益阳市九年级中考数学模拟试卷
湖南省益阳市赫山区2024届中考数学适应性模拟试题含解析

湖南省益阳市赫山区2024届中考数学适应性模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.要使分式有意义,则x 的取值应满足( )A .x=﹣2B .x≠2C .x >﹣2D .x≠﹣22.已知抛物线y =x 2+3向左平移2个单位,那么平移后的抛物线表达式是( ) A .y =(x +2)2+3 B .y =(x ﹣2)2+3 C .y =x 2+1 D .y =x 2+53.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m4.下列运算正确的是( ) A .﹣3a+a=﹣4a B .3x 2•2x=6x 2 C .4a 2﹣5a 2=a 2D .(2x 3)2÷2x 2=2x 4 5.如图,正方形被分割成四部分,其中I 、II 为正方形,III 、IV 为长方形,I 、II 的面积之和等于III 、IV 面积之和的2倍,若II 的边长为2,且I 的面积小于II 的面积,则I 的边长为( )A .4B .3C .423-D .423+6.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为().A.100︒B.90︒C.80︒D.70︒7.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:居民(户) 1 2 3 4月用电量(度/户)30 42 50 51那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是218.如图,矩形ABCD中,E为DC的中点,AD:AB=3:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②2BF=PB•EF;③PF•EF=22AD;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④9.下图是由八个相同的小正方体组合而成的几何体,其左视图是()A.B.C.D.10.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是()A.26°.B.44°.C.46°.D.72°二、填空题(共7小题,每小题3分,满分21分)11.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为______m.(精确到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)12.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为2s甲________2s乙.(填“>”或“<”)13.春节期间,《中国诗词大会)节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱,现有以下四句古诗词:①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光.甲、乙两名同学从中各随机选取了一句写在纸上,则他们选取的诗句恰好相同的概率为________.14.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.15.如图1,点P从扇形AOB的O点出发,沿O→A→B→0以1cm/s的速度匀速运动,图2是点P运动时,线段OP 的长度y随时间x变化的关系图象,则扇形AOB中弦AB的长度为______cm.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n+1(n 为自然数)的坐标为 (用n 表示)17.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.三、解答题(共7小题,满分69分)18.(10分)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .求证:BC 是⊙O 的切线;设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长;若BE =8,sinB =513,求DG 的长,19.(5分)已知:如图,AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.20.(8分)平面直角坐标系xOy 中(如图),已知抛物线2y x bx c ++=经过点10(,)A 和30B (,),与y 轴相交于点C ,顶点为P .(1)求这条抛物线的表达式和顶点P 的坐标;(2)点E 在抛物线的对称轴上,且EA EC =,求点E 的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN ,点Q 在直线MN 右侧的抛物线上,MEQ NEB ∠∠=,求点Q 的坐标.21.(10分)如图,已知AB 是圆O 的直径,F 是圆O 上一点,∠BAF 的平分线交⊙O 于点E ,交⊙O 的切线BC 于点C ,过点E 作ED ⊥AF ,交AF 的延长线于点D .求证:DE 是⊙O 的切线;若DE =3,CE =2. ①求BCAE的值;②若点G 为AE 上一点,求OG+12EG 最小值. 22.(10分)如图,已知A (3,0),B (0,﹣1),连接AB ,过B 点作AB 的垂线段BC ,使BA =BC ,连接AC .如图1,求C 点坐标;如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角△BPQ ,连接CQ ,当点P 在线段OA 上,求证:PA =CQ ;在(2)的条件下若C 、P ,Q 三点共线,求此时∠APB 的度数及P 点坐标.23.(12分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.求该型号自行车的进价和标价分别是多少元?若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?24.(14分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB 的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.考点:分式有意义的条件.2、A【解题分析】结合向左平移的法则,即可得到答案.【题目详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.【题目点拨】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.3、D【解题分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【题目详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故选:D.【题目点拨】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.4、D【解题分析】根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.【题目详解】A. ﹣3a+a=﹣2a,故不正确;B. 3x 2•2x =6x 3,故不正确;C. 4a 2﹣5a 2=-a 2 ,故不正确;D. (2x 3)2÷2x 2=4x 6÷2x 2=2x 4,故正确; 故选D. 【题目点拨】本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键. 5、C 【解题分析】设I 的边长为x ,根据“I 、II 的面积之和等于III 、IV 面积之和的2倍”列出方程并解方程即可. 【题目详解】 设I 的边长为x根据题意有2222(22)x x x +=+ 解得423x =-或423x =+(舍去) 故选:C . 【题目点拨】本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键. 6、B 【解题分析】如图所示,过O 点作a 的平行线d ,根据平行线的性质得到∠2=∠3,进而求出将木条c 绕点O 旋转到与直线a 平行时的最小旋转角. 【题目详解】如图所示,过O 点作a 的平行线d ,∵a ∥d ,由两直线平行同位角相等得到∠2=∠3=50°,木条c 绕O 点与直线d 重合时,与直线a 平行,旋转角∠1+∠2=90°.故选B【题目点拨】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质. 7、C【解题分析】试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为110(30+42+42+50+50+50+51+51+51+51)=46.8, 中位数为50;众数为51,极差为51-30=21,方差为110[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故选C .考点:1.方差;2.中位数;3.众数;4.极差. 8、B 【解题分析】由条件设,AB=2x ,就可以表示出CP=3x ,,用三角函数值可以求出∠EBC 的度数和∠CEP的度数,则∠CEP=∠BEP ,运用勾股定理及三角函数值就可以求出就可以求出BF 、EF 的值,从而可以求出结论. 【题目详解】解:设,AB=2x ∵四边形ABCD 是矩形∴AD=BC ,CD=AB ,∠D=∠C=∠ABC=90°.DC ∥AB∴x ,CD=2x ∵CP :BP=1:2∴CP=3x ,BP=3x∵E 为DC 的中点, ∴CE=12CD=x ,∴tan ∠CEP=PC EC tan ∠EBC=EC BC ∴∠CEP=30°,∠EBC=30° ∴∠CEB=60° ∴∠PEB=30° ∴∠CEP=∠PEB∴EP 平分∠CEB ,故①正确; ∵DC ∥AB ,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=433x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·43322AD2=2×3x)2=6x2,∴PF·EF≠2AD2,故③错误. 在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=23 3x∵tan∠PAB=PBAB3∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt △AOB 和Rt △POB 中,由勾股定理得, AO=3x ,PO=33x ∴4AO·PO=4×3x·33x=4x 2 又EF·EP=23x·233x=4x 2 ∴EF·EP=4AO·PO .故④正确.故选,B【题目点拨】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.9、B【解题分析】解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B .10、A【解题分析】先根据正五边形的性质求出∠EAB 的度数,再由平行线的性质即可得出结论.【题目详解】解:∵图中是正五边形.∴∠EAB =108°.∵太阳光线互相平行,∠ABG =46°,∴∠FAE =180°﹣∠ABG ﹣∠EAB =180°﹣46°﹣108°=26°.故选A .【题目点拨】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.二、填空题(共7小题,每小题3分,满分21分)11、40.0【解题分析】首先过点A作AE∥BD,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.【题目详解】过点A作AE∥BD,交CD于点E,∵AB⊥BD,CD⊥BD,∴∠BAE=∠ABD=∠BDE=90°,∴四边形ABDE是矩形,∴AE=BD=20m,DE=AB=0.8m,在Rt△ACE中,∠CAE=63°,∴CE=AE•tan63°=20×1.96≈39.2(m),∴CD=CE+DE=39.2+0.8=40.0(m).答:筒仓CD的高约40.0m,故答案为:40.0【题目点拨】此题考查解直角三角形的应用−仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.12、>【解题分析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.【题目详解】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲>S2乙.故答案为:>.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13、1 4【解题分析】用列举法或者树状图法解答即可. 【题目详解】解:如图,由图可得,甲乙两人选取的诗句恰好相同的概率为41164 P==.故答案为:1 4 .【题目点拨】本题考查用树状图法或者列表法求随机事件的概率,熟练掌握两种解答方法是关键.14、60°【解题分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【题目详解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为60°.【题目点拨】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.15、3【解题分析】由图2可以计算出OB的长度,然后利用OB=OA可以计算出通过弦AB的长度.【题目详解】由图2得通过OB 所用的时间为4442233ππ⎛⎫++ ⎪⎝⎭-=s ,则OB 的长度为1×2=2cm,则通过弧AB 的时间为4442233ππ+⨯-=s ,则弧长AB 为44133ππ⨯=,利用弧长公式180n r l π=,得出∠AOB =120°,即可以算出AB 为【题目点拨】本题主要考查了从图中提取信息的能力和弧长公式的运用及转换,熟练运用公式是本题的解题关键.16、(2n ,1)【解题分析】试题分析:根据图形分别求出n=1、2、3时对应的点A 4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A 5(2,1),n=2时,4×2+1=9,点A 9(4,1),n=3时,4×3+1=13,点A 13(6,1),∴点A 4n+1(2n ,1).17、2π【解题分析】 试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.三、解答题(共7小题,满分69分)18、 (1)证明见解析; 【解题分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证;(2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【题目详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B ,∴sin ∠AEF=513AF AE =,∴AF=AE•sin ∠AEF=10×513=5013, ∵AF ∥OD , ∴501013513AG AF DG OD ===,即DG=1323AD , ∴AD=503013·181313AB AF =⨯=, 则DG=133033013231323⨯=.【题目点拨】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.19、见解析【解题分析】先通过∠BAD=∠CAE 得出∠BAC=∠DAE ,从而证明△ABC ≌△ADE ,得到BC=DE .【题目详解】证明:∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC .即∠BAC=∠DAE ,在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (SAS ).∴BC=DE .【题目点拨】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS 、SSS 、SAS 、SSA 、HL .20、(1)243y x x +=﹣,顶点P 的坐标为21(,﹣);(2)E 点坐标为22(,);(3)Q 点的坐标为58(,). 【解题分析】(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P 的坐标;(2)设2E t (,),根据两点间的距离公式,利用EA EC =得到22222123t t ++(﹣)=(﹣),然后解方程求出t 即可得到E 点坐标;(3)直线2x =交x 轴于F ,作2MH x ⊥直线=于H ,如图,利用12tan NEB ∠=得到12tan MEQ ∠=,设243Q m m m +(,﹣),则2412HE m m QH m +=﹣,=﹣,再在Rt QHE 中利用正切的定义得到H 1tan HE 2Q HEQ ∠==,即24122m m m +﹣=(﹣),然后解方程求出m 即可得到Q 点坐标.【题目详解】解:(1)抛物线解析式为13y x x =(﹣)(﹣), 即243y x x +=﹣, 221y x =(﹣)﹣,∴顶点P 的坐标为21(,﹣); (2)抛物线的对称轴为直线2x =,设2E t (,), EA EC =,22222123t t ∴++(﹣)=(﹣),解得2t =,∴E 点坐标为22(,); (3)直线2x =交x 轴于F ,作MN ⊥直线x=2于H ,如图,MEQ NEB ∠∠=, 而BF 1tan EF 2NEB ∠==, 1tan 2MEQ ∴∠=, 设243Q m m m +(,﹣),则22432412HE m m m m QH m ++=﹣﹣=﹣,=﹣, 在Rt QHE 中,H 1tan HE 2Q HEQ ∠==, 24122m m m ∴+﹣=(﹣),整理得2650m m +﹣=,解得11m =(舍去),25m =,∴Q点的坐标为58(,).【题目点拨】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.21、(1)证明见解析(2)①23②3【解题分析】(1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;(2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以23 BC CEAE DE==;②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=12EG,OG+12EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+12EG=GF+GM=FM最小,此时FM =3.故OG+12EG最小值是3.【题目详解】(1)连接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO ∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切线(2)①解:连接BE∵直径AB ∴∠AEB=90°∵圆O与BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴23 BC CEAE DE==②连接OF,交AE于G,由①,设BC=2x,则AE=3x∵△BEC∽△ABC ∴BC CE AC BC=∴22 322xx x=+解得:x1=2,21 2x=-(不合题意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=12EG,OG+12EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+12EG=GF+GM=FM最小,此时FM=FOsin60o=3.故OG+12EG最小值是3.【题目点拨】本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.22、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).【解题分析】(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【题目详解】(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,∵AB ⊥BC ,∴∠A BO+∠CBH=90°,∴∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△BCH ,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C 点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ ﹣∠ABQ=∠ABC ﹣∠ABQ ,即∠PBA=∠QBC ,在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△PBA ≌△QBC ,∴PA=CQ ;(3)∵△BPQ 是等腰直角三角形,∴∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,△PBA ≌△QBC ,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P 点坐标为(1,0).【题目点拨】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23、(1)进价为1000元,标价为1500元;(2)该型号自行车降价80元出售每月获利最大,最大利润是26460元.【解题分析】分析:(1)设进价为x 元,则标价是1.5x 元,根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8-8x ,将标价直降100元销售7辆获利是(1.5x-100)×7-7x ,根据利润相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x ,再解方程即可得到进价,进而得到标价;(2)设该型号自行车降价a 元,利润为w 元,利用销售量×每辆自行车的利润=总利润列出函数关系式,再利用配方法求最值即可.详解:(1)设进价为x 元,则标价是1.5x 元,由题意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x ,解得:x=1000,1.5×1000=1500(元),答:进价为1000元,标价为1500元;(2)设该型号自行车降价a 元,利润为w 元,由题意得:w=(51+20a ×3)(1500-1000-a ), =-320(a-80)2+26460,∵-320<0,∴当a=80时,w最大=26460,答:该型号自行车降价80元出售每月获利最大,最大利润是26460元.点睛:此题主要考查了二次函数的应用,以及元一次方程的应用,关键是正确理解题意,根据已知得出w与a的关系式,进而求出最值.24、(1)10;(2)25.【解题分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=12AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=12PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12PB,由(1)中的结论求出PB=228445+=,最后代入EF=12PB即可得出线段EF的长度不变【题目详解】(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴CP=12AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=12(PQ+QB)=12PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB228445+=EF=12PB5,∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为5【题目点拨】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形。
精选益阳市中考数学模拟试题(有详细答案)(Word版)

益阳市普通初中毕业学业考试试卷数学注意事项:1.本学科试卷分试题卷和答题卡两部分;2.请将姓名、准考证号等相关信息按要求填写在答题卡上;3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4.本学科为闭卷考试,考试时量为90分钟,卷面满分为150分;5.考试结束后,请将试题卷和答题卡一并交回.试题卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个实数中,最小的实数是()A.2-B.C.4-D.1-【答案】C【解析】试题分析:根据选项中的数据,可以比较它们的大小﹣4<﹣2<﹣1<2,故选C.考点:实数大小比较2.如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A.23xx≥⎧⎨-⎩>B.23xx≤⎧⎨-⎩<C.23xx≥⎧⎨-⎩<D.23xx≤⎧⎨⎩>-【答案】D【解析】考点:在数轴上表示不等式的解集3.下列性质中菱形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【答案】C 【解析】故选:C . 考点:菱形的性质4.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m ,将0.000 000 04用科学计数法表示为( ) A .8410⨯ B .8410-⨯ C .80.410⨯ D .8410-⨯【答案】B 【解析】试题分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.因此0.000 000 04=4×10﹣8, 故选B .考点:科学记数法—表示较小的数 5.下列各式化简后的结果为32的是( ) A 6 B 12C 18 D 36【答案】C 【解析】试题分析:根据二次根式的性质逐一化简可得: A 6不能化简;B 123C 182D 36=6,此选项错误; 故选:C . 考点:算术平方根6.关于的一元二次方程20(0)ax bx c a ++=≠的两根为11x =,21x =-,那么下列结论一定成立的是( )A .240b ac ->B .240b ac -=C .240b ac -<D .240b ac -≤【答案】A 【解析】考点:1、根与系数的关系;2、根的判别式7.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB =α,则拉线BC 的长度为(A 、D 、B 在同一条直线上)( )A .sin hαB .cos h α C .tan hαD .cos h α⋅【答案】B 【解析】试题分析:根据同角的余角相等得∠CAD=∠BCD ,由os ∠BCD=CD BC 知BC=cos CD BCD ∠=cos hα. 故选:B .考点:解直角三角形的应用8.如图,空心卷筒纸的高度为12cm ,外径(直径)为10cm ,内径为4cm ,在比例尺为1:4的三视图中,其主视图的面积是( )A .214πcm 2B .2116πcm 2 C .30cm 2 D .7.5cm 2【答案】D 【解析】考点:简单组合体的三视图二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡...中对应题号后的横线上)9.如图,AB∥CD,CB平分∠ACD.若∠BCD = 28°,则∠A的度数为.【答案】124°【解析】试题分析:根据平行线的性质得到∠ABC=∠BCD=28°,根据角平分线的定义得到∠ACB=∠BCD=28°,根据三角形的内角和即可得到∠A=180°﹣∠ABC﹣∠ACB=124°,故答案为:124°.考点:平行线的性质10.如图,△ABC中,5AC=,12BC=,AB=13,CD是AB边上的中线.则CD= .【答案】6.5【解析】考点:1、勾股定理的逆定理;2、直角三角形斜边上的中线1132x-有意义,则的取值范围是.【答案】x≤3 2【解析】试题分析:由题意可知:32020xx-≥⎧⎨-≠⎩∴x≤32且x≠2,∴x的取值范围为:x≤3 2故答案为:x≤3 2考点:二次根式有意义的条件12.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为.【答案】48【解析】试题分析:设被调查的学生人数为x人,则有12x=0.25,解得x=48,经检验x=48是方程的解.故答案为48;考点:频数与频率13.如图,多边形ABCDE的每个内角都相等,则每个内角的度数为.【答案】108°【解析】试题分析:根据多边形的内角和公式由五边形的内角和=(5﹣2)•180°=540°,然后根据五边形的每个内角都相等,可得每个内角的度数=540°÷5=108°.故答案是:108°.考点:多边形内角与外角14.如图,在△ABC中,AB=AC,∠BAC = 36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为.【答案】2a+3b 【解析】考点:1、等腰三角形的性质;2、线段垂直平分线的性质三、解答题(本大题8个小题,共80分)15.(本小题满分8分)计算:()242cos6032(3)--︒+---【答案】-5 【解析】试题分析:根据实数运算法则、零指数幂和特殊三角形函数值得有关知识计算即可. 试题解析:原式=4﹣2×12+1﹣9, =﹣5.考点:1、实数的运算;2、零指数幂;3、特殊角的三角函数值16.(本小题满分8分)先化简,再求值:2221111x x x x x ++-++-,其中2x =-.【答案】2x+2,-2 【解析】考点:分式的化简求值17.(本小题满分8分)如图,四边形ABCD 为平行四边形,F 是CD 的中点,连接AF 并延长与BC 的延长线交于点E .求证:BC = CE.【答案】证明见解析【解析】试题分析:根据平行四边形的对边平行且相等可得AD=BC,AD∥BC,根据两直线平行,内错角相等可得∠DAF=∠E,∠ADF=∠ECF,根据线段中点的定义可得DF=CF,然后利用“角角边”证明△ADF≌△ECF,根据全等三角形对应边相等可得AD=CE,从而得证.试题解析:如图,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,又∵F是CD的中点,即DF=CF,∴△ADF≌△ECF,∴AD=CE,∴BC=CE.考点:1、平行四边形的性质;2、全等三角形的判定与性质18.(本小题满分10分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号 1 2 3 4 5 6 7 8 9 10成绩(分)7 6 8 7 7 5 8 7 8 7(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么? (参考数据:三人成绩的方差分别为20.8S =甲、20.4S =乙、20.8S =丙)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答) 【答案】(1)7;7(2)选乙运动员更合适(3)14【解析】试题分析:(1)观察表格可知甲运动员测试成绩的众数和中位数都是(7分); (2)易知x 甲=7(分),x 乙=7(分),x 丙=6.3(分),根据题意不难判断; (3)画出树状图,即可解决问题;第三轮结束时球回到甲手中的概率是P (求回到甲手中)=2184=. 考点:1、列表法与树状图法;2、条形统计图;3、折线统计图;4、中位数;5、众数;6、方差 19.(本小题满分10分)我市南县大力发展农村旅游事业,全力打造“洞庭之心湿地公园”,其中罗文村的“花海、涂鸦、美食”特色游享誉三湘,游人如织.去年村民罗南洲抓住机遇,返乡创业,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮利润是住宿利润的2倍还多1万元. (1)求去年该农家乐餐饮和住宿的利润各为多少万元?(2)今年罗南洲把去年的餐饮利润全部用于继续投资,增设了土特产的实体店销售和网上销售项目.他在接受记者采访时说:“我预计今年餐饮和住宿的利润比去年会有10%的增长,加上土特产销售的利润,到年底除收回所有投资外,还将获得不少于10万元的纯利润.”请问今年土特产销售至少有多少万元的利润?【答案】(1)去年餐饮利润11万元,住宿利润5万元(2)今年土特产销售至少有7.4万元的利润【解析】试题分析:(1)设去年餐饮利润为x万元,住宿利润为y万元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设今年土特产的利润为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.试题解析:(1)设去年餐饮利润x万元,住宿利润y万元,依题意得:208021x yx y+=⨯⎧⎨=+⎩%,解得:115xy=⎧⎨=⎩,答:去年餐饮利润11万元,住宿利润5万元;(2)设今年土特产利润m万元,依题意得:16+16×(1+10%)+m﹣20﹣11≥10,解之得,m≥7.4,答:今年土特产销售至少有7.4万元的利润.考点:1、一元一次不等式的应用;2、二元一次方程组的应用20.(本小题满分10分)如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.【答案】(1)证明见解析(2)2【解析】∴∠BCD+∠OCB=90°,即∠OCD=90°, ∴CD 是⊙O 的切线.(2)在Rt △OCD 中,∠OCD=90°,OC=3,CD=4, ∴OD=22OC CD +=5, ∴BD=OD ﹣OB=5﹣3=2.考点:切线的判定与性质21.(本小题满分12分)在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M 、N 是一对“互换点”,若点M 的坐标为(,)m n ,求直线MN 的表达式(用含m 、n 的代数式表示); (3)在抛物线2y x bx c =++的图象上有一对“互换点”A 、B ,其中点A 在反比例函数2y x=-的图象上,直线AB 经过点P (12,12),求此抛物线的表达式. 【答案】(1)不一定(2)直线MN 的表达式为y=﹣x+m+n (3)抛物线的表达式为y=x 2﹣2x ﹣1 【解析】①当ab=0时,它们不可能在反比例函数的图象上,②当ab ≠0时,由k b a =可得k a b =,即(a ,b )和(b ,a )都在反比例函数k y x=(k ≠0)的图象上; (2)由M (m ,n )得N (n ,m ),设直线MN 的表达式为y=cx+d (c ≠0).则有mc d n nc d m +=⎧⎨+=⎩解得1c d m n =-⎧⎨=+⎩, ∴直线MN 的表达式为y=﹣x+m+n ;(3)设点A (p ,q ),则2q p=,∴12421b c b c -+=⎧⎨++=-⎩解得21b c =-⎧⎨=-⎩ ,∴此抛物线的表达式为y=x 2﹣2x ﹣1.考点:1、反比例函数图象上点的坐标特征;2、待定系数法求一次函数解析式;3、待定系数法求二次函数解析式22.(本小题满分14分)如图,直线1y x =+与抛物线22y x =相交于A 、B 两点,与y 轴交于点M ,M 、N 关于x 轴对称,连接AN 、BN .(1)①求A 、B 的坐标;②求证:∠ANM =∠BNM ;(2)如图,将题中直线1y x =+变为(0)y kx b b =+>,抛物线22y x =变为2(0)y ax a =>,其他条件不变,那么∠ANM =∠BNM 是否仍然成立?请说明理由.【答案】(1)①(-12,12),( 1,2)②证明见解析(2)∠ANM=∠BNM 成立 【解析】∴A 、B 两点的坐标分别为(-12,12),( 1,2); ②如图1,过A 作AC ⊥y 轴于C ,过B 作BD ⊥y 轴于D ,①当k=0,△ABN 是关于y 轴的轴对称图形,∴∠ANM=∠BNM ;②当k ≠0,根据题意得:OM=ON=b ,设A 211(,)x ax 、B 222(,)x ax .如图2,过A 作AE ⊥y 轴于E ,过B 作BF ⊥y 轴于F ,由题意可知:ax 2=kx+b ,即ax 2﹣kx ﹣b=0, ∴12k x x a +=,12b x x a=-, ∵NF NE BF AE -=222121b ax b ax x x ++--=2211221212bx ax x bx ax x x x +++=121212()()x x ax x b x x ++=[()]()k b a b a a b a⋅-+-=0∴NF NE BF AE,∴Rt△AEN∽Rt△BFN,∴∠ANM=∠BNM.考点:二次函数综合题。
初中数学湖南省益阳市中考模拟数学考试题含答案(word版)

xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:的相反数是A. B. C. D.试题2:下列运算正确的是A. B. C. D.试题3:不等式组的解集在数轴上表示正确的是A B C D 评卷人得分试题4:下列判断错误的是A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形试题5:小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为A.67、68 B.67、67 C.68、68 D.68、67试题6:将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是A.360° B.540° C.720° D.900°试题7:关于抛物线,下列说法错误的是A.开口向上 B.与轴有两个重合的交点C.对称轴是直线 D.当时,随的增大而减小试题8:小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳P B的长度相等.小明将PB拉到PB′的位置,测得∠(为水平线),测角仪的高度为1米,则旗杆PA的高度为A. B.C. D.试题9:将正比例函数的图象向上平移3个单位,所得的直线不经过第象限.试题10:某学习小组为了探究函数的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的= .…–2 –1.5–1–0.50 0.5 1 1.5 2 …… 2 0.75 0 –0.25–0.250 2 …试题11:我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数的图象上有一些整点,请写出其中一个整点的坐标.试题12:下图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为.(结果保留)试题13:如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为.试题14:小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是枚.(1)(2)(3)(4)(5)试题15:计算:.试题16:先化简,再求值:,其中.试题17:如图,在ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.试题18:在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a = ,b= ,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?分组频数频率第一组() 3 0.15第二组() 6 a第三组()7 0.35第四组()b0.20试题19:某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?试题20:在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.试题21:如图,顶点为的抛物线经过坐标原点O,与轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交轴于点C,交抛物线于点,求证:△OCD≌△OAB;(3)在轴上找一点,使得△PCD的周长最小,求出P点的坐标.试题22:如图①,在△ABC中,∠ACB=90°,∠B=30°,AC =1,D为AB的中点,EF为△ACD 的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH 的面积;(2)将矩形EFGH沿AB向右平移,F落在BC 上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形,将矩形绕点按顺时针方向旋转,当落在CD上时停止转动,旋转后的矩形记为矩形,设旋转角为,求的值.试题1答案:C试题2答案: B试题3答案: A试题4答案: D试题5答案:C试题6答案: D试题7答案: D试题8答案: A试题9答案: 四;试题10答案: 0.75; 试题11答案:答案不唯一,如:(-3,1); 试题12答案:图①图②(备用)图③;试题13答案:115°;试题14答案:13.试题15答案:解:原式===.试题16答案:解:原式.当时,原式=4.试题17答案:证明:如图,∵四边形ABCD是平行四边形,∴AD=BC,∠ADB=∠CBD.又∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB,AE∥CF.∴≌.∴AE=CF.∴四边形AECF是平行四边形.∴AF=CE.试题18答案:解:(1)a=0.3,b=4(2)(人)(3)甲乙1乙2甲1甲2甲3乙甲1甲2甲3乙甲1甲2甲3乙…试题19答案:解:(1)设该班男生有人,女生有人,依题意得:,解得.∴该班男生有27人,女生有15人.(2)设招录的男生为名,则招录的女生为名,依题意得:,解之得,,答:工厂在该班至少要招录22名男生.试题20答案:解:如图,在△ABC中,AB=15,BC=14,AC=13,设,∴.由勾股定理得:,,∴,解之得:.∴.∴.试题21答案:解:(1)∵抛物线顶点为,设抛物线对应的二次函数的表达式为,将原点坐标(0,0)代入表达式,得.∴抛物线对应的二次函数的表达式为:.(2)将代入中,得B点坐标为:,设直线O A对应的一次函数的表达式为,将代入表达式中,得,∴直线OA对应的一次函数的表达式为.∵BD∥AO,设直线BD对应的一次函数的表达式为,将B代入中,得,∴直线BD对应的一次函数的表达式为.由得交点D的坐标为,将代入中,得C点的坐标为,由勾股定理,得:OA=2=OC,AB=2=CD, .在△OAB与△OCD中,,∴△OAB≌△OCD.(3)点关于轴的对称点的坐标为,则与轴的交点即为点,它使得△PCD的周长最小.过点D作DQ⊥,垂足为Q,则PO∥DQ.∴∽.∴,即,∴,∴点的坐标为.试题22答案:解:(1)如22题解图1,在中,∠ACB=90°,∠B=30°,AC=1,∴AB=2,又∵D是AB的中点,∴AD=1,.又∵EF是的中位线,∴,在中,AD=CD,∠A=60°,∴∠ADC=60°.在中,60°,∴矩形EFGH的面积.(2)如22题解图2,设矩形移动的距离为则,当矩形与△CBD重叠部分为三角形时,则,,∴.(舍去).当矩形与△CBD重叠部分为直角梯形时,则,重叠部分的面积S=, ∴.即矩形移动的距离为时,矩形与△CBD重叠部分的面积是.(3)如22题解图3,作于.设,则,又,.在Rt△H2QG1中,,解之得(负的舍去).∴.。
初中数学湖南省益阳市中考模拟数学考试卷考试题及答案word解析版

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:的绝对值等于A. B. C. D.试题2:下列计算正确的是A.2a+3b=5ab B. C. D.试题3:下列图案中是中心对称图形但不是轴对称图形的是A. B. C. D.试题4:已知一组数据:12,5,9,5,14,下列说法不正确的是A.平均数是9 B.中位数是9 C.众数是5 D.极差是5试题5:评卷人得分下列命题是假命题的是A.中心投影下,物高与影长成正比 B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边 D.圆的切线垂直于过切点的半径试题6:如图,数轴上表示的是下列哪个不等式组的解集A. B. C. D.试题7:如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连结AB、AD、CD,则四边形ABCD一定是A.平行四边形 B.矩形 C.菱形 D.梯形试题8:在一个标准大气压下,能反映水在均匀加热过程中,水的温度(T)随加热时间(t)变化的函数图象大致是A.B.C.D.试题9:今年益阳市初中毕业生约为33000人,将这个数据用科学记数法可记为.试题10:写出一个在实数范围内能用平方差公式分解因式的多项式:.试题11:如图,点A、B、C在圆O上,∠A=60°,则∠BOC = 度.试题12:有长度分别为2cm,3cm,4cm,7cm的四条线段,任取其中三条能组成三角形的概率是.试题13:反比例函数的图象与一次函数的图象的一个交点是(1,),则反比例函数的解析式是.试题14:计算代数式的值,其中,,.试题15:如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.试题16:某市每年都要举办中小学三独比赛(包括独唱、独舞、独奏三个类别),右图是该市2012年参加三独比赛的不完整的参赛人数统计图.(1)该市参加三独比赛的总人数是人,图中独唱所在扇形的圆心角的度数是度,并把条形统计图补充完整;(2)从这次参赛选手中随机抽取20人调查,其中有9人获奖,请你估算今年全市约有多少人获奖?试题17:超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659, cos75°≈0.2588, tan75°≈3.732,,60千米/小时≈16.7米/秒)试题18:为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.试题19:观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积1×(-1)×2=-2(-3)×(-4)×(-5)=-60三个角上三个数的和1+(-1)+2=2(-3)+(-4)+(-5)=-12积与和的商-2÷2=-1,(2)请用你发现的规律求出图④中的数y和图⑤中的数x.试题20:已知:如图,抛物线与轴交于点A(,0)和点B,将抛物线沿轴向上翻折,顶点P落在点P'(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号)试题21:已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求证:△ABE≌△BCF;(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;(3)现将△ABE绕点A逆时针方向旋转到△AB'E'(如图2),使点E落在CD边上的点E'处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.试题1答案:A试题2答案: D试题3答案:C试题4答案:D试题5答案:A试题6答案:B试题7答案:A试题8答案:B试题9答案:;试题10答案:答案不唯一,如;试题11答案:120;试题12答案:;试题13答案:试题14答案:解:===当、、时,原式=3(直接代入计算正确给满分)试题15答案:证明:∵AE平分∠DAC,∴∠1=∠2.∵AE∥BC,∴∠1=∠B,∠2=∠C.∴∠B=∠C,∴AB=AC.试题16答案:.解:⑴ 400 , 180⑵估算今年全市获奖人数约有(人)试题17答案:解:⑴法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC =30,∴BC=AC·tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连结AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC =30,∠CDA=30°,∴AD=60,CD=,BC=60+≈112(米)⑵∵此车速度=112÷8=14(米/秒) <16.7 (米/秒) =60(千米/小时)∴此车没有超过限制速度.试题18答案:解:⑴设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得:80x+60(17- x )=1220解得x =10∴ 17- x =7答:购进A种树苗10棵,B种树苗7棵⑵设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得:17-x< x解得x >购进A、B两种树苗所需费用为80x+60(17- x)=20 x +1020则费用最省需x取最小整数9,此时17- x =8这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A种树苗9棵,B种树苗8棵. 这时所需费用为1200元.试题19答案:解: ⑴图②:(-60)÷(-12)=5图③:(-2)×(—5)×17=170,(-2)+(—5)+17=17, 170÷10=17 .⑵图④:5×(—8)×(—9)=3605+(—8)+(—9)=-1y=360÷(-12)=-30.图⑤:,解得试题20答案:解:⑴∵P与P′(1,3) 关于x轴对称,∴P点坐标为(1,-3) ;∵抛物线过点A(,0),顶点是P(1,-3) ,∴;解得;则抛物线的解析式为,即.⑵∵CD平行x轴,P′(1,3) 在CD上,∴C、D两点纵坐标为3;由得:,,∴C、D两点的坐标分别为(,3) ,(,3)∴CD=∴“W”图案的高与宽(CD)的比=(或约等于0.6124)试题21答案:⑴证明:∵正方形ABCD中,∠ABE=∠BCF=900,AB=BC,∴∠ABF+∠CBF=900,∵AE⊥BF,∴∠ABF+∠BAE=900,∴∠BAE=∠CBF,∴△ABE≌△BCF.⑵解:∵正方形面积为3,∴AB=,在△BGE与△ABE中,∵∠GBE=∠BAE, ∠EGB=∠EBA=900∴△BGE∽△ABE∴,又BE=1,∴AE2=AB2+BE2=3+1=4∴==.(用其他方法解答仿上步骤给分).⑶解:没有变化∵AB=,BE=1,∴tan ∠BAE=,∠BAE=30°, ∵AB′=AD,∠AB′E′=∠ADE'=90°,AE′公共,∴Rt△ABE≌Rt△AB′E′≌Rt△ADE′,∴∠DAE′=∠B′AE′=∠BAE=30°,∴AB′与AE在同一直线上,即BF与AB′的交点是G,设BF与AE′的交点为H,则∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG公共,∴△BAG ≌△HAG,∴=== .∴△ABE在旋转前后与△BCF重叠部分的面积没有变化.。
湖南省益阳市中考模拟数学考试试卷

湖南省益阳市中考模拟数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列各组数中,互为相反数的一组是()A . +(-2)和-(+2)B . -|-2|和-|+2|C . -(-2)和-|-2|D . -(+2)和-|+2|2. (2分) (2015八下·青田期中) 下列图形中,是中心对称图形的有()A . 1个B . 2个C . 3 个D . 4个3. (2分)如图所示的支架是由两个长方形构成的组合体,则它的主视图是()A .B .C .D .4. (2分) (2020八上·常德期末) 下列计算正确的是()A .B .C .D .5. (2分)如图所示,数轴上点A所表示的数可能是()A .B .C .D .6. (2分)下列调查中,适宜采用全面调查(普查)方式的是()A . 对全国中小学生心理健康现状的调查B . 对冷饮市场上冰淇淋质量情况的调查C . 环保部门对赣江水域的水污染情况的调查D . 企业给职工做工作服前进行的尺寸大小的调查7. (2分) (2016九上·蓬江期末) 如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A .B .C .D .8. (2分)已知:函数的图象如图,则当时,x的范围是()A .B .C . 或D . 或二、填空题 (共6题;共7分)9. (1分)一种细菌半径是0.000 012 1米,将0.000 012 1用科学记数法表示为________.10. (1分)(2018·广水模拟) 如图所示,线段AB与CD都是⊙O中的弦,其中弧AB=108°,AB=a,弧CD =36°,CD=b,则⊙O的半径R=________11. (1分)(2018·镇江) 如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=________°.12. (1分) (2016九上·永登期中) 方程(2x﹣1)(x+3)=0的根是________.13. (1分)(2016·丹东) 如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为________.14. (2分) (2019七上·尚志期末) (阅读材料)“九宫图”源于我国古代夏禹时期的“洛书” 图1所示,是世界上最早的矩阵,又称“幻方”,用今天的数学符号翻译出来,“洛书”就是一个三阶“幻方” 图2所示.(规律总结)观察图1、图2,根据“九宫图”中各数字之间的关系,我们可以总结出“幻方”需要满足的条件是________;若图3,是一个“幻方”,则 ________.三、解答题 (共9题;共96分)15. (5分) (2018九上·顺义期末) 如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,≈1.41,≈1.73)16. (5分)先化简,再求值:,其中x是不等式组的一个整数解.17. (11分)(2016·嘉善模拟) 随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(如图1),并将调查结果绘制成图2和图3所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)求出本次接受调查的总人数,并将条形统计图补充完整;(2)表示观点B的扇形的圆心角度数为________度;(3)若嘉善人口总数约为60万,请根据图中信息,估计嘉善市民认同观点D的人数.18. (10分) (2018七上·安图期末) 在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方法购买更省钱?说明理由.19. (10分)(2017·陕西) 端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.20. (10分)(2016·泰安) 如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y= 的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.21. (15分) (2019九上·杭州月考) 如图,正方形ABCD边长为8,点O在对角线DB上运动(不与点B,D 重合),连接OA,做OP⊥OA,交直线BC于点P.(1)求证OA=OC(2)猜想△POC的形状,并说明理由(3)设线段DO,OP,PC,CD围成的图形面积为,△AO D的面积为,求-的最值.22. (15分)(2013·丽水) 如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.23. (15分)(2018·青浦模拟) 如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共7分)9、答案:略10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共96分)15-1、16-1、17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、。
益阳市初三中考数学第一次模拟试卷【含答案】

益阳市初三中考数学第一次模拟试卷【含答案】一.选择题(满分12分,每小题2分)1.化简(﹣x3)2的结果是()A.﹣x6B.﹣x5C.x6D.x52.已知a,b为两个连续整数,且a<<b,则a+b的值为()A.9 B.8 C.7 D.63.﹣a一定是()A.正数B.负数C.0 D.以上选项都不正确4.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72 B.2.0 C.1.125 D.不能确定5.已知:如右图,O为圆锥的顶点,M为底面圆周上一点,点P在OM上,一只蚂蚁从点P出发绕圆锥侧面爬行回到点P时所经过的最短路径的痕迹如图.若沿OM将圆锥侧面剪开并展平,所得侧面展开图是()A.B.C.D.6.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11 B.t≥2 C.6<t<11 D.2≤t<6二.填空题(满分20分,每小题2分)7.将数12000000科学记数法表示为.8.当x时,分式的值为0;若分式有意义,则x的取值范围是.9.分解因式:x4﹣16=.10.计算:=.11.已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.12.如图,△ABC中,AB=AC,BE⊥AC,D为AB中点,若DE=5,BE=8.则EC=.13.把点A(a,﹣2)向左平移3个单位,所得的点与点A关于y轴对称,则a等于.14.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.15.如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为.16.如图,在正方形ABCD中,点E是BC上一点,BF⊥AE交DC于点F,若AB=5,BE=2,则AF=.三.解答题17.(7分)计算或化简:(1)(2)18.(7分)如图,在数轴上,点A、B分别表示数1、﹣2x+5(1)求x的取值范围;(2)数轴上表示数﹣x+3的点应落在.A.点A的左边,B.线段AB上,C.点B的右边19.(7分)某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:(1)这次抽样调查的样本容量是,请补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中B等级所对应的圆心角为.(3)该校九年级学生有1600人,请你估计其中A等级的学生人数.20.(8分)如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EG •ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.21.(8分)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.22.(9分)小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用40min.小亮骑自行车以300m/min的速度直接到甲地,两人离甲地的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示,(1)甲、乙两地之间的路程为m,小明步行的速度为m/min;(2)求小亮离甲地的路程y关于x的函数表达式,并写出自变量x的取值范围;(3)求两人相遇的时间.23.(8分)在某海域,一艘海监船在P处检测到南偏西45°方向的B处有一艘不明船只,正沿正西方向航行,海监船立即沿南偏西60°方向以40海里/小时的速度去截获不明船只,经过1.5小时,刚好在A处截获不明船只,求不明船只的航行速度.(≈1.41,≈1.73,结果保留一位小数).24.(9分)已知:分别以△ABC的各边为边,在BC边的同侧作等边三角形ABE、等边三角形CBD和等边三角形ACF,连结DE,DF.(1)试说明四边形DEAF为平行四边形.(2)当△ABC满足什么条件时,四边形DEAF为矩形?并说明理由;(3)当△ABC满足什么条件时,四边形DEAF为菱形.直接写出答案.25.(8分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c 经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ 的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.26.(8分)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.27.(9分)在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM 右侧作等腰直角三角形CMN,连接NB.(1)如图1,图2,若△ABC为等腰直角三角形,问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是,数量关系是;深入探究:②当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC=,当BM=时,BP的最大值为.参考答案一.选择题1.解:原式=x6,故选:C.2.解:∵9<13<16,∴3<<4,即a=3,b=4,则a+b=7,故选:C.3.解:﹣a中a的符号无法确定,故﹣a的符号无法确定.故选:D.4.解:∵AB=1.5,BC=0.9,AC=1.2,∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,∴AB2=BC2+AC2,∴∠ACB=90°,∵CD是AB边上的高,=,∴S△ABC1.5CD=1.2×0.9,CD=0.72,故选:A.5.解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.6.解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.二.填空题7.解:12 000 000=1.2×107,故答案是:1.2×107,8.解:若分式的值为0,则x﹣1=0,且x+1≠0,解得x=1;若分式有意义,则x+5≠0,解得x≠﹣5,故答案为:=1;x≠﹣5.9.解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).10.解:原式=+=2+3=5.故答案为5.11.解:把x=2+代入方程得(2+)2﹣4(2+)+m=0,解得m=1.故答案为1.12.解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=AC=2DE=2×5=10,∵BE=8,∴AE==6,∴EC=AC﹣AE=4,故答案为:4.13.解:点A(a,﹣2)向左平移3个单位后为(a﹣3,﹣2),∵所得的点与点A关于y轴对称,∴a﹣3=﹣a,解得a=.故答案为:.14.解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m, n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,∴S=BE•BF=mn=△BEF故答案为.15.解:由图可知,∠AOB=75°﹣45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°.16.解:∵四边形ABCD是正方形,∴AB=BC,∠A BE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF===.故答案为:.三.解答题17.解:(1)原式=+==;(2)原式=÷(x+2)•=••=;18.解:(1)由数轴上点的位置得:﹣2x+5>1,解得:x<2;(2)由x<2,得到﹣x+3>1,且﹣2x+5>﹣x+3,则数轴上表示数﹣x+3的点在线段AB上,故选B19.解:(1)样本容量为16÷32%=50,B等级人数为50﹣16﹣10﹣4=20,如图所示:故答案为:50;(2)D等级学生人数占被调查人数的百分比为×100%=8%;B等级所对应的圆心角为×360°=144°;故答案为:8%,144°;(3)全校A等级的学生人数约有×1600=512(人).20.(1)证明:∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴=,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)解:∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴=,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴=,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=AB=BC,∴=,∴BC2=2DF•BF.21.解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A,B,C,D,∵垃圾要按A,B,C、D类分别装袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿的两袋垃圾不同类的概率为=.22.解:(1)结合题意和图象可知,线段CD为小亮路程与时间函数图象,折线O﹣A﹣B为小明路程与时间图象,则甲、乙两地之间的路程为8000米,小明步行的速度==100m/min,故答案为8000,100(2)∵小亮从离甲地8000m处的乙地以300m/min的速度去甲地,则xmin时,∴小亮离甲地的路程y=8000﹣300x,自变量x的取值范围为:0≤x≤(3)∵A(20,6000)∴直线OA解析式为:y=300x∴8000﹣300x=300x,∴x=∴两人相遇时间为第分钟.23.解:作PQ垂直于AB的延长线于点Q,由题意得:∠BPQ=45°,∠APQ=60°,AP=1.5×40=60海里,∴在△APQ中,AQ=AP•sin60°=30海里,PQ=AP•cos60°=30海里,∵在△BQP中,∠BPQ=45°,∴PQ=BQ=30海里,∴AB=AQ﹣BQ=30﹣30≈21.9海里,∴=14.6海里/小时,∴不明船只的航行速度是14.6海里/小时.24.解:(1)如图1,∵△ABE和△CBD为等边三角形,∴∠ABE=∠CBD=60°,AB=BE=AE,CB=BD=CD,∴∠ABC=∠EBD,在△ABC和△EBD中,∴△ABC≌△EBD(SAS),∴AC=DE,∵△ACF为等边三角形,∴AC=AF,∴AF=DE,同理可证得△ACB≌△FCD,∴AB=DF,而AB=AE,∴AE=DF,∴四边形DEAF是平行四边形;(2)如图2,当△ABC满足∠BAC=150°时,四边形DEAF是矩形.理由如下:由(1)知:四边形DEAF是平行四边形,∵∠BAC=150°,∠EAB=∠FAC=60°∴∠EAF=360°﹣150°﹣60°﹣60°=90°∴四边形DEAF是矩形;(3)如图3,△ABC满足AB=AC时,四边形DEAF是菱形.理由如下:由(1)知:四边形DEAF是平行四边形,∵AB=AC,AE=AB,AC=AF,∴AE=AF,∴四边形DEAF是菱形.故答案为:AB=AC.25.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),(,8),当∠FDQ=90°时,F1当∠FQD=90°时,则F(,4),2当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F 1(,8),F2(,4),F3(,6+),F4(,6﹣).26.解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°.27.解:问题初现:(1)①AM与BN位置关系是AM⊥BN,数量关系是AM=BN.理由:如图1,∵△ABC,△CMN为等腰直角三角形,∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°∴∠ACM=∠BCN,且AC=BC,CM=CN,∴△ACM≌△BCN(SAS)∴∠CAM=∠CBN=45°,AM=BN.∵∠CAB=∠CBA=45°,∴∠ABN=45°+45°=90°,即AM⊥BN故答案为:AM⊥BN;AM=BN深入探究:②当点M在线段AB的延长线上时,AM与BN位置关系是AM⊥BN,数量关系是AM=BN.理由如下:如图,∵△ABC,△CMN为等腰直角三角形,∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°∴∠ACM=∠BCN,且AC=BC,CM=CN,∴△ACM≌△BCN(SAS)∴∠CAM=∠CBN=45°,AM=BN.∵∠CAB=∠CBA=45°,∴∠ABN=45°+45°=90°,即AM⊥BN类比拓展:(2)如图,过点C作CE⊥AB于点E,过点N作NF⊥CE于点F,则FN∥AB∵△MCN是等腰直角三角形∴CM=CN,∠MCN=90°∴∠ECM+∠FCN=90°,且∠ECM+∠CME=90°∴∠FCN=∠CME,且CM=CN,∠F=∠CEM=90°∴△CNF≌△CME(AAS)∴FN=EC,EM=CF∵BC=4,CE⊥AB,∠CBA=45°∴CE=BE=4,∴FN=BE=CE,且FN∥BA∴四边形FNBE是平行四边形,且∠F=90°∴四边形FNBE是矩形∴∠CEM=∠ABN=90°∴∠PMB+∠MPB=90°∵CM⊥MP∴∠CME+∠PMB=90°∴∠CME=∠MPB,且∠CEM=∠ABN=90°∴△CEM∽△MBP∴∴BP==﹣(BM﹣2)2+1∴当BM=2时,BP有最大值为1.故答案为:2,1中学数学一模模拟试卷一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.在-2,0,1这四个数中,最小的数是()A.-2 B.0 C.1 D 2.2018年河南省全年生产总值48055.86亿元,数据“48055.86亿”用科学记数法表示为()A.4.805586×104 B.0.4805586×105C.4.805586×1012 D.4.805586×10133.如图是由5个小立方块搭建而成的几何体,它的俯视图是()A.B.C.D.4.下列计算正确的是()A.a+a=a2 B.(2a)3=6a3 C.a3×a3=2a3 D.a3÷a=a25.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503y yx x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.15022503y yx x⎧-=⎪⎪⎨⎪-=⎪⎩6.为鼓励同学们阅读经典,了解同学们课外阅读经典名著的情况,在某年级随机抽查了20名同学每期的课外阅读名则关于这A.中位数是10本B.平均数是10.25本C.众数是12本D.方差是07.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号和为4的概率是()A.16B.13C.12D.238.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是()A.m>0且m≠1B.m>0 C.m≥0且m≠1D.m≥09.如图,在平面直角坐标系中,A(0,,B(-2,0),C(2,0),过点B作AC的垂直平分线于点D,则点D 的坐标为()A .(1,1)B .(1C .1)D .(1)10.如图1,在△ABC 中,∠C=90°,动点P 从点C 出发,以1cm/s 的速度沿折线CA→AB 匀速运动,到达点B 时停止运动,点P 出发一段时间后动点Q 从点B 出发,以相同的速度沿BC 匀速运动,当点P 到达点B 时,点Q 恰好到达点C ,并停止运动,设点P 的运动时间为ts ,△PQC 的面积为Scm2,S 关于t 的函数图象如图2所示(其中0<t≤3,3≤t≤4时,函数图象均为线段(不含点O ),4<t <8时,函数图象为抛物线的一部分)给出下列结论: ①AC=3cm ; ②当S=65时,t=35或6.下列结论正确的是( )A .①②都对B .①②都错C .①对②错D .①错②对二.填空题(每小题3分,共15分)11.计算:(13)0−|−2|=12.将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为13.若不等式组11x x m <⎧⎨>-⎩没有解,则m 的取值范围是14.如图,在△ABC 中,∠ABC=90°,∠ACB=30°,BC=2,BC 是半圆O 的直径,则图中阴影部分的面积为15.如图,在△ABC 中,∠C=90°,AC=4,BC=6,点D 是BC 上一动点,DE ⊥AB ,DF ⊥BC ,将△BDE 沿直线DF 翻折得到△B'E'D ,连接AB',AE',当△AB'E'是直角三角形时,则BD=三.解答题(本大题共8个小题,满分75分)16.先化简,再求值:22113263x x x x x x ++-⎛⎫÷- ⎪--⎝⎭,其中x+1. 17.随着手机普及率的提高,有些人开始过份依赖手机,一天中使用手机时间过长而形成了“手机瘾”.某校学生会为了解学校初三年级学生使用手机情况,随机调查了部分学生的使用手机时间,将调查结果分成五类:A .基本不用;B .平均每天使用手机1~2小时;C .平均每天使用手机2~4小时;D .平均每天使用手机4~6小时;E .平均每天使用手机超过6小时.并根据统计结果绘制成了如下两幅不完整的统计图.(1)学生会一共调查了多少名学生.(2)此次调查的学生中属于E 类的学生有 名,并补全条形统计图.(3)若一天中使用手机的时间超过6小时,则患有严重的“手机瘾”.该校初三年级共有900人,估计该校初三年级中约有多少人患有严重的“手机瘾”.18.如图.平行四边形AOBC 的顶点为网格线的交点,反比例函数y=kx (x >0)的图象过格点A ,点B .(1)求反比例函数的解析式;(2)在图中用直尺和2B 铅笔画出△ABC 沿CO 所在直线平移,使得点C 与点O 重合,得到△A′B′O (不写画法). ①点A′,点B′ (填“是”或“不是”)都在反比例函数图象上; ②四边形A′B′BA 是 (特殊四边形),它的面积等于 .19.如图,AB 是半圆O 的直径,点C 为半圆O 右侧上一动点,CD ⊥AB 于点D ,∠OCD 的平分线交AB 的垂直平分线于点E ,过点C 作半圆O 的切线交AB 的垂直平分线于点F . (1)求证:OC=OE ;(2)点C 关于直线EF 的对称点为点H ,连接FH ,EH ,OH . 填空:①当∠E 的度数为 时,四边形CFHE 为菱形. ②当∠E 的度数为 时,四边形CFHO 为正方形.20.小亮家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM 的仰角为37°,此时把手端点A 、出水口点B 和落水点C 在同一直线上.洗手盆及水龙头示意图如图2,其相关数据为AM=10cm ,MD=6cm ,DE=22cm ,EH=38cm .求CH 的长.(参考数据:sin37°=35,cos37°=45,tan37°=34≈1.7)21(1”),求这个函数关系式;(2)当售价为 元时,当月的销售利润最大,最大利润是 元; (3)若获利不得高于进价的80%,那么售价定为多少元时,月销售利润达到最大? 22.(1)问题发现如图1,在等腰直角三角形ABC 中,∠CAB=90°,点D 在AC 上,过点D 作DE ⊥BC 于点E ,以DE ,BE 为边作▱DEBF ,连接AE ,AF .填空:线段AE 与AF 的关系为 ;(2)类比探究将图1中△CDE 绕点C 逆时针旋转,其他条件不变,如图2,(1)的结论是否成立?并说明理由. (3)拓展延伸在(2)的条件下,将△CDE 绕点C 在平面内旋转,若AC=5,请直接写出当点A ,D ,E三点共线时BE的长.23.如图,抛物线y=ax2+94x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=-34x+3经过点B ,C .(1)求抛物线的解析式;(2)点P 从点O 出发以每秒2个单位的速度沿OB 向点B 匀速运动,同时点E 从点B 出发以每秒1个单位的速度沿BO 向终点O 匀速运动,当点E 到达终点O 时,点P 停止运动,设点P 运动的时间为t 秒,过点P 作x 轴的垂线交直线BC 于点H ,交抛物线于点Q ,过点E 作EF ⊥BC 于点F .①当PQ=5EF时,求出t值;②连接CQ,当S△CBQ:S△BHQ=5:2时,请直接写出点Q的坐标.参考答案与试题解析1. 【分析】根据正数大于0,0大于负数,可得答案.【解答】解:-2<1<0,故选:A.【点评】本题考查了有理数比较大小,正数大于零,零大于负数.2. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:48055.86亿用科学记数法表示为4.805586×1012.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3. 【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:该几何体的俯视图是故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4. 【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2a,故A错误;(B)原式=8a3,故B错误;(C)原式=a6,故C错误;故选:D.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5. 【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6. 【分析】根据中位数,平均数,众数,方差的意义解答即可.【解答】解:A.中位数是10+112=10.5 (本),故A错误;B.平均数120x=(8×3+9×3+10×4+11×6+12×4)=10.25(本),正确;C .众数是10本,故C 错误;D .显然方差不为0,D 错误, 故选:B .【点评】本地考察了中位数平均数,众数以及方差,正确理解中位数,平均数,众数,方差的意义是解题的关键. 7. 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号和为4的情况,再利用概率公式即可求得答案. 【解答】解:画树状图得:∵共有6种等可能的结果,两次摸出的小球标号和为4的有2种情况,∴两次摸出的小球标号和为4的概率是:21=63. 故选:B .【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.8. 【分析】根据一元二次方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.【解答】解:∵关于x 的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根, ∴△=(-2)2-4×1×[-(m-1)]=4m >0, ∴m >0. 故选:B .【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 9. 【分析】先确定D 为AC 的中点,根据中点坐标公式可得结论. 【解答】解:∵BD 是AC 的垂直平分线, ∴D 是AC 的中点,∵A (0,,C (2,0),∴D (1, 故选:B .【点评】本题考查了线段垂直平分线的定义和点的坐标,熟练掌握中点坐标公式是关键.10. 【分析】①由函数图象可知当0<t ≤3时,点Q 未动,点P 在AC 上移动,移动时间t=3,然后依据路程=时间×速度求解即可;②求出求S 关于t 的函数关系式,由S=65列出关于t 的方程,从而可求得t 的值.【解答】解:由函数图象可知当0<t ≤3时,点Q 未动,点P 在AC 上移动, ∴AC=t ×1=3×1=3cm . 故①正确;在Rt △ABC 中,S △ABC=12BC •AC=6,即12BC ×3=6,解得BC=4.由勾股定理可知:AB=5.当0<t ≤3时,点Q 未动,点P 在AC 上运动.如图1所示:S=12BC •PC=12×4t=2t .当3≤t ≤4时,由题意可知,点Q 未动,点P 在AB 上运动.如图2所示:PB=AB-AP=5-(t-3)=8-t .过点P 作PH ⊥BC ,垂足为H ,则35PH AC PB AB ==, 33(8)551136484(8)22555PH PB t S BC PH t t ∴==-∴=⋅=⨯⨯-=-+,由函数图象可知当4<t <8时,点Q 在BC 上,点P 在AB 上,如图3所示:过点P 作PH ⊥BC ,垂足为H .同理:PH=35(8-t ).QC=BC-BQ=4-(t-4)=8-t .∴S 2211332496(8)2251055QC PH t t t =⋅=⨯-=-+综上所述,S=22(03)648(34)5532496(48)1055t t t t t t t ⎧⎪<⎪⎪-+⎨⎪⎪-+<<⎪⎩…剟, 当0<t ≤3时,2t=65,解得t =35,当3≤t ≤4时,−65t+485=65,解得:t=7(舍去),当4<t <8时,232496610555t t -+=,解得t=6或t=10(舍去), 综上所述,当t 为35或6时,△PQC 的面积为65.故②正确. ∴①②都对. 故选:A .【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了三角形的面积公式,依据函数图象求得AC 、BC 的长是解题的关键.11. 【分析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案. 【解答】解:原式=1-2=-1. 故答案为:-1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12. 【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+58°=148°,∵直尺的两边互相平行,∴∠2=∠3=148°.故答案为:148°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.13. 【分析】利用不等式组取解集的方法判断即可求出m的范围.【解答】解:∵不等式组没有解,∴m-1≥1,解得m≥2.故答案为:m≥2.【点评】此题考查了不等式的解集,熟练掌握不等式取解集的方法是解本题的关键.14. 【分析】根据S阴=(S扇形OFC-S△OFC)+(S△ABC-S△OFC-S扇形OBF),计算即可.【解答】解:如图,连接OF.S阴=(S扇形OFC-S△OFC)+(S△ABC-S△OFC-S扇形OBF),22120111111601236022222360323666πππππ⋅⋅⋅⋅=-+⨯-=-+-=+故答案为:6π+.【点评】本题考查扇形的面积公式,三角形的面积公式等知识,解题的关键是学会用分割法求阴影部分的面积,属于中考常考题型.15. 【分析】分两种情形画出图形:如图1中,当∠AB′E′=90°时,设BD=DB′=x.如图2中,当∠AE′B′=90°时,易证:A,E′,D共线,设BD=AD=x.分别构建方程求解即可.【解答】解:如图1中,当∠AB′E′=90°时,设BD=DB′=x.∵DF∥AC,∴DF BDAC BC =, 4623DF x DF x∴=∴=,∵∠ACB′=∠AB′F=∠FDB′=90°,∴∠AB′C+∠FB′D=90°,∠CAB′+∠AB′C=90°, ∴∠CAB′=∠FB′D , ∴△ACB′∽△B′DF ,46223AC CB DB DF x x x ''∴=-∴=, 解得x=53.如图2中,当∠AE′B′=90°时,易证:A ,E′,D 共线,设BD=AD=x .在Rt △ACD 中,则有x2=42+(6-x )2,解得x=133,综上所述,满足条件的BD 的值为53或133.【点评】本题考查翻折变换,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.16. 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式=222(1)313(1)312(3)32(3)(1)(1)2(1)x x x x x x x x x x x x x +--++-+÷=⋅=---+-- 当时,原式36+=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17. 【分析】(1)根据使用手机时间为C 的人数和所占的百分比即可求出总人数; (2)用总人数减去A 、B 、C 、D 类的人数,求出E 类的人数,从而补全统计图;(3)用全校的总人数乘以一天中使用手机的时间超过6小时的学生人数所占的百分比,即可求出答案. 【解答】解:(1)20÷40%=50(人), 答:学生会一共调查了50名学生.(2)此次调查的学生中属于E 类的学生有:50-4-12-20-9=5 (名), 补全条形统计图如图:(3)900×550=90(人),答:该校初三年级中约有90人患有严重的“手机瘾”. 故答案为:(2)5.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 18. 【分析】(1)求出点A 坐标,利用待定系数法解决问题即可. (2)①根据要求画出图形即可,利用图象法判断即可. ②根据矩形的判定方法即可解决问题. 【解答】解:(1)由题意A (1,4),∵反比例函数y=kx 经过点A (1,4),∴k=4,∴反比例函数的解析式为y=4x .(2)①△A′B′O 如图所示.观察图象可知A′(-4,-1),B′(-1,-4),∴A′,B′均在y=4x 的图象上.②观察图象可知:A ,O ,B′共线,B ,O ,A′共线,且OA=OB′=OB=OA′, ∴四边形AA′B′B 是矩形,∴S 矩形. 故答案为矩形,30.【点评】本题考查反比例函数的应用,平移变换,矩形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型. 19. 【分析】(1)先证明EF ∥CD ,再由角平分线的定义可得∠OCE=∠E ,最后由等角对等边可得结论; (2)①如图2,证明△CEH 和△CFH 是等边三角形,可得四边形CFHE 的四边相等,可得结论;②如图3,证明△OCF 是等腰直角三角形,得OC=FC ,根据四边相等且有一个有是直角的四边形是正方形,可得结论. 【解答】证明:(1)如图1,∵EF是AB的垂直平分线,∴EF⊥AB,且EF经过圆心O,∵CD⊥AB,∴CD∥EF,∴∠E=∠ECD,∵CE平分∠OCD,∴∠OCE=∠ECD,∴∠OCE=∠E,∴OC=OE;(2)①当∠E的度数为30°时,四边形CFHE为菱形.理由是:如图2,连接CH,交EF于G,∵点C关于直线EF的对称点为点H,∴EF是CH的垂直平分线,∴FH=CF,EH=CE,EF⊥CH,∴∠CEG=∠HEG=30°,∴∠CEH=60°,∴△CEH是等边三角形,∴EH=CE=CH,由(1)知:∠OEC=∠OCE=30°,∴∠FOC=2∠OEC=60°,∵FC是⊙O的切线,∴FC⊥OC,∴∠OCF=90°,∴∠OFC=30°,∴∠CFH=2∠OFC=60°,∴△CHF是等边三角形,∴FH=FC=CH=EH=CE,∴四边形CFHE是菱形;故答案为:30°;②当∠E的度数为22.5°时,四边形CFHO为正方形;理由是:如图3,连接CH,交EF于点G,则FH=CF,OH=OC,∵∠OEC=∠OCE=22.5°,∴∠FOC=45°,∵∠OCF=90°,∴∠OFC=45°,∴FC=OC=OH=FH,∴四边形CFHO为正方形;故答案为:22.5°.【点评】本题为圆的综合运用题,涉及到等边三角形、等腰直角三角形、对称的性质、矩形和正方形的判定等知识,其中(2),对称性质的运用,是解题的关键.20. 【分析】作AG⊥EH于G,则∠ANM=∠AGC=90°,EG=MN,NG=ME=MD+DE=28,由三角函数求出AN=AM×sin37°=6,MN=AM×cos37°=8,得出EG=8,AG=AN+NG=34,由三角函数求出=20,即可得出结果.【解答】解:作AG⊥EH于G,如图所示:则∠ANM=∠AGC=90°,EG=MN,NG=ME=MD+DE=6+22=28,∵sin,cosAN MN AMN AMNAM AM ∠=∠=,∴34sin37106,cos3710855AN AM MN AM︒︒=⨯=⨯==⨯=⨯=,∴EG=8,AG=AN+NG=6+28=34,∵∠ACG=60°,34201.7AGCG∴=∴=≈=,∴CH=EH-EG-CG=38-8-20=10(cm);答:CH的长为10cm.【点评】本题考查了解直角三角形的应用-仰角俯角问题;根据三角函数求出AN、MN、AG的长是解题的关键.21. 【分析】(1)利用一次函数的性质和待定系数法求解可得;(2)根据月销售利润=单件利润乘以月销售量可得函数解析式,配方成顶点,再利用二次函数的性质求解可得;(3)先根据获利不得高于进价的80%得出x的范围,再结合二次函数的性质求解可得.【解答】解:(1)由表格知,售价每增加10元,销售量对应减少20元,。
湖南省益阳市中考数学模拟试卷(五)

21. (8分) (2019八下·江苏月考) 一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:
实验次数n
200
300
400
500
600
700
800
1000
摸到红球次数m
151
221
289
358
429
497
568
701
摸到红球频率
0.75
0.74
0.72
0.72
0.72
0.71
a
b
(1) 表格中a=________,b=________;
(2) 估计从袋子中摸出一个球恰好是红球的概率约为________;(精确到0.1)
(3) 如果袋子中有14个红球,那么袋子中除了红球,还有多少个其他颜色的球?
12. (2分) (2015·江东模拟) 下表中所列x,y的数值是某二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7 , 根据表中所提供的信息,以下判断正确的是( ).
①a>0;
②9<m<16;
③k≤9;
④b2≤4a(c﹣k).
x
…
x1
x2
x3
x4
x5
A . 4π﹣12 +12
B . 4π﹣8 +12
C . 4π﹣4
D . 4π+12
5. (2分) 如图,AB∥CD,AE∥FD,AE、FD分别交BC于点G、H,则下列结论中错误的是( )
A .
B .
初中数学湖南省益阳市中考模拟数学考试题及答案[]
![初中数学湖南省益阳市中考模拟数学考试题及答案[]](https://img.taocdn.com/s3/m/0069a78c376baf1ffd4fad5f.png)
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:的相反数是A. 2B.C.D.试题2:二元一次方程有无数多个解,下列四组值中不是该方程的解的是A. B. C.D.试题3:小华将一张如图1所示矩形纸片沿对角线剪开,他利用所得的两个直角三角形通过图形变换构成了下列四个图形,这四个图形中不是轴对称图形的是试题4:下列计算正确的是A.B.C. D.试题5:“恒盛”超市购进一批大米,大米的标准包装为每袋30kg,售货员任选6袋进行了称重检验,超过标准重量的记作“”,不足标准重量的记作“”,他记录的结果是,,,,,,那么这6袋大米重量的平均数和极差分别是A.0,1.5 B.29.5,1 C. 30,1.5 D.30.5,0试题6:不等式的解集在数轴上表示正确的是试题7:如图2,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是A.矩形 B.菱形 C.正方形 D.等腰梯形试题8:如图3,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B 处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是试题9:2010年11月,我国进行了第六次全国人口普查.大陆31个省、自治区、直辖市和现役军人的人口中,具有大学(指大专以上)文化程度的人口数约为120 000 000,将这个数用科学记数法可记为.试题10:如图4,将ABC沿直线AB向右平移后到达BDE的位置,若CAB=50°,ABC=100°,则CBE的度数为.试题11:如图5,AB是⊙O的切线,半径OA=2,OB交⊙O于C,B=30°,则劣弧的长是.(结果保留)试题12:分式方程的解为.试题13:在,1,2这三个数中任选2个数分别作为P点的横坐标和纵坐标,过P点画双曲线,该双曲线位于第一、三象限的概率是.试题14:计算:.试题15:如图,在梯形ABCD中,AB∥CD,AD =DC,求证:AC是∠DAB的平分线.试题16:观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1② 2 × 4 - 32 = 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.试题17:某校宣传栏中公示了担任下学期七年级班主任的12位老师的情况(见下表),小凤准备到该校就读七年级,请根据表中信息帮小凤进行如下统计分析:姓名性别年龄学历职称姓名性别年龄学历职称王雄辉男35 本科高级蔡波男45 大专高级李红男40 本科中级李凤女27 本科初级刘梅英女40 中专中级孙焰男40 大专中级张英女43 大专高级彭朝阳男30 大专初级刘元男50 中专中级龙妍女25 本科初级袁桂男30 本科初级杨书男40 本科中级(1)该校下学期七年级班主任老师年龄的众数是多少?(2)在图7(1)中,将反映老师学历情况的条形统计图补充完整;(3)在图7(2)中,标注扇形统计图中表示老师职称为初级和高级的百分比;(4)小凤到该校就读七年级,班主任老师是女老师的概率是多少?试题18:如图8,AE是位于公路边的电线杆,为了使拉线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD,用于撑起拉线.已知公路的宽AB为8米,电线杆AE的高为12米,水泥撑杆BD高为6米,拉线CD与水平线AC的夹角为67.4°.求拉线CDE的总长L(A、B、C三点在同一直线上,电线杆、水泥杆的大小忽略不计).(参考数据:sin67.4°≈ ,cos67.4°≈ ,tan67.4°≈)试题19:某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为吨,应交水费为y元,写出y与之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?试题20:如图,已知抛物线经过定点A(1,0),它的顶点P是y轴正半轴上的一个动点,P点关于x轴的对称点为P′,过P′作x轴的平行线交抛物线于B、D两点(B点在y轴右侧),直线BA交y轴于C点.按从特殊到一般的规律探究线段CA与CB的比值:(1)当P点坐标为(0,1)时,写出抛物线的解析式并求线段CA与CB的比值;(2)若P点坐标为(0,m)时(m为任意正实数),线段CA与CB的比值是否与⑴所求的比值相同?请说明理由.试题21:图是小红设计的钻石形商标,△ABC是边长为2的等边三角形,四边形ACDE是等腰梯形,AC∥ED,∠EAC=60°,AE=1.(1)证明:△ABE≌△CBD;(2)图中存在多对相似三角形,请你找出一对进行证明,并求出其相似比(不添加辅助线,不找全等的相似三角形);(3)小红发现AM=MN=NC,请证明此结论;(4)求线段BD的长.试题1答案:A试题2答案:B试题3答案:A试题4答案:D试题5答案:C试题6答案:CB试题8答案:C试题9答案:试题10答案:试题11答案:试题12答案:试题13答案:试题14答案:解:原式=2-1+2=3.试题15答案:解:∵,∴.,∴ .∴,即是的角平分线.解:⑴;⑵答案不唯一.如;⑶.试题17答案:解:⑴该校下学期七年级班主任老师年龄的众数是40;⑵大专4人,中专2人(图略);⑶;⑷班主任老师是女老师的概率是 . 试题18答案:解:⑴在Rt中,,(m).,,,,(m).(m)解:⑴设每吨水的政府补贴优惠价为元,市场调节价为元.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.⑵;,所求函数关系式为:⑶,.答:小英家三月份应交水费39元.试题20答案:解:⑴设抛物线的解析式为,抛物线经过,,.,∥,, 由,,.,∽,.⑵设抛物线的解析式为,.∥,,,,,,,同⑴得.试题21答案:⑴证明:,,.,,,.在.⑵答案不唯一.如.证明:,,.其相似比为:.⑶由(2)得,.同理..⑷作,,.,,,.,,.。
湖南省益阳市普通重点中学2024届中考数学最后一模试卷含解析

湖南省益阳市普通重点中学2024届中考数学最后一模试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.计算﹣1﹣(﹣4)的结果为()A.﹣3 B.3 C.﹣5 D.52.下列运算正确的是()A.a2•a4=a8B.2a2+a2=3a4C.a6÷a2=a3D.(ab2)3=a3b63.若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则()A.m<﹣1 B.m>1 C.m>﹣1 D.m<14.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为()A.()12n n+B.()22n n+C.()32n n+D.()42n n+5.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是()A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=46.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设P n(x n,y n),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为()A.1 B.3 C.﹣1 D.20197.下列计算正确的是( ).A .(x+y)2=x 2+y 2B .(-12xy 2)3=-16 x 3y 6C .x 6÷x 3=x 2D .2(2)-=28.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD 的长( )A .16cmB .13cm C .12cm D .1cm9.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( ) A .80(1+x )2=100 B .100(1﹣x )2=80 C .80(1+2x )=100 D .80(1+x 2)=10010.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( ) A .±2 B . C .2D .4 二、填空题(本大题共6个小题,每小题3分,共18分)11.一元二次方程()21210k x x ---=有两个不相等的实数根,则k 的取值范围是________. 12.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.13.如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为4时,阴影部分的面积为_____.14.分解因式a 3﹣6a 2+9a=_________________.15.若二次函数y =-x 2-4x +k 的最大值是9,则k =______.16.已知,在同一平面内,∠ABC =50°,AD ∥BC ,∠BAD 的平分线交直线BC 于点E ,那么∠AEB 的度数为__________.三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系中,函数的图象经过点,直线与x 轴交于点.求的值;过第二象限的点作平行于x 轴的直线,交直线于点C ,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n的取值范围.18.(8分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m=.半圆D与数轴有两个公共点,设另一个公共点是C.①直接写出m的取值范围是.②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.19.(8分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数kyx(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax 2+c (a≠0),它的图象的伴侣正方形为ABCD ,C 、D 中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标_____,写出符合题意的其中一条抛物线解析式_____,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_____.(本小题只需直接写出答案)20.(8分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元)。
【3套试卷】益阳市中考模拟考试数学试题

中考一模数学试卷及答案试卷内容:九年级上册---九年级下册2.4;满分120分一.选择题(共10小题,每小题3分,共30分)1.如图,在平面直角坐标系xOy 中,直线y =k 1x +2与y 轴交于点C ,与反比例函数2k y x 在第一象限内的图象交于点B ,连接BO ,若S △OBC =1,tan ∠BOC =13,则k 2的值是( )A .﹣3B .1C .2D .32.若关于x 的一元二次方程(k +2)x 2﹣3x +1=0有实数根,则k 的取值范围是( )A .k <14且k ≠﹣2B .kC .k ≤14且k ≠﹣2D .k3.等腰△ABC 的一边长为4,另外两边的长是关于x 的方程x 2﹣10x +m =0的两个实数根,则等腰三角形底边的值是( )A .4B .25C .4或6D .24或254.如果△ABC 中,AB =AC ,BC =AB ,那么∠A 的度数是( ) A .30° B .36° C .45° D .60°5.如图,在△ABC 中,DE ∥BC ,若S △ADE :S △BDE =1:2,S △ADE =3,则S △ABC 为( )A.9B.12C.24D.276.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′与矩形OABC的相似比为12,那么点B′的坐标是()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)或(﹣2,3)D.(﹣2,3)或(2,﹣3)7.设tan 69.83°=a,则tan 20.17°用a可表示为()A.﹣a B.1aC.3aD.a8.由于各地雾霾天气越来越严重,2018年春节前夕,安庆市政府号召市民,禁放烟花炮竹.学校向3000名学生发出“减少空气污染,少放烟花爆竹”倡议书,并围绕“A类:不放烟花爆竹;B类:少放烟花爆竹;C类:使用电子鞭炮;D 类:不会减少烟花爆竹数量”四个选项进行问卷调查(单选),并将对100名学生的调查结果绘制成统计图(如图所示).根据抽样结果,请估计全校“使用电子鞭炮”的学生有()A.900名B.1050名C.600名D.450名9.将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位得抛物线y=﹣(x+2)2+3,则()A.a=﹣1,b=﹣8,c=﹣10B.a=﹣1,b=﹣8,c=﹣16C.a=﹣1,b=0,c=0D.a=﹣1,b=0,c=610.如图所示,点A,B,C,D在⊙O上,CD是直径,∠ABD=75°,则∠AOC 的度数为()A.15°B.25°C.30°D.35°二.填空题(共8小题,每小题3分,共24分)11.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=.12.若,则=.13.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AD=BC,则cos∠B =.14.若点P(﹣m2﹣1,m﹣3)在第三象限,则反比例函数y=的图象在第象限.15.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=2,若其与x轴的一个交点为(5,0),则由图象可知,不等式ax2+bx+c<0的解集是.16.如图,有一座拱桥洞呈抛物线形状,这个桥洞的最大高度为16m,跨度为40m,现把它的示意图放在如图的平面直角坐标系中,则抛物线对应的函数关系式为.17.如图,⊙M经过点A(﹣3,5),B(1,5),C(4,2),则圆心M的坐标是.18.如图,四边形ABCD内接于⊙O,∠DCB=40°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD的取值范围是.三.解答题(共8小题,19—20,每小题5分;21—22,每小题7分;23—25,每小题10分;26题12分;满分66分)19.解下列方程:(x+2)2=3x+6.20.计算:﹣2-︒﹣tan45°(1tan60)21.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?22.为迎接2019年中考,对道里区西部优质教育联盟九年级学生进行了一次数学期中模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次被调查的学生共有多少人,并将条形统计图补充完整:(2)在扇形统计图中,求出“优”所对应的圆心角度数;(3)若该联盟九年级共有1050人参加了这次数学考试,估计九年级这次考试共有多少名学生的数学成绩可以达到优秀?23.正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之比是4:3,求NC的长.24.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60米,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1米,HF段的长为1.50米,篮板底部支架HE的长为0.75米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板顶端F到地面的距离.(结果精确到0.1米;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.73232≈1.414)25.十一黄金周期间某旅游景点的日游客量y(万人)是门票价格x(元)的一次函数,其函数图象如图所示:(1)求y关于x的函数解析式;(2)经过景点工作人员统计发现:此景点日游客承载量的极限为10万人,为了确保安全“十一”黄金周期间日游客量不能多于9万人,每卖出一张门票所需成本为20元,那么要想获得日利润300万元,该日的门票价格应该定为多少元?26.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C(0,﹣3).(1)求出该抛物线的函数关系式;(2)设抛物线y=ax2+bx+c的顶点为M:①求四边形ABMC的面积;②点D为抛物线在第四象限内图象上一个动点,是否存在点D,使得四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;(3)在抛物线y=ax2+bx+c上求点Q,使△BCQ是以BC为直角边的直角三角形.湖南省澧县张公庙中学2018—2019学年(秋季)湘教版九年级数学期末模拟试卷(一)参考简答一.选择题(共10小题,每小题3分,共30分)1.D.2.C.3.C.4.B.5.D.6.D.7.B.8.C.9.D.10.C.二.填空题(共8小题,每小题3分,共24分)11.41.12.﹣11.13.512-.14.二、四.15.﹣1<x<5.16y=﹣125(x﹣20)2+16.17.(﹣1,0).18.40°≤∠BPD≤80°.三.解答题(共8小题,19—20,每小题5分;21—22,每小题7分;23—25,每小题10分;26题12分;满分66分)19.解下列方程:(x+2)2=3x+6.【解】:(x+2)2=3x+6.(x+2)2﹣3x﹣6=0,(x+2)2﹣3(x+2)=0(x+2)[(x+2)﹣3]=0,x+2=0,(x+2)﹣3=0,∴x1=﹣2,x2=1.20.计算:﹣2(1tan60)-︒﹣tan45°【解】:原式=31)﹣1323﹣12.21.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?【解】:(1)连结OA,由题意得:AD=12AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.22.为迎接2019年中考,对道里区西部优质教育联盟九年级学生进行了一次数学期中模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次被调查的学生共有多少人,并将条形统计图补充完整:(2)在扇形统计图中,求出“优”所对应的圆心角度数;(3)若该联盟九年级共有1050人参加了这次数学考试,估计九年级这次考试共有多少名学生的数学成绩可以达到优秀?【解】:(1)22÷44%=50,所以这次被调查的学生共有50人;成绩为中的人数为50﹣10﹣22﹣8=10,补图条形统计图为:(2)360°×1050=72°,答:“优”所对应的圆心角度数72°;(3)1050×1050=210,答:估计九年级这次考试共有210名学生的数学成绩可以达到优秀.23.正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之比是4:3,求NC的长.(1)【证明】:∵四边形ABCD是正方形,正方形ABCD的边长为4,∴AB=BC=4,∠B=∠C=90°,∵AM和MN垂直,∴∠AMN=90°,∴∠BAM+∠AMB=90°,∠NMC+∠BMA=180°﹣90°=90°,∴∠BAM=∠NMC,∵∠B=∠C,∴△ABM∽△MCN;(2)【解】:∵△ABM∽△MCN,∴ABCM =BMCN,∵△ABM∽△MCN,△ABM的周长与△MCN周长之比是4:3,∴△ABM的周长与△MCN边长之比也是4:3,∴ABCM =BMCN=43,∵AB=4,∴4CM =43,∴CM=3,∴BM=4﹣3=1,∴1CN =43,∴NC=34.24.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60米,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1米,HF段的长为1.50米,篮板底部支架HE的长为0.75米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板顶端F到地面的距离.(结果精确到0.1米;参考数据:cos75°≈0.2588,sin75°≈0.9659,t an75°≈3.732≈1.414)【解】:(1)由题意可得:cos∠FHE=HEHF=12,则∠FHE=60°;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=AB BC,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=FG AF,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:篮板顶端F到地面的距离是4.4米.25.十一黄金周期间某旅游景点的日游客量y(万人)是门票价格x(元)的一次函数,其函数图象如图所示:(1)求y关于x的函数解析式;(2)经过景点工作人员统计发现:此景点日游客承载量的极限为10万人,为了确保安全“十一”黄金周期间日游客量不能多于9万人,每卖出一张门票所需成本为20元,那么要想获得日利润300万元,该日的门票价格应该定为多少元?【解】:(1)设y关于x的函数解析式为y=kx+b(k≠0),将(50,10),(100,5)代入y=kx+b,得:,解得:,∴y关于x的函数解析式为y=﹣0.1x+15.(2)根据题意得:(x﹣20)(﹣0.1x+15)=300,整理得:x2﹣170x+6000=0,解得:x1=50,x2=120.∵“十一”黄金周期间日游客量不能多于9万人,∴﹣0.1x+15≤9,解得:x≥60,∴x=120.答:该日的门票价格应该定为120元.26.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C(0,﹣3).(1)求出该抛物线的函数关系式;(2)设抛物线y=ax2+bx+c的顶点为M:①求四边形ABMC的面积;②点D为抛物线在第四象限内图象上一个动点,是否存在点D,使得四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;(3)在抛物线y=ax2+bx+c上求点Q,使△BCQ是以BC为直角边的直角三角形.【解】:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线过点C(0,﹣3),∴﹣3=a(0+1)(0﹣3),∴a=1,∴抛物线解析式为y=(x+1)(x﹣3),(2)①∵y=(x+1)(x﹣3)=(x﹣1)2﹣4,∴M(1,﹣4);如图1∴S△BCM=S梯形OCMD+S△BMD﹣S△BCO=12(3+4)×1+12×2×4﹣12×3×3=3;②如图2设D(x,x2﹣2x﹣3),∴OH=x,DH=2x+3﹣x2,HB=3﹣x ∴S四边形ABDC=S△AOC+S四边形OCDH+S△HDB=32++=﹣32;∴x=32时,S四边形ABDC的最大值为758,y=,∴D(32,154).(3)如图3过点B作BQ1⊥BC,交抛物线于点Q1、交y轴于点E,连接Q1C.∵CO=BO=3,∴∠CBO=45°,∴∠EBO=45°,BO=OE=3.∴点E的坐标为(0,3).将(0,3),(3,0)代入y=kx+b得:,解得,∴直线BE的解析式为y=﹣x+3,由,解得,,如图4,过点C作CF⊥CB,交抛物线于点Q2、交x轴于点F,连接BQ2.∵∠CBO=45°,∴∠CFB=45°,OF=OC=3.∴点F的坐标为(﹣3,0).∴直线CF的解析式为y=﹣x﹣3.由,解得,,∴点Q2的坐标为(1,﹣4).综上,在抛物线上存在点Q1(﹣2,5)、Q2(1,﹣4),使△BCQ1、△BCQ2是以BC为直角边的直角三角形.中考模拟考试数学试卷一、选择题(每小题3分,共9小题,共27分)1.已知x =-1是一元二次方程x 2-m =0的一个解,则m 的值是( )A .1B .-2C .2D .-12.下列图形中,是中心对称图形但不.是.轴对称图形的是( )3.下列说法正确的是( )A .哥哥的身高比弟弟高是必然事件B .2017年元旦武汉下雨是随机事件C .随机掷一枚均匀的硬币两次,都是正面朝上是不可能事件D .“彩票中奖的概率为15”表示买5张彩票肯定会中奖 4.抛物线y =-3(x +1)2-2的项点坐标是( )A .(-1,-2)B .(-1,2)C .(1,-2))D .(1,2)5.小军的旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )A .110B .19C .16D .156.如图,PA ,PB 是⊙O 的两条切线,A ,B 为切点,AC 为⊙O 的直径,∠P =70°,则∠PBC 的度数是( )A .110°B .120°C .135°D .145°第 6 题图P O 第 6 题图O C BAP7.如图,P 为∠AOB 边OA 上ー点,∠AOB =45°,OP =4cm ,以P 为圆心,2cm 长为半径的圆与直线OB 的位置关系是( )A .相离B .相交C .相切D .无法确定8.如图,扇形AOB 的半径为6cm ,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的底面积为( )A .9π cm 2B .6π cm 2C .4π cm 2D .12π cm 2120°O A B9.函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( )A .k <3B .k <3且k ≠0C .k ≤3D .k ≤3且k ≠0二、填空题(每小题3分,共4小题,共12分)11.如图,在平面直角坐标系中,若△ABC 与△A 1B 1C 1关于E 点成中心对称,则对称中心E 点的坐标是 .12.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一个点C ,使△ABC 为等腰三角形的概率是 .第 12 题图AB13.武汉某区的消费品月零售总额持续增长,十月份为1.2亿元,十一月,十二月两个月一共为28亿元.设九月份到十一月份平均每月增长的百分率为x ,则可列方程 .14.把抛物线向下平移1个单位,再向左平移3个单位后得到抛物线y =2x 2,则平移前的抛物线解析式为 .三、解答题(共8题,共61分)17.(本题8分)已知关于x 的方程x 2+ax -2=0.(1)当该方程的一个根为1时,求a 的值;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.18.(本题8分)已知,点P 是半径为1的⊙O 外的一点,PA 与⊙O 相切于点A ,且PA =1,AB 是⊙O 的弦.(1)如图,若PB =1,求弦AB 的长;(2)若AB 2,求PB 的长.P BO19.(本题8分)甲、乙两校分别有一男一女共4名教师报名到农村中学支教.(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 ;(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.20.(本题9分)如图,正方形ABCD 中,P 是BC 边上一点,将△ABP 绕点A 逆时针旋转90°,点P 旋转后的对应点为P '.(1)画出旋转后的三角形;(2)连接PP ',若正方形边长为1,∠BAP =15°,求PP '的长.DCP B A21.(本题10分)如图1,AB 为⊙O 的直径,BD 为⊙O 的弦,C 为⊙O 上一点,过C 作⊙O 的切线交直线BD 于点M ,且CM ⊥DM .(1)求证:AC =DC .C 图 2图 1C22.(本题10分)某商场销售的某种商品每件的标价是80元,若按标价的八折销售,仍可盈利60%,此时该种商品每星期可卖出220件,市场调查发现:在八折销售的基础上,该种商品每降价1元,每星期可多卖20件.设每件商品降价x 元(x 为整数),每星期的利润为y 元.(1)求该种商品每件的进价为多少元;(2)当售价为多少时,每星期的利润最大?(3)若要求该种商品每星期的售价均为每件m 元,且该周的利润要超过6000元,请直接写出的m 的取值范围.23.(1)(本题4分)如图,已知△ABC 是等边三角形,点E 在线段AB 上,点D 在直线BC 上,且DE =EC ,△BCE 绕点E 顺时针旋转至△ACF ,连接EF .求证:AB =DB +AF .FE AB C D24.(1)(本题4分)如图,抛物线y=ax2-2ax-3a(a<0)与x轴交于点A,B,经过点A的直线y=ax+a与抛物线交于点C,求C点的坐标(用含a的式子表示).参考答案一、选择题1.A2.A3.B4.A5.A6.D7.A8.C9.C 二、填空题11.(3,-1) 12.5713.1.2(1+x )+1.2(1+x )2=2.8 14.y =2(x -3)2+1三、解答题 17.(1)a =1;(2)△=a 2=-4×1×(-2)=a 2+8>0.18.(1)连接OA ,OB ,证四边形OAPB 是正方形,∵AB(2)(如图),AB ,∴OA 2+OB 2=AB 2,∴∠AOB =90°, ①当B ,P 在OA 的同侧时,易证四边形OAPB 是正方形,∴PB =OA =1;②当B ,P 在OA 的异侧时,则B ',O ,B 三点共线,PB∴PB =1.B BP19.(1)12; (2)列表略,P =41=123. 20.(1)略;(2)由旋转可得,AP =AP ',∠PAP '=90°,BP =DP ',△APP '是等腰直角三角形,∴∠APP '=45°,又∵∠BAP =15°,∠APB =75°,∠CPP '=60°,∴Rt △PCP '中,∠CP 'P =30°,设CP =x ,则BP =DP '=1-x ,PP '=2x ,∴CP 2+P 'C 2=P 'P 2,∴x 2+(2-x )2=(2x )2,解得x 1,(负值舍去),∴CP 1,PP '=2.21.解:(1)连AD ,延长CO 交AD 于H ,证四边形CMDH 为矩形,∴CH ⊥AD ,又CH过⊙O 的圆心O ,由垂径定理得»C A =»CD . (2)由»C A =»C D ,»AE =»ED可得CE 为直径,连CD ,过O 作OH ⊥BD 于H ,则OC =MH =5,又OB =OC =5,∴OH =4,∴CM =4,CD CE =20C =10,∴DE图2C图1C22.解:(1)设或本为n元,80×0.8-a=0.6a,∴a=40.(2)y=(80×0.8-x-40)(220+20x)=-20x2+260x+5280=-20(x-6.5)2+6125.又∵x为整数,∴x1=7,x2=6时,y最大=6120,∴当x=6或7时,80×0.8-6=58(元),80×0.8-7=57(元),即售价为57元或58元时,每星期利润最大;(3)55<m<60.23.解:作EG∥BC交AC于G,证△EDB≌△CEC.△AEG是等边三角形,BD=EG=AE,则AB=AE+BE=D B+AF.24.解:联立223y ax ax ay ax a⎧=--⎨=+⎩,可求C(4,5a).中考模拟考试数学试卷一.选择题(共10小题)1.8的倒数是()A.﹣8B.8C.﹣D.2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.3.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼4.下列四个图形中,是轴对称图形的是()A.B.C.D.5.下列几何体的左视图为长方形的是()A.B.C.D.6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=60 7.将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A.B.C.D.8.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()A.第3天B.第4天C.第5天D.第6天9.如图,直线y=n交y轴于点A,交双曲线于点B,将直线y=n向下平移4个单位长度后与y轴交于点C,交双曲线于点D,若,则n的值()A.4B.6C.2D.510.如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=x2+B.y=x2+C.y=x2+2D.y=x2+2二.填空题(共6小题)11.16的平方根是.12.对于一组统计数据3,3,6,5,3.这组数据的中位数是.13.计算:(1﹣)•=14.在△ABC中,AC=BC,AD⊥BC交直线BC于点D,若,则△ABC的顶角的度数为.15.已知函数y=|x2﹣2x﹣3|的大致图象如图所示,如果方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,则m的取值范围是.16.如图△ABC中,AB=AC,∠BAC=120°,D是AB上一点,且=,E为CB延长线上一点,且∠BAE=∠BCD,若BE=,则BC的长是.三.解答题(共8小题)17.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.18.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.19.为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.20.已知:如图,在每个小正方形的边长为1的网格中,△ABC的顶点A、B、C均在格点上,点D为AC边上的一点.(1)线段AC的长为.(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP 的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置.21.如图,在△ABC中,AB=AC,⊙O分别切AB于M,BC于N,连接BO、CO,BO=CO.(1)求证:AC是⊙O的切线;(2)连接MC,若tan∠MCB=,求sin∠B的值.22.某年五月,我国南方某省A、B两市遭受严重洪涝灾害,邻近县市C、D决定调运物资支援A、B两市灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市,A市需要的物资比B市需要的物资少100吨.已知从C 市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)A、B两市各需救灾物资多少吨?(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.23.已知:△ABC中,点D在边AC上,且AB2=AD•AC.(1)如图1.求证:∠ABD=∠C.(2)如图2.在边BC上截取BE=BD,ED、BA的延长线交于点F,求证:=.(3)在(2)的条件下,若AD=4,CD=5,cos∠BAC=,试直接写出△FBE的面积.24.已知:抛物线y=a(x2﹣2mx﹣3m2)(m˃0)交x轴于A、B两点(其中A点在B点左侧),交y轴于点C.(1)若A点坐标为(﹣1,0),则B点坐标为.(2)如图1,在(1)的条件下,且am=1,设点M在y轴上且满足∠OCA+∠AMO =∠ABC,试求点M坐标.(3)如图2,在y轴上有一点P(0,n)(点P在点C的下方),直线P A、PB分别交抛物线于点E、F,若=,求的值.参考答案与试题解析一.选择题(共10小题)1.8的倒数是()A.﹣8B.8C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.3.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选:B.4.下列四个图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:D选项的图形是轴对称图形,A,B,C选项的图形不是轴对称图形.故选:D.5.下列几何体的左视图为长方形的是()A.B.C.D.【分析】找到各图形从左边看所得到的图形即可得出结论.【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选:C.6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=60【分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x﹣2y+(20﹣x﹣y)×0=60.故选:C.7.将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A.B.C.D.【分析】画树状图展示所以16种等可能的结果数,再找出两次摸出的球上的汉字组成“青春”的结果数,然后根据概率公式求解.【解答】解:根据题意画图如下:共有16种等可能的结果数,其中两次摸出的球上的汉字组成“青春”的结果数为2,所以两次摸出的球上的汉字组成“青春”的概率是=;故选:A.8.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()A.第3天B.第4天C.第5天D.第6天【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【解答】解:由图和题意可知,第一天产生新的微生物有6个标号,第二天产生新的微生物有12个标号,以此类推,第三天、第四天、第五天产生新的微生物分别有24个,48个,96个,而前四天所有微生物的标号共有3+6+12+24+48=93个,所以标号为100的微生物会出现在第五天.故选:C.9.如图,直线y=n交y轴于点A,交双曲线于点B,将直线y=n向下平移4个单位长度后与y轴交于点C,交双曲线于点D,若,则n的值()A.4B.6C.2D.5【分析】先根据平移的性质求出平移后直线的解析式,由于,故可得出设B(a,n),D(3a,n﹣4),再根据反比例函数中k=xy为定值求出n.【解答】解:∵将直线y=n向下平移4个单位长度后,∴平移后直线的解析式为y=n﹣4,∵,∴CD=3AB,设B(a,n),D(3a,n﹣4),∵B、D在反比例函数的图象上,∴an=3a•(n﹣4)∴n=6故选:B.10.如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=x2+B.y=x2+C.y=x2+2D.y=x2+2【分析】过A作AH⊥BC,过E作EP⊥BC,则AH∥EP,由此得出关于x和y的方程,即可得出关系式.【解答】解:过A作AH⊥BC,过E作EP⊥BC,则AH∥EP,∴HC=3,PC=1,BP=5,PE=AH,∵BD=DE=y,∴在Rt△EDP中,y2=(5﹣y)2+PE2,∵x=6AH÷2=3AH,∴y2=(5﹣y)2+,∴y=x2+,故选:A.二.填空题(共6小题)11.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.12.对于一组统计数据3,3,6,5,3.这组数据的中位数是3.【分析】根据中位数的定义直接解答即可.【解答】解:把这些数从小到大排列为3,3,3,5,6,则这组数据的中位数是3;故答案为:3.13.计算:(1﹣)•=【分析】先计算括号内分式的减法,再计算乘法即可得.【解答】解:原式=(﹣)•=•=,故答案为:.14.在△ABC中,AC=BC,AD⊥BC交直线BC于点D,若,则△ABC的顶角的度数为30°或150°.【分析】分两种情况,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD =30°,然后分AD在△ABC内部和外部两种情况求解即可.【解答】解:如图1,∵AD⊥BC于点D,AD=BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,综上所述,等腰三角形ABC的顶角度数为30°或150°.故答案为:30°或150°.15.已知函数y=|x2﹣2x﹣3|的大致图象如图所示,如果方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,则m的取值范围是m=0或m>4.【分析】有2个不相等的实数根,其含义是当y=m时,对应的x值有两个不同的数值,根据图象可以看出与x轴有两个交点,所以此时m=0;当y取的值比抛物线顶点处值大时,对应的x值有两个,所以m值应该大于抛物线顶点的纵坐标.综合表述即可.【解答】解:从图象可以看出当y=0时,y=|x2﹣2x﹣3|的x值对应两个不等实数根,即m=0时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根;从图象可出y的值取其抛物线部分的顶点处纵坐标值时,在整个函数图象上对应的x的值有三个,当y的值比抛物线顶点处纵坐标的值大时,对于整个函数图象上对应的x值有两个不相等的实数根.|x2﹣2x﹣3|=|(x﹣1)2﹣4|,其最大值为4,所以当m>4时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,综上所述当m=0或m>4时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根.故答案为m=0或m>4.16.如图△ABC中,AB=AC,∠BAC=120°,D是AB上一点,且=,E为CB延长线上一点,且∠BAE=∠BCD,若BE=,则BC的长是.【分析】注意到∠BAE=∠BCD,于是作DF∥AC交BC于F,可得△ABE∼CFD,再根据相似三角形的性质列出比例方程解决问题.【解答】解:如图,作DF∥AC交BC于F.∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∴∠DFB=∠ACB=30°,∴BD=FD,∠ABE=∠CFD=120°,∵∠BAE=∠BCD,∴△ABE∼CFD,∴=,∵=,∴设AD=2x,BD=3x,∴AB=5x,DF=3x,BF=3x,BC=5x,CF=2x∴,解得x=,∴BC=5x=.三.解答题(共8小题)17.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.【分析】根据同底数幂的乘法法则,幂的乘方与积的乘方运算法则逐一判断即可.【解答】解:原式=﹣a8+a8﹣4a8=﹣4a8.18.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【分析】运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.【解答】证明:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义).∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°.∴AB∥CD(同旁内角互补,两直线平行).。
【3套试卷】益阳市中考模拟考试数学试题

中考模拟考试数学试卷一.选择题(共10小题)1.﹣6的绝对值是()A.﹣6B.6C.D.﹣2.下列运算中,正确的是()A.6a﹣5a=1B.a3•a3=a9C.a6÷a3=a2D.(a2)3=a63.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.如图所示的由六个小正方体组成的几何体的俯视图是()A.B.C.D.5.如图,AC是⊙O的直径,CB与⊙O相切于点C,AB交⊙O于点D.已知∠B=51°,则∠DOC等于()A.78°B.88°C.102°D.110°6.将二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,所得函数表达式为()A.y=(x+1)2+2B.y=(x﹣1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣2 7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%8.分式方程=的解为()A.x=0.75B.x=0C.x=D.x=19.点(﹣2,4)在反比例函数y=(k≠0)的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)10.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.二.填空题(共10小题)11.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.分解因式:4xy2﹣4x2y﹣y3=.14.不等式组的解集是.15.若二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,则m=.16.如图,将边长为3的正方形ABCD绕点A逆时针方向旋转30°后得到正方形AB′C′D′,则图中阴影部分面积为.17.一个扇形的圆心角为60°,它所对的弧长为2cm,则这个扇形的面积为cm2.18.在矩形ABCD中,E是AD的中点,F是BC上一点,连接EF、DF,若AB=4,BC=8,EF=2,则DF的长为.19.不透明的布袋里有2个红色小汽车,2个白色小汽车模型(小汽车除颜色不同外,其它都相同),从布袋中随机摸出1个小汽车记下颜色后放回袋中摇匀,然后重新再摸出1个小汽车,则摸出的两个小汽车都是红色的概率是.20.如图,在△ABC中,∠ACB=90°,点E为AB中点,点L在AC的延长线上,连接LE 交BC于点D,过点E作AB的垂线交∠LCB的平分线于点F,若∠CAB=3∠L,EF=3,则DL的长为.三.解答题(共7小题)21.先化简,再求代数式:÷(a﹣)的值,其中a=sin60°+tan45°,b=tan30°.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且三角形ABC的面积为.(2)在方格纸中画出以AB为一边的菱形ABDE,点D、E均在小正方形的顶点上,且菱形ABDE的面积为3,连接CE,请直接写出线段CE的长.23.为了响应国家提出的“每天锻炼1小时”的号召,某校积极开展了形式多样的“阳光体育”运动,毛毛对该班同学参加锻炼的情况进行了统计(每人只能选其中一项),并绘制了如图两个统计图,请根据图中提供的信息解答下列问题:(1)毛毛这次一共调查了多少名学生?(2)补全条形统计图,并求出扇形统计图中“足球”所在扇形的圆心角度数;(3)若该校有1800名学生,请估计该校喜欢乒乓球的学生约有多少人.24.已知:在△ABC中,AB=AC,AD⊥BC,垂足为点D,E在CB的延长线上,且BE=2BD,连接AE,F是AC的中点,G是AE的中点,连接BG、BF.(1)如图1,求证:四边形AGBF是平行四边形.(2)如图2,连接GF、DF,GF与AB相交于点H,若GF=AB,在不添加任何辅助线的情况下,请直接写出图2中所有的等边三角形.25.艾琳服装店10月份以每套1200元的进价购进一批羽绒服,当月以标价销售,销售额是28000元,进入11月份搞促销活动,每件让利100元,这样11月份的销售额比10月份增加了11000元,销售量是10月份的1.5倍.(1)求每件羽绒服的标价是多少元?(2)进入12月份,该服装店决定把剩余的羽绒服九折甩货,全部卖掉,这批羽绒服总获利不少于9940元,问这批羽绒服至少购进多少件?26.四边形ABCD内接于⊙O,连接AC、BD,AC是⊙O的直径,BD平分∠ADC.(1)如图1,求证:△ABC是等腰直角三角形;(2)如图2,过点D作DP⊥AB交⊙O于点P,连接BP,求证:CD=BP;(3)如图3,在(2)的条件下,过点C作CL∥AB交DF于点L,点E在AF上,且EF =BF,点G在DP的延长线上,连接AG交LE的延长线于点H,若AE=AH=10,FG =8,求DL的长.27.如图1,在平面直角坐标系中,点O是坐标原点,直线y=2x+6交x轴于点B,交y轴于点A,且AO=BC.(1)求直线AC的解析式;(2)如图2,点P在线段AC上,连接PB交OA于点D,设点P的横坐标为t,△ABP 的面积为S,求S与t之间的函数解析式;(3)如图3,在(2)的条件下,过点A作∠CAO的平分线交DP于点E,点L在BP的延长线上,连接CE、CL,若∠ABP=2∠ACE,CL=AC,求DL的长.参考答案与试题解析一.选择题(共10小题)1.﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.2.下列运算中,正确的是()A.6a﹣5a=1B.a3•a3=a9C.a6÷a3=a2D.(a2)3=a6【分析】根据合并同类项法则、同底数幂的乘法和除法,幂的乘方分别求出每个式子的值,再判断即可.【解答】解:A、6a﹣5a=a,故本选项错误;B、a3•a3=a6,故本选项错误;C、a6÷a3=a3,故本选项错误;D、(a2)3=a6,故本选项正确;故选:D.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:A.4.如图所示的由六个小正方体组成的几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得左边第一列有3个正方形,中间第二列有1个正方形,最右边一列有1个正方形.故选:D.5.如图,AC是⊙O的直径,CB与⊙O相切于点C,AB交⊙O于点D.已知∠B=51°,则∠DOC等于()A.78°B.88°C.102°D.110°【分析】根据切线的性质定理及三角形内角和可求得∠A的度数,再根据一条弧所对的圆周角等于它所对的圆心角的一半即可求解.【解答】解:∵CB与⊙O相切于点C∴AC⊥BC∵∠B=51°∴∠A=90°﹣∠B=39°∴∠COD=2∠A=78°.故选:A.6.将二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,所得函数表达式为()A.y=(x+1)2+2B.y=(x﹣1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣2【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:由“左加右减、上加下减”的原则可知,把二次函数y=x2的图象向上平移2个单位后,再向右平移1个单位,则平移后的抛物线的表达式为y=(x﹣1)2+2.故选:B.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.8.分式方程=的解为()A.x=0.75B.x=0C.x=D.x=1【分析】观察可知方程的最简公分母为:x(x+3),去分母将分式方程化为整式方程后再求解,注意检验.【解答】解:方程两边同乘x(x+3),得:x+3=5x,解得:x=0.75,经检验x=0.75是原方程的解,∴原分式方程的解是x=0.75.故选:A.9.点(﹣2,4)在反比例函数y=(k≠0)的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【分析】将(﹣2,4)代入y=(k≠0)即可求出k的值,再根据k=xy解答即可.【解答】解:∵点(﹣2,4)在反比例函数y=(k≠0)的图象上,∴k=﹣2×6=﹣8,四个选项中只有D符合.故选:D.10.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.二.填空题(共10小题)11.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为 1.496×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数149600000用科学记数法表示为1.496×108.故答案为:1.496×108.12.函数y=中,自变量x的取值范围是x≤3.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,3﹣x≥0,解得x≤3.故答案为:x≤3.13.分解因式:4xy2﹣4x2y﹣y3=﹣y(2x﹣y)2.【分析】先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解.【解答】解:4xy2﹣4x2y﹣y3,=﹣y(﹣4xy+4x2+y2),=﹣y(2x﹣y)2.14.不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.15.若二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,则m=2.【分析】此题可以将原点坐标(0,0)代入y=mx2﹣3x+2m﹣m2,求得m的值即可.【解答】解:由于二次函数y=mx2﹣3x+2m﹣m2的图象经过原点,代入(0,0)得:2m﹣m2=0,解得:m=2,m=0;又∵m≠0,∴m=2.故答案为:2.16.如图,将边长为3的正方形ABCD绕点A逆时针方向旋转30°后得到正方形AB′C′D′,则图中阴影部分面积为9﹣3.【分析】连接AE.根据HL即可证明△AB′E≌△ADE,可得到∠DAE=30°,然后可求得DE的长,从而可求得△ADE的面积,由正方形的面积减去△AB′E和△ADE的面积即可得出答案.【解答】解:连接AE,如图所示:由旋转的性质可知:AB=AB′.在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL).∴∠DAE=∠B′AE,S△ADE=S△AB′E.∵∠BAB′=30°,∴∠DAE=×(90°﹣30°)=30°.又∵AB=3,∴DE=AB=,∴S△ADE=××3=,又∵S正方形ABCD=32=9,∴S阴影=9﹣2×=9﹣3.故答案为:9﹣3.17.一个扇形的圆心角为60°,它所对的弧长为2cm,则这个扇形的面积为cm2.【分析】根据一个扇形的圆心角为60°,它所对的弧长为2cm,可以求得这个扇形的半径,再根据扇形面积公式=lr,即可求得这个扇形的面积.【解答】解:设这个扇形的半径为rcm,∵一个扇形的圆心角为60°,它所对的弧长为2cm,∴2=,解得,r=,∴这个扇形的面积为:×2×=(cm2),故答案为:.18.在矩形ABCD中,E是AD的中点,F是BC上一点,连接EF、DF,若AB=4,BC=8,EF=2,则DF的长为2或2.【分析】分两种情况进行讨论,先过F作FG⊥AD于G,构造直角三角形,根据勾股定理求得EG的长,再根据勾股定理求得DF的长即可.【解答】解:①如图所示,当BF>CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,EG==2,又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4﹣2=2,∴Rt△DFG中,DF==2;②如图所示,当BF<CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,EG==2,又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4+2=6,∴Rt△DFG中,DF==2,故答案为:2或2.19.不透明的布袋里有2个红色小汽车,2个白色小汽车模型(小汽车除颜色不同外,其它都相同),从布袋中随机摸出1个小汽车记下颜色后放回袋中摇匀,然后重新再摸出1个小汽车,则摸出的两个小汽车都是红色的概率是.【分析】列出表格,然后根据概率公式列式计算即可得解.【解答】解:解:分别用红1、红2代表2个红色小汽车模型,白1、白2代表2个白色小汽车模型,根据题意,列表如下:红1红2白1白2红1(红1,红1)(红1,红2)(红1,白1)(红1,白2)红2(红2,红1)(红2,红2)(红2,白1)(红2,白2)白1(白1,红1)(白1,红2)(白1,白1)(白1,白2)白2(白2,红1)(白2,红2)(白2,白1)(白2,白2)由表可知,可能的结果共有16种,且它们都是等可能的,同时摸出的两个小汽车都是红色的有4种情况,∴摸出的两个小汽车都是红色的概率=.故答案为:.20.如图,在△ABC中,∠ACB=90°,点E为AB中点,点L在AC的延长线上,连接LE 交BC于点D,过点E作AB的垂线交∠LCB的平分线于点F,若∠CAB=3∠L,EF=3,则DL的长为6.【分析】如图,在LE上取一点H,使得LH=CH,连接EC,设∠L=x,则∠A=3x.只要证明CH=CE=HD,CE=EF即可解决问题.【解答】解:如图,在LE上取一点H,使得LH=CH,连接EC,设∠L=x,则∠A=3x.∵∠ACB=90°,AE=EB,∴CE=AAE=EB,∴∠EAC=∠A=3x,∵∠ECA=∠L+∠AEL,∴∠CEL=2x,∵HC=HL,∴∠L=∠HCL=x,∴∠CHE=∠L+∠HCL=2x,∴∠CHE=∠CEH,∴CE=CH,∵CF平分∠LCD,∴∠LCF=∠FCD=45°,∵∠F+∠LEF=∠L+∠LCF,∴∠F+90°﹣(180°﹣4x)=x+45°,∴∠F=135°﹣3x,∵∠FCE=45°+∠ECB=45°+90°﹣3x=135°﹣3x,∴∠F=∠ECF,∴EC=EF=3,∴CH=3,∵∠L+∠ADH=90°,∠HCD+∠HCL=90°,∠L=∠HCL,∴∠HCD=∠HDC,∴CH=DH,∴LH=CH=DH=3,∴LD=6.故答案为6.三.解答题(共7小题)21.先化简,再求代数式:÷(a﹣)的值,其中a=sin60°+tan45°,b=tan30°.【分析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【解答】解:原式=÷=•=,∵a=sin60°+tan45°,=+1,b=tan30°=×=1,∴原式==.22.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的直角三角形ABC,点C在小正方形的顶点上,且三角形ABC的面积为.(2)在方格纸中画出以AB为一边的菱形ABDE,点D、E均在小正方形的顶点上,且菱形ABDE的面积为3,连接CE,请直接写出线段CE的长.【分析】(1)利用直角三角形的性质结合勾股定理得出答案;(2)利用菱形的性质结合勾股定理得出答案.【解答】解:(1)如图所示:△ABC即为所求;(2)如图所示:菱形ABDE即为所求,EC==3.23.为了响应国家提出的“每天锻炼1小时”的号召,某校积极开展了形式多样的“阳光体育”运动,毛毛对该班同学参加锻炼的情况进行了统计(每人只能选其中一项),并绘制了如图两个统计图,请根据图中提供的信息解答下列问题:(1)毛毛这次一共调查了多少名学生?(2)补全条形统计图,并求出扇形统计图中“足球”所在扇形的圆心角度数;(3)若该校有1800名学生,请估计该校喜欢乒乓球的学生约有多少人.【分析】(1)从两个统计图可得,喜欢“篮球”的有20人,占调查人数的40%,可求出调查人数;(2)求出喜欢“乒乓球”的人数,即可补全条形统计图:样本中,喜欢“足球”的占,因此圆心角占36°0的,可求出度数;(3))样本估计总体,样本中喜欢“乒乓球”占,估计总体1800人的是喜欢“乒乓球”人数.【解答】解:(1)20÷40%=50(名),答:毛毛一共调查了50名学生;(2)50﹣20﹣10﹣15=5(名),360°×=72°,答:扇形统计图中“足球”所在扇形的圆心角为72°,补全条形统计图如图所示:(3)1800×=180(名),答:该校1800名学生中喜欢乒乓球的约有180名.24.已知:在△ABC中,AB=AC,AD⊥BC,垂足为点D,E在CB的延长线上,且BE=2BD,连接AE,F是AC的中点,G是AE的中点,连接BG、BF.(1)如图1,求证:四边形AGBF是平行四边形.(2)如图2,连接GF、DF,GF与AB相交于点H,若GF=AB,在不添加任何辅助线的情况下,请直接写出图2中所有的等边三角形.【分析】(1)由AB=AC,AD⊥BC,根据三线合一的知识,可得BC=2BD,又由BE=2BD,可得B是EC的中点,又由F是AC的中点,G是AE的中点,根据三角形中位线的性质,即可得BG∥AC,BF∥AE,即可判定:四边形AGBF是平行四边形.(2)易证得四边形BGFC是平行四边形,由GF=AB,可判定△ABC是等边三角形,继而可得△AHF,△CDF,△GHB是等边三角形.【解答】(1)证明:∵AB=AC,AD⊥BC,∴BC=2BD,∵BE=2BD,∴BC=BE,∵F是AC的中点,G是AE的中点,∴BG∥AC,BF∥AE,∴四边形AGBF是平行四边形.(2)∵F是AC的中点,G是AE的中点,∴GF∥BC,∵BG∥AC,∴四边形BGFC是平行四边形,∴GF=BC,∵GF=AB,AB=AC,∴AB=AC=BC,即△ABC是等边三角形,∵GF∥BC,DF∥AB,BG∥AC,∴△AHF∽△ABC,△CDF∽△CBA,△GBH∽△F AH,∴△AHF,△CDF,△GHB是等边三角形,综上可得:图2中等边三角形有:△ABC,△AHF,△CDF,△GHB.25.艾琳服装店10月份以每套1200元的进价购进一批羽绒服,当月以标价销售,销售额是28000元,进入11月份搞促销活动,每件让利100元,这样11月份的销售额比10月份增加了11000元,销售量是10月份的1.5倍.(1)求每件羽绒服的标价是多少元?(2)进入12月份,该服装店决定把剩余的羽绒服九折甩货,全部卖掉,这批羽绒服总获利不少于9940元,问这批羽绒服至少购进多少件?【分析】(1)设每件羽绒服的标价为x元,则10月份售出件,等量关系:11月份的销售量是10月份的1.5倍;(2)设这批羽绒服购进a件,不等量关系:羽绒服总获利不少于9940元.【解答】解:(1)设每件羽绒服的标价为x元,则10月份售出件,根据题意得:=×1.5,解得:x=1400,经检验x=1400是原方程的解,答:每件羽绒服的标价为1400元.(2)设这批羽绒服购进a件,10月份售出28000÷1400=20(件),11月份售出20×1.5=30(件)根据题意得:28000+(11000+28000)+1400×0.9(a﹣20﹣30)﹣1200a≥9940解得:a≥99,所以a至少是99,答:这批羽绒服至少购进99件.26.四边形ABCD内接于⊙O,连接AC、BD,AC是⊙O的直径,BD平分∠ADC.(1)如图1,求证:△ABC是等腰直角三角形;(2)如图2,过点D作DP⊥AB交⊙O于点P,连接BP,求证:CD=BP;(3)如图3,在(2)的条件下,过点C作CL∥AB交DF于点L,点E在AF上,且EF =BF,点G在DP的延长线上,连接AG交LE的延长线于点H,若AE=AH=10,FG =8,求DL的长.【分析】(1)根据圆周角定理得到∠ABC=90°,根据角平分线的定义得到∠ADB=∠CDB,等量代换得到∠ACB=∠BAC,由等腰三角形的判定定理即可得到结论;(2)证明:如图2,延长DC,PB交于点T,根据垂直的定义得到∠DF A=90°,根据平行线的判定得到CB∥DP,求得∠TCB=∠CDP,∠CBT=∠BPD,推出∠CBT=∠CDP,根据等腰三角形的性质即可得到结论;(3)如图3,延长F A到点M,使AM=EF,过点M作MN⊥FM交CL的延长线于N,在DF上取点K,使FK=FG,连接AK,AN,NK,过点N作NR⊥AK于R,设∠ELF =α,EF=x,得到∠LEF=90°﹣α=∠AEH根据等腰三角形的性质得到∠AEH=∠AHE =90°﹣α,推出△KAF≌△GAF(SAS),根据全等三角形的性质得到∠KAF=∠GAF=2α,求得∠MAR=180°﹣2α,推出△NMA≌△LFE(SAS),根据全等三角形的性质得到∠NMA=∠FLE=α,NR=MN,AM=AR=EF=x,得到四边形MNLF是正方形,由正方形的性质得到NL=NM=NR,根据全等三角形的判定定理得到△NLK≌△NRK(SAS),求得AK=AR+RK=2+3x,根据勾股定理得到AF=15,LF=20,BF=5又根据全等三角形的性质得到DL=PF,设DL=a,则DF=20+a,PF=a,根据三角函数的定义即可得到结论.【解答】(1)证明:∵AC是⊙O的直径,∴∠ABC=90°,∵DB平分∠ADC,∴∠ADB=∠CDB,∵∠ACB=∠ADB,∠BAC=∠CDB,∴∠ACB=∠BAC,∴AB=CB,∴△ABC是等腰直角三角形;(2)证明:如图2,延长DC,PB交于点T,∴∠DF A=90°,∴∠CBA=∠DF A,∴CB∥DP,∴∠TCB=∠CDP,∠CBT=∠BPD,∵∠CDP+∠CBP=180°,∠CBT+∠CBP=180°,∴∠CBT=∠CDP,∴∠CBT=∠TCB=∠CDP=∠BPD,∴CT=BT,DT=PT,∴CD=BP;(3)解:如图3,延长F A到点M,使AM=EF,过点M作MN⊥FM交CL的延长线于N,在DF上取点K,使FK=FG,连接AK,AN,NK,过点N作NR⊥AK于R,设∠ELF=α,EF=x,∴∠LEF=90°﹣α=∠AEH,∵AE=AH,∠AEH=∠AHE=90°﹣α,∴∠EAH=2α,∵FK=FG,AF=AF,∠KF A=∠GF A=90°,∴△KAF≌△GAF(SAS),∴∠KAF=∠GAF=2α,∴∠MAR=180°﹣2α,∵NM=LF,AM=EF,∠M=∠LFE=90°,∴△NMA≌△LFE(SAS),∴∠NMA=∠FLE=α,∴∠NAM=90°﹣α,∴∠NAR=90°﹣α,∴∠ANR=α,∵AN=AN,∠M=∠ARN=90°,∴△NMA≌△NRA(AAS),∴NR=MN,AM=AR=EF=x,∵AB=BC,BC=LF,∵AM=EF,EF=BF,∴AM=BF,∴MF=AM+AF=BF+AF=AB=LF,∴四边形MNLF是正方形,∴NL=NM=NR,∵KN=KN,∠NLK=∠NRK=90°,∴△NLK≌△NRK(SAS),∵AB=10+2x,∴LK=LF﹣KF=2+2x=RK,∴AK=AR+RK=2+3x,在Rt△AFK中,AF2+FK2=AK2,∴(10+x)2+82=(2+3x)2,解得:x=5,x=﹣4(不合题意舍去),∴AF=15,LF=20,BF=5,∵∠ADP+∠PDC=90°,∠DCL+∠LDC=90°,∴∠ADP=∠DCL,∵∠ABP=∠ADP,∴∠ABP=∠DCL,∵DC=BP,∠DLC=∠BFP=90°,∴△DLC≌△PFB(AAS),∴DL=PF,设DL=a,则DF=20+a,PF=a,∵tan∠ADF=tan∠PBF,∴=,∴=,解得:a=5﹣10,a=﹣5﹣10(不合题意,舍去),∴DL=5﹣10.27.如图1,在平面直角坐标系中,点O是坐标原点,直线y=2x+6交x轴于点B,交y轴于点A,且AO=BC.(1)求直线AC的解析式;(2)如图2,点P在线段AC上,连接PB交OA于点D,设点P的横坐标为t,△ABP 的面积为S,求S与t之间的函数解析式;(3)如图3,在(2)的条件下,过点A作∠CAO的平分线交DP于点E,点L在BP的延长线上,连接CE、CL,若∠ABP=2∠ACE,CL=AC,求DL的长.【分析】(1)由题可求A(0,6),B(﹣3,0),C(3,0),再由待定系数法求AC直线的解析式即可;(2)过点P作PM⊥x轴交于点M,P(t,﹣2t+6),可求S△PBC=BC•PM=×6×(﹣2t+6)=﹣6t+18,S△ABC=BC•AO=18,则有S=S△ABC﹣S△PBC=6t;(3)过点B作BF平分∠ABD,且BF=CE,连接AF,证明△ABF≌△ACE(SAS),过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H,再证明△AFD≌△AED(SAS),过点C作CN⊥BP于点N,再证明△AOC≌△LNC(HL),可得tan∠NDC=,=,DN=,DL=6+.【解答】解:(1)由题可求A(0,6),B(﹣3,0),∴AO=6,BO=3,∵AO=BC,∴BC=6,∴CO=BC﹣BO=3,∴C(3,0),设直线AC的解析式为y=kx+b,将点C与A代入,可得,∴,∴y=﹣2x+6;(2)过点P作PM⊥x轴交于点M,∵点P的横坐标为t,∴P(t,﹣2t+6),∴PM=﹣2t+6,∴S△PBC=BC•PM=×6×(﹣2t+6)=﹣6t+18,S△ABC=BC•AO=18,∴S=S△ABC﹣S△PBC=6t;(3)过点B作BF平分∠ABD,且BF=CE,连接AF∵∠ABD=2∠ACE,∴∠ABF=∠ACE∵BO=CO,AO⊥BC,∴AB=AC,∴△ABF≌△ACE(SAS),∴AF=AE,∠BAF=∠CAE,∵AE平分∠OAC,∴∠OAE=∠CAE,∵∠BAO=∠CAO,∴∠BAF=∠F AO,过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H,∵AF平分∠BAD,∴FG=FK,∵BF平分∠ABD,∴FG=FH,∴FH=FK,∴DF平分∠ADB,∴∠BDF=∠ADF,∵AF=AE,∠F AD=∠EAD,AD=AD,∴△AFD≌△AED(SAS),∴∠ADF=∠ADE,∴∠ADF=∠ADE=∠BDF=60°,∴∠CDP=∠CDO=60°,过点C作CN⊥BP于点N,∵CO⊥AO,∴CN=CO=3,∵CA=CL,∴△AOC≌△LNC(HL),∴NL=AO=6,∵tan∠NDC=,∴=,∴DN=,∴DL=6+.中考模拟考试数学试题一.选择题(共10小题)1.在﹣1,﹣3,0,1中最小的数与最大的数的差是()A.﹣2 B.﹣4 C.﹣1 D.﹣32.如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°3.把代数式xy2﹣16x分解因式,结果正确的是()A.x(y+4)(y﹣4)B.x(y+16)(y﹣16)C.x(y2﹣16)D.x(y﹣4)24.国家统计局于2018年1月18日公布2017年国内生产总值(GDP)等重磅经济数据.初步核算,2017年国内生产总值为827122亿元,按可比价格计算,比上年增长6.9%.数据827122亿元用科学记数法表示为()A.827122×108元B.827122×109元C.827.122×1011元D.8.27122×1013元5.下列计算正确的是()A.a2+a3=a5B.(2a)2=4a C.a2•a3=a5D.a6÷a3=a26.施工队要铺设一段全长2000米的管道,因在中考期间需停工三天,实际每天施工需比原计划多50米才能按时完成任务,求原计划每天施工多少米?设原计划每天施工x米,则根据题意所列方程正确的是()A.B.C.D.7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°8.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为,点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为()A.B.C.2 D.10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10 B.C.10或D.10或二.填空题(共5小题)11.计算的结果为.12.如图,从一张矩形纸片ABCD的宽AD上找一点E,过点E剪下两个正方形,它们的边长分别为AE,DE,要使剪下的两个正方形的面积和为9,点E应选在何处?若AD=6,设AE=x,则可列方程为.13.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为.14.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB 上,点E在OB的延长线上,当正方形CDEF的边长为2时,阴影部分的面积为.15.如图是由边长为1的小正方形组成的网格图,线段AB,BC,BD,DE的端点均在格点上,线段AB和DE交于点F,则DF的长度为.三.解答题(共8小题)16.(1)计算:(2)化简求值:,其中.17.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.18.尺规作图任务一:下面是小希设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:直线l及直线外一点P.求作:直线PQ,使得PQ∥l.作法:如图①在直线l上取一点O,连接OP,以点O为圆心,OP为半径画圆,交直线l与点A和点B;②连接AP,以点B为圆心,AP长为半径在直线l上方画弧交⊙O于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小希设计的尺规作图步骤完成下列问题:(1)在图1中使用直尺和圆规,补全图形;(保留作图痕迹)(2)证明:PQ∥l任务二:已知:直线l及直线l外一点M.请根据下列提供的数学原理,选择其一,在图2中使用直尺和圆规作直线MN,使得MN ∥l.(保留作图痕迹,不写作法)19.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.20.如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC 于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.21.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.综合与实践:矩形的旋转问题情境:在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD和EFGH叠放在一起,这时对角线AC和EG 互相重合.固定矩形ABCD,将矩形EFGH绕AC的中点O逆时针方向旋转,直到点E与点B重合时停止,在此过程中开展探究活动.操作发现:(1)雄鹰小组初步发现:在旋转过程中,当边AB与EF交于点M,边CD与GH交于点N,如图2、图3所示,则线段AM与CN始终存在的数量关系是.(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN 时,如图3所示,四边形QMRN为菱形,请你证明这个结论.(3)雄鹰小组还发现在问题(2)中的四边形QMRN中∠MQN与旋转角∠AOE存在着特定的数量关系,请你写出这一关系,并说明理由.。
益阳市九年级下学期数学中考模拟试卷

益阳市九年级下学期数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·包头) a2=1,b是2的相反数,则a+b的值为()A . ﹣3B . ﹣1C . ﹣1或﹣3D . 1或﹣32. (2分) (2016七上·防城港期中) 青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示应为()平方千米.A . 250×104B . 25×105C . 2.5×106D . 0.25×1073. (2分) (2017九下·盐城期中) 下列数据是2017年4月10日6点公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是()A . 164和163B . 105和163C . 105和164D . 163和1644. (2分)下列计算正确的是()A . (ab4)4=a4b8B . (a2)3÷(a3)2=0C . (﹣x)6÷(﹣x3)=x3D .5. (2分)(2019·衢州模拟) 下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A .B .C .D .6. (2分)(2018·丹江口模拟) 有两块面积相同的小麦试验田,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,若设第一块试验田每公顷的产量为x kg,由题意可列方程()A .B .C .D .7. (2分)(2020·上海模拟) 如果一个正多边形的中心角等于,那么这个多边形的内角和为()A .B .C .D .8. (2分)(2020·泸县) 已知二次函数(其中x是自变量)的图象经过不同两点,,且该二次函数的图象与x轴有公共点,则的值()A . -1B . 2C . 3D . 49. (2分)如图所示,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,……按此规律,则第50个图形中面积为1的正方形的个数为()A . 1322B . 1323C . 1324D . 132510. (2分) (2018九上·大连月考) 如图所示,折叠矩形,使点落在边的点处,为折痕,已知,,则的长等于()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)(2016·龙华模拟) 因式分解:ax2﹣4a=________.12. (1分)(2016·邢台模拟) 如图,在△ABC中,BC=2,∠A=70°,以BC边为直径作⊙O,分别交AB,AC 于点D,E,连接DO,EO,则S扇形OBD+S扇形OEC=________.(结果用π表示)13. (1分) (2019九上·宜兴月考) 如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=53o ,则∠BAC的度数等于________.14. (1分)(2020·朝阳模拟) 如图:平行四边形ABCD中,E为AB中点,AF= FD,连E、F交AC于G,则AG:GC=________.15. (1分)(2019·陕西模拟) 如图,正方形ABCD中,AB=8,点E、F分别在边AB、BC上,BE=BF=2,点P是对角线AC上的一个动点,则PE+PF的最小值是________.三、解答题 (共9题;共90分)16. (5分)(2020·射阳模拟) 先化简,再求值:,其中是满足不等式组的最大整数.17. (10分) (2018八上·洛阳期中) 计算:(1)﹣x2•x3+4x3•(﹣x)2﹣2x•x4(2)﹣2m2•m3﹣(﹣3m)3•(﹣2m)2﹣m•(﹣3m)418. (5分)解方程:19. (10分)(2019·资阳) 如图,南海某海域有两艘外国渔船A、B在小岛C的正南方向同一处捕鱼.一段时间后,渔船B沿北偏东30°的方向航行至小岛C的正东方向20海里处.(1)求渔船B航行的距离;(2)此时,在D处巡逻的中国渔政船同时发现了这两艘渔船,其中B渔船在点D的南偏西60°方向,A渔船在点D的西南方向,我渔政船要求这两艘渔船迅速离开中国海域.请分别求出中国渔政船此时到这两艘外国渔船的距离.(注:结果保留根号)20. (10分) (2019九上·宁波期末) 在三个完全相同的小球上分别写上-2,-1,2三个数字,然后装入一个不透明的布袋内搅匀,从布袋中取出一个球,记下小球上的数字为,放回袋中再搅匀,然后再从袋中取出一个小球,记下小球上的数字为,组成一对数 .(1)请用列表或画树状图的方法,表示出数对的所有可能的结果;(2)求直线不经过第一象限的概率.21. (10分) (2018八上·路南期中) 如图(1)如图①所示,在△ABC中,AB=AC,∠BAC=120°,AD是BC边的中线,DE⊥AB,垂足为E,求证:AB =4AE.(2)如图②所示,在等边△ABC中,D、E分别是BC、AC上的点,且AE=CD,AD、BE交于点P,作BQ⊥AD 于Q,若BP=2,求PQ的长.22. (10分) (2019八上·榆林期末) 某销售商准备在西安采购一批丝绸,有A型、B型两种丝绸可供选择,其进价和售价如下:A型B型进价元件500400售价元件800600若销售商购进A型、B型丝绸共50件.(1)求售完这50件丝绸获得总利润y元与A型丝绸的数量x件之间的函数关系式.(2)若购进A型丝绸16件,求售完这50件丝绸获得总利润.23. (15分)(2017·苏州模拟) 如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E.(1)求∠BCE的度数;(2)求证:D为CE的中点;(3)连接OE交BC于点F,若AB= ,求OE的长度.24. (15分)(2020·无锡模拟) 如图,在直角坐标系中,点A的坐标为(0,8),点 B(b,t)在直线x=b 上运动,点D、E、F分别为OB、0A、AB的中点,其中b是大于零的常数.(1)判断四边形DEFB的形状.并证明你的结论;(2)试求四边形DEFB的面积S与b的关系式;(3)设直线x=b与x轴交于点C,问:四边形DEFB能不能是矩形?若能.求出t的值;若不能,说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共90分)16-1、17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
湖南省益阳市九年级数学中考模拟试卷(3月)

湖南省益阳市九年级数学中考模拟试卷(3月)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)计算(-1)2009+(-1)2009÷︱-1︱+(-1)2010的结果为()A . 1B . -1C . 0D . 22. (2分)如图,已知OP平分∠AOB,∠AOB=, CP=,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A .B .C .D .3. (2分)(2014·南宁) 下列图形中,是轴对称图形的是()A .B .C .D .4. (2分) (2019七下·海口月考) 如果与是同类项,则x、y的值分别为()A . -2 , 3B . 2 ,-3C . -2 ,-3D . 2 , 35. (2分) (2018七上·双柏期末) 为了了解我县七年级2000名学生的身高情况,从中抽取了200名学生测量身高,在这个问题中,样本是()A . 2000B . 2000名C . 200名学生的身高情况D . 200名学生6. (2分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是().A . 中位数是8B . 众数是9C . 平均数是8D . 极差是77. (2分)如图,把△ABC绕点C顺时针旋转35°后,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数是()A . 65°B . 55°C . 35°D . 75°8. (2分)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A . (3+x)(4-0.5x)=15B . (x+3)(4+0.5x)=15C . (x+4)(3-0.5x)=15D . (x+1)(4-0.5x)=159. (2分)关于x的方程mx2﹣x﹣1=0有两个实数解,则m的取值范围是()A . m≥﹣B . 0<m≤5C . ﹣≤m≤5且m≠0D . 0<m≤5且m≠010. (2分) (2017八下·苏州期中) 如图,将矩形ABCD分成15个大小相等的正方形,E、F、G、H分别在AD、AB、BC、CD边上,且都是某个小正方形的顶点,若四边形EFGH的面积为1,则矩形ABCD的面积为()A . 2B . 3C .D .二、填空题 (共6题;共6分)11. (1分)从巴中市交通局获悉,我市2015年前4月在巴陕高速公路完成投资8400万元,请你将8400万元用科学记数记表示为________元.12. (1分) (2020八下·镇江月考) “同位角相等”是________事件.(填“确定”或“随机”)13. (1分)如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有________个.14. (1分)(2019·徽县模拟) 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为________cm2.15. (1分) (2017八下·邗江期中) 如图,在菱形ABCD中,AB=6,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是________.16. (1分) (2019八下·长兴期末) 如图,已知反比例函数y= (x>0)的图象经过点A(4,5),若在该图象上有一点P,使得∠AOP=45°,则点P的坐标是 ________。
2023年湖南省益阳市中考数学模拟试卷(无答案)

湖南省益阳市2023年中考数学模拟试卷一、选择题(本题共10个小题,每小题4分,共40分。
每小题给出的四个选项中,只有一项是符合题目要求的) 1.﹣2023的绝对值等于( ) A .±2023B .2023C .﹣2023D .120232.下列多边形具有稳定性的是( )A .B .C .D .3.剪纸是我国具有独特艺未风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有( )A .①②③B .①②④C .①③④D .②③④4.不等式410x -<的解集是( ) A .4x >B .4x <C .14x >D .14x <5.某校举行“预防溺水,从我做起”演讲比赛,7位评委给选手甲的评分如下:90,93,88,93,85,92,95,则这组数据的众数和中位数分别是( ) A .95,92B .93,93C .93,92D .95,936.将直线21y x =+向上平移2个单位,相当于( ) A .向左平移2个单位 B .向左平移1个单位C .向右平移2个单位D .向右平移1个单位7.下列运算正确的是( ) A .3a ﹣2a =a B .(a 3)2=a 5C .2√5﹣√5=2D .(a ﹣1)2=a 2﹣18.如图,ABC ∆沿BC 方向平移后的像为DEF ∆,已知5BC =,2EC =,则平移的距离是()(第8题图) (第10题图)A .1B .2C .3D .49.李老师准备在班内开展“道德”“心理”“安全”三场专题教育讲座,若三场讲座随机安排,则“心理”专题讲座被安排在第一场的概率为( ) A .16B .14 C .13D .1210.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,将Rt △ABC 绕点B 顺时针旋转90°得到Rt △A 'B 'C '.在此旋转过程中Rt △ABC 所扫过的面积为( ) A .25π+24B .5π+24C .25πD .5π二、填空题(本题共8个小题,每小题4分,共32分,请将答案填在答题卡中对应题号的横线上)11.四个实数13,﹣√3,1,2中,比0小的数是 . 12.计算:2aa+1+2a+1= .13.若式子√x +3在实数范围内有意义,则实数x 的取值范围是 .14.数据显示,我国研发的编号为001B J -的919C 大飞机的单价约为653000000元,数据653000000用科学记数法表示为 .15.如图,已知直线a ∥b ,∠1=85°,∠2=60°,则∠3= .(第15题图) (第17题图) (第18题图)16.已知2310x x -+=,则2395x x -+= .17.菱形ABCD 的边长为2,45ABC ∠=︒,点P 、Q 分别是BC 、BD 上的动点,CQ PQ +的最小值为 . 18.如图,点A 在双曲线(0,0)ky k x x=>>上,点B 在直线:2(0,0)l y mx b m b =->>上,A 与B 关于x 轴对称,直线l 与y 轴交于点C ,当四边形AOCB 是菱形时,有以下结论:①()A b ②当2b =时,k = ③m = ④22AOCB S b =四边形 则所有正确结论的序号是 .三、解答题(本题共8个小题,共78分,解答应写出文字说明、证明过程或演算步骤) 19.(8分)计算:(Π﹣2023)0+6×(﹣12)+√18÷√2.20.(8分)如图,在矩形ABCD 中,E 为AB 的中点,连接CE 并延长,交DA 的延长线于点F .(1)求证:△AEF ≌△BEC .(2)若CD =4,∠F =30°,求CF 的长.21.(8分)如图所示,在平面直角坐标系xOy 中,点A 、B 分别在函数12(0)y x x =<、2(0,0)ky x k x=>>的图象上,点C 在第二象限内,AC x ⊥轴于点P ,BC y ⊥轴于点Q ,连接AB 、PQ ,已知点A 的纵坐标为2-. (1)求点A 的横坐标;(2)记四边形APQB 的面积为S ,若点B 的横坐标为2,试用含k 的代数式表示S .22.(10分)电视剧《一代洪商》在中央电视台第八套播出后,怀化市各旅游景点知名度得到显著提高.为全面提高旅游服务质量,旅游管理部门随机抽取了100名游客进行满意度调查,并绘制成如下不完整的频数分布表和扇形统计图.根据统计图表提供的信息,解答下列问题: (1)a = ,b = ,c = ;(2)求扇形统计图中表示“一般”的扇形圆心角α的度数; (3)根据调查情况,请你对各景点的服务提一至两条合理建议.23.(10分)如图,已知AB ,CE 是O 的直径,BM 是O 的切线,点D 在EA 的延长线上,AC ,OD 交于点F ,MBC ACD ∠=∠. (1)求证:MBC BAC ∠=∠; (2)求证:AE AD =;(3)若OFC ∆的面积14S =,求四边形AOCD 的面积S .24.(10分)在北京冬季奥运会举行时.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?25.(12分)如图一所示,在平面直角坐标中,抛物线22y ax x c =++经过点(1,0)A -、(3,0)B ,与y 轴交于点C ,顶点为点D .在线段CB 上方的抛物线上有一动点P ,过点P 作PE BC ⊥于点E ,作//PF AB 交BC 于点F . (1)求抛物线和直线BC 的函数表达式.(2)当PEF ∆的周长为最大值时,求点P 的坐标和PEF ∆的周长.(3)若点G 是抛物线上的一个动点,点M 是抛物线对称轴上的一个动点,是否存在以C 、B 、G 、M 为顶点的四边形为平行四边形?若存在,求出点G 的坐标,若不存在,请说明理由.26.(12分)为提高耕地灌溉效率,小明的爸妈准备在耕地A 、B 、C 、D 四个位置安装四个自动喷洒装置(如图1所示),A 、B 、C 、D 四点恰好在边长为50米的正方形的四个顶点上,为了用水管将四个自动喷洒装置相互连通,爸妈设计了如下两个水管铺设方案(各图中实线为铺设的水管).方案一:如图2所示,沿正方形ABCD 的三边铺设水管; 方案二:如图3所示,沿正方形ABCD 的两条对角线铺设水管. (1)请通过计算说明上述两方案中哪个方案铺设水管的总长度更短;(2)小明看了爸妈的方案后,根据“蜂集原理”重新设计了一个方案(如图4所示).满足120AEB CFD ∠=∠=︒,AE BE CF DF ===,//EF AD .请将小明的方案与爸妈的方案比较,判断谁的方案中铺设水管的总长度更短,并说明理由. 1.4≈,1.7)≈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
益阳市九年级中考数学模拟试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) -7的绝对值的倒数是()
A . 7
B . -7
C .
D . -
2. (2分)(2018·禹会模拟) 如图所示的几何体的俯视图是()
A .
B .
C .
D .
3. (2分) (2017七下·江阴期中) 甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()
A . 8.1×10﹣9米
B . 8.1×10﹣8米
C . 81×10﹣9米
D . 0.81×10﹣7米
4. (2分) (2019八上·滦州期中) 若分式在实数范围内有意义,则实数x的取值范围是()
A .
B .
C .
D .
5. (2分) (2019八下·朝阳期中) 若点(2,6)在反比例函数的图象上,则下列各点在这个函数图象上的是()
A . (2,-6)
B . (-6,-2)
C . (-3,4)
D . (-4,3)
6. (2分)(2018·仙桃) 如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()
A . 1
B . 1.5
C . 2
D . 2.5
7. (2分)已知x2﹣x﹣1=0,则x3﹣2x+1的值为()
A . ﹣1
B . 2
C . -1
D . -2
8. (2分) (2017八下·怀柔期末) 某校组织数学学科竞赛为参加区级比赛做选手选拔工作,经过多次测试后,有四位同学成为晋级的候选人,具体情况如下表,如果从这四位同学中选出一名晋级(总体水平高且状态稳定)你会推荐()
甲乙丙丁
平均分92949492
方差35352323
A . 甲
B . 乙
C . 丙
D . 丁
9. (2分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,
则△ABE的面积为()
A . 6cm²
B . 8cm²
C . 10cm²
D . 12cm²
10. (2分)若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则由1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是()
A .
B .
C .
D .
11. (2分) (2017九上·平舆期末) 如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,若∠ADC=26°,则∠AOB的度数为()
A . 78°
B . 52°
C . 44°
D . 26°
12. (2分)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=4,CE=,则△ABC的面积为()
A .
B . 15
C .
D .
二、填空题 (共6题;共6分)
13. (1分)比-3小9的数是________;最小的正整数是________.
14. (1分) (2018七下·合肥期中) 完成下面的证明
如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.
求证:∠A=∠F.
证明:∵∠AGB=∠EHF
∠AGB=________(对顶角相等)
∴∠EHF=∠DGF
∴DB∥EC(________)
∴∠________=∠DBA(________)
又∵∠C=∠D
∴∠DBA=∠D
∴DF∥________(________)
∴∠A=∠F(________).
15. (1分)已知二次函数y=(x﹣2)2+3,当x________ 时,y随x的增大而减小.
16. (1分)关于x的方程,其根的判别式为________ .
17. (1分)如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,连接DE交BC于点F,则CF:AD=________.
18. (1分)如图,正三角形△的面积为1,取△各边的中点、、,作第二个正三角形△,再取△各边的中点、、,作第三个正三角形△,…用同样的方法作正三角形,则第2个正三角形△的面积是________ ,第10个正三角形△的面积是________ .
三、解答题 (共7题;共61分)
19. (5分)计算:
(1)﹣3tan30°﹣()﹣2﹣4(﹣2)2
(2)6tan230°﹣sin60°﹣cos45°.
20. (5分)先化简,再求值
+·,其中
21. (6分) (2018九上·大石桥期末) 如图,点O、B的坐标分别为(0,0)、(3,0),将△OAB绕O点按逆时针方向旋转90°得到△0A′B′。
在图中画出△0A′B′并求出点A′的坐标
22. (10分) (2019八上·灌云月考) 如图
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,且∠BDA=∠AEC
=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立;请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是直线l上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:DF=EF.
23. (10分)(2017·盐城模拟) 如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B 处,测得C在点B的北偏西60°方向上.
(1) MN是否穿过原始森林保护区,为什么?(参考数据:≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?
24. (10分)如图,已知OA是⊙O的半径,AB为⊙O的弦,过点O作OP⊥OA,交AB的延长线上一点P,OP 交⊙O于点D,连接AD,BD,过点B作⊙O的切线BC交OP于点C
(1)求证:∠CBP=∠ADB;
(2)若O4=4,AB=2,求线段BP的长.
25. (15分)(2017·丹阳模拟) 已知△ABC在平面直角坐标系中的位置如图1所示,A点坐标为(﹣4,0),B点坐标为(6,0),点D为AC的中点,点E是抛物线在第二象限图象上一动点,经过点A,B,C三点的抛物线的解析式为y=ax2+bx+8.
(1)求抛物线的解析式;
(2)如图1,连接DE,把点A沿直线DE翻折,点A的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;
(3)图2中,点E运动时,当点G恰好落在BC上时,求E点的坐标.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共6题;共6分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共7题;共61分) 19-1、
19-2、
20-1、
21-1、
22-1、22-2、
22-3、
23-1、23-2、
24-1、
24-2、25-1、。