2 212 x y +=

高中数学选修2-1 圆锥曲线的定义

高中数学选修2-1 圆锥曲线定义练习卷 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出 的四个选项中,只有一个选项是符合题目要求的) 1.已知为椭圆的焦点,为椭圆上一点, 垂直于x轴,且,则椭圆的离心率为()A.B.C.D. 2.方程表示的曲线是() A.一条直线和一双曲线B.两条直线 C.两个点D.圆 3.已知点(4,2)是直线被椭圆所截得的线段的中点,则的 方程是() A.B. C.D. 4.若不论k为何值,直线与曲线总有公共点, 则的取值范围是( ) A.B. C. D. 5.过抛物线的焦点作一条直线与抛物线相交于两点,它们的 横坐标之和等于5,则这样的直线() A.有且仅有一条B.有且仅有两条 12 F F , 22 22 1(0) x y a b a b +=>>M 2 MF 12 60 F MF ∠= 1 2232 22 ()(1)0 x y xy -+-= l 22 1 369 x y +=l 20 x y -= 240 x y +-= 2340 x y ++=280 x y +-= (2) y k x b =-+221 x y -= b ([ (22) -,[22] -, 24 y x =A B , 姓 名 : _ _ _ _ _ _ _ _ _ _ 班 级 : _ _ _ _ _ _ _ _ _ _ 考 号 : _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - 线 - - - - - - - - - - - - - - 内 - - - - - - - - - - - - - - 请 - - - - - - - - - - - - - - 不 - - - - - - - - - - - - - - 要 - - - - - - - - - - - - - - 答 - - - - - - - - - - - - - - 题 - - - - - - - - - - - - - - - - - - - - - - - - - ●

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

(完整word版)高中数学圆锥曲线结论(最完美版本)

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦 点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过 Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点 分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆 22 22 1x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、 Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于 两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴 的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >

高二数学圆锥曲线专题((文科)

高二数学(文科)专题复习(十二)圆锥曲线 一、选择题 1. 设双曲线以椭圆19 252 2=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A.2± B.34± ?C.2 1± D.4 3 ± 2. 过抛物线x y 42 =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) A.有且仅有一条 B.有且仅有两条 C.有无穷多条 D.不存在 3.从集合{1,2,3…,11}中任选两个元素作为椭圆方程122 22=+n y m x 中的m 和n,则能组 成落在矩形区域B ={(x ,y)| |x |<11且|y|<9}内的椭圆个数为( )?? A.43 B. 72 C. 86 D. 90 4. 设椭圆的两个焦点分别为F 1、、F2,过F 2作椭圆长轴的垂线交椭圆于点P,若△F 1P F2 为等腰直角三角形,则椭圆的离心率是( ) (A) 2 (B )12 (C)2 1 5. 已知双曲线22 163 x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直 线2F M 的距离为( ) (A) ?(B ) (C) 65?(D) 5 6 6.已知双曲线22a x -22 b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A, △OAF的面积为2 2 a (O 为原点),则两条渐近线的夹角为( )

7.直线y=x +b (b ≠0)交抛物线2 12 y x =于A、B 两点,O 为抛物线的顶点,OA OB ?=0,则b =_______. 8.椭圆22 1mx ny +=与直线10x y +-=相交于,A B 两点,过AB 中点M与坐标原点的 直线的斜率为 2,则m n 的值为 9.过抛物线2 4y x =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,若 12y y +=则AB 的值为 10.以下四个关于圆锥曲线的命题中: ①设A 、B为两个定点,k 为非零常数,||||PA PB k -=,则动点P的轨迹为双曲线; ②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若1 (),2 OP OA OB =+则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率; ?④双曲线 135 192522 22=+=-y x y x 与椭圆有相同的焦点. ?其中真命题的序号为 (写出所有真命题的序号) 三、解答题 11.抛物线顶点在原点,它的准线过双曲线22 221(0,0)x y a b a b -=>> 的一个焦点,且抛 物线与双曲线的一个交P( 3 2 点,求抛物线和双曲线方程。 12.已知抛物线y2 =2px (p>0)的焦点为F,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B,OB 的中点为M.

高中数学选修圆锥曲线复习

1 / 8 选修2-1圆锥曲线与方程(复习) 编者:史亚军 1. 掌握椭圆、双曲线、抛物线的定义及标准方程;椭圆、双曲线、抛物线的几何性质; 2. 能解决直线与圆锥曲线的一些问题; 3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。 学习重点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 学习难点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 使用说明: (1)快速阅读教材第二章和所学导学案; (2)用严谨认真的态度完成导学案中要求的内容,用红色笔画出疑惑之处,并尝试完成下 列问题,总结规律方法; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。 预习案(20分钟) 一.知识再现 问题1:回忆椭圆、双曲线、抛物线的第一定义及标准方程? (1)椭圆的定义: 椭圆的标准方程: (2)双曲线的定义: 双曲线的标准方程: (3)抛物线的定义: 抛物线的标准方程: 组长评价: 教师评价:

问题2:根据下面的标准方程,作出相应椭圆、双曲线、抛物线的图形,并说明图像具有的几何性质? (1)2212516x y += (2)22 12516 x y -= (3)28y x = 问题3:回忆椭圆、双曲线、抛物线的第二定义? 一动点M 到定点F 的距离和它到一条定直线l 的距离的比是一个常数e , 如果常数e ∈ ,那么这个点的轨迹是椭圆; 如果常数e ∈ ,那么这个点的轨迹是双曲线; 如果常数e = ,那么这个点的轨迹是抛物线; 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。 请用第二定义推导焦半径公式:(12,F F 分别为左右焦点) (1)点P 是椭圆上一动点:1PF = ;2PF = ; (2)点P 是双曲线左支上一动点:1PF = ;2PF = ; (3)点P 是抛物线上一动点:1PF = ;2PF = ;

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例 一、椭圆 1.椭圆的定义: 第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做 第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率. 2.椭圆的标准方程及其几何性质(如下表所示) 标准方程 图形 顶点 对称轴 焦点 焦距 离心率 例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( ) (A) 1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125 162 2≠=+y y x

例3. 若F (c ,0)是椭圆22 221x y a b +=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是( ) (A)(c ,2b a ±) 2 ()(,)b B c a -± (C)(0,±b ) (D)不存在 例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +2 2y b =1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5 ∠PF 2F 1,则椭圆的离心率为( ) (A)32 (B)63 (C)22 (D)23 例5. P 点在椭圆 120 452 2=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 . 例6. 写出满足下列条件的椭圆的标准方程: (1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3 1 ; ____. (4)离心率为2 3 ,经过点(2,0); 二、双曲线 1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的 第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率 标准方程

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反; ②标准方程中一次项的字母与对称轴和准线方程的字母一

致; ③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像; 二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高中数学+选修2-1+(精)几类很经典的圆锥曲线问题

几类圆锥曲线问题 一、弦长问题 圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为: (2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|. 例1 过抛物线2 4 1x y - =的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解.解答为: ∵ 抛物线方程为y x 42 -=, ∴焦点为(0,-1). 设直线l 的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入y x 42 -=中得:0442 =-+kx x .∴k x x x x 442121-=+-=, 由|AB|=8得:()()41441822 -??--?+=k k ∴1±=k 又有1tan ±=α得:4π α= 或4 3πα= . 分析二:利用焦半径关系.∵2 ,221p y BF p y AF +-=+ -= ∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成. 二、最值问题 方法1:定义转化法 ①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解. 例2、已知点F 是双曲线x 24-y 2 12=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+ |PA |的最小值为________. 解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|PA |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|PA |+|PF |-4≥5, 即|PA |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|PA |的最小值为9.故填9.

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

相关文档
最新文档