2.1图像滤波方法的比较实验报告

2.1图像滤波方法的比较实验报告
2.1图像滤波方法的比较实验报告

课程大作业实验报告2.1 图像滤波方法的比较

课程名称:数字图像处理

组长:张佳林学号:200830460232 年级专业班级: 08 自动化 2

(ppt 制作,数据整

理)

成员一:卢洪炬学号:200830460222 年级专业班级:08 自动化 2

班(实验报告,编程)

成员二:余嘉俊学号:

200830460231

年级专业班级: 08 自动化 2

班(编程,程序整理)

指导教师邓继忠

报告提交日期2010 年 12 月 4 日项目答辩日期2010 年 12 月 5 日

目录

1项目要求 (3)

2项目开发环境 (3)

3系统分析·························································3 3.1

系统的主要功能分析 (3)

3.2 系统的基本原理 (4)

3.1 系统的关键问题及解决方法 (9)

4系统设计·····························

···························10 4.1

程序流程图及说明·····························

(10)

4.2 程序主要模块功能介

绍 (11)

5实验结果与分析··················································11 5.1 实验结果·····························

(11)

5.2 项目的创新之

处 (15)

5.3 存在问题及改进设

想 (15)

6心得体会························································15 6.1

系统开发的体会·····························

(15)

6.2 对本门课程的改进意见或建议 (15)

1项目要求

1.1 基本要求:

1)通过课本和网上查找资料,了解各种图像滤波的基本原理。

2)从网上选择并下载一些 bmp 格式的图像,图像要对比度鲜明,色彩丰富。

3)设计算法并编写程序,实现图像滤波。

4)调试与验证程序。

5)对不同方法滤波后的图像进行比较。

2项目开发环境

计算机、 CVI 软件、待处理图片

3系统分析

3.1 系统的概念

图像滤波,即在尽量保留图像细节特征的条件下对目标像的

噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的

好坏将直接响到后续图像处理和分析的有效性和可靠性。

由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、

传输记录过程中往往会受到多种噪声的污染。另外,在图像处理的某

些环节当输入的像对象并不如预想时也会在结果图像中引入噪声。这

些噪声在图像上常表现为一引起较强视觉效果的孤立象素点或象素块。

一般,噪声

信号与要研究的对象不相关它以无用的信息形式出现,扰乱图像的可观测

信息。对于数字图像信号,噪声表为或大或小的极值,这些极值通过加减

作用于图像象素的真实灰度值上,在图像造成亮、暗点干扰,极大降低了

图像质量,影响图像复原、分割、特征提取、图识别等后继工作的进行。

要构造一种有效抑制噪声的滤波机必须考虑两个基本问题能有效地去除目

标和背景中的噪声; 同时,能很好地护图像目标的形状、大小及特定的几何

和拓扑结构特征。

3.2 系统的基本原理

1)中值滤波:

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图

像或数字序列中一点的值用该点的一个邻域中各点值的中

值代替,让周围的像素值接近的真实值,从而消除孤立的

噪声点。方法是去某种结构的二维滑

动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为

g ( x,y )

=med{f(x-k,y-l),(k,l ∈W)} ,其中,f(x,y) ,g(x,y) 分别为原始图像和处理后图像。W为二维模板,通常为2*2 ,3*3 区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。

2)均值滤波:

均值滤波也称为线性滤波,其采用的主要方法为领域平均法。

线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点( x,y),选择一个模板,该模板由其近

邻的若干像素组成,求模板中所有像素的均值,再把该均值

赋予当前像素点

( x,y ),作为处理后图像在该点上的灰度个 g( x ,y ),即个g( x ,y) =1/m ∑ f ( x , y ) m 为该模板中包含当前像素在内的像素总个数。

3)高斯滤波:

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是

对整幅图像进行加权平均的过程,每一个像素点的值,都由

其本身和邻域内的其他像素值经过加权平均后得到。

高斯滤波的具体操作是:用一个模板 ( 或称卷积、掩模 ) 扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板

中心像素点的值。

若使用 3× 3 模板,则计算公式如下:

g(x,y)={f(x-1,y-1)+f(x-1,y+1)+f(x+1,y-1)+f(x+1,y+1)+[f(x-1,y)+

f(x,y-1)+f(x+1,y)+f(x,y+1)]*2+f(x,y)*4}/16;

其中,f(x,y) 为图像中 (x,y) 点的灰度值, g(x,y) 为该点经过高斯

滤波后的值。

4)梯度倒数加权平均法滤波:

梯度倒数加权法平滑基于如下的假设:在一幅离散图像中,相邻区域的变化大于区域内部的变化,在同一区域中中间像素

的变化小于边缘像素的变化。梯度值正比于邻近像素灰度级差值,也就是说在图像变化缓慢区域,梯度值小,反之则大。而

取梯度倒数大小与梯度相反,因此,以梯度倒数作权重因子,

则区域内部的邻点权重就大于边缘近旁或区域外的邻点。即该

种平滑其贡献上要来自区域内部的像素,平滑后图像的边缘和

细节不会受到明显的损害。

建立归一化的权重矩阵

窗口W,对 3*3 窗口, W 的组成为

w( x 1, y 1)w(x 1, y) w( x 1, y 1)

W w( x, y

1) w( x, y) w(x, y 1) w( x 1, y 1)w(x 1, y) w( x 1, y 1)

这里规定, w(x,y)= 1/2,其余8 个加权系数之和为 1/2。并且定

义除 w(x,y)外的其他权重矩阵元素为

w( x p, y q)

g ( x, y; p,q)

1 1

2

f ( x, y; p,

q)

p 1 q

1

g( x, y; p,q) 1

p, y q) f (x, y)

f ( x

式中 p,q 分别为 -1,0,1,且 p,q 不能同时为零。

用矩阵窗口 W 与图像上以 f(x,y)为中心的同样大小窗口上对应像

素灰度值分别相乘再求和,所得结果即为f(x,y) 点的平滑值 G(x,y )。

5)最大均匀性平滑滤波:

最大均匀性平滑滤波是针对一些滤波方法在消除噪声时

引起边缘退化的现象而提出的,其基本思想是,若图像中的

一个区域含有边缘,它

的灰度方差必定较大。该方法采用了 9 种不同形状的模板, 1 个

正方形模板,4 个对称的五边形模板, 4 个对称的六边形模板,

用各模板内的灰度方差作为各个区域不均匀性的测试,以最为均

匀的区域灰度均值作为被处理点的像素值。

各模板内的平均灰度值为:

1 N

(i , j ) f k (i , j ) f

N r 1 kr

各模板的灰度方差为:

V k 1 N [ f kr (x,

y) f k (i, j )] 2

N r 1

选出灰度方差最小的模板:V t min{V k ,

k1,2, ,9}

将被选模板的平均灰度值作为被处理像素f(i,j) 的输出灰度值g(i,j) :

g (i , j ) ft (i , j ),1 t 9

6)低通空域滤波:

低通空域滤波是一种保留图像的低频成分,减少图像的高频成分的处理方法,有的称之为消噪声掩膜法。因为图像噪声常常以高频、随机的形式表现出来,大面积的背景区和亮度渐变区域则属低频成分。

低通空域滤波以卷积方法进行。

卷积方法实质是一种加权求和的过程。选择某种形状的邻域,将邻域中的每个像素与卷积核中的对应元素相乘,乘积求和的结果即为模板中心像素的新值,卷积核中的元素称为加权系数。

K近邻均值滤波:

边界保持滤波器的核心是确定边界点与非边界点。如图所示,点 1 是黄色区域的非边界点,点 2

是蓝色区域的边界点。

在模板中,分别选出 5 个与点 1 或点 2 灰度值最相近的点进行计算, 不影响效果。换句话说,对非边界点的影响不是很大,但是对边界点的 影响就非常大。

其算法步骤为:

1) 以待处理像素为中心,作一个 m*m 的作用模板。

2)在模板中,选择 K 个与待处理像素的灰度差为最小的像素。 3)将这 K 个像素的灰度均值替换掉原来的像素值。 7)Sigma 平滑滤波:

该算法建立在 SAR 图像的乘性噪声模型上,假设斑点噪声的分布为高斯分布,窗口内的像素灰度值与其中心像素的灰度值比较接近。其基

本原理为: Sigma 滤波器将 2

范围内的像素进行平均, 即可去除差别

大的象素的影响。我们知道,对于一维高斯分布,采样点落在 2

区间

的概率是 93.5 %。在窗口滤波过程中,只选取窗口内像素灰度值落在 2

范围内的点,将它们的平均值作为中心像素灰度的估计,而其它变化显 著的像素则被视作边缘而不做滤波处理。

首先计算滤波窗口内各像元灰度的平

均值

gi j

作为滤波中心像元

(i, j ) 的平均值;然后再求窗口内标准差

i j 作为滤波中心像元点

(i, j ) 的

标准差,公式如下(设窗口为(

2M +1)( 2N+1)):

1 j M i N g ij g(i , j ) g(k, l ) ( 3)

1)( 2N 1) k

( 2M j M l i N 1 j M i N 2 (i , j ) g(i, j ) g ij

ij

1)( 2N1) k ( 4)

(2M j M l i N Sigma滤波器的算法表达式如下:

i m j n g kl

k l R

k i m

l j n

i m j n

( 5)

kl

k i m l j n

1 g ij (1

2 F ) g

kl g ij (1 2 F ) kl

otherwise

( 6)

F

/ g

( 7)

孤立散射体不应受到斑点平滑的影响,为此设置阈值,如果范围内 的象素数小于或等于 K =(滤波窗口大小+ 1)/2 ,则以中心象素周围最

近的四点象素平均值作为滤波输出。 8)卡尔曼滤波:

卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递 推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利 用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求 出现时刻的估计值。它适合于实时处理和计算机运算。

卡尔曼滤波方程如下:

设待估计的随机信号的状态方程和观测方程已知为:

X k k,k 1 X

k 1

k 1W k (1)

Z k

H k X k

V k

(2) 其中, X

k

为在 t k 时刻的 n 1的状态向量; X k 1 为在 t k 前 一时刻的 n 1的状态向量; k ,k 1 为 t k 1 时刻至 t k 时刻的一

步 转移阵; k 1 为系统噪声驱动阵; W k 为系统激励噪声序列; H k 为

量测阵; V k为量测噪声序列; Z k为 t

k 时刻的 m 1状态观测向

噪声的已知统计特性如

下:

E[ T ]

Q k ki i k k ,E[w v T ] 0,

i

0 i k

k i

E[v k v i T

R k ki

]

i k

i k

卡尔曼滤波所要解决的问题是如何根据前述已知的条件,在均方误差最小的准则下,用状态向量的先验估计值X k / k 1 、观测值 Z k

相应的误差估计值P k去修正先验估

计值,得到最优估计值X k,并估

计出相应的误差。

卡尔曼滤波从与被提取信号有关的量测量中通过算法估计出所需信号。卡尔曼滤波处理有几个特点: (1) 卡尔曼滤波处

理的对象是随机信号;(2) 被处理信号无有用和干扰之分,滤

波的目的是要估计出所有被处理信号;确切的说卡尔曼滤波应

称作最优估计理论;就实现形式而言,卡尔曼滤波器实质上是

一套由数字计算机实现的递推算法。量测量可看作卡尔曼滤波

器的输入,估计值可看作输出。

3.3 系统的关键问题及解决方法

1)问题:最大均值滤波的9 个模块如何取?

解决方法:因为这9 个模块除了旋转外没有其他规律,在C 语言中很难表达,所以我们用了直接取值的方法,虽然这是

最笨的方法,运行的时间也比较长,但也没办法,希

望以后能改进!

2)问题:KNN 近邻均值中如何取前五个与中心灰度值最相近的灰度值?

解决方法:先读取模版的所有灰度值到一个数组中,然后分别减去中心值,把差放到另外一个数组中,最后用冒泡法将差

值排序,同时讲对应的灰度值也调换位置。

3)问题:梯度倒数法中,当梯度接近为零的时候,梯度倒数无穷大,使图像灰度值为满值。

解决方法:当梯度接近为零的时候,令权重因子g 的值为 2。

4系统设计

4.1 程序流程图及说明

打开源图像

添加噪声图像过滤

比较图像

保存图像

退出

图 1 系统执行框图

图 2 软件主页面

图1 为程序执行的框图,图 2 为软件设计的页面 ,SourceImage为源图像显示位置 ,Destimage 为生成图像显示位置,不同的滤波方式显示在不同区域以便比较不同滤波方式的效果。

4.2 程序主要模块功能介绍

1)打开源图像 (Load_file): 这里采用函数

DisplayImageFile (panelHandle,PANEL_PICTURE , lPath);

使图像显示在指定区域。

2)图像处理时间:

先定义开始与结束两个时间 clock_t begin, end

处理前调用一次 clock 函数 begin = clock();

结束时再调用一次clock 函数 end = clock();

cost = (double)(end - begin) / CLOCKS_PER_SEC;

3)彩色图像处理:

IPI_ExtractColorPlanes (SourceImage, RedImage,GreenImage,BlueImage, IPI_RGB);

4)处理后图像显示:

把目标图像保存在指定位置

IPI_WriteFile (DestImage2, "d:\\k.bmp", IPI_FILE_BMP, NULL, NULL);

再把目标文件打开

DisplayImageFile (panelHandle,PANEL_PICTURE_2 ,"d:\\k.bmp");

删除目标文件

DeleteFile ("d:\\k.bmp");

5实验结果与分析

5.1 实验结果

图 2 面板

图 3 椒盐彩色图像图 4 高斯彩色图像

图 5 高斯滤波后椒盐彩色头像图 6 高斯滤波后的高斯彩色图像

北科大数字图像处理实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称:《数字图像处理》课程实验 学生姓名:徐松松 专业:计算机科学与技术 班级:计1304 学号:41345053 指导教师:王志明 实验成绩: 实验时间:2016 年12 月15 日

一、实验目的与实验要求 1、实验目的 1. 熟悉图像高斯、脉冲等噪声的特点,以及其对图像的影响; 2. 理解图像去噪算法原理,并能编程实现基本的图像去噪算法,达到改善图像质量的效果,并能对算法性能进行简单的评价。 3. 理解图像分割算法的原理,并能编程实现基本的灰度图像分割算法,并显示图像分割结果。 2、实验要求 1. 对于给定的两幅噪声图像(test1.jpg, test 2.jpg),设计或选择至少两种图像滤波算法对图像进行去噪。 2.利用给出的参考图像(org1.jpg, org2.jpg),对不同算法进行性能分析比较。 3. 对于给定的两幅数字图像(test.jpg,test 4.jpg),将其转换为灰度图像,设计或选择至少两种图像分割算法对图像进行分割,用适当的方式显示分割结果,并对不同算法进行性能分析比较。 二、实验设备(环境)及要求 1. Mac/Windows计算机 2. Matlab编程环境。 三、实验内容与步骤 1、实验1 (1)实验内容 1. 对于给定的两幅噪声图像(test1.jpg, test 2.jpg), 设计或选择至少两种图像滤波算法对图像进行去噪。 2. 利用给出的参考图像(org1.jpg, org2.jpg), 对不同算法进行性能分析比较。(2)主要步骤 1. 打开Matlab编程环境; 2. 利用’imread’函数读入包含噪声的原始图像数据; 3. 利用’imshow’函数显示所读入的图像数据;

有源滤波实验报告

姓名: 学号:2009118125 班级:电工二班 实验十一 有源滤波器 实验目的 1. 掌握有缘滤波器的构成及其特性 2. 学习有缘滤波器的幅频特性的测量方法 实验仪器 数字示波器 信号发生器 交流毫伏表 直流电源 预习要求 1. 复习有缘滤波器的概念、工作原理。 2. 分析计算图5-11-1、图5-11-2电路的截止频率,图5-11-3电路 的中心频率。 3. 画出三个电路的幅频特性曲线 实验原理 有源滤波器又称作有源选频电路,通常用继承运放和电阻,电容网络构成。它的作用是让指定频段信号通过,而将其余频段信号加以抑制或大幅度衰减。分低通、高通、带通、带阻等电路。 1. 低通滤波电路 低通滤波器是指通过低频而抑制高频信号的滤波器,如图5-11-1所示为二阶低通滤波器。 传输函数: 200 11()f A j Q ωωωω-+ 1 (1)f f R A R =+ 1( )3f Q A =- 01 RC ω= 根据上式可知,当Q 取不同值时,可使电路的频率特性具有不同的特点。一般Q 取0.7。 2. 高通滤波器 高通滤波器的功能是使频率高于某一数值(如fo )的信号通过,而低于fo 的信号不能通过。图5-11-2电路为二阶高通滤波器。

其频率特性为:200()11()f A H j j Q ωωωωω = -- 1 1f f R A R =+ 13f Q A = - 01RC ω = 3. 带通滤波器 带通滤波器可由低通滤波器和高通滤波器构成,也可以直接由集成运放外加RC 网络构成,不同的构成方法,其滤波特性也不同。带通滤波器的功能是指定频段内的信号通过而衰减其它频段的信号。 4.带阻滤波器 带阻滤波器又称陷波器,它衰减指定频段的信号,而让其它频段的信号通过。带阻滤波器可由低通电路和高通电路构成,也可由集成运放外加RC 网络构成。常用的带阻滤波器是由双T 网络构成的,如图5-11-3所示。 其幅频特性为:

低通滤波器实验报告

(科信学院) 信息与电气工程学院 电子电路仿真及设计CDIO三级项目 设计说明书 (2012/2013学年第二学期) 题目: ____低通滤波器设计____ _____ _____ _ 专业班级:通信工程 学生姓名: 学号: 指导教师: 设计周数:2周 2013年7月5日 题目: ____低通滤波器设计____ _____ _____ _ (1)

第一章、电源的设计 (2) 1.1实验原理: (2) 1.1.1设计原理连接图: (2) 1. 2电路图 (5) 第二章、振荡器的设计 (7) 2.1 实验原理 (7) 2.1.1 (7) 2.1.2定性分析 (7) 2.1.3定量分析 (8) 2.2电路参数确定 (10) 2.2.1确定R、C值 (10) 2.2.2 电路图 (10) 第三章、低通滤波器的设计 (12) 3.1芯片介绍 (12) 3.2巴特沃斯滤波器简介 (13) 3.2.1滤波器简介 (13) 3.2.2巴特沃斯滤波器的产生 (13) 3.2.3常用滤波器的性能指标 (14) 3.2.4实际滤波器的频率特性 (15) 3.3设计方案 (17) 3.3.1系统方案框图 (17) 3.3.2元件参数选择 (18) 3.4结果分析 (20) 3.5误差分析 (23) 第四章、课设总结 (24) 第一章、电源的设计 1.1实验原理: 1.1.1设计原理连接图:

整体电路由以下四部分构成: 电源变压器:将交流电网电压U1变为合适的交流电压U2。 整流电路:将交流电压U2变为脉动的直流电压U3。 滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。 稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。 1)变压器变压 220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。 2)整流电路 桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单项桥式整流电路,具有输出电压高,变压器利用率高,脉动系数小。

matlab图像处理实验报告

图像处理实验报告 姓名:陈琼暖 班级:07计科一班 学号:20070810104

目录: 实验一:灰度图像处理 (3) 实验二:灰度图像增强 (5) 实验三:二值图像处理 (8) 实验四:图像变换 (13) 大实验:车牌检测 (15)

实验一:灰度图像处理题目:直方图与灰度均衡 基本要求: (1) BMP灰度图像读取、显示、保存; (2)编程实现得出灰度图像的直方图; (3)实现灰度均衡算法. 实验过程: 1、BMP灰度图像读取、显示、保存; ?图像的读写与显示操作:用imread( )读取图像。 ?图像显示于屏幕:imshow( ) 。 ?

2、编程实现得出灰度图像的直方图; 3、实现灰度均衡算法; ?直方图均衡化可用histeq( )函数实现。 ?imhist(I) 显示直方图。直方图中bin的数目有图像的类型决定。如果I是个灰度图像,imhist将 使用默认值256个bins。如果I是一个二值图像,imhist使用两bins。 实验总结: Matlab 语言是一种简洁,可读性较强的高效率编程软件,通过运用图像处理工具箱中的有关函数,就可以对原图像进行简单的处理。 通过比较灰度原图和经均衡化后的图形可见图像变得清晰,均衡化后的直方图形状比原直方图的形状更理想。

实验二:灰度图像增强 题目:图像平滑与锐化 基本要求: (1)使用邻域平均法实现平滑运算; (2)使用中值滤波实现平滑运算; (3)使用拉普拉斯算子实现锐化运算. 实验过程: 1、 使用邻域平均法实现平滑运算; 步骤:对图像添加噪声,对带噪声的图像数据进行平滑处理; ? 对图像添加噪声 J = imnoise(I,type,parameters)

北航卡尔曼滤波课程-捷联惯导静基座初始对准实验

卡尔曼滤波实验报告 捷联惯导静基座初始对准实验 一、实验目的 ①掌握捷联惯导的构成和基本工作原理; ②掌握捷联惯导静基座对准的基本工作原理; ③了解捷联惯导静基座对准时的每个系统状态的可观测性; ④了解双位置对准时系统状态的可观测性的变化。 二、实验原理 选取状态变量为:[]T E N E N U x y x y z X V V δδεεε=ψψψ??,其

中导航坐标系选为东北天坐标系,E V δ为东向速度误差,N V δ为北向速度误差,E ψ为东向姿态误差角,N ψ为北向姿态误差角,U ψ为天向姿态误差角,x ?为东向加速度偏置,y ?为北向加速度偏置,x ε为东向陀螺漂移,y ε为北向陀螺漂移,z ε为天向陀螺漂移。则系统的状态模型为: X AX W =+ (1) 其中, 1112212211 12 1321222331323302sin 000002sin 000000000sin cos 0000sin 000000cos 0000000000000000000000000000000000000000000000000000 0L g C C L g C C L L C C C L C C C L C C C A Ω-? ? ??-Ω????Ω-Ω? ?-Ω????Ω=? ?????? ?????????? ? [00000]E N E N U T V V W W W W W W δδψψψ=,E D V W W δψ 为零均值高斯 白噪声,分别为加速度计误差和陀螺漂移的噪声成分,Ω为地球自转角速度,ij C 为姿态矩 阵n b C 中的元素,L 为当地纬度。 量测量选取两个水平速度误差:[ ]T E N Z V V δδ=,则量测方程为: 10000000000100000000E E N N V X V δηδη???? ??=+???????????? (2) 即Z HX η=+ 其中,H 为量测矩阵,[]T E N ηηη=为量测方程的随机噪声状态矢量,为零均值高 斯白噪声。 要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。 系统转移矩阵为: 2323/1111102!3!! n n k k k k k k n T T T I TA A A A n ∞ -----=Φ=++++=∑ (3)

滤波器设计的实验报告

实验三滤波器设计 一、实验目的: 1、熟悉Labview的软件操作环境; 2、了解VI设计的方法和步骤,学会简单的虚拟仪器的设计; 3、熟悉创建、调试VI; 4、利用Labview制作一个滤波器,实现低通、高通、带通、带阻等基本滤波功能,并调节截止频率实现滤波效果。 二、实验要求: 1、可正弦实现低通、高通、带通、带阻等基本滤波功能,并图形显示滤波前后波形; 2、可调节每种滤波器的上限截止频率或者下限截止频率; 3、给出每种滤波器的幅频特性; 三、设计原理: 1、利用LABVIEW中的数字IIR、FIR数字滤波器实现数字滤波功能,参数可调;

2、将两路不同频率的信号先叠加,然后通过滤波,将一路信号滤除,而保留有用信号,Hz f Hz f 100,2021==; 3、叠加即将两个信号相加,用到一个数学公式; 4、信号进入case 结构,结构中有两路分支,每路分支均有一个滤波模块,其中一个为IIR 滤波器,另一个为FIR 滤波器,通过按钮可选择IIR 或是FIR.每个滤波模块都可通过外部按钮对其参数进行调整,各个过程的波形都用波形图显示出来; 5、将IIR 、FIR 滤波器的“滤波信息”接线端用控件按名称解除捆绑接入波形图,观察波形的幅度和相位; 6、用一个while 循环实现不重新启动既可以改参数。 四、设计流程: 1、前面板的设计:

2、程序框图的设计: 五、实验结果: 1、低通滤波功能:将100Hz的信号滤除,保留20Hz的信号 用IIR巴特沃斯滤波器,将低截止频率设置为25Hz。

用FIR滤波器,拓扑类型选择Windowed FIR,将最低通带设置为50。 用IIR巴特沃斯滤波器,将低截止频率设置为90Hz。

数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)

1.灰度变换与空间滤波 一种成熟的医学技术被用于检测电子显微镜生成的某类图像。为简化检测任务,技术决定采用数字图像处理技术。发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2 的范围,因此,技术人员想保留I1-I2 区间范围的图像,将其余灰度值显示为黑色。(5)将处理后的I1-I2 范围内的图像,线性扩展到0-255 灰度,以适应于液晶显示器的显示。请结合本章的数字图像处理处理,帮助技术人员解决这些问题。 1.1 问题分析及多种方法提出 (1)明亮且孤立的点是不够感兴趣的点 对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。 均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8 个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 优点:速度快,实现简单; 缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。 其公式如下: 使用矩阵表示该滤波器则为: 中值滤波:

滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。 其过程为: a、存储像素1,像素2 ....... 像素9 的值; b、对像素值进行排序操作; c、像素5 的值即为数组排序后的中值。优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。 缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。自适应中值滤波: 自适应的中值滤波器也需要一个矩形的窗口S xy ,和常规中值滤波器不同的是这个窗口的大小会在滤波处理的过程中进行改变(增大)。需要注意的是,滤波器的输出是一个像素值,该值用来替换点(x, y)处的像素值,点(x, y)是滤波窗口的中心位置。 其涉及到以下几个参数: 其计算过程如下:

电路实验报告12 有源滤波器设计

课程名称:电路与电子技术实验II 指导老师:沈连丰成绩:__________________ 实验名称:有源滤波器设计实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、掌握有源滤波器的分析和设计方法。 2、学习有源滤波器的调试、幅频特性的测量方法。 3、了解滤波器的结构和参数对滤波器性能的影响。 4、用EDA仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。 二、实验内容和原理 1、滤波器的5个主要指标: (1) 传递函数A v(s) :反映滤波器增益随频率的变化关系,也称为电路的频率响应、频率特性。 (2) 通带增益A v p:为一个实数。(针对LPF)、(针对HPF)、(针对BPF)、(针对BEF)。 (3) 固有频率f0:也称自然频率、特征频率,其值由电路元件的参数决定。 (4) 通带截止频率f p:滤波器增益下降到其通带增益A v p 的0.707倍时所对应的频率(也称–3dB 频率、半功率点、上限频率(ωH 、f H )或下限频率(ωL 、f L )。 (5) 品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同。例如,在低通和高通滤波器中,定义为当时增益的模与通带增益之比。 2、有源滤波器的设计流程: 设计一个有源低通滤波器时,一般可以先按照预定的性能指标,选择一定的电路形式,然后写出电路的电压传递函数,计算并选定电路中的各个元器件参数。最后再通过实验进行调试,确定实际的器件参数。 三、实验器材 运放LM358、 四、操作方法和实验步骤 1、实验内容 (1) 在实验板上安装所设计的电路。 (2) 有源滤波器的静态调零。 (3) 测量滤波器的通带增益A v p、通带截止频率f p。 (4) 测量滤波器的频率特性(有条件时可使用扫频仪)。 (5) 改变电路参数,研究品质因数Q 对滤波器频率特性的影响。 2、设计一个二阶有源低通滤波器。具体要求如下: (1) 通带截止频率:f p=1kHz;

(完整版)整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω100Ω50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω 100Ω

50Ω 25Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: avg)r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

大学doc-实验二RLS的实验报告

20XX年复习资料 大 学 复 习 资 料 专业: 班级: 科目老师: 日期:

基于RLS的语音去噪算法研究 课程名称现在数字信号处理及其应用 实验名称基于RLS的语音去噪算法研究 学院电子信息学院 专业电路与系统 班级电子2班 学号 20XXXX20XXXX0XX020XXXX7 学生姓名刘秀 指导老师何志伟

摘要:截取一段音频信号(初始信号),然后人为加入一个白噪声,然后将初始信号与白噪声混叠以后,再用RLS算法将这个白噪声信号滤除。RLS (递推最小二乘)算法是另一种基于最小二乘准则的精确方法,它具有快速收敛和稳定的滤波器特性,因而被广泛地应用于实时系统识别和快速启动的信道均衡等领域。 关键词:初始信号、白噪音、RLS算法。 Abstract:Intercept an audio signal (original signal) and add a white noise artificially, then after aliasing the initial signal and white noise , and using RLS algorithm to the white noise signal filtering.RLS (recursive least squares) algorithm is a kind of accurate method based on least squares criterion, it has a fast convergence and stability of the filter characteristics, and therefore is widely applied in the real-time system identification and fast start of equalization. Key words: Initial signal, white noise, RLS algorithm.

有源滤波器实验报告

有源滤波器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

实验七集成运算放大器的基本应用(Ⅱ)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图7-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。

如图7-2(a )所示,为典型的二阶有源低通滤波器。它由两级RC 滤波环节与同相比例运算电路组成,其中第一级电容C 接至输出端,引入适量的正反馈,以改善幅频特性。图7-2(b )为二阶低通滤波器幅频特性曲线。 (a)电路图 (b)频率特性 图7-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。

自适应滤波实验报告

LMS 自适应滤波实验报告 姓名: 学号: 日期:2015.12.2 实验内容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。 一个单输入的横向自适应滤波器的原理框图如图所示:

实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令:()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。 LMS 算法的梯度估计值用一条样本曲线进行计算,公式如下:

微波遥感实验报告

实验一:SAR图像下载与认识 一:实验目的 1掌握SAR图像的下载方法; 2了解不同地物在图像上的特性; 二、实验要求 1掌握雷达图像的成像原理与地物特性 2数据说明 3本实验采用Sentinel-1卫星拍摄于2014年12月5日的天山山脉的遥感影像三、实验步骤 打开地理空间数据云网站; 图1 找到Sentinel-1卫星下载有效数据; 图2

在ERDAS中打开影像; 图3 分析地物在影像上的特性; 1雷达图像的成像机理 雷达图像的获取系统不同于光学影像获取系统,它是采用有源主动式工作方法,其本质是一个距离测量系统雷达图像.上的信息是地物目标对雷达波束的反应,而且主要是目标后向散射形成的图像信息,以及朝向雷达天线那部分被散射的电磁波所形成的图像信息由于地物目标所处的位置地物结构表面形态和介电性能等不同,对雷达波束的反应是不一样的同时不同雷达波段极化方式入射角也会使地物产生不同的反应,使其图像具有近距离压缩透视收缩叠掩阴影和地面起伏引起的影像移位等现象,因此,在图像.上形成不同的色调纹理和图案,与中心投影的光学影像有很大的差别。 2雷达图像的信息特点 地物目标对雷达波束的反应是散射(或反射)穿透和吸收r种情况并存,波长不同,对地物的穿透性是不一样的;地物目标的类型本身的结构表面的粗糙度和介电性能不同,则会对电磁波的穿透反射(或散射)和吸收带来不同程度的效应同时,入射雷达波束和地物的相对方向也有关系,在一定方向的条件下,地物目标可以产生强回波,在另一方向,回波则可能很弱或无回波例如平行于飞行方向的铁丝网(电力线),会产生强回波,垂直于飞行方向回波则很弱或消失因此,在雷达图像解译时,尽可能采用多侧视方向的图像 3目视解译 就本实验的雷达图像而言,主要有以下几种地物; 雷达波束的穿透性对冰雪覆盖区地物的判读有着独特的优势例如雪上被覆盖区域,在光学影像上很难辨清究竟是雪,还是湖泊,在雷达图像上则表现极为清晰对于雪山区域冰斗湖碛尾湖的判断,应采用多侧视方向,避免将阴影误判为湖泊。

有源模拟滤波器实验报告

实验报告

工程大学教务处制 一、实验目的 1.掌握滤波器的滤波性能特点。 2.掌握常规模拟滤波器的设计、实现、调试、测试方法。 3.掌握滤波器主要参数的调试方法。 4.了解电路软件的仿真方法。 二、实验原理 有源滤波器的设计,就是根据所给定的指标要求,确定滤波器的结束n,选择具体的电路形式,算出电路中各元件的具体数值,安装电路和调试,使设计的滤波器满足指标要求,具体步骤如下: 1.根据阻带衰减速率要求,确定滤波器的阶数n。 2.选择具体的电路形式。 3.根据电路的传递函数和归一化滤波器传递函数的分母多项式,建立起系数的方程 组。 4.解方程组求出电路中元件的具体数值。 5.安装电路并进行调试,使电路的性能满足指标要求。 根据滤波器所能通过信号的频率围或阻带信号频率围的不同,滤波器可分为低通、高通、带通与带阻等四种滤波器。 a)有源二阶低通滤波器(LPF) 图1 压控电压源二阶低通滤波器 b)有源二阶高通滤波器(HPF)

图2 压控电压源二阶高通滤波器 c)有源带通滤波器(BPF) 图3 压控电压源二阶带通滤波器 d)带阻滤波器(NF) 图4 压控电压源双T 二阶有源带阻滤波器 三、实验仪器 1.示波器 2.信号源 3.万用表 4.直流稳压电源 四、实验容

1.二阶低通滤波器 ①参照图4 电路安装二阶低通滤波器。元件值取:R1 = R2 = R = 1.6kΩ,R3 = 17k Ω,R4 =10k Ω, C1 = C2 = C =0.1μF,计算截止频率fc、通带电压放大倍数Auo 和Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万用 表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,并将 测量结果与理论值相比较。 2.二阶高通滤波器 ①参照图6 电路安装二阶高通滤波器。元件值取:R1 = R2 = R = 1.6kΩ,R3 = 1.7k Ω,R4 = 10kΩ,C1 = C2 = C = 0.1μF,Q = 0.707,计算截止频率fc 和通带电压放大倍数Auo 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,并 将测量结果与理论值相比较。 3.二阶带通滤波器 ①参照图9 电路安装二阶带通滤波器。元件值取:R1 = R2 = R = 1.5kΩ,R3 = 2R = 3kΩ,R4 = 10kΩ, R5 = 19kΩ,C1 = C2 = C = 0.1μF,计算截止频率fc、通带电压放大倍数Auo 和 Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,测 出带宽BW,并将测量结果与理论值相比较。 4.二阶带阻滤波器 ①参照图12 电路安装二阶带通滤波器。元件值取:R1 = R2 =R = 3kΩ,R3 = 0.5R = 1.5kΩ,R4 = 20kΩ, R5 = 10kΩ,C1 = C2 = C = 0.1μF,C3 = 2C = 0.2μF,计算截止频率fc、通带 电压放大倍数Auo 和Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,测 出带宽BW,并将测量结果与理论值相比较。 五、实验预习和仿真 1.压控电压源型有源二阶低通滤波器 仿真电路:

自适应滤波实验报告

LMS 自适应滤波实验报告 : 学号: 日期:2015.12.2 实验容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示: 实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令: ()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。

医学图像处理实验报告

医学图像处理实验报告 班级专业姓名学号 实验名称:图像增强 一、实验目的 1:理解并掌握常用的图像的增强技术。 2:熟悉并掌握MA TLAB图像处理工具箱的使用。 3:实践几种常用数字图像增强的方法,增强自主动手能力。 二、实验任务 对于每张图像(共三张图片),实现3种图像增强方法。根据图像的特点,分别选用不用的图像增强算法。 三、实验内容(设计思路) 1、artery_vessel (1)直方图均衡化 直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。灰度直方图是图像预处理中涉及最广泛的基本概念之一。 图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。 直方图均衡化是指:采用累积分布函数(CDF)变化生成一幅图像,该图像的灰度级较为均衡化,且覆盖了整个范围[0,1],均衡化处理的结果是一幅扩展了动态范围的图像。直方图均衡化就是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。主要用途是:将一幅灰度分布集中在较窄区间,细节不够清晰的图像,修正后使图像的灰度间距增大或灰度分布均匀,令图像的细节清晰,达到图像增强的目的。 (2)中值滤波加直方图均衡化 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。 中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,

有源滤波器实验报告

实验七 集成运算放大器的基本应用(H)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 图7 —1四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内 的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的 选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7 —1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性 (a)低通 (C)带通(d)带阻

衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图7 —2 (a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,弓I入适量的正反馈,以改善幅频特性。 图7—2 ( b)为二阶低通滤波器幅频特性曲线。 图7 —2二阶低通滤波器 电路性能参数 R f A UP=^- 二阶低通滤波器的通带增益 R I 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 状。 2、高通滤波器(HPF 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7—2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7 —3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照 LPH分析方法,不难求得HPF的幅频特性。 1 2ΠR 1 3 -A UP 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形 (a) 电路图(b)频率特性

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

FIR滤波器设计实验报告

实验报告 课程名称:数字信号处理 实验项目:FIR滤波器设计 专业班级: 姓名:学号: 实验室号:实验组号: 实验时间:批阅时间: 指导教师:成绩:

实验报告 专业班级: 学号: 姓名: 一、实验目的: 1、熟悉线性相位FIR 数字低通滤波器特性。 2、熟悉用窗函数法设计FIR 数字低通滤波器的原理和方法。 3、了解各种窗函数对滤波特性的影响。 要求认真复习FIR 数字滤波器有关内容实验内容。 二、实验原理 如果所希望的滤波器理想频率响应函数为)(e H j ωd ,则其对应的单位样值响应为 ωπ= ωππ -?d e j ωn j d d e )(H 21(n)h 窗函数法设计法的基本原理是用有限长单位样值响应h(n)逼近(n)h d 。由于(n)h d 往往是无限长序列,且是非因果的,所以用窗函数(n)w 将(n)h d 截断,并进行加权处理,得 到:(n)(n)h h(n)d w ?=。h(n)就作为实际设计的FIR 滤波器单位样值响应序列,其频率函数)H(e j ω 为∑-=ω= 1 n n j -j ω h(n)e )H(e N 。式中N 为所选窗函数(n)w 的长度。 用窗函数法设计的FIR 滤波器性能取决于窗函数类型及窗口长度N 的取值。设计过程中要根据阻带衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。各类窗函数所能达到的阻带最小衰减和过渡带宽度见P342表7-3。 选定窗函数类型和长度N 以后,求出单位样值响应(n)(n)h h(n)d w ?=。验算 )()()]([)(ω?ωω==j g j e H n h DTFT e H 是否满足要求,如不满足要求,则重新选定窗函 数类型和长度N ,直至满足要求。 如要求线性相位特性,h(n)还必须满足n)-1-h(N h(n)±=。根据上式中的正、负号和长度N 的奇偶性又将线性相位FIR 滤波器分成4类(见P330表7-1及下表),根据要设计的滤波器特性正确选择其中一类。例如要设计低通特性,可选择情况1、2,不能选择情况3、4。

相关文档
最新文档