六步学会用做空间计量回归详细步骤

六步学会用做空间计量回归详细步骤
六步学会用做空间计量回归详细步骤

与MATLAB链接:

Excel:

选项——加载项——COM加载项——转到——没有勾选项

2. MATLAB安装目录中寻找toolbox——exlink——点击,启用宏

E:\MATLAB\toolbox\exlink

然后,Excel中就出现MATLAB工具

(注意Excel中的数据:)

3.启动matlab

(1)点击start MATLAB

(2)senddata to matlab ,并对变量矩阵变量进行命名(注意:选取变量为数值,不包括各变量)

(data表中数据进行命名)

(空间权重进行命名)

(3)导入MATLAB中的两个矩阵变量就可以看见

4.将elhorst和jplv7两个程序文件夹复制到MATLAB安装目录的toolbox文件夹

5.设置路径:

6.输入程序,得出结果

T=30;

N=46;

W=normw(W1);

y=A(:,3);

x=A(:,[4,6]);

xconstant=ones(N*T,1);

[nobs K]=size(x);

results=ols(y,[xconstant x]);

vnames=strvcat('logcit','intercept','logp','logy');

prt_reg(results,vnames,1);

sige=*((nobs-K)/nobs);

loglikols=-nobs/2*log(2*pi*sige)-1/(2*sige)*'*

% The (robust)LM tests developed by Elhorst

LMsarsem_panel(results,W,y,[xconstant x]); % (Robust) LM tests 解释

每一行分别表示:

附录:

静态面板空间计量经济学

一、OLS静态面板编程

1、普通面板编程

T=30;

N=46;

W=normw(W1);

y=A(:,3);

x=A(:,[4,6]);

xconstant=ones(N*T,1);

[nobs K]=size(x);

results=ols(y,[xconstant x]);

vnames=strvcat('logcit','intercept','logp','logy'); prt_reg(results,vnames,1);

sige=*((nobs-K)/nobs);

loglikols=-nobs/2*log(2*pi*sige)-1/(2*sige)*'*

% The (robust)LM tests developed by Elhorst

LMsarsem_panel(results,W,y,[xconstant x]); % (Robust) LM tests

2、空间固定OLS (spatial-fixed effects)

T=30;

N=46;

W=normw(W1);

y=A(:,3);

x=A(:,[4,6]);

xconstant=ones(N*T,1);

[nobs K]=size(x);

model=1;

[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model );

results=ols(ywith,xwith);

vnames=strvcat('logcit','logp','logy'); % should be changed if x is

prt_reg(results,vnames);

sfe=meanny-meannx*; % including the constant term

yme = y - mean(y);

et=ones(T,1);

error=y-kron(et,sfe)-x*;

rsqr1 = error'*error;

rsqr2 = yme'*yme;

FE_rsqr2 = - rsqr1/rsqr2 % r-squared including fixed effects sige=*((nobs-K)/nobs);

logliksfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*'*

LMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests

3、时期固定OLS(time-period fixed effects)

T=30;

N=46;

W=normw(W1);

x=A(:,[4,6]);

xconstant=ones(N*T,1);

[nobs K]=size(x);

model=2;

[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model );

results=ols(ywith,xwith);

vnames=strvcat('logcit','logp','logy'); % should be changed if x is changed

prt_reg(results,vnames);

tfe=meanty-meantx*; % including the constant term

yme = y - mean(y);

en=ones(N,1);

error=y-kron(tfe,en)-x*;

rsqr1 = error'*error;

rsqr2 = yme'*yme;

FE_rsqr2 = - rsqr1/rsqr2 % r-squared including fixed effects

sige=*((nobs-K)/nobs);

logliktfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*'*

LMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests

4、空间与时间双固定模型

T=30;

N=46;

W=normw(W1);

y=A(:,3);

x=A(:,[4,6]);

xconstant=ones(N*T,1);

[nobs K]=size(x);

model=3;

[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model );

results=ols(ywith,xwith);

vnames=strvcat('logcit','logp','logy'); % should be changed if x is changed

prt_reg(results,vnames)

en=ones(N,1);

et=ones(T,1);

intercept=mean(y)-mean(x)*;

sfe=meanny-meannx*(en,intercept);

tfe=meanty-meantx*(et,intercept);

yme = y - mean(y);

ent=ones(N*T,1);

error=y-kron(tfe,en)-kron(et,sfe)-x*(ent,intercept);

rsqr1 = error'*error;

rsqr2 = yme'*yme;

FE_rsqr2 = - rsqr1/rsqr2 % r-squared including fixed effects sige=*((nobs-K)/nobs);

loglikstfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*'*

LMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests

二、静态面板SAR模型

1、无固定效应(No fixed effects)

T=30;

N=46;

W=normw(W1);

y=A(:,[3]);

x=A(:,[4,6]);

for t=1:T

t1=(t-1)*N+1;t2=t*N;

wx(t1:t2,:)=W*x(t1:t2,:);

end

xconstant=ones(N*T,1);

[nobs K]=size(x);

=0;

=0;

=0;

results=sar_panel_FE(y,[xconstant x],W,T,info);

vnames=strvcat('logcit','intercept','logp','logy');

prt_spnew(results,vnames,1)

% Print out effects estimates

spat_model=0;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sar(results,vnames,W);

2、空间固定效应(Spatial fixed effects)

T=30;

N=46;

W=normw(W1);

y=A(:,[3]);

x=A(:,[4,6]);

for t=1:T

t1=(t-1)*N+1;t2=t*N;

wx(t1:t2,:)=W*x(t1:t2,:);

end

xconstant=ones(N*T,1);

[nobs K]=size(x);

=0;

=1;

=0;

results=sar_panel_FE(y,x,W,T,info);

vnames=strvcat('logcit','logp','logy');

prt_spnew(results,vnames,1)

% Print out effects estimates

spat_model=0;

direct_indirect_effects_estimates(results,W,spat_model); panel_effects_sar(results,vnames,W);

3、时点固定效应(Time period fixed effects)

T=30;

N=46;

W=normw(W1);

y=A(:,[3]);

x=A(:,[4,6]);

for t=1:T

t1=(t-1)*N+1;t2=t*N;

wx(t1:t2,:)=W*x(t1:t2,:);

end

xconstant=ones(N*T,1);

[nobs K]=size(x);

=0; % required for exact results

=2;

=0; % Do not print intercept and fixed effects; use =1 to turn on results=sar_panel_FE(y,x,W,T,info);

vnames=strvcat('logcit','logp','logy');

prt_spnew(results,vnames,1)

% Print out effects estimates

spat_model=0;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sar(results,vnames,W);

4、双固定效应(Spatial and time period fixed effects)

N=46;

W=normw(W1);

y=A(:,[3]);

x=A(:,[4,6]);

for t=1:T

t1=(t-1)*N+1;t2=t*N;

wx(t1:t2,:)=W*x(t1:t2,:);

end

xconstant=ones(N*T,1);

[nobs K]=size(x);

=0; % required for exact results

=3;

=0; % Do not print intercept and fixed effects; use =1 to turn on results=sar_panel_FE(y,x,W,T,info);

vnames=strvcat('logcit','logp','logy');

prt_spnew(results,vnames,1)

% Print out effects estimates

spat_model=0;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sar(results,vnames,W);

三、静态面板SDM模型

1、无固定效应(No fixed effects)

N=46;

W=normw(W1);

y=A(:,[3]);

x=A(:,[4,6]);

for t=1:T

t1=(t-1)*N+1;t2=t*N;

wx(t1:t2,:)=W*x(t1:t2,:);

end

xconstant=ones(N*T,1);

[nobs K]=size(x);

=0;

=0;

=0;

results=sar_panel_FE(y,[xconstant x wx],W,T,info);

vnames=strvcat('logcit','intercept','logp','logy','W*logp','W*logy'); prt_spnew(results,vnames,1)

% Print out effects estimates

spat_model=1;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sdm(results,vnames,W);

2、空间固定效应(Spatial fixed effects)

T=30;

N=46;

W=normw(W1);

y=A(:,[3]);

x=A(:,[4,6]);

for t=1:T

t1=(t-1)*N+1;t2=t*N;

wx(t1:t2,:)=W*x(t1:t2,:);

end

xconstant=ones(N*T,1);

[nobs K]=size(x);

=0; % required for exact results

=1;

=0; % Do not print intercept and fixed effects; use =1 to turn on results=sar_panel_FE(y,[x wx],W,T,info);

vnames=strvcat('logcit','logp','logy','W*logp','W*logy');

prt_spnew(results,vnames,1)

% Print out effects estimates

spat_model=1;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sdm(results,vnames,W);

3、时点固定效应(Time period fixed effects)

T=30;

N=46;

W=normw(W1);

y=A(:,[3]);

for t=1:T

t1=(t-1)*N+1;t2=t*N;

wx(t1:t2,:)=W*x(t1:t2,:);

end

xconstant=ones(N*T,1);

[nobs K]=size(x);

=0; % required for exact results

=2;

=0; % Do not print intercept and fixed effects; use =1 to turn on % New routines to calculate effects estimates

results=sar_panel_FE(y,[x wx],W,T,info);

vnames=strvcat('logcit','logp','logy','W*logp','W*logy');

% Print out coefficient estimates

prt_spnew(results,vnames,1)

% Print out effects estimates

spat_model=1;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sdm(results,vnames,W)

4、双固定效应(Spatial and time period fixed effects)

T=30;

N=46;

W=normw(W1);

y=A(:,[3]);

for t=1:T

t1=(t-1)*N+1;t2=t*N;

wx(t1:t2,:)=W*x(t1:t2,:);

end

xconstant=ones(N*T,1);

[nobs K]=size(x);

=0;

=0; % required for exact results

=3;

=0; % Do not print intercept and fixed effects; use =1 to turn on results=sar_panel_FE(y,[x wx],W,T,info);

vnames=strvcat('logcit','logp','logy','W*logp','W*logy');

prt_spnew(results,vnames,1)

% Print out effects estimates

spat_model=1;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sdm(results,vnames,W)

wald test spatial lag

% Wald test for spatial Durbin model against spatial lag model btemp=;

varcov=;

Rafg=zeros(K,2*K+2);

计量经济学·多元线性回归模型

计量经济学·多元线性回归模型

2006年 217656.6 77597.2 63376.86 2007年 268019.4 93563.6 73300.1 2008年 316751.7 100394.94 79526.53 2009年 345629.2 82029.69 68618.37 2010年 408903 107022.84 94699.3 2011年 484123.5 123240.56 113161.39 2012年 534123 129359.3 114801 2013年 588018.8 137131.4 121037.5 2014年 636138.7 143911.66 120422.84 数据来源:国家统计局 三、模型的检验及结果的解释、评价 (一)OLS 法的检验 相关系数: Y X1 X2 Y 1 0.9799919175967026 0.98352422945 0628 X1 0.97999191759 67026 1 0.99756527944 46187 X2 0.983524229450628 0.99756527944 46187 1 线性图: 100,000 200,000300,000400,000500,000600,000700,000Y X1 X2 估计参数: Dependent Variable: Y

Method: Least Squares Date: 12/14/15 Time: 14:47 Sample: 1985 2014 Included observations: 30 Variable Coefficient Std. Error t-Statistic Prob. C 3775.319359 326024 8769.9280467 183 0.4304846447 102545 0.67026006 64360232 X1 -0.91272630 85551189 1.9385186318 83585 -0.470837005 9194414 0.64153894 75333828 X2 5.522785592 51161 2.2548570541 42605 2.4492841275 08302 0.02108703 0146243 R-squared 0.967586049 4429319 Mean dependent var 173871.823 3333334 Adjusted R-squared 0.965185016 0683343 S.D. dependent var 187698.441 4104575 S.E. of regression 35022.22758 863741 Akaike info criterion 23.8599929 764685 Sum squared resid 3311702348 2.29852 Schwarz criterion 24.0001127 1463471 Log likelihood -354.899894 6470274 Hannan-Quinn criter. 23.9048184 8460881 F-statistic 402.9873385 683694 Durbin-Watson stat 0.54328498 36158895 Prob(F-statistic) 7.850214650 723685e-21 统计检验: (1)拟合优度:从上表可以得到R2=0.9675860494429319,修正后的可决系数R2=0.9651850160683343,这说明模型对样本的拟合很好。 (2)F检验:针对H0: (二)多重共线性的检验及修正 相关系数矩阵: X1 X2

计量经济学 案例分析

第二章 案例分析 研究目的:分析各地区城镇居民计算机拥有量与城镇居民收入水平的关系,对更多规律的研究具有指导意义. 一. 模型设定 2011年年底城镇居民家庭平均每百户计算机拥有量Y 与城镇居民平均每人全年家庭总收入X 的关系 图2.1 各地区城镇居民每百户计算机拥有量与人均总收入的散点图 由图可知,各地区城镇居民每百户计算机拥有量随着人均总收入水平的提高而增加,近似于线性关系,为分析其数量性变动规律,可建立如下简单线性回归模型: Y t =β1+β2X t +u t 50 60 708090100 110120130140 X Y

二.估计参数 假定所建模型及其随机扰动项u i满足各项古典假设,用普通最小二乘法(OLSE)估计模型参数.其结果如下: 表2.1 回归结果 Dependent Variable: Y Method: Least Squares Date: 11/13/17 Time: 12:50 Sample: 1 31 Included observations: 31 Variable Coefficient Std. Error t-Statistic Prob. C 11.95802 5.622841 2.126686 0.0421 X 0.002873 0.000240 11.98264 0.0000 R-squared 0.831966 Mean dependent var 77.08161 Adjusted R-squared 0.826171 S.D. dependent var 19.25503 S.E. of regression 8.027957 Akaike info criterion 7.066078 Sum squared resid 1868.995 Schwarz criterion 7.158593 Log likelihood -107.5242 Hannan-Quinn criter. 7.096236 F-statistic 143.5836 Durbin-Watson stat 1.656123 Prob(F-statistic) 0.000000 由表2.1可得, β1=11.9580,β2=0.0029 故简单线性回归模型可写为: ^ Y X t t=11.9580+0.0029 其中:SE(β1)=5.6228, SE(β2)=0.0002 R-squared=0.8320,F=143.5836,n=31

计量经济学简单线性回归实验报告精编

实验报告 1. 实验目的随着中国经济的发展,居民的常住收入水平不断提高,粮食销售量也不断增长。研究粮食年销售量与人均收入之间的关系,对于探讨粮食年销售量的增长的规律性有重要的意义。 2. 模型设定 为了分析粮食年销售量与人均收入之间的关系,选择“粮食年销售量” 为被解释变量(用Y 表示),选择“人均收入”为解释变量(用X 表 示)。本次实验报告数据取自某市从1974 年到1987 年的数据(教材书上101页表3.11),数据如下图所示:

1粮食年销售量Y/万吨人均收入X/ rF1974[ 9& 45153.2 1975100.7190 pl1976102.8240.3 1977133. 95301.12 [61978140.13361 71979143.11420 8—1980146.15491.76「91981144.6501 101982148. 94529.2 1 11-1983158.55552. 72匸1984169. 68771.16 131985P 162.1481L8 14二1986170. 09988.43 1519871F& 691094.65为分析粮食年销售量与人均收入的关系,做下图所谓的散点图 从散点图可以看出粮食年销售量与人均收入大体呈现为线性关 系,可以建立如下简单现行回归模型: 3?估计参数

Y t = ■? 1 2 X t ——I t 假定所建模型及其中的随机扰动项叫满足各项古典假定,可以 用OLS法估计其参数。 通过利用EViews对以上数据作简单线性回归分析,得出回归结果如下表所示: Dependent Variable Y Method: Least Squares Date 10/15/11 Time 14 49 Sample- 1 14 Included observations: 14 Variable Coefficient Std Error t-Statistic Prob C99 61349 6 431242 15 489000 0000 X0.0814700.010738 7.5071190.0000 R-squared0 827493Mean dependent var142 7129 Adjusted R-squared0 813123S.D. dependent var26.09805 S E of regression11 28200Akaike info criterion7 915858 Sum squared resid1527 403Schwarz criterion7 907152 Log likelihood-52.71101F-statisti c5756437 Durbin-V/atson stat0 638969Prob(尸-statistic)0 000006 可用规范的形式将参数估计和检验的结果写为: A Y t =99.61349+0.08147 X t (6.431242)(0.10738) t= (15.48900) (7.587119) R2=0.827498 F=57.56437 n=14 4?模型检验 (1).经济意义检验 A A 所估计的参数1=99.61349, 1 2=0.08147,说明人均收入每增加 1元,平均说来可导致粮食年销售量提高0.08147元。这与经济学中

空间计量经济学分析

空间计量经济学分析 空间依赖、空间异质性 ?传统的统计理论是一种建立在独立观测值假定基础上的理论。然而,在现实世界中,特别是遇到空间数 据问题时,独立观测值在现实生活中并不是普遍存在的(Getis, 1997)。 ?对于具有地理空间属性的数据,一般认为离的近的变量之间比在空间上离的远的变量之间具有更加密切 的关系(Anselin & Getis,1992)。正如著名的Tobler地理学第一定律所说:“任何事物之间均相关,而离的较近事物总比离的较远的事物相关性要高。”(Tobler,1979) ?地区之间的经济地理行为之间一般都存在一定程度的Spatial Interaction,Spatial Effects):Spatial Dependence and Spatial Autocorrelation)。 ?一般而言,分析中涉及的空间单元越小,离的近的单元越有可能在空间上密切关联(Anselin & Getis, 1992)。 ?然而,在现实的经济地理研究中,许多涉及地理空间的数据,由于普遍忽视空间依赖性,其统计与计量 分析的结果值得进一步深入探究(Anselin & Griffin, 1988)。 ?可喜的是,对于这种地理与经济现象中常常表现出的空间效应(特征)问题的识别估计,空间计量经济 学提供了一系列有效的理论和实证分析方法。 ?一般而言,在经济研究中出现不恰当的模型识别和设定所忽略的空间效应主要有两个来源(Anselin, 1988):空间依赖性(Spatial Dependence)和空间异质性(Spatial Heterogeneity)。 空间依赖性 ?空间依赖性(也叫空间自相关性)是空间效应识别的第一个来源,它产生于空间组织观测单元之间缺乏 依赖性的考察(Cliff & Ord, 1973)。 ?Anselin & Rey(1991)区别了真实(Substantial)空间依赖性和干扰(Nuisance)空间依赖性的不同。 ?真实空间依赖性反映现实中存在的空间交互作用(Spatial Interaction Effects), ?比如区域经济要素的流动、创新的扩散、技术溢出等, ?它们是区域间经济或创新差异演变过程中的真实成分,是确确实实存在的空间交互影响, ?如劳动力、资本流动等耦合形成的经济行为在空间上相互影响、相互作用,研发的投入产出行为及政策 在地理空间上的示范作用和激励效应。 ?干扰空间依赖性可能来源于测量问题,比如区域经济发展过程研究中的空间模式与观测单元之间边界的 不匹配,造成了相邻地理空间单元出现了测量误差所导致。 ?测量误差是由于在调查过程中,数据的采集与空间中的单位有关,如数据一般是按照省市县等行政区划 统计的,这种假设的空间单位与研究问题的实际边界可能不一致,这样就很容易产生测量误差。 ?空间依赖不仅意味着空间上的观测值缺乏独立性,而且意味着潜在于这种空间相关中的数据结构,也就 是说空间相关的强度及模式由绝对位置(格局)和相对位置(距离)共同决定。 ?空间相关性表现出的空间效应可以用以下两种模型来表征和刻画:当模型的误差项在空间上相关时,即 为空间误差模型;当变量间的空间依赖性对模型显得非常关键而导致了空间相关时,即为空间滞后模型(Anselin,1988)。 空间异质性 ?空间异质性(空间差异性),是空间计量学模型识别的第二个来源。 ?空间异质性或空间差异性,指地理空间上的区域缺乏均质性,存在发达地区和落后地区、中心(核心) 和外围(边缘)地区等经济地理结构,从而导致经济社会发展和创新行为存在较大的空间上的差异性。 ?空间异质性反映了经济实践中的空间观测单元之间经济行为(如增长或创新)关系的一种普遍存在的不 稳定性。 ?区域创新的企业、大学、研究机构等主体在研发行为上存在不可忽视的个体差异,譬如研发投入的差异 导致产出的技术知识的差异, ?这种创新主体的异质性与技术知识异质性的耦合将导致创新行为在地理空间上具有显著的异质性差异, 进而可能存在创新在地理空间上的相互依赖现象或者创新的局域俱乐部集团。 ?对于空间异质性,只要将空间单元的特性考虑进去,大多可以用经典的计量经济学方法进行估计。 ?但是当空间异质性与空间相关性同时存在时,经典的计量经济学估计方法不再有效,而且在这种情况下,

计量经济学·多元线性回归模型

计量经济学·多元线性回归模型应用作业 1985~2014年中国GDP与进口、出口贸易总额的关系 一、概述 在当今市场上,一国的GDP与多个因素存在着紧密的联系,例如进口总额和出口总额等都是影响一国GDP 的重要因素。本次将以中国1985-2014年GDP和进口总额、出口总额两个因素因素的数据,通过建立计量经济模型来分析上述变量之间的关系,强调贸易对GDP 的重要性,从而促进国内生产总值的发展。 二、模型构建过程 ⒈变量的定义 解释变量:X1进口贸易总额,X2出口贸易总额被解释变量:Y国内生产总值 建立计量经济模型:解释原油产量与进口贸易总额、出口贸易总额之间的关系。 ⒉模型的数学形式 设定GDP与两个解释变量相关关系模型,样本回归模型为: ⒊数据的收集 该模型的构建过程中共有两个变量,分别是中国从1990-2006年民用汽车拥有量、电力产量、国内生产总值以及能源消费总量,因此为时间序列数据,最后一个即2006年的数据作为预测对比数据,收集的数据如下所示 时间国内生产总值(亿元) 出口总额(人民币亿 元) 进口总额(人民币亿 元) 1985年9039.9 808.9 1257.8 1986年10308.8 1082.1 1498.3 1987年12102.2 1470 1614.2 1988年15101.1 1766.7 2055.1 1989年17090.3 1956 2199.9 1990年18774.3 2985.8 2574.3 1991年21895.5 3827.1 3398.7 1992年27068.3 4676.3 4443.3 1993年35524.3 5284.8 5986.2 1994年48459.6 10421.8 9960.1 1995年61129.8 12451.8 11048.1 1996年71572.3 12576.4 11557.4 1997年79429.5 15160.7 11806.5 1998年84883.7 15223.6 11626.1 1999年90187.7 16159.8 13736.5 2000年99776.3 20634.4 18638.8 2001年110270.4 22024.4 20159.2 2002年121002 26947.9 24430.3 2003年136564.6 36287.9 34195.6 2004年160714.4 49103.3 46435.8 2005年185895.8 62648.1 54273.7

计量经济学模型分析论文

计量经济学模型分析论文 工商101

我国城镇居民储蓄存款影响因素的实证分析 摘要:近年来,随着中国经济的飞速发展,一直保持在高水平上的中国储蓄率受到了越来越多国内外经济学家的关注。高储蓄率给我国经济发展带来充裕资金来源,是支持经济快速增长的重要因素。更为重要的是,源源不断的资金流保证了金融机构的流动性,增强了银行的稳定性。与此同时,也给我国经济发展带来前所未有的挑战,因为,过高的储蓄,必然伴随着投资或消费的不足。所以对影响居民储蓄的主要因素进行分析,才能在制定宏观政策上采取适当的措施,使储蓄率保持在一个适当的水平,促进经济增长。本文利用我国1982年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型。通过对该模型的经济含义分析可以得出可支配收入率对储蓄率的影响不大,还有利率对储蓄率的影响很小,值得注意的是,模型中的基尼系数对城镇居民的储蓄影响是相当大的。

引言(提出问题) 自1949年以来,中国储蓄率随着经济增长和收入水平提高呈不断上升趋势,因而高储蓄率也被认为是解释中国经济高速增长的一个主要因素。虽然高储蓄率总是会导致更高的收入及较高的经济增长率,但并非储蓄率越高越好,必然会存在一个最优的储蓄率。 据统计,我国近年来的实际GDP平均每年增长9%左右,而资本的净边际产量即(MPK-δ),约为0.9%。我国的资本收益(MPK-δ)=每年0.9%,大大低于经济的平均增长率(n+g=9%)。可见,我国的资本存量已经远远超过了黄金律水平。也就是说,当前我国的储蓄率和投资水平已经偏高,而消费率则偏低。所以我们应该降低储蓄率,减少投资,把收入的更大份额用于消费,这样就会立即提高消费水平,并最终达到更高消费水平的稳定状态。 那应该如何降低我国的储蓄率呢?下面我们将以城镇居民的数据为例进行分析。

计量经济学案例分析汇总

计量经济学案例分析1 一、研究的目的要求 居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为元, 最低的黑龙江省仅为人均元,最高的上海市达人均10464元,上海是黑龙江的倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。所以模型的被解释变量Y选定为“城市居民每人每年的平均消费支出”。 因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。 影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。 从2002年《中国统计年鉴》中得到表的数据: 表 2002年中国各地区城市居民人均年消费支出和可支配收入

计量经济学课后习题答案

计量经济学练习题 第一章导论 一、单项选择题 ⒈计量经济研究中常用的数据主要有两类:一类是时间序列数据,另一类是【 B 】 A 总量数据 B 横截面数据 C平均数据 D 相对数据 ⒉横截面数据是指【 A 】 A 同一时点上不同统计单位相同统计指标组成的数据 B 同一时点上相同统计单位相同统计指标组成的数据 C 同一时点上相同统计单位不同统计指标组成的数据 D 同一时点上不同统计单位不同统计指标组成的数据 ⒊下面属于截面数据的是【 D 】 A 1991-2003年各年某地区20个乡镇的平均工业产值 B 1991-2003年各年某地区20个乡镇的各镇工业产值 C 某年某地区20个乡镇工业产值的合计数 D 某年某地区20个乡镇各镇工业产值 ⒋同一统计指标按时间顺序记录的数据列称为【 B 】 A 横截面数据 B 时间序列数据 C 修匀数据 D原始数据 ⒌回归分析中定义【 B 】 A 解释变量和被解释变量都是随机变量 B 解释变量为非随机变量,被解释变量为随机变量 C 解释变量和被解释变量都是非随机变量 D 解释变量为随机变量,被解释变量为非随机变量 二、填空题 ⒈计量经济学是经济学的一个分支学科,是对经济问题进行定量实证研究的技术、方法和相关理论,可以理解为数学、统计学和_经济学_三者的结合。

⒉现代计量经济学已经形成了包括单方程回归分析,联立方程组模型,时间序列分 析三大支柱。 ⒊经典计量经济学的最基本方法是回归分析。 计量经济分析的基本步骤是:理论(或假说)陈述、建立计量经济模型、收集数据、计量经济模型参数的估计、检验和模型修正、预测和政策分析。 ⒋常用的三类样本数据是截面数据、时间序列数据和面板数据。 ⒌经济变量间的关系有不相关关系、相关关系、因果关系、相互影响关系和恒 等关系。 三、简答题 ⒈什么是计量经济学它与统计学的关系是怎样的 计量经济学就是对经济规律进行数量实证研究,包括预测、检验等多方面的工作。计量经济学是一种定量分析,是以解释经济活动中客观存在的数量关系为内容的一门经济学学科。 计量经济学与统计学密切联系,如数据收集和处理、参数估计、计量分析方法设计,以及参数估计值、模型和预测结果可靠性和可信程度分析判断等。可以说,统计学的知识和方法不仅贯穿计量经济分析过程,而且现代统计学本身也与计量经济学有不少相似之处。例如,统计学也通过对经济数据的处理分析,得出经济问题的数字化特征和结论,也有对经济参数的估计和分析,也进行经济趋势的预测,并利用各种统计量对分析预测的结论进行判断和检验等,统计学的这些内容与计量经济学的内容都很相似。反过来,计量经济学也经常使用各种统计分析方法,筛选数据、选择变量和检验相关结论,统计分析是计量经济分析的重要内容和主要基础之一。 计量经济学与统计学的根本区别在于,计量经济学是问题导向和以经济模型为核心的,而统计学则是以经济数据为核心,且常常是数据导向的。典型的计量经济学分析从具体经济问题出发,先建立经济模型,参数估计、判断、调整和预测分析等都是以模型为基础和出发点;典型的统计学研究则并不一定需要从具体明确的问题出发,虽然也有一些目标,但可以是模糊不明确的。虽然统计学并不排斥经济理论和模型,有时也会利用它们,但统计学通常

计量经济学习题解析

计量经济学习题解析 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

第一章 1、下列假想模型是否属于揭示因果关系的计量经济学模型为什么 (1)t S =+t R ,其中t S 为第t 年农村居民储蓄增加额(单位:亿元),t R 为第t 年城镇居民可支配收入总额(单位:亿元)。 (2)1t S -=+t R ,其中1t S -为第t-1年底农村居民储蓄余额(单位:亿元),t R 为第t 年农村居民纯收入总额(单位:亿元)。 2、指出下列假想模型中的错误,并说明理由: 其中,t RS 为第t 年社会消费品零售总额(单位:亿元),t RI 为第t 年居民收入总额(单位:亿元)(指城镇居民可支配收入总额与农村居民纯收入总额之和),t IV 为第t 年全社会固定资产投资总额(单位:亿元)。 3、下列设定的精良经济模型是否合理为什么 4、 (1)3 01i i i GDP GDP ββμ==+?+∑ 其中,i GDP (i=1,2,3)是第一产业、第二产业、第三产业增加值,μ为随机干扰项。 (2)财政收入=f (财政支出)+ μ,μ为随机干扰项。 答案1、(1)不是。因为农村居民储蓄增加额应与农村居民可支配收入总额有关,而与城镇居民可支配收入总额没有因果关系。 (2)不是。第t 年农村居民的纯收入对当年及以后年份的农村居民储蓄有影响,但并不对第t-1的储蓄产生影响。 2、一是居民收入总额RI t 前参数符号有误,应是正号;二是全社会固定资产投资总额IV t 这一解释变量的选择有误,它对社会消费品零售总额应该没有直接的影响。 3、(1)不合理,因为作为解释变量的第一产业、第二产业和第三产业的增加值是GDP 的构成部分,三部分之和正为GDP 的值,因此三变量与GDP 之间的关系并非随机关系,也非因果关系。 (2)不合理,一般来说财政支出影响财政收入,而非相反,因此若建立两者之间的模型,解释变量应该为财政收入,被解释变量应为财政支出;另外,模型没有给出具体的数学形式,是不完整的。 第二章五、计算分析题 1、令kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。生育率对受教育年数的简单回归模型为 (1)随机扰动项μ包含什么样的因素它们可能与受教育水平相关吗

计量经济学多元线性回归

低碳农业发展影响因素分析——以新疆南疆五地州为例 学生姓名方芳 学号1075717008 所属学院经济与管理学院 专业农村与区域发展 塔里木大学教务处制

目录 1 引言 (1) 2 数据来源和研究方法 (1) 2.1数据来源 (1) 2.2研究方法 (2) 3 模型检验与结果 (3) 3.1初始模型计量 (3) 3.2检验 (3) 4 结论与建议 (4) 5 参考文献 (4)

低碳农业发展影响因素分析 --以新疆南疆五地州为例 方芳 摘要:全球变暖问题引起世界各国的广泛关注,这一变化使得自然灾害频发,甚至危及人类安全,因此解决这一问题迫在眉睫。通过对新疆南疆五地州的农业总产值与化肥施用量、农用机械总动力及农作物总播种面积进行回归分析后,发现化肥施用量对农作物的总产值影响极大,是其主要的制约因素。要发展低碳农业应转变农业生产方式,实施保护性耕作;应推广施肥新技术,提高化肥利用率;应改进装置,利用新技术生产化肥;发展生态农业,实现经济循环发展。 关键字:低碳农业影响因素回归分析 1 引言 近年来气候变化所导致的高温热潮、暴雨连连、旱灾、沙尘暴频发事件的概率持续增加,CO2是造成该现象的源头之一,因此,发展低碳经济、发展节能减排成为全球关注的热点。2014 年《中美气候变化联合声明》提出我国将于2030 年左右达到碳排放峰值的庄严承诺,2015 年12 月12 日,195个缔约方在巴黎达成了新的全球气候协议———《巴黎协议》,提出努力将气温升幅限制在1.5℃内的目标。农业碳排放量介于电热生产和尾气之间,成为第二大排放源,占我国碳排放总量的17%。新疆位于亚欧大陆腹地,地处中国西北边陲,是中国面最大、交界邻国最多、陆地边境线最长的省区,肩负着与重要世界经济资源大国沿边开放的重任。同时,新疆作为我国重要的种植业和畜牧业基地,以8%的绿洲面积承载了90%以上的人口、耕地和生产总值,绿色生态压力相当严峻。新疆南疆位于天山以南的塔里木盆地 ,四周高山环抱。在行政区划上包括巴音郭楞、阿克苏、喀什、克孜勒苏、和田等五地州及生产建设兵团的四个农业师。塔里木河是我国最大的内陆河,它由西向东1321km,流域覆盖新疆南部地区,面积102万km2,人口825.7万 ,分别占新疆自治区的61%和 47%,是我国重要的棉花基地。冉锦成、苏洋等人研究表明,南疆各地 (州,市) 区域差异明显,喀什地区属碳排放量、碳排放强度“双高”型地区,因此,通过对农业产值与化肥施用量、机械总动力以及农作物播种面积的回归分析,试图找到影响低碳农业发展的主要因素,并提出相关的建议,促进农业实现低碳生产。 2 数据来源和研究方法 2.1数据来源 本文选取的是新疆2006--2016年的农业生产数据,其中包括:农业总产值(亿)Y,化肥施用量(万吨)(X1)、农用机械总动力(万千瓦)(X2)、农作物总播种面积(万公顷)(X3),数据来源于《中国统计年鉴》和《新疆统计年鉴》(2006--2016),数据见表1。 表1 新疆统计年鉴2006-2016样本数据

计量经济学常用方法及应用-经济管理学院

计量经济学专题及应用 【授课计划:计划讲8个专题。主要是对计量经济学中5块常用的方法进行总结性和归纳性的介绍,侧重于讲在实际经济研究和实证分析中碰到相应问题时,计量经济方法上应当怎样处理,为什么要这样处理,如何处理,并结合STATA 讲应用例子。此外,1次专题介绍STATA的基础功能,1次专题系统梳理计量经济学的基础理论,还有1次专题结合实际研究例子,介绍一手数据搜集的调查设计和组织。通过上述课程,使学生能够在已经接受过基本理论和方法训练的基础上,更好地理解计量经济学的内容,并培养和提高开展实证研究的能力】 1、STATA简介及简单应用 介绍目前国内外最流行的计量经济分析软件STATA的基本功能和用法,通过简单例子介绍STATA在数据清理和管理、描述性统计分析、回归分析等方法的用法。同时插入EXCEL在处理数据方面的一些功能和应用。上午讲课,下午习题课。 2、计量经济分析基础 对计量经济学的基础理论进行总结性和归纳性的回顾、输理和介绍,重点讲假设检验和回归的道理,以及回归诊断。上午讲课,下午习题课。 3、项目评估与政策分析应用 系统介绍计量经济学在项目评估和政策分析上的方法和应用,特别介绍虚拟变量模型的建立及其在政策分析和项目评估研究中的应用。上午讲课,下午习题课。 4、经济学中的内生性问题及相关计量经济方法 总结和介绍计量经济学中内生性问题在经济研究中的涵义和问题,内生性问题产生的主要原因,对计量估计结果的影响,内生性问题的处理方法(工具变量和两阶段估计等)和应用例子。上午讲课,下午习题课。 5、微观个体行为的计量经济分析方法 总结和介绍分析微观个体行为的属性和受限因变量模型(Probit, Logit, Tobit, Heckman, Mlogit, Clogit等)等常用微观计量经济方法,包括模型内涵和适用范

计量经济学数据分析

计量经济学数据分析 学院:管理与经济学院 专业:技术经济及管理 姓名:葛文 学号:20808172

分析中国经济发展对中国股票市场的影响本文通过分析2000年到2007年各月股票市场流通市值(value),成交金额(turnover),GDP现价和居民储蓄(saving)的相关数据,试图分析我国经济发展对股票市场的影响。数据来源为CCFR数据库和证监会网站。具体分析如下: 一、绘制四个数据变量的线性图,查看2000年到2007年他们各自的走势。 5000 10000 15000 20000 25000 2000200120022003200420052006 GDP 40000 60000 80000 100000 120000 140000 160000 180000 2000200120022003200420052006 SAVING 0 10000 20000 30000 40000 50000 60000 2000200120022003200420052006 turnover 10000 20000 30000 40000 50000 60000 2000200120022003200420052006 value 二、采用最小二乘法(OLS)进行分析

回归表达式:gdp=10433.48+0.191218*turnover 其中:Prob低于0.05,说明对应系数显著不为零;R2=0.195641,说明拟合程度一般;Prob(F-statistic)=0.000013<0.05,说明至少有一个解释变量的回归系数不为零。 回归表达式:gdp=8470.567+0.196853*value 其中:Prob低于0.05,说明对应系数显著不为零;R2=0.154730,说明拟合程度一般;Prob(F-statistic)=0.000125<0.05,说明至少有一个解释变量的回归系数不为零。

计量经济学分析模型

计量经济学分析模型

摘要 改革开放以来,我国经济呈迅速而稳定的增长趋势,由于分配机制和收入水平的变化,城镇居民生活水平在达到稳定小康之后,消费结构和消费水平都出现了一些新的特点。本文旨在对近几年,我国城镇年人均收入变动对年人均各种消费变动的影响进行实证分析。首先,我们综合了几种关于收入和消费的主要理论观点;本文根据相关的数据统计数据,运用一定的计量经济学的研究方法,进而我们建立了理论模型。然后,收集了相关的数据,利用EVIEWS软件对计量模型进行了参数估计和检验,并加以修正。最后,我们对所得的分析结果和影响消费的一些因素作了经济意义的分析,并相应提出一些政策建议。并找到影响居民消费的主要因素。 关键词:居民消费;城镇居民;回归;Eviews

目录 摘要.................................................................. II 前言. (1) 1 问题的提出 (2) 2 经济理论陈述 (3) 2.1西方经济学中有关理论假说 (3) 2.2有关消费结构对居民消费影响的理论 (4) 3 相关数据收集 (6) 4 计量经济模型的建立 (9) 5 模型的求解和检验 (10) 5.1计量经济的检验 (10) 5.1.1模型的回归分析 (10) 5.1.2拟合优度检验: (11) 5.1.3 F检验 (11) 5.1.4 T检验 (12) 5.2 计量修正模型检验: (12) 5.2.1 Y与的一元回归 (13) 5.2.2拟合优度的检验 (13) 5.2.3 F检验 (14) 5.2.4 T检验: (15) 5.3经济意义的分析: (15) 6 政策建议 (16) 结论 (17) 参考文献 (19)

计量经济学数据分析

计量经济学数据分析

计量经济学数据分析 学院:管理与经济学院 专业:技术经济及管理 姓名:葛文 学号:20808172

分析中国经济发展对中国股票市场的影响 本文通过分析2000年到2007年各月股票市场流通市值(value ),成交金额(turnover),GDP 现价和居民储蓄(saving)的相关数据,试图分析我国经济发展对股票市场的影响。数据来源为CCFR 数据库和证监会网站。具体分析如下: 一、绘制四个数据变量的线性图,查看2000年到2007年他们各自的走势。 5000 1000015000 20000250002000200120022003200420052006GDP 4000060000 80000 100000 120000 140000 160000 180000 2000200120022003200420052006SAVING 10000 20000 30000 40000 50000 60000 2000200120022003200420052006turnover 01000020000300004000050000600002000200120022003200420052006value 二、采用最小二乘法(OLS)进行分析

回归表达式:gdp=10433.48+0.191218*turnover 其中:Prob低于0.05,说明对应系数显著不为零;R2=0.195641,说明拟合程度一般;Prob(F-statistic)=0.000013<0.05,说明至少有一个解释变量的回归系数不为零。 回归表达式:gdp=8470.567+0.196853*value 其中:Prob低于0.05,说明对应系数显著不为零;R2=0.154730,说明拟合程度一般;Prob(F-statistic)=0.000125<0.05,说明至少有一个解释变量的回归系数不为零。

计量经济学分析报告

武汉轻工大学 经济与管理学院实验报告 实验课程名称《计量经济学》 实验起止日期实验指导教师 实验学生姓名学生班级学号 实 验 评 语 实验 评分 教师 签名 2018年 10 月 23 日

实验项目名称《计量经济学》实验日期2018.10.17 学生姓名刘晓慧班级学号会计1601班 1608080108 一、预习报告(请阐述本次实验的目的及意义) 通过计量经济软件的使用,理解计量经济模型的建模思想以及估计、检验、分析的各种方法, 能够利用计量经济软件建立基本的回归模型,熟悉该软件的各种操作方法,并能够用该软件建模 来分析各种经济现象。熟悉stata软件的操作,对数据进行基本的描述统计。 二、实验方案(请说明本次实验的步骤和进程) 1.引入数据库的数据(我选用的的是数据库 2.5的数据) 2.定义自变量和应变量,对模型中所涉及的变量进行描述性统计。 3.输入相关命令,对变量进行调整,生成新变量,为模型中被解释变量与解释变量绘制散点图和拟合直线。 4.根据样本建立回归模型,对回归结果进行分析。

.05 .1 .15 D e n s i t y 4 6 810 12 Average Hourly Wage .02.04.06.08.1 .12 D e n s i t y 5 10 15 Average Hourly Wage kernel = epanechnikov, bandwidth = 1.5948 Kernel density estimate 4 6810 12 14 A v e r a g e H o u r l y W a g e 510 1520Years of Schooling 468 101214 A v e r a g e H o u r l y W a g e 050 100 150200 Number of People 468 1012 14 A v e r a g e H o u r l y W a g e

计量经济学经济模型分析

我国居民消费水平的变量因素分析 2010级工程管理赵莹201000271120 改革开放以来,我国居民收入与消费水平不断提高,居民消费结构升级和消费需求 扩张成为我国经济高速增长的主要动力,特别是进入20世纪90年代以来,居民消费需求对国民经济发展的影响不断增大,对国民经济产生了拉动作用。我国经济逐步由短缺经济走向过剩经济、由卖方市场转向买方市场,社会消费需求不足,居民消费问题显得更加突出。特别市对于如何启动内需,扩大居民消费变得越来越重要。因此,及时把握国民经济发展格局中居民消费需求变动趋势,制 定符合我国现阶段情况的国民消费政策,对于提高我国经济增长速度和质量都有重要意义。 我选取了全国1990年-2009年居民消费水平及其影响因素的统计资料,详情如下表 所示。 1、建立回归模型并进行参数估计

导入数据后得到下表: Dependent Variable Y FzlethGid Least Squares Date 12-13/12 Time: 22:19 Sample 1990 2009 Included observations 20 Variable Coefficient Std Error 卜 Statist 祀 Prob X1 0 402900 0 046073 z 743759 0..0000 X2 -0 023108 0 016025 -1 442040 0 1G8G X3 0-004474 0.005581 0 001593 0-4345 C -78 54985 50 62100 -1 554796 0 1396 R-squared 0.999564 Mean dependent \ar 3923.300 Adjusted F?-squared 0 999463 S D dependent var 2406 042 S.E. of regression 54.71930 Akaike info criterion 11.01317 Sum squared resid 47907 22 Sch.varz Gritericin 11 21831 Log likelihood ■106 1917 F-statistic 12239.64 Du 市in-Watson stat 0 92174-9 Pro biF-stati stic; 0 000000 表2 由表2可知,模型估计的结果为: Y? 0.403X 1 0.023X 2 O.OO4X 3 78.550 (0.046) (0.016) (0.006) (50.521) t= (8.743) (-1.442) (0.802) (-1.555) R 2 0.999564 R 2 0.999483 F=12239.64 n=20 D.W.=0.9217 、异方差性的检验 用怀特检验进行异方差性的检验,得出下表: ^Equation: IHITITLEB To rkfile: 越莹\Hntitled 冋区 V Proc Object

计量经济学实验分析

计量经济学实验报告 实验项目:多元线性回归、自相关、异方差、多重共线性 实验目的:掌握多元线性回归模型、自相关模型、异方差模型、多重共线性模型的估计和检验方法和处理方法 实验要求:选择方程进行多元线性回归;熟悉图形法检验和掌握D-W检验,理解广义差分法变换和掌握迭代法;掌 握Park或Glejser检验,理解同方差性变换; 实验原理:普通最小二乘法图形检验法D-W检验广义差分变换加权最小二乘法Park检验等 实验步骤: 首先:选择数据 为了研究影响中国税收收入增长的主要原因,选择国内生产总值(GDP)、财政支出(ED)、商品零售价格指数(RPI)做为解释变量,对税收收入(Y)做多元线性回归。从《中国统计年鉴》2011中收集1978—2009年各项影响因素的数据。如下表所示: 时间y各项税 收(亿元) X1 GDP(亿 元) X2 财政 支出(亿 元) X3 商品零 售价格指数 (1997=100) 1978 年 519.28 3678.7 1122.09 100.7 1979 年 537.82 4100.5 1281.79 102.714 1980 年 571.7 4587.6 1228.83 108.8768 1981 年 629.89 4935.8 1138.41 111.4899 1982 年 700.02 5373.4 1229.98 113.6082 1983 年 775.59 6020.9 1409.52 115.3123 1984 年 947.35 7278.5 1701.02 118.5411 19852040.79 9098.9 2004.25 128.9727

相关文档
最新文档