探伤方法

探伤方法
探伤方法

无损检测方法很多据美国国家宇航局调研分析,认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种:

常规无损检测方法有:

●超声检测Ultrasonic Testing(缩写UT);

●射线检测Radiographic Testing(缩写RT);

●磁粉检测Magnetic particle Testing(缩写MT);

●渗透检验Penetrant Testing (缩写PT);

●涡流检测Eddy current Testing(缩写ET);

非常规无损检测技术有:

●声发射Acoustic Emission(缩写AE);

●泄漏检测Leak Testing(缩写UT);

●光全息照相Optical Holography;

●红外热成象Infrared Thermography;

●微波检测Microwave Testing

X光射线探伤、超声波探伤对内部探伤适用,不适用表面探伤.磁粉探伤主要探表层深度3mm内缺陷.渗透探伤.着色探伤主要探工件表面缺陷(对不锈钢探伤比较适用).

常见的无损探伤方法

常见的无损探伤方法

VT-Visual Testing目测

RT-Radiographic Testing射线检测

UT-Ultrasonic Testing超声检测

PT-(Dye) Penetrant Testing渗透检测

MT-Magnetic particle Testing磁粉检测

ST-Spectrum Testing光谱测试

ET-Eddy Current Testing涡流检测

HT-Hardness Testing硬度检测

-Hydrostatic Testing 水压试验

MPT-Mechanical performance test机械性能

WT-Wall thickness Testing测厚

DT-Diameter Testing管径测试

MST-Metallographic inspection金相检验

ORT-Out of roundness testing不圆度检查

MMT-磁记忆

OT-综合检查

FT- Field test 现场检验

FN- Field note现场记录

一、RT-Radiographic Testing射线检测

射线照相法(RT)

是指用X射线或g射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。1、射线照相检验法的原理:射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线能量也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。2、射线照相法的特点:射线照相法的优点和局限性总结如下: a.可以获得缺陷的直观图像,定性准确,对长度、宽度尺寸的定量也比较准确; b.检测结果有直接记录,可长期保存; c. 对体积型缺陷(气孔、夹渣、夹钨、烧穿、咬边、焊瘤、凹坑等)检出率很高,对面积型缺陷(未焊透、未熔合、裂纹等),如果照相角度不适当,容易漏检; d.适宜检验厚度较薄的工件而不宜较厚的工件,因为检验厚工件需要高能量的射线设备,而且随着厚度的增加,其检验灵敏度也会下降; e.适宜检验对接焊缝,不适宜检验角焊缝以及板材、棒材、锻件等; f.对缺陷在工件中厚度方向的位置、尺寸(高度)的确定比较困难;g.检测成本高、速度慢;h.具有辐射生物效应,无损检测超声波探伤仪

能够杀伤生物细胞,损害生物组织,危及生物器官的正常功能。总的来说,RT的特性是——定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。无损检测X光机用于工业部门的工业检测X光机通常为工业无损检测X光机(无损耗检测),此类便携式X光机可以检测各类工业元器件、电子元件、电路内部。例如插座插头橡胶内部线路连接,二极管内部焊接等的检测。BJI-XZ、BJI-UC等工业检测X光机是可连接电脑进行图像处理的X光机,此类工业检测便携式X 光机为工厂家电维修领域提供了出色的解决方案。

二、UT-Ultrasonic Testing超声检测

超声波检测(UT)

1、超声波检测的定义:通过超声波与试件相互作用,就反射、透无损检测设备

射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。2、超声波工作的原理:主要是基于超声波在试件中的传播特性。 a.声源产生超声波,采用一定的方式使超声波进入试件; b.超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变; c.改变后的超声波通过检测设备被接收,并可对其进行处理和分析; d.根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。3、超声波检测的优点: a.适用于金属、非金属和复合材料等多种制件的无损检测; b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;c.缺陷定位较准确; d.对面积型缺陷的检出率较高; e.灵敏度高,可检测试件内部尺寸很小的缺陷; f.检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。4、超声波检测的局限性: a.对试件中的缺陷进行精确的定性、定量仍须作深入研究; b.对具有复杂形状或不规则外形的试件进行超声检测有困难;

c.缺陷的位置、取向和形状对检测结果有一定影响;

d.材质、晶粒度等对检测有较大影响;

e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。5、超声检测的适用范围: a.从检测对象的材料来说,可用于金属、非金属和复合材料; b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等; c.从检测对象的形状来说,可用于板材、棒材、管材等; d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米; e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。

三、 PT-(Dye) Penetrant Testing渗透检测

渗透检测(PT)

1.液体渗透检测的基本原理:零件表面被施涂含有荧光染料或着色染料的渗透剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光源下(紫外线光或白光),缺陷处的渗透液痕迹被现实,(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。

2.渗透检测的优点: a.可检测各种材料,金属、非金属材料;磁性、非磁性材料;焊接、锻造、轧制等加工方式; b.具有较高的灵敏度(可发现0.1μm宽缺陷) c.显示直观、操作方便、检测费用低。

3.渗透检测的缺点及局限性: a.它只能检出表面开口的缺陷; b.不适于检查多孔性疏松材料制成的工件和表面粗糙的工件;

c.渗透检测只能检出缺陷的表面分布,难以确定缺陷的实际深度,因而很难对缺陷做出定量评价。检出结果受操作者的影响也较大。

四、ET-Eddy Current Testing涡流涡流检测

涡流检测(ET)

1.涡流检测的基本原理:将通有交流电的线圈置于待测的金属板上或套在待测的金属管外(见图)。这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感应交变电流,称为涡流。涡流的分布和大小,除与线圈的形状和尺寸、交流电流的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈的距离以及表面有无裂纹缺陷等。因而,在保持其他因素相对不变的条件下,用一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化,进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或缺陷存在等信息。但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能反映试件表面或近表面处的情况。

2.应用:按试件的形状和检测目的的不同,可采用不同形式的线圈,通常有穿过式、探头式和插入式线圈3种。穿过式线圈用来检测管材、棒材和线材,它的内径略大于被检物件,使用时使被检物体以一定的速度在线圈内通过,可发现裂纹、夹杂、凹坑等缺陷。探头式线圈适用于对试件进行局部探测。应用时线圈置于金属板、管或其他零件上,可检查飞机起落撑杆内筒上和涡轮发动机叶片上的疲劳裂纹等。插入式线圈也称内部探头,放在管子或零件的孔内用来作内壁检测,可用于检查各种管道内壁的腐蚀程度等。为了提高检测灵敏度,探头式和插入式线圈大多装有磁芯。涡流法主要用于生产线上的金属管、棒、线的快速检测以及大批量零件如轴承钢球、汽门等的探伤(这时除涡流仪器外尚须配备自动装卸和传送的机械装置)、材质分选和硬度测量,也可用来测量镀层和涂膜的厚度。

3.优缺点:涡流检测时线圈不需与被测物直接接触,可进行高速检测,易于实现自动化,但不适用于形状复杂的零件,而且只能检测导电材料的表面和近表面缺陷,检测结果也易于受到材料本身及其他因素的干扰。

五、HT-Hardness Testing硬度检测

六、VT-Visual Testing目测

探伤

百科名片

探测金属材料或部件内部的裂纹或缺陷。常用的探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。物理探伤就是不产生化学变化的情况下进行无损探伤。

目录

定义

无损探伤

范围

磁粉查伤

超声使用

着色使用

展开

定义

无损探伤

范围

磁粉查伤

超声使用

着色使用

展开

定义

【crack detection】探测金属材料或部件内部的裂纹或缺陷。

常用的探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、涡流探伤、γ射线探伤、渗透探伤(萤光探伤、着色探伤)等物理探伤方法。

物理探伤就是不产生化学变化的情况下进行无损探伤。

超声波探伤仪

无损探伤

概念

无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。

方法

常用的无损探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。

目地

通过对产品内部缺陷进行检测对产品从以下方面进行改进

1、改进制造工艺;

2、降低制造成本;

3、提高产品的可靠性;

4、保证设备的安全运行。

原理

无损探伤检测是利用物质的声、光、磁和电等特性,在不损害或不影响被检测对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷大小,位置,性质和数量等信息。它与破坏性检测相比,无损检测有以下特点。第一是具有非破坏性,因为它在做检测时不会损害被检测对象的使用性能;第二具有全面性,由于检测是非破坏性,因此必要时可对被检测对象进行100%的全面检测,这是破坏性检测办不到的;第三具有全程性,破坏性检测一般只适用于对原材料进行检测,如机械工程中普遍采用的拉伸、压缩、弯曲等,破坏性检验都是针对制造用原材料进行的,对于产成品和在用品,除非不准备让其继续服役,否则是不能进行破坏性检测的,而无损检测因不损坏被检测对象的使用性能。所以,它不仅可对制造用原材料,各中间工艺环节、直至最终产成品进行全程检测,也可对服役中的设备进行检测。

范围

1、焊缝表面缺陷检查。检查焊缝表面裂纹、未焊透及焊漏等焊接质量。

2、内腔检查。检查表面裂纹、起皮、拉线、划痕、凹坑、凸起、斑点、腐蚀等缺陷。

3、状态检查。当某些产品(如蜗轮泵、发动机等)工作后,按技术要求规定的项目进行内窥检测。

4、装配检查。当有要求和需要时,使用亚泰光电工业视频内窥镜对装配质量进行检查;装配或某一工序完成后,检查各零部组件装配位置是否符合图样或技术条件的要求;是否存在装配缺陷。

5、多余物检查。检查产品内腔残余内屑,外来物等多余物。[1]

一、磁粉查伤

原理

磁粉探伤是用来检测铁磁性材料表面和近表面缺陷的一种检测方法。当工件磁化时,若工件表面或近表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。

种类

1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法和旋转磁化法。

2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流磁化法。

3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。

缺陷

内容

磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。

缺陷种类

1、各种工艺性质缺陷的磁痕;

2、材料夹渣带来的发纹磁痕;

3、夹渣、气孔带来的点状磁痕。

磁痕

磁痕产生原因

1、局部冷作硬化,由材料导磁变化造成的磁痕聚集;

2、两种不同材料的交界面处磁粉堆积;

3、碳化物层组织偏析;

4、零件截面尺寸的突变处磁痕;

5、磁化电流过高,因金属流线造成的磁痕;

6、由于工件表面不清洁或油污造成的斑点状磁痕。

缺陷磁痕显示记录

1、照相。用照相摄影记录缺陷磁痕显示时,要尽可能拍摄工件的全貌和实际尺寸,也可以拍摄工作的某一特征部位,同时把刻度尺拍摄进去。

2、贴印。贴印是利用透明胶纸粘贴复印缺陷磁痕显示的方法。

3、磁痕探伤—橡胶铸型法。用磁粉探伤-橡胶铸型镶嵌复制缺陷磁痕显示,直观,擦不掉并可长期保存。

4、录像。用录像记录缺陷磁痕显示的形状、大小和位置,同时应把刻度尺录摄进去。[2]

漏磁原因

由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B=μH来分析,在工件的单位面积上穿过B根磁线,而在缺陷区域的单位面积上不能容许B根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。

漏磁影响

1、缺陷的磁导率:缺陷的磁导率越小、则漏磁越强。

2、磁化磁场强度(磁化力)大小:磁化力越大、漏磁越强。

3、被检工件的形状和尺寸、缺陷的形状大小、埋藏深度等:当其他条件相同时,埋藏在表面下深度相同的气孔产生的漏磁要比横向裂纹所产生的漏磁要小。

检验规程

1、规程的适用范围;

2、磁化方法(包括磁化规范、工件表面的准备);

3、磁粉(包括粒度、颜色、磁悬液与荧光磁悬液的配制)。

4、试片;

5、技术操作;

6、质量评定与检验记录。

操作要求

1、当工件直接通过电磁化时,要注意夹头间的接触不良、或用了太大的磁化电流引起打弧闪光,应戴防护眼镜,同时不应在有可能燃气体的场合使用;

2、在连续使用湿法磁悬液时,皮肤上可涂防护膏;

3、如用于水磁悬液,设备须接地良好,以防触电;

4、在用茧火磁粉时,所用紫外线必须经滤光器,以保护眼睛和皮肤。

其他

某些转动部件的剩磁将会吸引铁屑而使部件在转动中产生摩擦损坏,如轴类轴承等。某些零件的剩磁将会使附近的仪表指示失常。因此某些零件在磁粉探伤后要退磁处理。

磁粉探伤中的灵敏试片

使用灵敏试片目的在于检验磁粉和磁悬液的性能和连续法中确定试件表面有效磁场强度和方向

以及操作方法是否正确等综合因素。

二、超声使用

基本原理

超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在萤光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。

优缺点

超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点;缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性;超声波探伤适合于厚度较大的零件检验。

主要特性

1、超声波在介质中传播时,在不同质界面上具有反射的特性,如遇到缺陷,缺陷的尺寸等于或大于超声波波长时,则超声波在缺陷上反射回来,探伤仪可将反射波显示出来;如缺陷的尺寸甚至小于波长时,声波将绕过射线而不能反射;

2、波声的方向性好,频率越高,方向性越好,以很窄的波束向介质中辐射,易于确定缺陷的位置。

3、超声波的传播能量大,如频率为1MHZ(100赫兹)的超声波所传播的能量,相当于振幅相同而频率为1000HZ(赫兹)的声波的100万倍。

超声波探伤板厚14毫米时,距离波幅曲线上三条主要曲线的关系

测长线Ф1 х 6 -12dB

定量线Ф1 х 6 -6dB

判度线Ф1 х 6 -2dB

缺陷分类

在焊缝超声波探伤中一般把焊缝中的缺陷分成三类:点状缺陷、线状缺陷、面状缺陷。

在分类中把长度小于10mm的缺陷叫做点状缺陷;一般不测长,小于10mm的缺陷按5mm计。把长度大于10mm的缺陷叫线状缺陷。把长度大于10mm高度大于3mm的缺陷叫面状缺陷。

穿透能力

X射线穿透物质的能力大小和射线本身的波长有关,波长越短(管电压越高),其穿透能力越大,称之为“硬”;反之则称为“软”。

消失的原因

1、近表表大缺陷;

2、吸收性缺陷;

3、倾斜大缺陷;

4、氧化皮与钢板结合不好。

主要因素

1、显影时间;

2、显影液温度;

3、显影液的摇动;

4、配方类型;

5、老化程度。

使用

超声波探伤仪组成部分主要有电路同步电路、发电路、接收电路、水平扫描电路、显示器和电源等部份组成。

超声波探头的主要作用

1、探头是一个电声换能器,并能将返回来的声波转换成电脉冲;

2、控制超声波的传播方向和能量集中的程度,当改变探头入射角或改变超声波的扩散角时,可使声波的主要能量按不同的角度射入介质内部或改变声波的指向性,提高分辨率;

3、实现波型转换;

4、控制工作频率;适用于不同的工作条件。

超声波试块的作用

超声波试块的作用是校验仪器和探头的性能,确定探伤起始灵敏度,校准扫描线性。

超声波探伤仪同步信号发生器的作用

同步电路产生同步脉冲信号,用以触发仪器各部分电路同时协调工作,它主要控制同步发射和同步扫描二部分电路。

超声波探伤中,超声波在介质中传播时引起衰减的原因

1、超声波的扩散传播距离增加,波束截面愈来愈大,单位面积上的能量减少。

2、材质衰减一是介质粘滞性引起的吸收;二是介质界面杂乱反射引起的散射。

加强超波探伤合录和报告工作

任何工件经过超声波探伤后,都必须出据检验报告以作为该工作质量好坏的凭证,一份正确的探伤报告,除建立可靠的探测方法和结果外,很大程度上取决于原始记录和最后出据的探伤报告是非常重要的,如果我们检查了工件不作记录也不出报告,那么探伤检查就毫无意义。

用超声波对饼形大锻件探伤,用底波调节探伤起始灵敏度对工作底面的要求

1、底面必须平行于探伤面;

2、底面必须平整并且有一定的光洁度。

CSK-ⅡA试块的主要作用

1、校验灵敏度;

2、校准扫描线性。

影响照相灵敏度的主要因素

1、X光机的焦点大小;

2、透照参数选择的合理性,主要参数有管电压、管电流、曝光时间和焦距大小;

3、增感方式;

4、选用胶片的合理性;

5、暗室处理条件;

6、散射的遮挡等。

超声波探伤选择探头K值三条原则

1、声束扫查到整个焊缝截面;

2、声束尽量垂直于主要缺陷;

3、有足够的灵敏度。

发射电路的主要作用是什么?

由同步电路输入的同步脉冲信号,触发发射电路工作,产生高频电脉冲信号激励晶片,产生高频振动,并在介质内产生超声波。

超声波探伤中,晶片表面和被探工件表面之间使用耦合剂的原因

晶片表面和被检工件表面之间的空气间隙,会使超声波完全反射,造成探伤结果不准确和无法探伤。

JB1150-73标准中规定的判别缺陷的三种情况

1、无底波只有缺陷的多次反射波。

2、无底波只有多个紊乱的缺陷波。

3、缺陷波和底波同时存在。

JB1150-73标准中规定的距离――波幅曲线的用途

距离――波幅曲线主要用于判定缺陷大小,给验收标准提供依据它是由判废线、定量线、测长线三条曲线组成;

判废线――判定缺陷的最大允许当量;

定量线――判定缺陷的大小、长度的控制线;测长线――探伤起始灵敏度控制线。

超声场

充满超声场能量的空间叫超声场。

反映超声场特征的主要参数

反映超声场特征的重要物理量有声强、声压声阻抗、声束扩散角、近场和远场区。

探伤仪最重要的性能指标

分辨力、动态范围、水平线性、垂直线性、灵敏度、信噪比。

超声波探伤仪近显示方式

1、A型显示示波屏横坐标代表超声波传递播时间(或距离)纵坐标代表反射回波的高度;

2、B 型显示示波屏横坐标代表超声波传递播时间(或距离),这类显示得到的是探头扫查深度方向的断面图;

3、C型显示仪器示波屏代表被检工件的投影面,这种显示能绘出缺陷的水平投影位置,但不能给出缺陷的埋藏深度。

超声波焊缝探伤时为缺陷定位仪器时间扫描线的调整的方法

有水平定位仪、垂直定位、声程定位三种方法。

三、着色使用

基本原理

着色(渗透)探伤的基本原理是利用毛细现象使渗透液渗入缺陷,经清洗使表面渗透液去除,而缺陷中的渗透残留,再利用显像剂的毛细管作用吸附出缺陷中残留渗透液而达到检验缺陷的目的。

主要因素

1、渗透剂的性能的影响;

2、乳化剂的乳化效果的影响;

3、显像剂性能的影响;

4、操作方法的影响;

5、缺陷本身性质的影响。

一些基本概念

电流与电磁

电流

电流是指电子在一定方向的外力作用下有规则的运动;电流方向,习惯上规定是由电源的正极经用电设备流向负极为正方向,即与电子的方向相反。

电流强度

电流强度是单位时间内通过导体横截面的电量,电流有时也作为电流强度的简称,可写成I =Q \ T 式中I 表示为电流强度Q 为电量,T 为时间。

电阻

指电流在导体内流动所受到的阻力,在相同的温度下,长度和截面积都相同的不同物质的电阻,差别往往很大;电阻用“R”表示,单位为欧姆,简称欧,以Ω表示。

电压

指在电源力的作用下,将导体内部的正负电荷推移到导体的两端,使其具有电位差,电压的单位是伏特,简称伏,用符号“V”表示。

交流电及其特点

交流电指电路中电流、电压、电势的大小和方向不是恒定的,而是交变的,其特点是电流、电压、电势的大小和方向都是随时间作作周期性的变化;工矿企业设备所用的交流电动机、民用照明、日常生活的电器设备都是以交流电作为电源;交流电有三相和单相之分,其电压380伏和220伏。

直流电及其特点

指在任何不同时刻,单位时间内通过导体横截面的电荷均相等,方向始终不变的电流;其特点是电路中的电流、电压、电势的大小和方向都是不随时间变化而变化,而是恒定的;直流电机、电镀、电机励磁、蓄电池充电、半导体电路等。

欧姆定律

欧姆定律反映了有稳恒电流通过的电路中电阻、电压和电流相互关系;欧姆定律指出,通过电路中的电流与电路两端电压成正比,与电路中的电阻成反比;即I =V \ R。

电磁感应

通过闭合回路的磁通量发生变化,而在回路中产生电动势的现象称为电磁感应;这样产生电动势称为感应电动势,如果导体是个闭合回路,将有电流流过,其电流称为感生电流;变压器,发电机、各种电感线圈都是根据电磁感应原理工作。

磁性

指金属具有导磁的性能;从实用意义讲如:可用磁性材料(金属)制造永久磁铁、电工材料,也可用磁性来检查磁性金属是否有裂纹等

高压

设备对地电压在250伏以上者称为高压。

低压

设备对地电压在250伏以下者称为低压。安全电压

人身触及带电导体时,无生命危险的电压,一般都采用36伏以下的电压称为安全电压。

凡工作场所潮湿或在金属容器内,隧道、矿井内用电器照明等,均采用12伏安全电压。

分辨率

指在射线底片或荧光屏上能够识别的图像之间最小距离,通常用每1毫米内可辨认线条的数目表示。

几何不清晰度

由半影造成的不清晰度、半影取决于焦点尺寸,焦距和工件厚度。

定影作用

显影后的胶片在影液中,分影剂将它上面未经显影的溴化银溶解掉,同时保护住黑色金属银粒的过程叫定影作用。

导电性

指金属能够传导电流的性质。

危害与防护

一定会有伤害,操作时需要穿防护衣,防护手套。距离一般不可以避免的可以操控到的位置尽可能的远一些好。工业无损探伤会产生辐射,辐射量大了可能会不育,甚至会致癌。

工业防辐射要做到三点:

(1)距离防护,工作时要远离辐射源。

(2)时间防护,不要长时间工作。

(3)屏蔽防护,工作区域要有有效的屏蔽装置。

其他

胶片洗冲程序

显影、停影、定影、水洗、干燥。

斜探头折射角β的正确值

斜探头折射角的正确值称为K值,它等于斜探头λ射点至反射点的水平距离和相应深度的比值。

局部无损探伤检查的焊缝中发现有不允许的缺陷

应在缺陷的延长方向或可疑部位作补充射线探伤。补充检查后对焊缝质量仍然有怀疑对该焊缝应全部探伤。

干粉法与湿粉法检验的主要优缺点

干粉法检验对近表面缺陷的检出能力高,特别适于大面积或野外探伤;湿粉法检验对表面细小缺陷检出能力高,特别适于不规则形状的小型零件的批量探伤。

四种常用探伤方法特点及区别

四种常规无损检测方法的比较 无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。常用的无损检测方法: 超声检测(UT)、磁粉检测(MT)、液体渗透检测(PT)及X射线检测(RT)。 超声波检测(UT) 1、超声波检测的定义: 通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 2、超声波工作的原理: 主要是基于超声波在试件中的传播特性。声源产生超声波,采用一定的方式使超声波进入试件;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 3、超声波检测的优点: a.适用于所有金属、非金属和复合材料等多种制件的无损检测; b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件; c.缺陷定位较准确; d.对面积型缺陷的检出率较高; e.灵敏度高,可检测试件内部尺寸很小的缺陷;

f.检测成本低、速度快,设备轻便,对人体及环境无害,使用较方便。 4、超声波检测的局限性 a.对试件中的缺陷进行精确的定性、定量仍须作深入研究; b.对具有复杂形状或不规则外形的试件进行超声检测有困难; c.缺陷的位置、取向和形状对检测结果有一定影响; d.材质、晶粒度等对检测有较大影响; e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。 5、超声检测的适用范围 a.从检测对象的材料来说,可用于金属、非金属和复合材料; b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等; c.从检测对象的形状来说,可用于板材、棒材、管材等; d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米; e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。锻件是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。这种力量典型的通过使用铁锤或压力来实现。铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。 磁粉检测(MT) 1.磁粉检测的原理: 铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小

转销磁粉探伤工艺

转销磁粉探伤工艺及流程 1.主题内容与适用范围 本工艺规定了ZPMC转销产品的磁粉检测方法以及验收标准。 本工艺适用于铁磁性材料制ZPMC转销产品成品表面和近表面缺陷的检测。 2.引用标准 下列文件中的条款通过本标准的引用而成为本标准的条款。 GB/T 5616 常规无损探伤应用导则 GB/T 12604.5 无损检测术语磁粉检测 JB/T 4730—2005 承压设备无损检测 JB/T 6063—1992 磁粉探伤用磁粉技术条件 JB/T 6065—2004 无损检测磁粉检测用试片 JB/T 6066—2004 无损检测磁粉检测用环形试块 JB/T 8290—1998 磁粉探伤机 ASTM/E709-85 美国无损检测标准-磁粉检测实施方法 3.磁粉检测程序 磁粉检测程序如下: a) 预处理: 清除零件表面油脂、铁锈、氧化皮或其它粘附磁粉的物质; b) 磁化:根据零件大小调整电流大小,用试片验证磁场效果; c) 施加磁悬液:均匀浇洒磁悬液,同时磁化; d) 磁痕的观察与记录:仔细观察零件表面,在缺陷处作适当标记; e) 缺陷评级:根据观察与记录对缺陷的性质和大小作初步评估; f) 退磁:在探伤机上自动退磁,用毫特斯拉计检验退磁效果,未达要求可反复几次; g) 后处理:车间协助清洗涂刷防锈油。 4.磁粉、载体及磁悬液 4.1 磁粉:磁粉应使用日本进口LY-50荧光磁粉,或性能更优的其它荧光磁粉。 4.2 载体:应为变压器油与无味煤油的混合液,变压器油与煤油的比例视环境温度宜为1:1~1:3。 4.3 磁悬液:荧光磁悬液浓度范围应符合下表的规定,测定前应对磁悬液进行充分的搅拌: 5.标准试件

磁粉探伤操作流程

磁粉探伤操作流程 1、做好仪器的准备工作。 2、记录被探伤件的规格、材质、编号、用途等参数以及探伤机型号、灵敏度试片型号等。 3、对被探伤件表面进行表面处理,一般采用砂纸打磨后,用洗涤剂清洗。 4、接好电源并对仪器进行预热,预热时间要求10分钟以上。 5、配制磁悬液,并将配制好的磁悬液滴出几滴在工件上,看其浓度及润湿性是否合适,若不合适,磁悬液需重新配制。 6、检查探伤机的提升力是否符合要求。 7、校验灵敏度:将灵敏度试片用洗涤剂清洗,用胶水把试片紧贴在工件上,再对工件进行磁化,同时施加磁悬液。观察试片上各个方向的磁度是否显示出来,并以此确定磁化次数。 8、对工件进行探伤,并注意对同部位需要垂直交叉磁化,以及要有复查间距,探伤后关掉电源。 9、观察磁痕显示,进行磁痕解释、定性、定位及记录磁痕。 10、取下试片擦洗、涂上防锈油,放回原处。 11、整理、清点设备、出具报告。 (6)着色探伤的操作程序 1、做好仪器的准备工作。 2、到现场后,应检查工作场地的通风条件及有无火原等。

3、记录被探伤件的规格、材质、编号、用途等参数,以及探伤剂型号及灵敏度试块型号。 4、对被探伤件进行表面处理,如去除氧化皮、铁锈等。 5、对工件和试块进行预清洗,一般采用丙酮或清洗剂,然后进行自然干燥。 6、待工件和试块表面干燥后,施加渗透剂,喷嘴应距工件和试块表面20-30mm。 7、渗透时间应根据使用说明,一般为15-30分钟,这期间应保持探伤面被渗透剂充分湿润。 8、渗透后,清洗掉多余的渗透剂,注意不要造成清洗不足或过清洗。 9、待工件和试块表面干燥后,均匀的喷洒显象剂,在施显象剂之前,应用力摇晃显象剂,使其呈雾状喷出。并注意喷嘴应距探伤表面300-400mm。 10、显象时间应根据使用说明,一般为15-30分钟。 11、显象时间过后,观察、记录、评定结果。 12、进行后清洗、试块放回原处。 13、清点、整理设备,出具报告。

各种常见无损探伤方法简介与比较

各种常见无损探伤方法简介与比较 三种常规无损检测方法的比较 无损检测就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。 常用的无损检测方法:超声检测(UT)、磁粉检测(MT)和液体渗透检测(PT)。 超声波检测(UT) 1、超声波检测的定义: 通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 2、超声波工作的原理: 主要是基于超声波在试件中的传播特性。声源产生超声波,采用一定的方式使超声波进入试件;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 3、超声波检测的优点: a.适用于金属、非金属和复合材料等多种制件的无损检测; b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件; c.缺陷定位较准确; d.对面积型缺陷的检出率较高; e.灵敏度高,可检测试件内部尺寸很小的缺陷; f.检测成本低、速度快,设备轻便,对人体及环境无害,使用较方便。 4、超声波检测的局限性

a.对试件中的缺陷进行精确的定性、定量仍须作深入研究; b.对具有复杂形状或不规则外形的试件进行超声检测有困难; c.缺陷的位置、取向和形状对检测结果有一定影响; d.材质、晶粒度等对检测有较大影响; e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。 5、超声检测的适用范围 a.从检测对象的材料来说,可用于金属、非金属和复合材料; b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等; c.从检测对象的形状来说,可用于板材、棒材、管材等; d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米; e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。锻件是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。这种力量典型的通过使用铁锤或压力来实现。铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。 磁粉检测(MT) 1. 磁粉检测的原理: 铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小 2. 磁粉检测的适用性和局限性: a.磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极窄(如可检测出长0.1mm、宽为微米级的裂纹),目视难以看出的不连续性。 b.磁粉检测可对原材料、半成品、成品工件和在役的零部件检测,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测。 c.可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。 d.磁粉检测不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于20°的分层和折叠难以发现。 渗透检测(PT) 1.液体渗透检测的基本原理: 零件表面被施涂含有荧光染料或着色染料的渗透剂后,在毛细管作用下,经过一段时间,渗透液可以渗透进表面开口缺陷中;经去除零件表面多余的渗透液后,再在零件表面施涂显像剂,同样,在毛细管的作用下,显像剂将吸引缺陷中保留的渗透液,渗透液回渗到显像剂中,在一定的光源下(紫外线光或白光),缺陷处的渗透液痕迹被现实,(黄绿色荧光或鲜艳红色),从而探测出缺陷的形貌及分布状态。 2.渗透检测的优点: a.可检测各种材料;金属、非金属材料;磁性、非磁性材料;焊接、锻造、轧制等加工方式; b.具有较高的灵敏度(可发现0.1μm宽缺陷) c.显示直观、操作方便、检测费用低。 3.渗透检测的缺点及局限性: a.它只能检出表面开口的缺陷; b.不适于检查多孔性疏松材料制成的工件和表面粗糙的工件; c.渗透检测只能检出缺陷的表面分布,难以确定缺陷的实际深度,因而很难对缺陷做出定量评价。检出结果受操作者的影响也较大。 由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、形状、部位和取向,选择最适当无损检测方法。 任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。应尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。

磁粉探伤检测工艺

磁粉探伤检测工艺规程 1 适用范围 1.1 本规程规定了铁磁性材料及其产品的磁粉探伤方法和检测工艺。 1.2 本规程适用于造船、修船、海洋工程及军工产品的铁磁性材料磁粉探伤。 1.3 本规程不适用于陆用锅炉压力容器产品的铁磁性材料探伤。 2 引用标准 GB3721-8 3 磁粉探伤机 ZBJ04006-87 钢铁材料的磁粉探伤方法 JB/T606 3-92 粉探伤磁粉技术条件 JB/T6065-92 磁粉探伤用标准试片 JISG0565-74 钢铁材料的磁粉探伤试验方法及缺陷磁粉花纹的等级分类 AWS D1.1-2001 美国焊接协会无损检验标准 3 探伤人员 3.1 从事磁粉探伤人员的视力,校正后应不低于1.0,并不得有色盲和色弱。 3.2 从事磁粉探伤人员应具有国内外各船级社互相认可的Ⅱ级以上资格证书。 4磁粉探伤设备 4.1 磁粉探伤设备应符合GB3721—83《磁粉探伤机》的规定 4.2 我厂使用的磁粉探伤设备采用便携式电磁轭和永久磁铁探伤仪。 4.3 电磁轭磁极间距50—200 n皿,交流电磁轭应具备44N以上提升力(磁吸力)。直流电磁轭应具有177N提升力(磁吸力)。4.4 旋转磁场的磁极间距为100—120 mm。 交流磁轭在被探工件表面上行进扫查时,四个磁轭端面与探测面之间间隙不超过2.0 mm。激磁安匝数不得低于1300ATx 2。4.5 使用电磁轭和旋转磁场探伤仪,被探工件不必做退磁处理。 5磁粉和磁悬液 5.1磁粉应具有高导磁率和低剩磁材料制成。 磁粉颗粒之间不应互相吸引,用磁称量法检验时,其称量值应大于7—10g。测试磁悬液浓度时,非萤光磁粉每100mL悬浮液的体积中为1.2—2.4mL的浓度。萤光磁粉应符合JB/T6063-92《磁粉探伤用磁粉技术条件》的规定,每100mL体积为0.1—0.5mL。5.2 磁粉材料应采用经有关技术监督部门验收合格的产品。颗粒度应均匀。湿法用的磁粉平均颗粒度为2—10μm,最大颗粒度不大于45μm(即大于320目)。 5.3 磁粉的材料成份不同,颜色不同,符号也不同。红色(棕色)磁粉为Fe2O3。黑色磁粉为Fe 3O4。磁粉颜色应与被探工件表面有鲜明的对比度。 5.4 湿法磁悬液的配制:磁粉浓度为10—20g/L, 其载液可以是水和煤油加变压器油。当用水为载液时,磁悬液中应加入少量的分散剂、防腐剂和消泡剂。 6 标准试片 6.1 使用A型磁粉探伤用标准试片,应符合JB/T6065-92《磁粉探伤用标准试片》的规定。 6.2 标准试片用来校验探伤装置,磁粉、磁悬液和操作工艺等综合性能。 6.3 A型标准试片灵敏度分为高、中、低三个等级。分别是15/100μm;30/100μm;60/100μm。分子为人工槽深,分母为试片厚度。 6.4 A型灵敏度试片的形状、尺寸发生变化时,不得继续应用,应更新相对应的新的试片。 7 磁化方式、方向和时间 7.1 电磁轭和旋转磁场的磁粉探伤仪应有足够的磁通量。电磁轭磁探仪对工件局部磁化时,两磁轭极之间产生纵向磁场,探测横向裂纹。旋转磁场磁探仪是由两个轭状电磁铁以90夹角组合,以不同相位的两相交流电激励,在交叉磁轭中间的空间形成一个旋转磁场.来探测各个方向的表面和近表面裂纹。 7.2 电磁轭式探伤仪进行纵向磁化探测时,要将磁轭交叉移动,使其磁力线方向大致相互垂直。且磁轭每次移动覆盖区域要

磁粉探伤检验方法

磁粉探伤检验方法 1 适用范围 1.1 本方法规定了铁磁性材料和零件磁粉检验时工艺的一般要求和详细要求。 1.2 本方法适用于铁磁性材料及其成品、半成品零件的磁粉探伤检验。不适用于非铁磁性材料的检验,也不适用于母材为铁磁材料但用奥氏体焊条焊接的焊缝的检验。 2 定义 磁悬液磁粉和载液(磁粉分散剂)按一定比例混合而成的悬浮液叫磁悬液。 连续法在工件磁化的同时浇洒磁粉或磁悬液的检验方法叫连续法。 剩磁法先将工件进行磁化,然后在工件上浇浸磁悬液的检验方法叫剩磁法。 3 检验人员 3.1 检验人员必须取得相关部门颁发的无损检测人员技术资格证书(磁粉专业)。签发 检验报告的人员必须持有Ⅱ级或Ⅱ级以上磁粉检验技术资格证书。编制磁粉检验工艺 (或工艺图表)的人员必须持有磁粉检验Ⅱ级或Ⅱ级以上技术资格证书,且应由磁粉检 验Ⅲ级人员或主管工程师审核。各级人员只能从事与自己技术资格等级相适应的工作。3.2 色盲、近距离矫正视力在5.0以下者,不得参与磁粉检验结果评定。 3.3 为防止强电及紫外线的危害,必须配备有关防护用品;同时,必须遵守有关安全操作规程。 4 设备和仪器 4.1 检验设备 检验设备应能满足受检材料和零部件磁粉检验要求,并能满足安全操作的要求。 4.1.1 检验设备有便携式、移动式、固定式和专用设备,设备应具备对工件完成磁化、 施加磁粉或磁悬液、提供观察条件及退磁等功能,有必要时,退磁装置亦可另外单独配置;检验设备应按零件形状、尺寸和技术要求配备,同时满足相应技术及安全操作的要求。 4.1.2 磁化装置应有足够的磁化电流或提升力,能满足零件磁粉检验的要求;其他辅助 装置(如指示仪表、夹头、搅拌喷淋器等)均应能适应检验的实际需要。 4.1.3 当采用剩磁法检验时,交流探伤机应配备断电相位控制器。直流和三相全波整 流探伤机应配备通电时间控制继电器。 4.1.4 半自动化磁粉检验装置应配备检验工件是否磁化的控制装置及报警装置。 4.1.5 当采用荧光磁粉检验时,应有能产生波长在320nm~400nm范围内,中心波长为365nm的紫外线照射装置。检验时应有足够的紫外线辐照度,一般规定在距光源380mm 处,紫外线辐照度应不低于1000μw/cm2。荧光磁粉检验暗区的环境光照度应不大于 20lx。 4.1.6 当采用非荧光磁粉检验时,被检零件表面的可见光照度应不小于1000lx。 4.1.7 检验设备应安装在灰尘较少、整洁的地点,并有良好的通风排气设施,检验地 点应有专门的照明装置并符合零件磁粉检验的要求。 4.2 退磁设备

常见的无损探伤方法

无损检测方法很多据美国国家宇航局调研分析,认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种: 常规无损检测方法有: ●超声检测 Ultrasonic Testing(缩写 UT); ●射线检测 Radiographic Testing(缩写 RT); ●磁粉检测 Magnetic particle Testing(缩写 MT); ●渗透检验 Penetrant Testing (缩写 PT); ●涡流检测Eddy current Testing(缩写 ET); 非常规无损检测技术有: ●声发射Acoustic Emission(缩写 AE); ●泄漏检测Leak Testing(缩写 UT); ●光全息照相Optical Holography; ●红外热成象Infrared Thermography; ●微波检测 Microwave Testing X光射线探伤、超声波探伤对内部探伤适用,不适用表面探伤.磁粉探伤主要探表层深度3mm内缺陷.渗透探伤.着色探伤主要探工件表面缺陷(对不锈钢探伤比较适用). 常见的无损探伤方法 常见的无损探伤方法 VT-Visual Testing目测 RT-Radiographic Testing射线检测 UT-Ultrasonic Testing超声检测 PT-(Dye) Penetrant Testing渗透检测 MT-Magnetic particle Testing磁粉检测 ST-Spectrum Testing光谱测试 ET-Eddy Current Testing涡流检测 HT-Hardness Testing硬度检测 -Hydrostatic Testing 水压试验 MPT-Mechanical performance test机械性能 WT-Wall thickness Testing测厚 DT-Diameter Testing管径测试 MST-Metallographic inspection金相检验 ORT-Out of roundness testing不圆度检查 MMT-磁记忆

磁粉(MT)检测通用工艺规程111讲解

广州番禺潮流水上乐园建造有限公司 磁 粉 检 测 工 艺 规 程 工艺规程版本号:CL/Y01-2016 二零一六年一月一日

1.适用范围 本规程适应于本公司对大型游乐设施磁粉检测方法及质量分级的要求。 本规程适用于铁磁性材料制造的大型游乐设施的原材料、零部件和焊接接头表面、近表面缺陷的检测,不适于奥氏体不锈钢和其它非铁磁性材料的检测。 与大型游乐设施有关的支承件和结构件,如有要求也可参照本规程进行磁粉检测。 2. 规范性引用文件 下列文件中的条款通过NB/T47013-2015《承压设备无损检测》的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括刊物的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。 GB 11533-1989 标准对数视力表 GB/T 16673-1996 无损检测用黑光源(UV-A)辐射的测量 NB/T47013.1-2015 承压设备无损检测第1部分:通用要求 JB/T 6063-1992 磁粉探伤用磁粉技术条件 JB/T 6065-2004 无损检测磁粉检测用试片 JB/T 8290-1998 磁粉探伤机 3. 一般要求 磁粉检测的一般要求除应符合NB/T47013.1的有关规定外,还应符合下列规定。 3.1 磁粉检测人员 磁粉检测人员未经矫正或经矫正的近(距)视力和远(距)视力应不低于5.0(小数记录值为 1.0),测试方法应符合GB 11533的规定。并1年检查1次,不得有色盲。 3.2 磁粉检测程序 磁粉检测程序如下: a) 预处理; b) 磁化; c) 施加磁粉或磁悬液; d) 磁痕的观察与记录; e) 缺陷评级; f) 退磁; g) 后处理。 3.3 磁粉检测设备 3.3.1设备 磁粉检测设备应符合JB/T 8290的规定。本公司采用CJX-220E交流磁粉仪,仪器编号:15876

磁粉探伤磁悬液的配置方法

磁粉探伤磁悬液的配置方法

b、配制方法: 1#配方——将磁粉分散剂YF-3混和均匀后按用量称取出来,先用少量的水稀释后加入磁粉搅拌均匀至完全顺湿,再加入少量的水充稀后加入硝酸钠,搅拌均匀后加入其余的水充分混和后即可使用。 2#配方——取少量的水将肥皂溶化,再加入适量的水及硝酸钠及磁粉搅拌均匀后加入其余的水充分混和后即可使用。 4#配方——将100#浓乳加入到1升50度的温水中,搅拌至完全溶解,再加入三乙醇胺、亚硝酸钠和消泡剂,每加入一种成分后都要搅拌均匀。加磁粉时,先取少量分散剂与磁粉混合,使磁粉全部顺湿,再加入其它分散剂。 三、荧光油磁悬液的配制 荧光磁粉是以磁性氧化铁粉、工业纯铁粉、羟基铁粉等为核心,外面包覆一层而制成的。 荧光磁粉与非荧光磁粉相比,荧光磁粉在紫外光激发下呈黄绿色荧光,色泽鲜明容易观察,可见度和对比度均好,零件缺陷显示更清晰,使用于任何颜色的

四、荧光水磁悬液的配制 配制荧光磁粉磁悬液的水分散剂要严格选择,除了满足水分散剂的各项性能要求外,还不应使荧光磁粉结团,溶解和变质。 建议YC—2型荧光磁粉可使用YF型磁粉散剂或采用下述配方: (JFC)5克 亚硝酸钠15克 消泡剂(28#)~1克 荧光磁粉1~2克 水1升 配制方法:将乳化剂与消泡剂搅拌均匀,并按比例加足水,成为水分散剂,用少量水分散剂与磁粉搅拌均匀,再加入余量的分散剂,然后加亚硝酸钠。 磁悬液的浓度是指每升液体中含磁粉的克数。浓度太低,小缺陷会漏检;浓度太高,会使降低衬度,而且会在工件的磁极上沾附过量的磁粉,干扰缺陷的显示,所以配制浓度要适宜。 第三节磁悬液浓度的测定 在磁粉探伤检测过程中,每个被检工件在磁化后,都要吸附一定数量的磁粉,因此,磁悬液使用一段时间后,应该测定磁悬液的浓度,以保证磁粉探伤的检测精度和可靠性。 一、用磁悬液浓度检测管测定 检测磁悬液浓度的准确方法是应用磁悬液浓度测定管——即磁粉沉淀管。 1、开启设备油泵十五分钟,待储液桶的磁悬液充分搅拌、均匀后,从油枪或喷淋系统取样100ml,装入磁悬液沉淀管,垂直静置放置。 2、煤油磁悬液和水剂磁悬液放置60分钟,变压器油和10#机油磁悬液放置24小时。 3、时间到后,观测磁粉沉淀管的磁粉沉淀刻度。

无损探伤原理、无损检测原理、常用方法、相关问题(20101119094353)

无损探伤原理、无损检测原理、常用方法、相关问题 什么是无损探伤? 答:无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。 二、常用的探伤方法有哪些? 答:常用的无损探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。 三、试述磁粉探伤的原理? 答:它的基本原理是:当工件磁化时,若工件表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。 四、试述磁粉探伤的种类? 1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法和旋转磁化法。 2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流磁化法。 3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。 五、磁粉探伤的缺陷有哪些? 答:磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。 六、缺陷磁痕可分为几类? 答:1、各种工艺性质缺陷的磁痕; 2、材料夹渣带来的发纹磁痕; 3、夹渣、气孔带来的点状磁痕。 七、试述产生漏磁的原因? 答:由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B =μH来分析,在工件的单位面积上穿过B根磁线,而在缺陷区域的单位面积上不能容许B 根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。 八、试述产生漏磁的影响因素? 答:1、缺陷的磁导率:缺陷的磁导率越小、则漏磁越强。 2、磁化磁场强度(磁化力)大小:磁化力越大、漏磁越强。 3、被检工件的形状和尺寸、缺陷的形状大小、埋藏深度等:当其他条件相同时,埋藏在表面下深度相同的气孔产生的漏磁要比横向裂纹所产生的漏磁要小。 九、某些零件在磁粉探伤后为什么要退磁? 答:某些转动部件的剩磁将会吸引铁屑而使部件在转动中产生摩擦损坏,如轴类轴承等。某

磁粉探伤工艺规程10

文件编号:NPIC-YR-WP-10 版本: A 页数:共 5页 中国核动力研究设计院 压力容器制造质量保证体系通用工艺规程 编写:____________________ 校对:____________________ 审核:____________________ 批准:____________________ 2006-04-08发布 2006-05-10实施

中国核动力研究设计院压力容器质量保证体系通用工艺规程 磁粉探伤工艺规程文件编号:NPIC-YR-WP-10 版本: A 本页版次:0 页码:2/5 1 总则 1.1本规程适用于铁磁性材料制成的压力容器及其零部件表面、近表面缺陷的检测和评定; 1.2本规程包括干磁粉、湿磁粉的非荧光磁粉检测方法; 1.3本规程结合焊缝磁粉检测工艺卡同时使用,焊缝磁粉检测工艺卡由Ⅱ级人员编写。 2 人员资格 2.1凡从事本院压力容器及零部件检测人员,都必须经过技术培训,并按《特种设备无损检测人员考核与监督管理规则》经考核,取得II级以上资格证书的人员担任。 2.2凡从事无损检测工作人员,除具有良好的身体素质外,视力必须满足校正视力不低于1.0,并且一年检查一次,不得有色盲。 3 设备 3.1磁化设备见表1。 表1 3.2为保证磁粉检测顺利进行,应备有下列辅助设备 3.2.1磁场指示器、A型试片和C型试片。 3.2.2磁悬液浓度沉淀管。 3.2.3 2~10倍放大镜。

3.2.4交直流特斯拉计CT3-1 0~1T 3.2.5交直流特斯拉计CT3-2 0~1T 3.2.6交直流特斯拉计CT3-2 0~5mT 3.2.7白光照度计 4 材料 使用湿式非荧光铁磁粉或磁粉膏,且磁粉的颜色应与被检表面有适当的对比度,用水或油(用变压器油和煤油各50%配成的混合油)作为载液,配置成磁悬液,湿磁粉悬浮液的浓度按下列规定的沉淀值检查。 4.1每100ml非荧光磁粉悬浮液其沉淀值为1.2~2.4ml。 4.2瓶或槽中的磁悬液浓度用梨形离心管测定其沉淀值来确定。在取样前,将磁悬液在循环系统中至少流动30分钟,以保证所有磁粉完全混和,再从槽中取100ml悬浮液使其沉淀大约30分钟,管底沉淀的体积即为沉淀值,也即是浓度指标值。 4.3如果沉淀物为松散团块则进行第二次取样,如果第二次取样仍不变,那么磁粉已被磁化(或失效),要更换磁悬液。 5 检验 5.1检测时机 5.1.1通常焊缝的磁粉检测应安排在焊接工序完成之后进行。对于有延迟裂纹倾向的材料,磁粉检测应安排在焊后24h进行。 5.1.2除另有要求外,对于紧固件和锻件的磁粉检测应安排在最终热处理之后进行。 5.2表面准备 5.2.1表面制备:如果受检零件表面凹凸不平以致会遮盖缺陷显示时,应通过磨削或机械加工制备表面。 5.2.2应使被检表面和邻近25mm区域内干燥清洁,没有任何污垢、油脂、纤维屑、铁皮、焊剂和焊接飞溅,油或其它妨碍检验的外来物。 5.2.3使用去污剂、有机溶剂、除锈剂、去漆剂、蒸汽除油、喷沙和超声去污等方法清洗检测面。 5.3磁化,施加磁悬液 5.3.1采用触头法磁化工件时,电极间距应控制在75mm~200mm之间,磁场的有效宽度为触头中心线两侧1/4极距。磁化电流根据表2选取,根据标准灵敏试片实测结果来校正。

磁粉法对焊缝探伤

实验磁粉法对焊缝探伤 一、实验目的 1.了解磁粉探伤的基本原理; 2.掌握磁粉探伤的一般方法和检测步骤; 3.熟悉磁粉探伤的特点。 二、实验原理 1. 磁粉检测的原理 磁粉检测,是通过对被检工件施加磁场使其磁化(整体磁化或局部磁化),在工件的表面和近表面缺陷处将有磁力线逸出工件表面而形成漏磁场,有磁极的存在就能吸附施加在工件表面上的磁粉形成聚集磁痕,从而显示出缺陷的存在。如图1所示。 图1 不连续性部位的漏磁场分布 1-漏磁场;2-裂纹;3-近表面气孔;4-划伤;5-内部气孔;6-磁力线;7-工件 磁粉检测有三个必须的步骤: (1)被检验的工件必须得到磁化; (2)必须在磁化的工件上施加合适的磁粉: (3)对任何磁粉的堆积必须加以观察和解释。 漏磁场:被磁化物体内部的磁力线在缺陷或磁路截面发生突变的部位,离开或进入物体表面所形成的磁场,漏磁场的成因在于磁导率的突变。设想一被磁化的工件上存在缺陷,由于缺陷内物质的磁导率一般远低于铁磁性材料的磁导率,

因而造成缺陷附近磁力线的弯曲和压缩。如果该缺陷位于工件的表面或近表面,则部分磁力线就会在缺陷处溢出工件表面进入空气,绕过缺陷后在折回工件,由此形成缺陷的漏磁场。 漏磁场与磁粉的相互作用:磁粉检测的基础是缺陷的漏磁场与外加磁粉的磁相互作用,及通过磁粉的聚集来显示被检工件表面上出现的漏磁场,在根据磁粉聚集形成的磁痕的形状和位置分析漏磁场的成因和评价缺陷。设在被检工件表面上有漏磁场存在。如果在漏磁场处撒上磁导率很高的磁粉,因为磁力线穿过磁粉比穿过空气更容易,所以磁粉会被该漏磁场吸附,被磁化的磁粉沿缺陷漏磁场的磁力线排列。在漏磁场力的作用下,磁粉向磁力线最密集处移动,最终被吸附在缺陷上。由于缺陷的漏磁场有被实际缺陷本身大数十倍的宽度,姑而磁粉被吸附后形成的磁痕能够放大缺陷。通过分析磁痕评价缺陷,即是磁粉检测的基本原理。2.磁粉检测的适用范围 (1)未加工的原材料(如钢坯)、半成品、成品及在役与使用过的工件都可用磁粉检测技术进行检查。 (2)管材、棒材、板材、型材和锻钢件、铸钢件及焊接件都可应用磁粉检测技术来检测缺陷。 (3)被检测的表面和近表面的尺寸很小,间隙极窄的铁磁性材料,可检测出长O.lmm、宽为微米级的裂纹和目测难以发现的缺陷。 (4)可用于检测马氏体不锈钢和沉淀硬化不锈钢材料,但不适用于检测奥氏体不锈钢和用奥氏体不锈钢焊条焊接的焊缝,也不适用于检测铜、铝、镁、钛台金等非磁性材料。 (5)可用于检测工件表面和近表面的裂纹、白点、发纹、折叠、疏松、冷隔、气孔和夹杂等缺陷,但不适于检测工件表面浅而宽的划伤、针孔状缺陷、埋藏较深的内部缺陷和延伸方向与磁力线方向夹角小于20。的缺陷。 磁粉检测方法应用比较广泛,主要用以探测磁性材料表面或近表面的缺陷。多用于检测焊缝,铸件或锻件,如阀门,泵,压缩机部件,法兰,喷嘴及类似设备等。探测更深一层内表面的缺陷,则需应用射线检测或超声波检测。磁粉检测具有检测成本低,操作便利,反应快速等特点。其局限性在于仅能应用于磁性材料,且无法探知缺陷深度,工件本身的形状和尺寸也会不同程度地影响到检测结果。

磁粉探伤作业指导书

磁粉探伤作业指导书

HTFA/QC—03 磁粉探伤作业指导书 磁粉探伤作业指导书 1目的 编制作业指导书的目的,是为了使探伤人员在进行磁粉探伤过程中有明确的步骤、程序,以保证检测结果的一致性和可靠性。 2 适用范围 本指导书适用于检查铁磁性材料工件及焊缝的表面或近表面裂纹和其它缺陷,对于铁磁性材料的毛坯件、半成品(钢坯、铸件和锻件)及成品也可参照执行。(本指导书主要侧重磁轭法) 3 引用标准 3.1 JB4730-94《压力容器无损检测》 3.2 GB/T1260 4.5《无损检测名词术语》 3.3 GB3721-83《磁粉探伤机》 3.4 ZBK54004-87《汽轮机铸钢件的磁粉探伤及质量分级方法》 3.5 GB/T9444-88《铸钢件磁粉探伤方法及质量分级》 3.6 ZBK54002-87《汽轮机叶片磁粉探伤方法》 3.7 JB3965-85《钢制压力容器磁粉探伤》 4 检测人员 4.1 凡从事磁粉探伤人员,都必须经过技术培训,并取得有关部门的资格证书。4.2 磁粉探伤人员按技术等级为高、中、初级。取得不同磁粉探伤的各技术等级人员,只能从事该等级相应的探伤工作,并负相应的技术责任。 4.3 凡从事磁粉探伤的人员,除具有良好的身体素质外,视力必须满足下列要求:4.3.1 校正视力不得低于1.0,并一年检查一次。 4.3. 2 从事磁粉探伤人员,不得有色盲、色弱。 5 设备 5.1 磁粉探伤设备必须符合GB3721-83的规定。 5.2 所使用磁粉探伤设备(电磁轭),当电磁轭极间距为200mm时交流电磁轭至少应有44N的提升力;直流电磁轭至少177N的提升力。

磁粉探伤介绍

磁粉探伤介绍 1技术原理 magnetic particle testing 磁粉探伤,是通过磁粉在缺陷附近漏磁场中的堆积以检测铁磁性材料表面或近表面处缺陷的一种无损检测方法。将钢铁等磁性材料制作的工件予以磁化,利用其缺陷部位的漏磁能吸附磁粉的特征,依磁粉分布显示被探测物件表面缺陷和近表面缺陷的探伤方法。该探伤方法的特点是简便、显示直观。利用了工件缺陷处的漏磁场与磁粉的相互作用,它利用了钢铁制品表面和近表面缺陷(如裂纹,夹渣,发纹等)磁导率和钢铁磁导率的差异,磁化后这些材料不连续处的磁场将发生崎变,形成部分磁通泄漏处工件表面产生了漏磁场,从而吸引磁粉形成缺陷处的磁粉堆积——磁痕,在适当的光照条件下,显现出缺陷位置和形状,对这些磁粉的堆积加以观察和解释,就实现了磁粉探伤。 磁粉探伤与利用霍耳元件、磁敏半导体元件的探伤法,利用磁带的录磁探伤法,利用线圈感应电动势探伤法同属磁力探伤方法。 2主要分类 磁粉探伤种类: 1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法 和旋转磁化法。 2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流 磁化法。 3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。 4、按照工件上施加磁粉的时间不同,可分为连续法和剩磁法。 3操作方法 将待测物体置于强磁场中或通以大电流使之磁化,

磁粉探伤 若物体表面或表面附近有缺陷(裂纹、折叠、夹杂物等)存在,由于它们是非铁磁性的,对磁力线通过的阻力很大,磁力线在这些缺陷附近会产生漏磁。当将导磁性良好的磁粉(通常为磁性氧化铁粉)施加在物体上时,缺陷附近的漏磁场就会吸住磁粉,堆集形成可见的磁粉痕迹,从而把缺陷显示出来。 第一步:预清洗 所有材料和试件的表面应无油脂及其他可能影响磁粉正常分布、影响磁粉堆积物的密集度、特性以及清晰度的杂质。 第二步:缺陷的探伤 磁粉探伤应以确保满意的测出任何方面的有害缺陷为准。使磁力线在切实可行的范围内横穿过可能存在于试件内的任何缺陷。 第三步:探伤方法的选择 1:湿法:磁悬液应采用软管浇淋或浸渍法施加于试件,使整个被检表面完全被覆盖,磁化电流应保持1/5~1/2秒,此后切断磁化电流,采用软管浇淋或浸渍法施加磁悬液。 2:干法。磁粉应直接喷或撒在被检区域,并除去过量的磁粉,轻轻地震动试件,使其获得较为均匀的磁粉分布。应注意避免使用过量的磁粉,不然会影响缺陷的有效显示。 3:检测近表面缺陷。检测近表面缺陷时,应采用湿粉连续法,因为非金属夹杂物引起的漏磁通值最小,检测大型铸件或焊接件中近表面缺陷时,可采用干粉连续法。 4:周向磁化。在检测任何圆筒形试件的内表面缺陷时,都应采用中心导体法;试件与中心导体之间应有间隙,避免彼此直接接触。当电流直接通过试件时,应注意防止在电接触面处烧伤,所有接触面都应是清洁的。

磁粉探伤检验规范

磁粉探伤检验规范 1、适用范围 本规范叙述的是湿磁粉对铁磁性材料表面及近表面裂纹及其它 不连续的一种检测。适用于钻井工具表面和连接螺纹的磁粉检测。 2、引用标准、规范 ASME 709 磁粉检测的标准推荐操作方法 GB11522 标准对数视力表 JB/T4730.1 承压设备无损检测第1部分:通用部分 JB/T4730.4 承压设备无损检测第4部分:磁粉检测 JB/T6063 磁粉探伤用磁粉技术条件 JB/T6065 无损检测磁粉检测用试片 JB/T8290 磁粉探伤机 ASNT-TC-1A 无损检测人员的资格鉴定 3、磁粉检测人员 3.1 从业人员应按ASNT-TC-1A和《特种设备无损检查人员考核与监督管理规定》的要求,取得相应无损检测资格。 3.2 无损检测人员资格的分级为:Ⅲ(高)级、Ⅱ(中)级、Ⅰ(初)级。取得不同无损检测方法和资格级别人员,只能从事于该方法和资格级别相应的工作,并负责相应的叫声责任。 3.3 磁粉检测人员未经矫正会经矫正的近(距)视力或远(距)视力应不低于5.0(小数记录值为1.0)。测试方法应符合GB11533的规定。 3.4 无损检测人员应根据ASNT-TC-1A的规定,每年进行一次视力检查,

不得有色盲。 4、检测设备、器材和材料 4.1 磁粉探伤机 磁粉探伤机,在有效适用期内应良好的保养。交流电磁轭应有45N的提升力,直流电磁轭至少应有177N的提升力。检测周期为6个月一次。 4.2 磁悬液 磁悬液浓度应根据磁粉种类、力度、施加方法和被检工件表面状况等因素来确定。用于完全润湿工件表面的油机介质,如出现不完全润湿,要从新进行清洗或添加更多磁粉或添加更多润湿剂。 4.3 退磁装置 退磁装置应能保证退磁后,表面剩磁不大于0.3mT(240A/m)。 4.4 辅助设备 磁场强度计 标准试片A1(或CX) 磁场指示器 磁悬液浓度测试仪(管) 2~10倍放大镜。 5、被检工件表面 清洁被检工件表面,不得有油脂、铁锈、氧化皮或其他粘附磁粉的物质。被检工件表面不规则状态,不得影响检测结果的正确性和完整性。 6、检测操作规程及工艺 6.1 用磁悬液浓度沉淀管或浓度测试仪测量磁粉浓度,浓度范围见表1。

表面缺陷无损检测方法的比较

表面缺陷无损检测方法的比较方法 项目 磁粉检测(MT) 漏磁检测(MLF) 渗透检测(PT) 涡流检测(ET) 方法原理 磁力作用 磁力作用 毛细渗透作用 电磁感应作用 能检出的缺陷 表面和近表面缺陷 表面和近表面缺陷 表面开口缺陷 表面及表层缺陷 缺陷部位的显示形式 漏磁场吸附磁粉形成磁痕 漏磁场大小分布 渗透液的渗出

检测线圈输出电压和相位发生变化 显示信息的器材 磁粉 计算机显示屏 渗透液、显像剂 记录仪、示波器或电压表 适用的材料 铁磁性材料 铁磁性材料 非多孔性材料 导电材料 主要检测对象 铸钢件、锻钢件、压延件、管材、棒材、型材、焊接件、机加工件在役使用的上述工件检测铸钢件、锻钢件、压延件、管材、棒材、型材、焊接件、机加工件在役使用的上述工件检测任何非多孔性材料、工件及在役使用过的上述工件检测 管材、线材和工件检测;材料状态检验和分选;镀层、涂层厚度测量 主要检测缺陷 裂纹、发纹、白点、折叠、夹渣物、冷隔 裂纹、发纹、白点、折叠、夹渣物、冷隔 裂纹、白点、疏松、针孔、夹渣物

裂纹、材质变化、厚度变化缺陷显示 直观 直观 直观 不直观 缺陷性质判断 能大致确定 能大致确定 能基本确定 难以判断 灵敏度 高 高 高 较低 检测速度 较快 快 慢

很快 污染 较轻 无污染 较重 无污染 相对优点 可检测出铁磁性材料表面和近表面(开口和不开口)的缺陷。 能直接的观察出缺陷的位置、形状、大小和严重程度。 具有较高的检测灵敏度,可检测微米级宽度的缺陷。 单个工件的检测速度快、工艺简单,成本低、污染轻。 综合使用各种磁化方法,几乎不受工件大小和几何形状的影响。 检测缺陷重复性好。 可检测受腐蚀的在役情况。 a) 易于实现自动化 b) 较高的检测可靠性 c) 可以实现缺陷的初步量化 d) 在管道的检查中,在厚度高达30mm的壁厚范围內,可同时检测內外壁缺陷 e) 高效、无污染,可以获得很高的检测效率. 可检测出任何非松孔性材料表面开口性缺陷。 能直接的观察出缺陷的位置、形状、大小和严重程度。 具有较高的灵敏度。 着色检测时不用设备,可以不用水电,特别适用于现场检验。 检测不受工件几何形状和缺陷方向的影响。 对针孔和疏松缺陷的检测灵敏度较高。 非接触法检测,适用于对管件、棒材和丝材进行自动化检测,速度快。 可用检测材料导电率代替硬度检测。了解材料的热处理状态和进行材料分选。污染很小。 相对局限性

无损探伤方法

五大常规探伤方法概述 五大常规方法是指射线探伤法、超声波探伤法、磁粉探伤法、涡流探伤法和渗透探伤法。 1、射线探伤方法 射线探伤是利用射线的穿透性和直线性来探伤的方法。这些射线虽然不会像可见光那样凭肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器来接收。常用于探伤的射线有x光和同位素发出的γ射线,分别称为x光探伤和γ射线探伤。当这些射线穿过(照射)物质时,该物质的密度越大,射线强度减弱得越多,即射线能穿透过该物质的强度就越小。此时,若用照相底片接收,则底片的感光量就小;若用仪器来接收,获得的信号就弱。因此,用射线来照射待探伤的零部件时,若其内部有气孔、夹渣等缺陷,射线穿过有缺陷的路径比没有缺陷的路径所透过的物质密度要小得多,其强度就减弱得少些,即透过的强度就大些,若用底片接收,则感光量就大些,就可以从底片上反映出缺陷垂直于射线方向的平面投影;若用其它接收器也同样可以用仪表来反映缺陷垂直于射线方向的平面投影和射线的透过量。由此可见,一般情况下,射线探伤是不易发现裂纹的,或者说,射线探伤对裂纹是不敏感的。因此,射线探伤对气孔、夹渣、未焊透等体积型缺陷最敏感。即射线探伤适宜用于体积型缺陷探伤,而不适宜面积型缺陷探伤。 2、超声波探伤方法 人们的耳朵能直接接收到的声波的频率范围通常是20Hz到20kHz,即音(声)频。频率低于20 Hz的称为次声波,高于20 kHz的称为超声波。工业上常用数兆赫兹超声波来探伤。超声波频率高,则传播的直线性强,又易于在固体中传播,并且遇到两种不同介质形成的界面时易于反射,这样就可以用它来探伤。通常用超声波探头与待探工件表面良好的接触,探头则可有效地向工件发射超声波,并能接收(缺陷)界面反射来的超声波,同时转换成电信号,再传输给仪器进行处理。根据超声波在介质中传播的速度(常称声速)和传播的时间,就可知道缺陷的位置。当缺陷越大,反射面则越大,其反射的能量也就越大,故可根据反射能量的大小来查知各缺陷(当量)的大小。常用的探伤波

相关文档
最新文档