基坑开挖数值模拟

基坑开挖数值模拟
基坑开挖数值模拟

7数值模拟

7.1数值模拟方法简介

数值模拟技术作为一种研究手段,已经被广泛的应用于各行各业领域的研究中。目前,数值分析方法主要分为二大类:一类是以有限差分法为代表,其特点是直接求解基本方程和相应的定解条件的近似解;另一类数值分析方法是首先建立和原问题基本方程及相应定解条件等效的积分方法,然后据之建立近似解法。

LS-DYNA作为世界上最著名的通用显示动力分析程序,能够模拟真实世界的各种复杂问题,特别适合求解各种二维三维非线性结构的高速碰撞,爆炸和金属成型等非线性动力冲击问题,同时可以求解传热,流体及流固耦合问题,在工程应用如汽车安全设计,武器系统设计,金属成型,跌落仿真等领域被广泛应用。本次采用ANSYS/LS-DYNA,进行混凝土支撑梁结构爆破拆除数值模拟研究。在ANSYS/LS-DYNA环境下,数值模拟的实现总体上分为两个过程:在ANSYS中建立结构实体模型,完成有限元网格的划分,输出有限元模型信息即输出关键字文件;编辑关键字文件,在DYNA环境下完成对结构倒塌过程的数值模拟计算。

对结构有限元模型的建立过程,数值模拟中采用的钢筋和混凝土材料模型、接触方式等各种计算控制项进行了阐述。

LS-DYNA程序中主要提供如下几种计算方法:

(1)Lagrange算法

坐标固定在物质上或者说随物质一起运动和变形,处理自由面和物质界面非常直观,由于网格始终对应物质,因此能够精确的跟踪材料边界和描述物质之间的界面,这是Lagrange算法的主要优点。但是,由于网格随材料流动而变形,一旦网格变形严重,就会引起数值计算的不稳定,甚至使得计算无法继续进行(如发生负体积或复杂声速等问题)。因此,Lagrange算法在处理大变形大位移问题时,有其无法克服的弊端。

(2)Euler算法

网格被固定在空间,是不变形的。物质通过网格边界流进流出,物质的大变形不直接影响时间步长的计算。因此,欧拉算法在处理大变形问题方面具有优势。欧拉方法通过输运项计算体积、质量、动量和能量的流动。欧拉计算可以直接通过在离散化格式中包括迁移导数项进行,或通过二步操作完成。二步法操作的第一步主要是拉格朗日计算,第二步输运阶段是重分计算网格相当于回到它的原来状态。LS-DYNA程序采用后一种方法。欧拉算法的缺点是网格中物质边界不清晰,难以捕捉各物质界面。

(3)ALE方法

吸取了欧拉法和拉格朗日法两种方法的优点。ALE算法能够进行自动重分网格操作。它包括拉格朗日时间步,然后是一个输运步。输运步可以采用三种方法:1. 发生合理的网格变形时空间网格不再重分(拉格朗日);2. 发生严重的网格变形时重分成原始形状(欧拉);

3. 发生严重的网格变形时重分为合理的形状,因此允许网格拓扑(拉

格朗日和欧拉)。

混凝土是土木工程结构中应用极为广泛的材料,其最本质的特点是材料组成的不均匀性,并且存在初始微裂缝。从混凝土受单轴压力时的应力应变关系来看,混凝土卸载时有残余变形,不符合弹性关系;如果对其应用弹塑性本构关系,又很难精确定义屈服条件。此外,混凝土在到达应力顶峰后,其应力-应变关系曲线有一下降段,即存在应变软化现象,所有这些都给建立混凝土的本构关系带来困难。多年以来,众多学者进行了大量的试验和理论研究,提出了各种各样的混凝土本构模型。

第一:混凝土本构模型可以分为下面几种:

(1)线弹性类本构模型。线弹性类本构模型是以弹性力学为基础的模型,当混凝土无裂缝时,将混凝土看成线弹性匀质材料而采用线弹性本构模型。虽然混凝土的变形特性是非线性的,但在一些特定的情况下(比如描述混凝土受拉时的工作性能),采用线弹性类本构模型进行分析还是有足够的精度的,其线弹性本构关系可用广义虎克定律来表示:

kl ijkl ij C εσ=(1)

式中,ijkl C 为材料弹性常数,为四阶张量,共有81个常数。按照

材料假设的不同,又可分为各向异性本构模型、正交各向异性本构模型、各向同性本构模型等,其中ijkl C 根据材料的不同而变换。

(2)塑性理论类本构模型:塑性理论类本构模型是以塑性流动理论为基础,代表性的模型主要有:Mises 条件的模型、理想弹塑性

脆性断裂模型、应变或工作硬化塑性理论模型等。模型中考虑了混凝土加载路径和混凝土的硬化,在混凝土的应力-应变全曲线中,有上升段和下降段。自从Drucke公设和Пyushin公设出现之后,经典塑性力学得到飞速发展,混凝土塑性力学模型也是基于这些公设建立的。以塑性理论为基础的混凝土本构模型,在对其加载面,包括初始屈服面,后续加载面和破坏包络面等特征面的研究中,这些特征面若以应力空间来表示时,当应力达到屈服后,材料发生应力松弛;若以应变空间表示时,当应变达到松弛面后,材料发生应变松弛。基于应力状态屈服面或破坏包络面的塑性理论类型的本构模型有弹性-全塑性模型、线弹性-硬化塑性-断裂模型等;基于松弛面的塑性理论类型的本构模型有塑性模型、塑性断裂模型、硬化断裂模型等。所有这些模型所做的假设与混凝土的实际性能还存在很大的差别,而且模型的表达式和计算均较复杂,目前还不便于应用。

(3)其他力学理论类本构模型,许多学者还以新型交叉的力学分支的理论为基础研究混凝土的本构模型。

内时理论模型:内时理论模型最初由Valanis于1971年提出,其基本概念为:塑性和粘塑性材料内任一点的现时应力状态是该点整个变形领域内和温度历史的泛函,而特别重要的是该历史是用一个取决于变形中的材料特性和变形程度的内时(Intrinsic Time)来量度的。这种模型采用了非弹性应变能逐渐积累的方法而不需考虑塑性理论中的屈服面和流动法则,所以该理论尤其适合没有屈服面的混凝土材料。由于内时理论能描述混凝土的复杂变形的历史,因而为各国学

者所重视。但由于表达式过多,确定参数又不容易,所以对其推广和应用仍有大量工作要做。

损伤理论模型:针对混凝土材料本身是一种具有固有缺陷-微裂纹的特点,很多学者将损伤力学引用到混凝土本构模型的建立中。损伤力学研究材料或构件从原生缺陷到形成客观微裂纹直至断裂的过程。也就是通常指的微裂纹的萌生、扩展或演变、宏观微裂纹的形成、裂纹的稳定扩展和失稳扩展全过程。损伤力学主要是在连续介质力学和热力学的基础上,用固体力学方法研究材料的宏观力学性能的演变直到破坏的全过程。20世纪70年代末期,损伤力学局限于研究材料在宏观裂纹出现以前的阶段,当宏观裂纹出现以后,则采用断裂力学的理论和方法进行研究,这是无耦合的分析方法。实际上,在宏观裂纹出现后,材料的损伤对裂纹尖端附近及其它区域的应力和应变均有影响。因此,合理的方法应该将损伤耦合到本构方程中进行分析和计算。这样由于本构方程中将有关的力学参数和损伤进行了耦合,所以分析和计算就变得更为复杂。

非线弹性类本构模型:为了克服线弹性模型的缺点,然后产生了以割线模型形式的非线性弹性类本构模型。这类模型中,具有代表性的是超弹性模型和亚弹性模型。

除了上述模型外,还有以许多种理论相结合到处的混凝土的本构模型。

第二:LS-DYNA程序中提供的混凝土材料模型:

在材料模型方面,LS-DYNA目前拥有近150余种金属和非金属材

料模型,涵盖了弹性、弹塑性、超弹、泡沫、玻璃、土壤、混凝土、流体、炸药等材料模型以及多种状态方程,可以考虑材料的失效、损伤、粘性、蠕变、与温度相关、与应变率相关等材料性质。此外,程序还支持用户自定义材料功能。

LS-DYNA程序中提供的混凝土材料模型主要有以下几种:塑性随动模型*MAT-PLASTIC-KINEMATIC、H_J_C模型、*MAT_DRUCKER_PRAGER 模型和*MAT_SOIL_AND_FOAM模型。

本论文有限元模型中的混凝土本构模型选用LS-DYNA中的塑性随动模型*MAT-PLASTIC-KINEMATIC。

塑性随动模型(*MAT_PLASTIC_KINEMATIC)。这是一种各向同性、随动硬化或各向同性和随动硬化混合模型,与应变率相关,可考虑实效,参数简单,较容易确定。

7.2 钢筋混凝土支撑梁结构爆破拆除有限元模型的建立

7.2.1爆破拆除数值模拟基本假设

考虑到建立整体钢筋混凝土支撑梁结构模型过程的复杂性,计算结果的可行性及准确性,数值模拟中对模型进行了简化,模型的简化出于以下基本假设:

(1)不考虑混凝土支撑梁内的炸药爆炸对整体结构的作用。如果模拟中按照实际情况建立模型,单元数目巨大,受到当前计算机能力的限制,无法实现数值计算。由于爆炸对钢筋梁的变形影响较小,所以在模拟中可以直接删除爆破药包附近的混凝土,并没有考虑钢筋

梁结构在炸药爆炸下的响应问题。

(2)钢筋混凝土梁在爆破后,剩余部分的表面是光滑的,由于上面假设是直接删除爆破部分,所以无法模拟混凝土爆破后的形状。

(3)钢筋混凝土的支柱地面没有相对位移,简化为完全固结,即不考虑钢筋梁的坍塌与支撑柱和地面之间的相互作用。

7.2.2钢筋混凝土有限元模型建立过程

采用ANSYS建立有限元模型时,采用的数值单位均为国际单位,即长度单位为m,时间单位为s,质量的为kg,压力的单位为Pa,速度单位为m/ s。

为了由实际情况对比实验模拟的准确情况,我们选用工程实例作为有限元模拟的对象。综合考虑有限元计算的精确性和时效性,来确定单元尺寸和单元数量。

7.2.3钢筋混凝土模型的选取

采用数值模拟方法进行钢筋混凝土结构爆破拆除分析前,首先要就研究的具体问题选择好用于模拟钢筋混凝土材料的物理模型。当前,数值计算中,用于模拟混凝土钢筋材料的有限元模型主要有两类:第一种是把钢筋和混凝土单元各自划分为足够小的单元,分别考虑钢筋和混凝土的贡献,称为分离式模型。第二种也是把钢筋和混凝土单元包含在一个单元之中,统一考虑钢筋和混凝土的作用,称为整体式模型。

(1)整体式模型

在整体式模型中,将钢筋弥散于整个单元中,并把单元视为连续均匀的材料。钢筋对整个结构的贡献,可以通过调整单元的材料力学性能参数来体现,例如提高材料的屈服强度、材料的弹性模量等。其优点是建模方便,分析效率高,但是缺点是不适用于钢筋分布较不均匀的区域,且得到钢筋内力状态比较困难。主要用于有大量钢筋且钢筋分布较均匀的构件中。

(2)分离式模型,位移协调

利用空间梁单元beam161建立钢筋模型,和混凝土单元共用节点。其优点是建模方便,可以任意布置钢筋并可直观获得钢筋的内力。缺点是建模比整体式模型要复杂,需要考虑共用节点的位置,且容易出现应力集中问题。

(3)分离式模型,界面单元

前两种混凝土和钢筋组合方法假设钢筋和混凝土之间位移完全协调,没有考虑钢筋和混凝土之间的位移,而通过加入界面单元的方法,可以进一步提高分析的精度。同样利用空间梁单元beam161建立钢筋模型。不同的是混凝土单元和钢筋单元之间利用弹簧模型来建立连接。不过一般钢筋混凝土结构中钢筋和混凝土之间都有比较良好的锚固,钢筋和混凝土之间滑移带来的问题不是很严重,一般不必考虑。

本文,在爆破拆除建筑结构的数值模拟中,兼顾模型的真实性和建模的方便性,数值模拟中采用分离式钢筋混凝土模型,钢筋和混凝土之间共节点,不考虑它们之间的滑动。并对结构中钢筋的分布位置

及数量进行了简化。

7.2.4钢筋混凝土的单元类型

LS-DYNA具有丰富的单元库,具有二维、三维实体单元,薄、厚壳单元以及ALE、Eulirian和Lagrangian单元等,各类单元又有多种算法可供选择,具有大位移、大应变和大转动功能,单元积分采用沙漏粘性阻尼以克服零能模式。模拟中,混凝土单元选择SOLID164单元,钢筋单元选择BEAM161单元。

SOLID164单元,为8节点三维实体单元,每个节点具有9个自由度,即UX,UY,UZ,VX,VY,VZ,AX,AY,AZ,但是只有位移是实际意义上的自由度。该单元提供了单点积分算法和全积分单元算法,其默认为单点积分算法。该单元可采用Lagrange列式,也可采用ALE 列式,当采用ALE列式时,在关键字中需要定义单元算法关键字*SECTION_SOLID_ALE。单元支持大部分的LS-DYNA材料算法。

BEAM161单元,为二维梁单元,用三个节点定义,I和J确定梁的轴向,K确定横截面主轴方位。具有Hughes-Liu及B-S算法,其默认算法为Hughes-Liu算法。单元可以定义不同的积分算法,默认值为2×2Guass积分。对于Hughes-Liu算法选项,如果截面积分规则Int.rule-arbitry.section取默认值0,则程序会采用梁单元跨中的一组积分点来模拟矩形及圆形的截面。

7.2.5材料失效方式的控制

在有限元数值模拟中,由于程序本身是基于连续介质力学理论基础上形成的,因此,材料的失效是靠删除单元来实现的。单元达到屈服强度后,就被从模型中删除,不再参与计算,所以,对于材料失效强度的控制决定着数值模拟计算的准确性。

材料失效现象比较复杂,因此,出现了各种失效理论模型,目前,比较成熟的强度理论模型主要有以下四种:

第一强度理论模型,即最大拉应力理论模型;

[]σσ≤1 (3-1)

第二强度理论模型,即最大伸长线应变理论模型;

()[]σσσμσ≤--32 (3-2)

第三强度理论模型,即最大剪应力理论模型;

[]σσσ≤-31 (3-3)

第四强度理论模型,即形状改变比能理论模型(Von Mise 应力)。

(3-4)

四式中, []σ-许用应力,[]σ=屈服极限s σ/安全系数;

1σ,2σ,3σ-三个主应力。

对于铸铁、石料、混凝土和玻璃等脆性材料,通常以断裂形式失效,可采用第一和第二强度理论;对于碳钢、铜、铝等塑性材料,通()()()[][]σσσσσσσ≤-+-+-21323222121

常以屈服形式失效,可以采用第三和第四强度理论。

根据以上论叙,对于混凝土材料,论文中采用材料控制项中FS 和额外控制项*MAT_ADD_EROSION联合控制材料的失效。对于钢筋材料则采用材料模型*MAT_PLASTIC_KINEMATIC中提供的FS参数控制。

7.2.6 接触方式的选择

LS-DYNA提供丰富的接触方式可供选择,可以求解各种柔性体之间、刚性体之间以及柔性体和刚性体之间的接触问题,并可分析接触表面的静动摩擦力、固连失效以及流体与固体的界面等问题。

程序中处理动态的接触-碰撞界面主要采用如下三种算法。

(1)动力约束法

动力约束法是最早采用的接触算法,该方法在每一步修正结构的构形之前,判断每一个没有与主表面接触的从节点是否会在该时步内贯穿主表面。如有从节点贯穿主表面,则将时步缩小,使那些从节点都不贯穿主表面,而其中有的刚到达主表面,在下一时步开始,对刚到达主表面的从节点施加动力约束条件。对所有已经与主表面接触的从节点都施加约束条件,以保持从节点与主表面的接触。此外,检查与主表面接触的从节点所属的单元是否存在受拉交界面力。如果受拉面力,则用释放条件使从节点脱离主表面。由于此算法比较复杂,后来只用于固连接触问题,即没有释放条件。

(2)分配参数法

该方法仅用于滑动界面接触问题的处理,其原理是:将所有正在

接触的从单元质量的一半分配到主表面上,同时由每个单元的应力确定作用在接受质量的主表面面积上的分布压力。在完成质量和压力的分配后,程序修正主表面的加速度。然后对从节点的加速度和速度施加约束,以保证从节点沿主表面运动。这一算法不允许从节点穿透主表面,适合相对滑动但没有分离的表面之间的接触分析。

(3)对称罚函数法

对称罚函数法为LS-DYNA程序的缺省接触算法,该方法的基本原理为:每一时步先检查各从节点是否穿透主表面,没有穿透则对该节点不作任何处理。如果穿透,则在该从节点与被穿透主表面之间引入一个较大的界面接触力,其大小与穿透深度、主片刚度成正比,称为罚函数值。它的物理意义相当于在从节点和被穿透的主表面之间放置一个法向弹簧,以限制从节点对主表面的穿透。所谓对称罚函数法是指程序在对所有的主节点按如上步骤处理,其算法与从节点一样。对称罚函数法,很少激起网格的零能模式,没有噪声,这是由于算法具有对称性、动量守恒准确,不需要碰撞和释放条件。罚函数值大小受到稳定性限制。若计算中发现明显穿透,可放大罚函数值或缩小时间步长来调节。

在LS-DYNA程序中,接触类型可以分为三类,即单面接触、节点-表面接触和表面-表面接触。

(1)单面接触

单面接触包括的接触类型有SS、ASSC、AG、ASS2D、ESS。单面接触可以用于一个物体表面各部分的自相接触或与另一个物体的表

面接触,在单面接触中,程序会自动判定模型中发生表面接触的位置。因此,单元接触的定义是最简单的,无需定义源面和目标面,当定义好单面接触时,它允许一个模型的所有外表面都可能接触,有利于处理预先不知道接触表面的自身接触或大变形问题。

(2)点-面接触

LS-DYNA程序中的点-面接触类型有NTS、ANTS、RNTR、TDNS、TNTS、ENTS、DRAWBEAD、FNTS等。对于点-面接触,接触节点将穿透目标面,这种接触类型用于一般情况下的两个物体表面之间的接触。点-面接触需要定义target面和contact面,原则如下:平面或凹面为target 面,凸面为contact面;网格较粗的面作为target面,网格较细为contact面。

(3)面-面接触

LS-DYNA程序中的面-面接触类型包括STS、OSTS、ASTS、ROTR、TDSS、TSTS、ESTS、SE、FSTS、FOSS、TSES等。当一个物体的表面穿透另一个物体表面时需用面-面接触,这种接触是最常用的接触类型,常用于任意形状且存在较大接触面积的物体之间的接触问题。该接触类型对于物体间有大量相对滑移时很有效。

接触—碰撞问题属于最困难的非线性问题之一,因为在接触—碰撞问题中的响应是不平滑的。当发生碰撞时,垂直于接触界面的速度是瞬时不连续的。由于分析本身非常复杂,接触情况变化多端。因此,计算中选用了LS-DYNA提供的CONTACT-ERODING-SINGLE-FACE接触计算模型。该接触计算模型可以自动搜索接触面,判断接触,并可以处

理侵蚀、断裂等复杂边界变化情况。接触刚度选用1.1,材料的摩擦系数统一设定为0.6。

7.2.7重要参数的设定

对于梁结构的每个端面和支撑柱的地面部分以及模拟地面的地板添加全方位的面约束。

在生成关键字后,在关键字中改为Z方向的,重力加速度为9.8m/s。

计算0到5秒内的爆破过程,将DATABASE_BINARY_D3PLOT设置为0.025s,将DATABASE_BINARY_D3THDT也设置为0.025s。由于计算机的计算能力限制每秒钟不能超过1000个plot文件,也就是说时间不能低于0.005s。

7.2.8钢筋混凝土支撑梁结构爆破拆除数值模拟研究流程图

图7.1钢筋混凝土支撑梁结构爆破拆除数值模拟研究流程图图7.1为本次数值模拟研究的流程图,整个建模以及计算过程都是在ANSYS12.0下完成的,建立的数值计算模型如图7.2所示。

7.3.有限元模拟计算结果以及分析

7.3.1爆破过程分析

为实现对爆破设计中的延时起爆顺序的模拟,将支撑梁的不同爆区建立不同

的部件,每个部件通过*MAT_ADD_EROSION来控制混凝土失效的时间从而来模拟爆破过程。每个爆区的延时时间为25ms,整个延时起爆过程如图7.3~图7.20所示,

7.3.2混凝土单元的最大主应力随时间的变化

此单元位于第一部分内,所以一开始就有一个压力突变,此单元为掉落在地上,是与钢筋连在一起,所以一直会有压力的变化。在0.4s时达到最大值。

此单元为第二部分的,在一开始会有强烈的压力突变,因为在中

间部分,第二峰值是因为此单元掉落在地上,之后的波动则是单元之间的碰撞。

第三部分,此单元紧挨立柱,所以一开始并无突变,在0.7s 左右达到最大值,是因为单元一部分位于钢筋分开以至于掉落碰撞到住上,之后平稳。

图表4-1

基础土方开挖最简单计算公式

基础土方开挖最简单计算公式 人工挖土要根据土壤类别、施工方法等分别按挖基(地)槽、挖基坑、挖土方等项目计算。 (1)挖基槽(地沟) 基槽指条形基础下的地槽,地沟指管道地沟。 其工程量按沟槽长度乘以沟槽的断面积。其突出部分体积应并入基槽工程量内计算;沟槽深度不同时,应分别计算。土方放坡时,在交接处产生的重复工程量不予扣除。 基槽的长度:外墙按图示中心线长计算;内墙按净长度计算。 基槽横断面的形式:分放坡与不放坡进行计算。 挖土深度H:一般以设计室外地坪标高为准。

根据土的性质、开挖深度以及施工方法确定土壁是否放坡。放坡的宽度根据放坡系数计算,即KH。 为保证工人的正常操作,基底宽度应在基础宽度的基础上增加工作面宽度2C。 计算公式: ①不放坡时:V挖=L×(B+2C)×H ②有放坡时:V挖=L×(B+2C+KH)×H (2)挖基(地)坑 挖地坑工程量根据图示尺寸以立方米为单位计算,按土壤类别、挖土深度不同分别套用相应的定额。

①矩形不放坡的地坑土方量为: V挖=(a+2c)×(b+2c)×H ②矩形放坡的地坑土方量为: V挖= (a+2c)×(b+2c)×H+KH2×(a+2c)+KH2×(b+2c)+4×1/3K2H3 =(a+2c+KH)×(b+2c+KH)×H+1/3K2H3 (3)k为放坡系数。放坡宽度b与深度H和放坡角度a之间是正切函数关系,即tana=b/H,不同的土壤类别取不同的a值,所以不难看出,放坡系数就是根据tana来确定的。例如,三类土的tana=b/H=0.33。我们将tana=K来表示放坡系数,故放坡宽度b=kH。K是根据土壤类别确定的。一、二类土的放坡系数为0.5,三类土为0.33,四类土为0.25

深基坑土方开挖方法

深基坑土方开挖方法 深基坑土方开挖有下列要求: 在深基坑土方开挖前施工前,必须编制土方开挖工程专项施工方案,属于超过一定规模的危险性较大的分部分项工程范畴的必须组织专家论证并严格按论证通过的方案进行施工。要对支护结构、地下水位及周围环境进行必要的监测和保护。 (1)深基坑工程的挖土方案,主要有放坡挖土、中心岛式(也称墩式)挖土、盆式挖土和逆作法挖土。前者无支护结构,后三种皆有支护结构。 (2)土方开挖顺序、方法必须与设计工况一致,并遵循“开槽支撑,先撑后挖,分层开挖,严禁超挖”的原则。 (3)防止深基坑挖土后,土体回弹变形过大: 施工中减少基坑回弹变形的有效措施,是设法减少土体中有效应力的变化,减少暴露时间,并防止地基土浸水。因此,在基坑开挖过程中和开挖后,均应保证井点降水正常进行,并在挖至设计标高后,尽快浇筑垫层和底板。必要时,可对基础结构下部土层进行加固。 (4)防止边坡失稳。 (5)防止桩位移和倾斜: 打桩完毕后基坑开挖,应制定合理的施工顺序和技术措施,防止桩的位移和倾斜。 如果打桩后紧接着开挖基坑,由于开挖时的应力释放,再加上挖土高

差形成一侧卸荷的侧向推力,土体易产生一定的水平位移,使先打设的桩易产生水平位移。软土地区施工,这种事故已屡有发生,值得重视。为此,在群桩基础桩打设后,宜停留一定时间,并用降水设备预抽地下水,待土中由于打桩积聚的应力有所释放、孔隙水压力有所降低、被扰动的土体重新固结后,再开挖基坑土方。而且土方的开挖宜均匀、分层,尽量减少开挖时的土压力差,以保证桩位正确和边坡稳定。 (6)配合深基坑支护结构施工: 挖土方式影响支护结构的荷载,要尽可能使支护结构均匀受力,减少变形。为此,要坚持采用分层、分段、均衡、对称的方式进行挖土。深基坑土方开挖方法: 1、基坑排水在土方开挖施工过程中,当开挖底面标高低于地下水位的基坑(或沟槽)时,由于切断了土的含水层,地下水会不断渗入坑内。基坑内存在地下水,非但造成土方开挖施工困难,费工费时,容易造成边坡塌方,而且会导致地基被水浸泡,地基土被扰动,造成工程竣工后建筑物的不均匀沉降,造成建筑物破坏或开裂。因此,基坑槽开挖施工中,应根据工程地质和地下水文情况,采取有效地降低地下水位措施,使基坑开挖和施工达到无水状态,以保证工程质量和工程的顺利进行。 2、边坡防护开挖基坑时,如条件允许可放坡开挖,与用支护结构支挡后垂直开挖比较,在许多情况下放坡开挖比较经济。放坡开挖要正确

基坑开挖计算公式

(一)基坑土方量计算 基坑土方量的计算,可近似地按拟柱体体积公式计算(图1—8)。 图1—8基坑土方量计算图1—9基坑土方量计算 V=H*(A'+4A+A'')/6 H ——基坑深度(m)。 A1、A2——基坑上下两底面积(m2)。 A0 ——基坑中截面面积(m2)。 二、计算平整场地土方工程量 ①四棱柱法 A、方格四个角点全部为挖或填方时(图1—16),其挖方或填方体积为: 式中:h1、h2、h3、h4、——方格四个角点挖或填的施工高度,以绝对值带入(m); a ——方格边长(m)。 图1—16 角点全填或全挖;图1—17角点二填或二挖;图1—18角点一填三挖 B、方格四个角点中,部分是挖方,部分是填方时(图1—17),其挖方或填方体积分别为: C、方格三个角点为挖方,另一个角点为填方时(图1—18), 其填方体积为: 其挖方体积为: ②三棱柱法 计算时先把方格网顺地形等高线将各个方格划分成三角形(图1—19) 图1—19 按地形方格划分成三角形 每个三角形的三个角点的填挖施工高度,用h1、h2、h3表示。 A、当三角形三个角 点全部为挖或填时(图1—20a), 其挖填方体积为: 式中:a——方格边长(m); h1、h2、h3——三角形各角点的施工 高度,用绝对值(m)代入。

图1—20(a)三角棱柱体的体积计算(全挖或全填) B、三角形三个角点有挖有填时 零线将三角形分成两部分,一个是底面为三角形的锥体,一个是底面为四边形的楔体(图1—20b, 图1—20(b)三角棱柱体的体积计算(锥体部分为填方) 其锥体部分的体积为: h1、h2、h3——三角形各角点的施工高度,取绝对值(m),h3指的是锥体顶点的施工高度。 注意:四方棱柱体的计算公式是根据平均中断面的近似公式推导而得的,当方格中地形不平时,误差较大,但计算简单,宜于手工计算。三角棱柱体的计算公式是根据立体几何体积计算公式推导出来的,当三角形顺着等高线进行划分时,精确度较高,但计算繁杂,适宜用计算机计算。 ③断面法 在地形起伏变化较大的地区,或挖填深度较大,断面又不规则的地区,采用断面法比较方便。 方法:沿场地取若干个相互平行的断面(可利用地形图定出或实地测量定出),将所取的每个断面(包括边坡断面),划分为若干个三角形和梯形,如图1—21,则面积: 图1—21 断面法 断面面积求出后,即可计算土方体积,设各断面面积分别为: F1、F2、……Fn相邻两断面间的距离依次为:L1、L2、L 3……Ln,则所求土方体积为: (5)边坡土方量计算 图1—22是场地边坡的平面示意图,从图中可以看出,边坡的土方量可以划分为两种近似的几何形体进行计算,一种为三角形棱锥体(如图中①②③……)另一种为三角棱柱体(如图中的④) A、三角形棱锥体边坡体积 图1-22中①其体积为 式中:L1——边坡①的长度(m); F1——边坡①的端面积(m2); h2——角点的挖土高度; m——边坡的坡度系数。 B、三角棱柱体边坡体积 如图中④其体积为 当两端横断面面积相差很大的情况下: L——边坡④的长度(m); F3、F5、F0——边坡④的两端及中部横短面面积

基坑开挖施工技术交底记录大全

基坑开挖施工技术交底 1、施工机械的选择 根据本工程的实际情况,由于土方量较大,根据施工机械生产率进行计算,同时由于采用分步分层开挖,根据总的施工进度安排,为了确保计划目标的完成,每天必须确保出土量在3500立方米左右,在配备以下施工机械的同时,视实际情况对挖机的型号、数量进行及时调整。 pc-200挖掘机4台 pc-120小挖掘机2台 自卸车10辆,同时视运距及时调整。 同时为了确保土方外运工作的顺利进行,保证工程挖土的进度、质量,土方施工时必须配备足够的现场管理人员,必须到场组织施工。 2、土方开挖工程概况 根据地质勘查报告主楼基坑开挖深4m。 3、土方开挖顺序 本工程按施工顺序为1#-4#主楼==》1#-4#主楼之间的地库基础==》自南向西分层开挖。 4、工程桩的保护措施:本工程7#楼采用冲抓灌注桩。当土方开挖至桩顶标高时,对工程桩进行定位放样,坑中坑挖土采用小挖机轻挖,桩位周边300mm范围内采用人工挖土,保证工程桩的桩身质量。 5、出土口部位土方开挖:出土口附近土方高差不得超过1.5米,土方采用逐层分段开挖,喷锚施工完成48小时内用塘渣进行回填,分层压实作为出土通道。整个挖土工作完成时,临时道路坡口处土方,采用长臂的挖机进行挖土,直接挖到设计标高,边挖边退。出土口坡道坡度小于10%,宽度8m。

6、土方开挖要求: ○1、根据基坑围护方案,结合场地实际条件基坑土方开挖由东向西面进行。严禁将土方堆放于基坑四周。基坑四周8米范围内堆载不得超过15Kpa。在土方开挖过程中必须与喷锚施工配合,按围护施工要求进行分层、分段开挖,逐层逐段交叉平行作业,不能超挖,以避免产生基坑壁坍塌事故。 ○2挖土次序严格遵守“分层开挖,严禁超挖”、“大基坑,小开挖”的原则,根据后浇带分区开挖,分段长度不超过15米。在施工程序上做到边开挖边支护,分层开挖,分层支护。土方开挖必须和支护施密切配合,严禁超挖。前层护坡混凝土完成24小时以上,方可进行下一层边坡面的开挖。挖土至基础板底标高24小时内必须完成素砼垫层,垫层延伸至围护结构边,并抓紧施工承台及基础底板。○3、土方开挖的基底标高按基础施工图与地下室结施图进行,当结施图与基护剖面图中所示的基底标高有出入时,以结施图为准,并及时通知有关各方。 7、基坑护栏: 基坑坑边设置黑黄相间双色钢管1.2M以上的双层围栏,立杆间距不得超过2米,并悬挂醒目标识,上下基坑设扶梯搭设宽1.2米钢管扶梯设扶手,坡度不大于35度。

基坑开挖数值模拟

7 数值模拟 7.1 数值模拟方法简介 数值模拟技术作为一种研究手段,已经被广泛的应用于各行各业领域的研究中。目前,数值分析方法主要分为二大类:一类是以有限差分法为代表,其特点是直接求解基本方程和相应的定解条件的近似解;另一类数值分析方法是首先建立和原问题基本方程及相应定解条件等效的积分方法,然后据之建立近似解法。 LS-D YNA乍为世界上最著名的通用显示动力分析程序,能够模拟真实世界的各种复杂问题,特别适合求解各种二维三维非线性结构的高速碰撞,爆炸和金属成型等非线性动力冲击问题,同时可以求解传热,流体及流固耦合问题,在工程应用如汽车安全设计,武器系统设计,金属成型,跌落仿真等领域被广泛应用。本次采用ANSYS/LS-DYN,A 进行混凝土支撑梁结构爆破拆除数值模拟研究。在ANSYS/LS-DYN环境下,数值模拟的实现总体上分为两个过程:在ANS丫芽建立结构实体模型,完成有限元网格的划分,输出有限元模型信息即输出关键字 文件;编辑关键字文件,在DYNA环境下完成对结构倒塌过程的数值模拟计算。 对结构有限元模型的建立过程,数值模拟中采用的钢筋和混凝土材料模型、接触方式等各种计算控制项进行了阐述。 LS-D YNA程序中主要提供如下几种计算方法: (1)Lagrange 算法 坐标固定在物质上或者说随物质一起运动和变形,处理自由面和物质界面非常直观,由于网格始终对应物质,因此能够精确的跟踪材料边界和描述物质之间的界面,这是Lagrange 算法的主要优点。但是,由于网格随材料流动而变

形,一旦网格变形严重,就会引起数值计算的不稳定,甚至使得计算无法继续进行(如发生负体积或复杂声速等问题)。因此,Lagrange 算法在处理大变形大位移问题时,有其无法克服的弊端。 (2)Euler 算法网格被固定在空间,是不变形的。物质通过网格边界流进流出,物质的大变形不直接影响时间步长的计算。因此,欧拉算法在处理大变形问题方面具有优势。欧拉方法通过输运项计算体积、质量、动量和能量的流动。欧拉计算可以直接通过在离散化格式中包括迁移导数项进行,或通过二步操作完成。二步法操作的第一步主要是拉格朗日计算,第二步输运阶段是重分计算网格相当于回到它的原来状态。 LS-D YNA程序采用后一种方法。欧拉算法的缺点是网格中物质边界不清晰,难以捕捉各物质界面。 (3)ALE方法 吸取了欧拉法和拉格朗日法两种方法的优点。ALE算法能够进行自动重分网格操作。它包括拉格朗日时间步,然后是一个输运步。输运步可以采用三种方法:1. 发生合理的网格变形时空间网格不再重分(拉格朗日);2. 发生严重的网格变形时重分成原始形状(欧拉);3. 发生严重的网格变形时重分为合理的形状,因此允许网格拓扑(拉格朗日和欧拉)。 混凝土是土木工程结构中应用极为广泛的材料,其最本质的特点是材料组成的不均匀性,并且存在初始微裂缝。从混凝土受单轴压力时的应力应变关系来看,混凝土卸载时有残余变形,不符合弹性关系;如果对其应用弹塑性本构关系,又很难精确定义屈服条件。此外,混凝土在到达应力顶峰后,其应力-应变关系曲线有一下降段,即存在应变软化现象,所有这些都给建立混凝土的本构关系

深基坑工程土方开挖

一、深基坑工程土方开挖 (一)开挖平面及出图方向示意图 为保证3号楼工期,计划先集中开挖3号楼基坑,后向西侧推挖。在基坑西侧设置两个出土口。

(二)方案编制依据 1、编制说明 根据《天津市建设工程基坑降水及土方开挖方案论证文件编制标准》要求并结合本工程实际情况,本方案内容包括:方案编制依据与工程概况、土方开挖方案、降水方案、监测专项方案、应急专项方案、季节施工措施、质量保证措施及安全生产、文明施工、环境保护保证措施等。 按照《基坑降水及土方工程施工方案报件标准》要求,方案含盖范围为:自工程桩、围护结构、止水帷幕完成后开始,至土方挖完、垫层浇筑完成期间的施工内容。包括降水井施工及降水运行、土方开挖施工等内容。 2、编制依据 <1>本工程基础结构施工图纸 <2>本工程基坑支护设计图纸 <3>地质勘察报告 <4>有关国家及地方的规范、规程 <4.1>《建筑基坑工程技术规程》(DB29-202-2010) <4.2>《建筑地基基础工程施工质量验收规范》(GB50202-2002) <4.3>《建筑基坑工程监测技术规范》(GB50497-2009) <4.4>《建筑机械使用安全技术规程》(JGJ33-2012) <4.5>《建筑桩基技术规范》(JGJ94-2008) <4.6>《混凝土结构工程施工质量验收规范》(GB 50204-2011) <4.7>《建筑地基基础设计规范》(GB50007-2011)

<4.8>《建筑基坑支护技术规程》(JGJ120-2012) <4.9>《地下工程防水技术规范》(GB50108-2008) <4.10>《地下防水工程质量验收规范》(GB502082011) <4.11>《工程测量规范》(GB50026-2007) <4.12>《城市测量规范》(CJJ/T8-2011) <4.13>《国家一、二等水准测量规范》GB/T12897-2006 <4.14>《城市地下水动态观测规程》(CJJ/T76-2012) <4.15>《建筑变形测量规范》(JGJ8-2008) <4.16>《建设工程施工现场消防安全技术规范》GB50720-2011 <4.17>《天津市建设工程施工现场安全管理规程》DB29-113-2011 (三)3号楼深基坑土方开挖方法 1、表层土方开挖 支撑及冠梁部位表层土方挖土,开挖深度为地面至第一道混凝土支撑梁底标高。表层土方开挖采用反铲式挖掘机,配合自卸汽车出土,开挖至第一道混凝土支撑底部标高时,夯实地基铺设模板做为地模,然后进行第一道钢筋混凝土支撑施工,待强度满足要求后再开挖下一步土方。

基坑土方计算公式

基坑土方计算公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

基坑土方计算公式 挖基坑 V=(a+2c+kh)*(b+2c+kh)*h+1/3k2h3 a=长底边 b=短底边 c=工作面 h=挖土深度 k=放坡系数 条形基础 V=L*(ah+kh2) a=垫层宽+工作面*2 h=挖土深度 k=放坡系数 四菱台的基坑: 上口长A、宽B 下口长a、宽b 深H V=[A*B+a*b+(A+a)*(B+b)]*H/6 分段计算,在高差处分开,但公式是一样的,如果两个坑的底部没有重合,而上口重合了,你就算二个四棱台的体积再扣去重合部份的三棱台体积就是了。复杂的你可以用CAD软件或图形算量软件去计算。如广联达的或清华斯维尔的。 基坑土方量计算公式? 公式:V=1/3h(S上+√(S下*S上)+S下)? S上=140S下=60 V=1/3*3*(140+60+√140*60)=291.65m2 基坑下底长10m,下底宽6m基坑上底长14m,上底宽10m开挖深度3m,开挖坡率1:求基坑开挖土方量、 圆柱体:体积=底面积×高 长方体:体积=长×宽×高? 正方体:体积=棱长×棱长×棱长.? 锥体:底面面积×高÷3? 台体:V=[S上+√(S上S下)+S下]h÷3 球缺体积公式=πh2(3R-h)÷3 球体积公式:V=4πR3/3 棱柱体积公式:V=S底面×h=S直截面×l(l为侧棱长,h为高) 棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h? 注:V:体积;S1:上表面积;S2:下表面积;h:高。 几何体的表面积计算公式 圆柱体:? 表面积:2πRr+2πRh体积:πRRh(R为圆柱体上下底圆半径,h为圆柱体高)圆锥体:?表面积:πRR+πR[(hh+RR)的平方根]体积:πRRh/3(r为圆锥体低圆半径,h为其高,平面图形? 名称符号周长C和面积S?

基坑开挖数值模拟

7数值模拟 7.1数值模拟方法简介 数值模拟技术作为一种研究手段,已经被广泛的应用于各行各业领域的研究中。目前,数值分析方法主要分为二大类:一类是以有限差分法为代表,其特点是直接求解基本方程和相应的定解条件的近似解;另一类数值分析方法是首先建立和原问题基本方程及相应定解条件等效的积分方法,然后据之建立近似解法。 LS-DYNA作为世界上最著名的通用显示动力分析程序,能够模拟真实世界的各种复杂问题,特别适合求解各种二维三维非线性结构的高速碰撞,爆炸和金属成型等非线性动力冲击问题,同时可以求解传热,流体及流固耦合问题,在工程应用如汽车安全设计,武器系统设计,金属成型,跌落仿真等领域被广泛应用。本次采用ANSYS/LS-DYNA,进行混凝土支撑梁结构爆破拆除数值模拟研究。在ANSYS/LS-DYNA环境下,数值模拟的实现总体上分为两个过程:在ANSYS中建立结构实体模型,完成有限元网格的划分,输出有限元模型信息即输出关键字文件;编辑关键字文件,在DYNA环境下完成对结构倒塌过程的数值模拟计算。 对结构有限元模型的建立过程,数值模拟中采用的钢筋和混凝土材料模型、接触方式等各种计算控制项进行了阐述。 LS-DYNA程序中主要提供如下几种计算方法: (1)Lagrange算法

坐标固定在物质上或者说随物质一起运动和变形,处理自由面和物质界面非常直观,由于网格始终对应物质,因此能够精确的跟踪材料边界和描述物质之间的界面,这是Lagrange算法的主要优点。但是,由于网格随材料流动而变形,一旦网格变形严重,就会引起数值计算的不稳定,甚至使得计算无法继续进行(如发生负体积或复杂声速等问题)。因此,Lagrange算法在处理大变形大位移问题时,有其无法克服的弊端。 (2)Euler算法 网格被固定在空间,是不变形的。物质通过网格边界流进流出,物质的大变形不直接影响时间步长的计算。因此,欧拉算法在处理大变形问题方面具有优势。欧拉方法通过输运项计算体积、质量、动量和能量的流动。欧拉计算可以直接通过在离散化格式中包括迁移导数项进行,或通过二步操作完成。二步法操作的第一步主要是拉格朗日计算,第二步输运阶段是重分计算网格相当于回到它的原来状态。LS-DYNA程序采用后一种方法。欧拉算法的缺点是网格中物质边界不清晰,难以捕捉各物质界面。 (3)ALE方法 吸取了欧拉法和拉格朗日法两种方法的优点。ALE算法能够进行自动重分网格操作。它包括拉格朗日时间步,然后是一个输运步。输运步可以采用三种方法:1. 发生合理的网格变形时空间网格不再重分(拉格朗日);2. 发生严重的网格变形时重分成原始形状(欧拉); 3. 发生严重的网格变形时重分为合理的形状,因此允许网格拓扑(拉

深基坑工程土方开挖前节点验收

关于建立深基坑工程土方开挖前节点 验收制度的通知 各建设、施工、监理单位,各有关单位: 根据住建部《危险性较大的分部分项工程安全管理办法》 (建质[2009]87号)的有关规定,为加强对危险性较大的分部分项工程的安全管理,进一步明确在深基坑工程施工过程中各参建主体的安全责任,防止深基坑工程安全事故的发生,从2011年3月15日起,除轨道工程的深基坑工程继续执行原市建设局《关于加强轨道交通工程关键工序节点验收工作的通知》(苏建质〔2008〕58号)的要求外,我站对管辖范围的其它深基坑工程也建立深基坑工程土方开挖前的节点验收制度。现将有关要求通知如下: 一、适用范围 符合下列条件的深基坑工程土方开挖前必须进行节点验收: 1.开挖深度超过4m (含4m)的基坑(槽)的土方开挖、支护、降水工程。 2.开挖深度虽未超过4m,但地质条件、周围环境和地下管线复杂,或影响毗邻建筑(构筑)物安全的基坑(槽)的土方开挖、支护、降水工程。 二、验收原则

为进一步明确在深基坑施工过程中参建各方的工作界限,落实各方责任,防范重大安全事故的发生,深基坑工程土方开挖前的节点验收工作以“建设单位组织、施工企业自查后交验、监理单位审核检查、专家技术评估、政府程序监督”为原则, 三、基本程序 (一)深基坑工程的建设单位于验收前5天,将 包含验收时间、地点、内容和验收小组名单的申请报 告及专项施工方案专家评审报告报送我站。 验收小组成员视工程情况由建设单位分管该工程的负责人、现场负责人和勘察、设计(含围护结构设计)、施工、监理、监测等单位的项目负责人(或技术负责人)及2?3名具有相应经验和资格的专家组成。专家组成员中至少有一人是本工程深基坑安全专项施工方案的评审专家。验收组组长由建设单位分管该工程的负责人或现场负责人担任,副组长由一名专家担任。施工单位分管安全的负责人、技术负责人、专项施工方案编制人员、项目专职安全生产管理人员应当参加。节点验收前,建设单位应邀请市质监站的质监员参加。 (二)施工单位按深基坑工程设计文件的有关规定,对已完成的工序进行自检自评,形成施工小结。

基坑土方计算公式汇总

基坑土方计算公式 挖基坑V=(a+2c+kh)*(b+2c+kh)*h+1/3k2h3 a=长底边 b=短底边 c=工作面 h=挖土深度 k=放坡系数 条形基础V=L*(ah+kh2) a=垫层宽+工作面*2 h=挖土深度 k=放坡系数 四菱台的基坑: 上口长A、宽B 下口长a、宽b 深H V=[A*B+a*b+(A+a)*(B+b)]*H/6 分段计算,在高差处分开,但公式是一样的,如果两个坑的底部没有重合,而上口重合了,你就算二个四棱台的体积再扣去重合部份的三棱台体积就是了。复杂的你可以用CAD软件或图形算量软件去计算。如广联达的或清华斯维尔的。 基坑土方量计算公式 公式:V=1/3h(S上+√(S下*S上)+S下) S上=140 S下=60 V=1/3*3*(140+60+√140*60)=291.65m2 基坑下底长10m,下底宽6m 基坑上底长14m ,上底宽10m 开挖深度3m ,开 挖坡率1:0.5 求基坑开挖土方量、 圆柱体:体积=底面积×高 长方体:体积=长×宽×高 正方体:体积=棱长×棱长×棱长. 锥体: 底面面积×高÷3 台体: V=[ S上+√(S上S下)+S下]h÷3 球缺体积公式=πh2(3R-h)÷3 球体积公式:V=4πR3/3 棱柱体积公式:V=S底面×h=S直截面×l (l为侧棱长,h为高) 棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h 注:V:体积;S1:上表面积;S2:下表面积;h:高。 几何体的表面积计算公式 圆柱体:

表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥 体: 表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其 高, 平面图形 名称符号周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中 s=(a+b+c)/2 S=ah/2=ab/2?sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形 d,D-对角线长α-对角线夹角 S=dD/2?sinα平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 S=r2/2?(πα/180-sinα) b-弦长=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 h-矢高=παr2/360 - b/2?[r2-(b/2)2]1/2 r-半径=r(l-b)/2 + bh/2 α-圆心角的度数≈2bh/3 圆环 R-外圆半径 S=π(R2-r2) r-内圆半径=π(D2-d2)/4 D-外圆直径 d-内圆直径椭圆 D-长轴 S=πDd/4 d-短轴 平整场地: 建筑物场地厚度在±30cm以内的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积 (2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)、有的地区定额规则的平整场地面积:按外墙外皮线外放2米计算。计算时按外墙外边线外放2米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2米的中心线×2=外放2米面积”与底层建筑面积合并计算。这样的话计算时会 出现如下难点: ①、划分块比较麻烦,弧线部分不好处理,容易出现误差。 ②、2米的中心线计算起来较麻烦,不好计算。 ③、外放2米后可能出现重叠部分,到底应该扣除多少不好计算。(2)、清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的 工程量,每边外放的长度不一样。 大开挖土方 1、开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。(2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土方量内。当需要放坡

深基坑土方开挖工程专项施工方案

深基坑土方开挖工程专 项施工方案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

川南英祥建材市场一标段(2#-10#)房工程 土 方 开 挖 专 项 施 工 方 案 编制单位:自贡市英祥建筑安装工程有限公司编制日期:2016年5月

目录 一、工程概况 ............................................................................ 错误!未定义书签。 二、主要编制依据..................................................................... 错误!未定义书签。 三、土方开挖工程安全技术的设计 ......................................... 错误!未定义书签。 四、土方开挖工程施工要求 ..................................................... 错误!未定义书签。 五、土方开挖工程质量检查与验收 ......................................... 错误!未定义书签。 六、土方开挖工程安全管理与日常维护.................................. 错误!未定义书签。 七、土方开挖工程应急预案 ..................................................... 错误!未定义书签。 八、危险源识别与监控 ............................................................. 错误!未定义书签。

挖土方计算公式

基坑土方V=[A*B+a*b+(A+a)*(B+b)]*h/6; 上口:A,B 下口:a,b 土方:凡平整场地厚度在30cm以上,坑底宽度在3m以上及坑底面积在20m2以上的挖土为挖土方。 地槽:凡槽底宽度在3m以内,且槽长大于槽宽三倍的为地槽。 地坑:凡图示底面积在20m2以内的挖土为挖地坑。 放坡起点,混凝土垫层由垫层底面开始放坡,灰土垫层由垫层上表面开始放坡,无垫层的由底面开始放坡。 土建工程中挖土方,挖地坑公式为: V=[(A+kH1)*H1+A*H2]*L, 挖地槽公式为: V=A*B*H+(A+B)*k*H1*H1+4/3*k*k*H1*H1*H1, 其中:A--基槽(坑)的宽度;B--基坑的长度;H1--基槽(坑)的垫层顶面至室外地坪的高度;H2--基槽(坑)的垫层厚度;k--放坡系数;L--基槽的长度;有放坡,都从垫层上表面(顶面)开始放坡的。 钢筋工程量计算篇 钢筋工程量计算常用公式(2009-10-11 13:33:44)转载标签:杂谈分类:工程造价资料 一、梁 (1)框架梁 一、首跨钢筋的计算 1、上部贯通筋 上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值 2、端支座负筋 端支座负筋长度:第一排为Ln/3+端支座锚固值; 第二排为Ln/4+端支座锚固值 3、下部钢筋 下部钢筋长度=净跨长+左右支座锚固值 以上三类钢筋中均涉及到支座锚固问题,那么总结一下以上三类钢筋的支座锚固判断问题: 支座宽≥Lae且≥0.5Hc+5d,为直锚,取Max{Lae,0.5Hc+5d }。 钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc+5d,为弯锚,取Max{Lae,支座宽度-保护层+15d }。 钢筋的中间支座锚固值=Max{Lae,0.5Hc+5d } 4、腰筋 构造钢筋:构造钢筋长度=净跨长+2×15d 抗扭钢筋:算法同贯通钢筋 5、拉筋

基坑土方工程量计算

基坑土方工程量计算 (一)基坑土方量计算 基坑土方量的计算,可近似地按拟柱体体积公式计算(图1—8)。 图1—8基坑土方量计算图1—9基坑土方量计算 V=H*(A'+4A+A'')/6 H ——基坑深度(m)。 A1、A2——基坑上下两底面积(m2)。 A0 ——基坑中截面面积(m2)。 计算平整场地土方工程量 ①四棱柱法 A、方格四个角点全部为挖或填方时(图1—16),其挖方或填方体积为: 式中:h1、h2、h3、h4、——方格四个角点挖或填的施工高度,以绝对值带入(m); a ——方格边长(m)。 图1—16 角点全填或全挖;图1—17角点二填或二挖;图1—18角点一填三挖 B、方格四个角点中,部分是挖方,部分是填方时(图1—17),其挖方或填方体积分别为: C、方格三个角点为挖方,另一个角点为填方时(图1—18), 其填方体积为: 其挖方体积为: ②三棱柱法 计算时先把方格网顺地形等高线将各个方格划分成三角形(图1—19) 图1—19 按地形方格划分成三角形 每个三角形的三个角点的填挖施工高度,用h1、h2、h3表示。 A、当三角形三个角 点全部为挖或填时(图1—20a), 其挖填方体积为: 式中:a——方格边长(m); h1、h2、h3——三角形各角点的施工

高度,用绝对值(m)代入。 图1—20(a)三角棱柱体的体积计算(全挖或全填) B、三角形三个角点有挖有填时 零线将三角形分成两部分,一个是底面为三角形的锥体,一个是底面为四边形的楔体(图1—20b, 图1—20(b)三角棱柱体的体积计算(锥体部分为填方) 其锥体部分的体积为: h1、h2、h3——三角形各角点的施工高度,取绝对值(m),h3指的是锥体顶点的施工高度。 注意:四方棱柱体的计算公式是根据平均中断面的近似公式推导而得的,当方格中地形不平时,误差较大,但计算简单,宜于手工计算。三角棱柱体的计算公式是根据立体几何体积计算公式推导出来的,当三角形顺着等高线进行划分时,精确度较高,但计算繁杂,适宜用计算机计算。 ③断面法 在地形起伏变化较大的地区,或挖填深度较大,断面又不规则的地区,采用断面法比较方便。 方法:沿场地取若干个相互平行的断面(可利用地形图定出或实地测量定出),将所取的每个断面(包括边坡断面),划分为若干个三角形和梯形,如图1—21,则面积: 图1—21 断面法 断面面积求出后,即可计算土方体积,设各断面面积分别为: F1、F2、……Fn 相邻两断面间的距离依次为:L1、L2、L 3……Ln,则所求土方体积为: (5)边坡土方量计算 图1—22是场地边坡的平面示意图,从图中可以看出,边坡的土方量可以划分为两种近似的几何形体进行计算,一种为三角形棱锥体(如图中①②③……)另一种为三角棱柱体(如图中的④) A、三角形棱锥体边坡体积 图1-22中①其体积为 式中:L1——边坡①的长度(m); F1——边坡①的端面积(m2); h2——角点的挖土高度; m——边坡的坡度系数。 B、三角棱柱体边坡体积

深基坑土方开挖施工方案

北京华联购物市场工程 深基坑土方开挖施工方案 编制人:_____________ 审核人:_____________ 审批人:_____________ 北京华联太原胜利购物市场工程项目部 二O一三年九月

目录 一、综合说明 1、工程概况 2、编制依据 3、总体施工部署 二、土方开挖施工 1、施工准备 2、开挖方法 3、确保工程质量的技术组织措施 4、确保安全生产的技术组织措施 5、确保文明施工的技术组织措施 6、确保工期的技术组织措施 7、减少噪音、降低环境污染技术措施 8、地上、地下管线及道路的保护措施 9、与其他施工队伍友好配合措施 10、质量保证措施 11、安全生产及文明施工 12、临边安全围护 三、基坑安全监测方案 四、雨季施工方案 五、应急预案

一、综合说明 1、编制依据 该施工组织设计的编制主要依据:山西省建筑设计院设计的基坑支护图纸;现行规范、规程以及现场实际情况。主要规范、规程如下: 1、国家法律、法规、《中华人民共和国合同法》、《中华人民共和国建筑法》其 它法律、行政法规。 2、现行国家有关建筑工程规范、标准和规程 3、《建筑工程施工质量验收统一标准》(GB50300—2001) 4、《工程测量规范》(GB50026—2007) 5、《建筑地基基础工程施工质量验收规范》(GB50202-2002); 6、《建筑与市政降水工程技术规范》(JGJ∕T111-98) 7、《建筑地基处理技术规范》(JGJ79-2012) 8、《建筑基坑工程监测技术规范》(GB50497) 9、《施工现场临时用电安全技术规程》(JGJ46—2005) 10、《地基与基础工程施工质量验收规范》(GB50202-2002) 11、《建筑机械使用安全技术规程》(JGJ33-2012) 12、《北京华联太原胜利购物市场总平面图、地下平面图、剖面图》 13、《北京华联太原胜利购物市场岩土工程勘察报告》 14、两次专家论证意见 15、质量管理体系文件、质量保证手册、程序文件 16、施工现场及周围环境调查记录 2、工程概况 工程名称:北京华联胜利购物市场工程 建设单位:山西华联购物中心有限公司 设计单位:山西省建筑设计研究院 监理单位:山西省建设监理有限公司 施工单位:山西省第五建筑工程公司 北京华联太原胜利购物市场位于太原市解放北路75号,建筑物为地下三层、

挖基础土方计算公式

挖基础土方计算公式 人工挖土方 人工挖土要根据土壤类别、施工方法等分别按挖基(地)槽、挖基坑、挖土方等项目计算。 1、挖基槽(地沟) 基槽指条形基础下的地槽,地沟指管道地沟。 其工程量按沟槽长度乘以沟槽的断面积。其突出部分体积应并入基槽工程量内计算;沟槽深度不同时,应分别计算。土方放坡时,在交接处产生的重复工程量不予扣除。 基槽的长度:外墙按图示中心线长计算;内墙按净长度计算。 基槽横断面的形式:分放坡与不放坡进行计算。 挖土深度H:一般以设计室外地坪标高为准。 根据土的性质、开挖深度以及施工方法确定土壁是否放坡。放坡的宽度根据放坡系数计算,即KH。 为保证工人的正常操作,基底宽度应在基础宽度的基础上增加工作面宽度2C。计算公式: ①不放坡时:V挖=L×(B+2C)×H ②有放坡时:V挖=L×(B+2C+KH)×H (2)挖基(地)坑 挖地坑工程量根据图示尺寸以立方米为单位计算,按土壤类别、挖土深度不同分别套用相应的定额。

①矩形不放坡的地坑土方量为: V挖=(a+2c)×(b+2c)×H ②矩形放坡的地坑土方量为: V挖=(a+2c)×(b+2c)×H+KH2×(a+2c)+KH2×(b+2c)+4×1/3K2H3 =(a+2c+KH)×(b+2c+KH)×H+1/3K2H3 ③k为放坡系数。放坡宽度b与深度H和放坡角度a之间是正切函数关系,即tana=b/H,不同的土壤类别取不同的a值,所以不难看出,放坡系数就是根据tana来确定的。例如,三类土的tana=b/H=0.33。我们将tana=K来表示放坡系数,故放坡宽度b=kH。K是根据土壤类别确定的。一、二类土的放坡系数为0.5,三类土为0.33,四类土为0.25。

深基坑土方开挖工程专项施工方案(高边坡)

丁青110kV输变电新建工程线路Ⅴ标施工工程深基坑高边坡专项施工方案 编制单位(章):山东电力建设第一工程公司 编制时间:2016 年09 月15 日

一.编制依据 (一)根据《中华人民共和国安全生产法》、《建设工程安全生产管理条例》(国务院令第393号)、住建部《危险性较大的分部分项工程安全管理办法》(建质[2009] 87号),加强对建筑工程中危险点源的控制,避免重、特大事故的发生; (二)基础施工设计图; (三)岩土工程勘察报告; (四)规范、规程类: 1、《110-500KV架空电力线路施工及验收规范》 2、《输变电工程质量投产达标考核评定标准(2005年版)》 3、四川电力设计咨询有限责任公司类乌齐~丁青110kV线路新建工程(V标段)施工图设计图纸等。 4、国家及地方现行的相关法律法规等。 二.工程概况 1、工程概况 本工程线路起于类乌齐110kV变电站110kV出线构架,止于丁青110kV变电站110kV进线构架,线路全长118.329km。导线采用JL/G1A-185/30型钢芯铝绞线,地线一根为JLB20A-80型铝包钢绞线,另一根为OPGW-90(24芯)复合光缆。 本段为V标段,J48~丁青变,全长22.141km。J48为分界塔,其大号侧导地线(OPGW)、绝缘子、金具属于V标段施工范围。本段新建铁塔55基,其中单回路直线塔35基,单回路耐张塔18基,双回路耐张塔1基,换位塔1基。 三.施工准备 (一)人员准备 按施工计划调集有丰富施工经验的施工人员,做好施工前准备,施工前做好相关交底,工前动员等工作。 1、在强有力的项目班子领导下,选择技术强,装备精的专业队伍,相关的 操作人员做到持证上岗。 2、明确工程施工中的安全目标、质量目标、工期要求,确保高速、优质、

基坑土方量计算公式.

基坑土方量计算公式 公式:V=1/3h(S上+√(S下*S上)+S下) S上=140 S下=60 V=1/3*3*(140+60+√140*60)=291.65m2 基坑下底长10m,下底宽6m 基坑上底长14m ,上底宽10m 开挖深度3m ,开挖坡率1:0.5 求基坑开挖土方量、 1、圆柱体:体积=底面积×高 2、长方体:体积=长×宽×高 3、正方体:体积=棱长×棱长×棱长. 4、锥体: 底面面积×高÷3 5、台体: V=[ S上+√(S上S下)+S下]h÷3 6、球缺体积公式=πh2(3R-h)÷3 7、球体积公式:V=4πR3/3 8、棱柱体积公式:V=S底面×h=S直截面×l (l为侧棱长,h为高) 9、棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h注: V:体积;S1:上表面积;S2:下表面积;h:高。 几何体的表面积计算公式 1、圆柱体: 表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底 2、圆半径,h为圆柱体高) 3、圆锥体: 表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r 为圆锥体低圆半径,h为其高, 4、平面图形 名称符号周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a

和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中 s=(a+b+c)/2 S=ah/2=ab/2?sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 5、四边形 d,D-对角线长α-对角线夹角 S=dD/2?sinα 6、平行四边形 a,b-边长h-a边的高α-两边夹角 S=ah=absinα 7、菱形 a-边长α-夹角D-长对角线长d-短对角线长 S=Dd/2=a2sinα梯形 a和b-上、下底长h-高m-中位线长 S=(a+b)h/2=mh 圆 r-半径 d-直径 C=πd=2πr S=πr2=πd2/4 8、扇形 r—扇形半径 a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 弓形 l-弧长 S=r2/2?(πα/180-sinα) b-弦长=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 h-矢高=παr2/360 - b/2?[r2-(b/2)2]1/2 r-半径=r(l-b)/2 + bh/2 α-圆心角的度数≈2bh/3 9、圆环 R-外圆半径 S=π(R2-r2) r-内圆半径=π(D2-d2)/4 D-外圆直径 d-内圆直径椭圆 D-长轴 S=πDd/4 d-短轴 平整场地: 建筑物场地厚度在±30cm以内的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法

深基坑土方开挖专项施工方案(3)

深基坑土方开挖专项施工方案 编制人: 审核人: 编制单位: 编制时间:

目录 一、编制依据 (2) 二、工程概况 (2) 三、基坑围护概况 (5) 四、施工部署及施工计划 (5) 五、施工方案 (10) 六、质量保证措施 (14) 七、安全保证措施 (14) 八、文明施工及环保保证措施 (16) 九、应急预案 (17) 附件:1、基坑开挖断面示意图

一、编制依据 1.1 编制依据 该施工方案编制的主要依据:招投标文件、设计图纸、本工程施工组织设计;建设部现行有关规范。主要规范、规程如下: 主要规范、规程 危险源划分

二、工程概况 2.1工程概况 ***国际会展中心(二期)工程;工程建设地点:***经济特区国际合作中心A7地块,其中一期东西长约200米,南北宽约122米,一层室内地坪标高为818.80米,二期呈扇形,半径长约210米,一层室内地坪标高为822.20米。二期属于钢筋框架结构;地上一层;建筑高度:23.75m;地下一层为设备、电气用房,地上南侧为服务区与北侧展览区总建筑面积:45583.03平方米。 2.2 工程目标 2.2.1质量目标:达到国家现行建设工程施工质量验收规范的合格标准。 2.2.2安全生产文明施工目标:在整个施工过程中杜绝发生重大伤亡事故,按主管部门及公司的规章制度管理施工现场。 2.3 工程地质条件

拟建场地形位于***经济特区国际合作中心A7地块,伊犁谷地属于天山褶皱带内的新生代,南北两侧与古生界山体成断层接触,主要岩性以粉土、碎石土为主。 本次勘察查明,在勘探深度范围内,场地主要地层属冲、洪积层,由上至下为: ①杂填土:杂色,不均匀,松散,稍湿,以碎石土为主,包含粉土及建筑、生活垃圾、 植物根系等。层厚0.20~1.50米。 ②卵石:杂色,次圆,中密~很密,含漂石,级配良好,母岩呈微风化状,成分以变质 岩、沉积岩为主,含少量岩浆岩,骨架颗粒交错排列,大部分连续接触,充填物以粗砂、砾砂为主,局部夹粉土、砾砂、粗砂透镜体,钻进较困难,孔壁较稳定,层顶深度0.20~1.50米(高程814.4~821.8米),层厚大于19.8米(未揭穿)。 三、基坑围护及施工工序安排 本工程基坑边坡支护方案采用基坑四面钢筋混凝土支护桩,预应力锚索挂网喷射混凝土护坡;支护桩采用700mm和800mm直径的钢筋混凝土桩,桩中心间距1.5m,桩长20m,混凝土强度C30; 桩顶设置截面尺寸1000X800mm和800X600mm的强度等级为C30的钢筋混凝土冠梁;预应力锚索直径150mm,入射角度15度,锚孔间距1.5m,锚孔深度20-26m,锚固长度15-19.5m,采用1860级直径为15.24钢绞线,喷射混凝土面层厚60mm,强度等级为C20;支护桩外采用混凝土止水帷幕止水,同时采用管井抽渗方案降水,基坑底则利用排水沟和集水井降排水。基坑支护及降水的设计及施工均由河南省地矿建设工程(集团)有限公司承揽,施工方案通过专家评审并实施。 因基坑开挖与基坑支护交叉施工,安全隐患较大,为避免发生事故,提高土方开挖工效,土方开挖做如下循环安排: 四、施工部署及施工计划 4.1总体部署 因本工程施工场地狭小,土方开挖深度较深,土方量较大(约220000立方米),且工期紧迫。为保障工期按计划进行,基坑开挖应做到“三边”施工,即边开挖、边清理、边支护,保

相关文档
最新文档