拉曼常见问题

拉曼常见问题
拉曼常见问题

一、测试了一些样品,得到的就是Ramanshift,但就是文献就是wavenumber,不知道它们之间的转换公式就是怎么样的?激光波长632、8nm。

1、两者就是一回事。ramanshift即为拉曼位移或拉曼频移,频率的增加或减小常用波数差表示,拉曼光谱仪得到的谱图横坐标就就是波数wavenumber,单位cm-1。

2、两者一回事。

拉曼频移ramanshift指频率差,但通常用波数wavenumber表示,单位cm-1,可以说某个谱峰拉曼位移就是??波数,或??cm-1。

3、在Raman谱中,wavenumber有两种理解,一种就是相对波数,这时就等于Ramanshift;另一种就是绝对波数(这在荧光光谱中用的比较多),这个绝对波数就是与激发波长有关,不同的激发波长得到的绝对波数就

是不一样的,这时Ramanshift等于(10000000/激发波长减去Raman峰的绝对波数)。

所以通常在Raman谱中,wavenumber一般可理解为Ramanshift。

二、如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果就是玻璃的光谱。

1、我今天还在用激光拉曼测聚苯乙烯,没有出现您说的情况啊就是不就是玻璃管被污染的厉害?

2、您测出的玻璃的信号,有没有可能们焦点位置不对?

3、应该就是聚焦位置不对,聚在玻璃上了,我以前也犯过同样的错误。

4、用凹面载玻片,液体量会比较多,然后用显微镜聚焦好就可以了,如果液体有挥发性,最好液体上用盖玻片,然后焦点聚焦到盖玻片以下。

如果还不行,您可以查一下“液芯光纤”这个东东

5、建议:

(1)有机液体里面的分析物质浓度多大? Raman测定的就是散射光,所以在溶液中的强度相对比较底,故分析物浓度要大些。

(2)您用的就是共聚焦Raman不?聚焦点要在毛细管的溶液里面才好。可以在溶液中放点“杂物”方便聚焦。

(3)玻璃就是无定形态物质,应该Raman信号比较弱才对。

三、我们这里有做生物样品的拉曼光谱的,在获得的图里面有很强的荧光,有的说,如果拉曼得不到就用其荧光谱。可我想问一下,在拉曼谱里面得到的荧光背景,就是真正的荧光特征谱不?这与荧光光谱仪里面的荧光图有什么区别?

1、原则上说,拉曼谱中的荧光与荧光谱中的荧光就是一样的,只要激发波长与功率密度相同。注意横坐标要从波数变换为纳米,即用10000000nm(1cm)除以波数就行了。但有一点要注意,不同波长的激发光照射样品,得到的拉曼相近,但荧光可以有很大不同,甚至相同波长不同功率激发,荧光谱都大不一样。

2、“注意横坐标要从波数变换为纳米,即用10000000nm(1cm)除以波数就行了”?

Raman测定的就是散射光,得到的就是Raman shift、 Raman shift与绝对波长(荧光光谱)之间要一个转换的吧。

3、生物样品一般荧光峰比较宽,用荧光光测试之前一般先会做仪器本身曲线校正也就就是仪器本身的响应曲线,这样测出的荧光峰才比较准,特别就是对于宽峰更要做这个较准。

而Raman光谱一般采集的区域比较窄(指的就是波长区域),一般在窄的波长范围变化不大,因此一般不考虑仪器本身响应曲线误差,但就是Raman光谱来测宽荧光峰,影响就比较大。

四、什么就是共焦显微拉曼光谱仪?

1、共焦拉曼指的就是空间滤波的能力与控制被分析样品的体积的能力。通常主要就是利用显微镜系统来实现的。

仅仅就是增加一个显微镜到拉曼光谱仪上不会起到控制被测样品体积的作用的—为达到这个目的需要一个空间滤波器。

2、(1)、显微就是利用了显微镜,可以观测并测量微量样品,最小1微米左右

(2)、共焦就是样品在显微镜的焦平面上,而样品的光谱信息被聚焦到CCD上,都就是焦点,所以叫共聚焦

3、拉曼仪器的共焦有2种呢,一种就是针孔共焦,一种就是赝共焦、我觉得好像不应该称为赝共焦,共聚焦有真正的定义说一定要针孔才就是共聚焦不?好像没有,顶多称为传统共聚焦或者针孔共聚焦、简单共聚焦之类的。

个人想法,大家指正。

五、请问,测固体粉末的拉曼图谱时,对于荧光很强的物质,应该如何处理?特别就是当荧光将拉曼峰湮灭时,应该怎么办?增加照射时间的方法,我试过,连续照射了4小时,结果还就是有很强的荧光。我只有一台532 nm的激光器,所以更换激光波长的方法目前我不能用。想问问各位,还有别的方法不?

1、使用SERS技术或者使用很少量的样品进行测量,或者稀释您的样品到一些别的基体里面去,比如说KB r。

2、波长不可调的话,激光强度应该就是可调的,您把激光强度调低点试试。这个在光源与软件上都有调的。全调到比较低的,然后再用长时间试试。

3、可以尝试找一种溶剂溶解粉末,瞧能不能猝灭荧光背景。采用反斯托克斯,滤光片用Nortch滤光片。

六、请问用激光拉曼仪能测量薄膜的厚度、折射率及应力不?它能对薄膜进行那些方面的测量呢?

1、应该不能测薄膜的厚度、折射率及应力吧

2、现在的共焦显微拉曼可以做膜及不同层膜的,您的问题我觉得用椭偏仪更好

3、拉曼光谱可以测量应力,厚度好像不行

4、应力可以测,应力有差别的时候拉曼会有微小频移,其她两种没听说过拉曼能测

七、拉曼做金属氧化物含量的下限就是多少? 我有一几种氧化物的混合物,其中MoO3含量只有5%,XRD 检测不到,拉曼可以不?

应该与待测样品的拉曼活性有关,并不能绝对说一定能测到多少检测线,有些氧化物可能纯的样品也测不出光谱,信号强的则可能会低一些

八、小弟就是刚涉足拉曼这个领域,主打生物医学方面。实验中,发现温度不同时,拉曼好像也不一样。不知到哪位能帮忙解释一下这个现象

温度升高,拉曼线会频移,线宽会变宽,只要物质状态不变,特征峰不会有太大变化,除非高温造成化学反应或者其她变化

九、文献上说,拉曼的峰强与物质的浓度就是成正比关系,那么比如我配置1mol/L的某溶液,与0、5mol/L 的溶液,其峰强度就是正好一半的关系不?应用拉曼,就是否能采用峰积分,或者用近红外那样的多元统计的办法来定量不?准确度怎么样?

存在激发效率的问题,拉曼一直以来被认为只能做半定量的研究,就就是因为不就是线性的,有这方面的文献,具体记不清了。

十、拉曼峰1640对应的就是什么东西啊?无机的

1、这个峰一般来说就是C=O双键的峰,可就是您说就是无机物,很有可能就是某一个基团的倍频峰,瞧瞧8 20左右或者就是某两个峰的叠加。

2、也有可能就是您在测量过程当中由于激光引起的碳化物质。还有一种可能就就是C=C、

3、拉曼在1610-1680波数区间有C=N双键的强吸收

十一、1 红外分析气体需要多高的分辨率?

2 拉曼光谱仪就是否可分析纯金属?

3 红外与拉曼联用,BRUKER与NICOLET哪个好些?

1,分析气体时理论上最高只需0、5cm-1。实际应用上绝大部分情况下4cm-1已足够。对于气体,还就是希望分辨率高一些好,一般都用1cm-1一下,这样对气体的一些微小峰的变化检测更好

2,基本上不可能。

金属不太可能作出来,因为一般不发生分子极化率改变。

3,这两家公司的红外各有千秋相差不多,关键就是您更瞧重哪些指标。

十二、我想请问一下这里的高手测定过渡金属络合物水溶液中金属与有机物中的某个原子就是否成键可以用拉曼光谱分析不?

如果键能对应的波数在100cm-1以上,估计就是可以的,现在比较新的拉曼光谱仪就可以

十三、金红石与锐钛矿对紫外Raman的响应差别大不大?同样条件下的金红石与锐钛矿的Raman峰会不会差很多?

用不同的激发光激发样品,若激光对样品没有破坏作用,拉曼谱图中谱峰的相对强度有时会发生一些变化,但不会完全变了,否则就很难用拉曼光谱进行定性分析了。

TiO2矿物的情况比较特殊,它们有三种晶型:锐钛矿、板钛石与金红石,其中板钛矿比较少见。锐钛石的特征就是142cm-1左右的强峰,金红石中此峰消失或很弱。但我们经常见到的不就是这两种极端情况,而多就是介于金红石或锐钛石中间的TiO2相。有时一个颗粒中,若激光作用在不同的点上,也会打出差别较大的谱图来。

您说的情况,可能有两个原因:一就是换波长后,激光与样品的作用点移动;二就是激光的能量使样品的晶型发生变化。我个人觉得第一种的可能性较大。

十四、什么就是3CCD?

CCD,就是英文Charge Coupled Device 即电荷耦合器件的缩写,它就是一种特殊半导体器件,上面有很多一样的感光元件,每个感光元件叫一个像素。CCD在摄像机里就是一个极其重要的部件,它起到将光线转换成电信号的作用,类似于人的眼睛,因此其性能的好坏将直接影响到摄像机的性能。

衡量CCD好坏的指标很多,有像素数量,CCD尺寸,灵敏度,信噪比等,其中像素数以及CCD尺寸就是重要的指标。像素数就是指CCD上感光元件的数量。摄像机拍摄的画面可以理解为由很多个小的点组成,每个点就就是一个像素。显然,像素数越多,画面就会越清晰,如果CCD没有足够的像素的话,拍摄出来的画面的清晰度就会大受影响,因此,理论上CCD的像素数量应该越多越好。但CCD像素数的增加会使制造成本以及成品率下降,而且在现行电视标准下,像素数增加到某一数量后,再增加对拍摄画面清晰度的提高效果变得不明显,因此,一般一百万左右的像素数对一般的使用已经足够了。

单CCD摄像机就是指摄像机里只有一片CCD并用其进行亮度信号以及彩色信号的光电转换,其中色度信号就是用CCD上的一些特定的彩色遮罩装置并结合后面的电路完成的。由于一片CCD同时完成亮度信号与色度信号的转换,因此难免两全,使得拍摄出来的图像在彩色还原上达不到专业水平很的要求。为了解决这个问题,便出现了3CCD摄像机。

3CCD,顾名思义,就就是一台摄像机使用了3片CCD。我们知道,光线如果通过一种特殊的棱镜后,会被分为红,绿,蓝三种颜色,而这三种颜色就就是我们电视使用的三基色,通过这三基色,就可以产生包括亮度信号在内的所有电视信号。如果分别用一片CCD接受每一种颜色并转换为电信号,然后经过电路处理后产生图像信号,这样,就构成了一个3CCD系统。

与单CCD相比,由于3CCD分别用3个CCD转换红,绿,蓝信号,拍摄出来的图像从彩色还原上要比单CCD来的自然,亮度以及清晰度也比单CCD好。但由于使用了三片CCD,3CCD摄像机的价格要比单CCD贵很多,所以只有专业用的摄像机才会使用3CCD。

十五、请教我所作的实验就是用柠檬酸金属盐溶胶拉制成纤维,想做一下拉曼光谱来证明就是否有线性分子的存在,可以不

1、当然可以了,但就是这要拉曼方面比较深厚的基础,可以先建立模型进行模拟,然后跟实验相对照,能对应就就是最大的说服力了,说不定能发到国际上影响力很高的杂志呢

2、拉曼光谱应该与分子的对称性相关,通过群论可以知道那些谱峰就是有活性的,理论上就是可以做到的。但对于较大的分子可能不容易啊

十六、在测量拉曼光谱仪的灵敏度参数时,有人提出,单晶硅的三阶拉曼峰的强度跟硅分子的取向(什么111, 100之类)的有关,使用不同取向的硅使用与其相匹配的激光照射时,其强度严重不一样,就是这样不?不知道大家测量激光拉曼光谱仪的灵敏度时都就是怎么测量的

1、就是的,硅单晶片放置的方向不同峰的强度不同。一般只观察520cm-1峰的强度,不同的硅片取向,不同倍数的物镜,长焦物镜或短焦物镜,520cm-1峰的强度都不同。

2、 520cm-1处好像不就是硅的三阶峰的位置吧,测试灵敏度的时候一般就是硅的三阶峰的信噪比来衡量呀。520处就是跟硅的取向有关系,但就是单晶硅的三阶拉曼峰呢?

3、硅三阶峰位置1440cm-1。

4、关于硅晶体各向异性的说明可以做偏振拉曼光谱,有些楼主同志说拉曼强度跟光源强度,透镜倍数,等因素有关,说法没错,但就是这个跟硅的各向异性并没多大关系,随便一个样品的拉曼强度都跟这些因素有关!!!

硅的各向异性,比如以VV偏振沿硅的111与110面做谱图,在光源强度,透镜倍数等因素都相同条件下拉曼强度就是不一样的,根据这些强度还有入射角度,偏振配置可以计算出硅的各向异性指标!!!

这里可能涉及到很多拉曼光谱的原理与偏振光学,偏振配置,等等的一些计算方法(涉及到的理论包括:群论,

晶体结构理论,固体物理,偏振光学,拉曼原理等理论)

十七、请问如何进行拉曼光谱数据处理?

1、可以找相关的拉曼书上有一些特征峰的波数,自己对照分析。也可以在仪器软件中的标准谱图搜索,不过标准谱图不太多的

2、如果您有数据库可以先比对一下能否确定物质种类,其次可以对峰位、信号强度等信息用曲线拟合方式进行分析。

十八、拉曼系统自检具体就是检测哪些硬件?就是个什么过程?

主要就是检测仪器内的运动部件,如需要旋转角度的光栅等。这种部件都会有自己的“机械零点”作为参考点。

十九、请教作激光拉曼测试,样品如何预处理?

1、一般来说,样品都不需要做预处理,不象红外那样麻烦。分析固体与液体比较容易,气体就难了,除非密度很大,否则只能用大型拉曼

2、表面打磨一下或用酒精丙酮一类的东西清洗一下更好,不这样也行,在做的时候聚焦在比较干净平整的地方就行。

二十、请问激光拉曼光谱就是什么意思?

拉曼光谱就是一种散射光谱,利用激光(多用可见激光,有时也用紫外激光,在付里叶变换拉曼光谱仪中则用

近红外激光)照射样品,通过检测散射谱峰的拉曼位移及其强度获取物质分子振动-转动信息(这些信息在红

外光谱区)的一种光谱分析法。

时间分辨技术的原理

时间分辨技术的原理目前最先进的免疫检测技术: 1、时间分辨原理: 用三价稀土离子及其鳌合剂作为示踪物,代替荧光物质、同位素或酶,标记蛋白质、多胎、激素、抗体、核酸探针或生物流行性细胞,当反应体系发生后,用时间分辨仪器测定最后产物中荧光强度。根据荧光强度或相对荧光强度比值,来判断反应体系中分析物的浓度,达到定量分析之目的。 2、时间分辨原子标记物的特点: ●发射光和激发光有较大的STOKES位移——高特异性 ●长寿命荧光,降低其他物质的荧光干扰——高灵敏度 ●半衰期长达几十万年,试剂受干扰小——高稳定性 原子标记与大分子标记物的对比 3、波长分辨: ●标记离子的荧光激发光波长范围较宽,发射光光谱范围较窄,是类线光谱, 有利于降低本底荧光强度,提高分辨率。 ●激发与发射光之间有一个较大的STOKES位移,有利于排除非特异荧光的 干扰,增强测量的特异性。

4、时间分辨: ●标记离子螯合物产生的荧光强度高,寿命长,有利于消除样品及环境中荧 光物质对检测结果的影响。 ●每一秒名检测样品1000次,取其中不受干扰的400次的均值作为测定值, 有利于提高检测的准确性。 时间分辨技术取代酶免、放免是免疫检测技术发展的必然趋势! RIA(放免) ●放射性(125I),对环境和身体的危害,已经为重视环保的国家逐步取消, 如整个欧洲仅尚存几个放免试验室。 ●125I半衰期短,导致试剂的有效期短,需每次定标,造成很大的浪费。 ●由于标记物(125I)的不断变化,带来药盒批间、批内较大的变异,标准 曲线无法保存备用。 ELESA(酶免) ●灵敏度、重复性不及放免,易造成漏检和假阳性。 ●酶的纯度和反应过程容易受环境因素影响,导致稳定性、重复性不好。 与其它技术的相对优势: (1)、是现有的免疫检测方法中灵敏度最高的 (2)、是现有的免疫检测方法中稳定性最好的 (3)、多标记检测是目前所有免疫检测技术中独一无二的 TRF技术与电化学发光的比较

激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)

激光拉曼光谱的原理和应用 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究 推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 激光拉曼光谱法的原理是拉曼散射效应。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。 这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学 拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物 拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。 生物 拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质

拉曼光谱技术综述

拉曼光谱技术综述 摘要:本文从拉曼散射原理出发,介绍了拉曼技术的特征,以及拉曼技术的优势和不足,从激光技术和纳米技术出发介绍了当前拉曼技术的广泛发展和应用。综述了近年来了曼技术的主要的分析技术。涉及拉曼光谱技术的发展简史,发展现状和最新研究进展等方面。 关键字:光谱分析、拉曼散射、激光、光子 1、拉曼光谱的发展简史 印度物理学家拉曼于1928年用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。与此同时,前苏联兰茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象,即由光学声子引起的拉曼散射,称之谓并合散射。然而到1940年,拉曼光谱的地位一落千丈。主要是因为拉曼效应太弱(约为入射光强的),人们难以观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上的高阶拉曼散射效应。并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技术的进步和商品化更使拉曼光谱的应用一度衰落。1960年以后,红宝石激光器的出现,使得拉曼散射的研究进入了一个全新的时期。由于激光器的单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率。成为拉曼光谱的理想光源。随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。 70年代中期,激光拉曼探针的出现,给微区分析注人活力。80年代以来,美国Spex公司和英国Rrin show公司相继推出,拉曼探针共焦激光拉曼光谱仪,由于采用了凹陷滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,这样入射光的功率可以很低,灵敏度得到很大的提高。Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼光谱的应用范围更加广阔。 2、拉曼光谱简介:

拉曼光谱原理及应用简介

拉曼光谱原理及应用简介 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究。 应用激光光源的拉曼光谱法。应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段。

1. 激光拉曼光谱法的原理是拉曼散射效应 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不光改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 2. 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 3. 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学:拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是判断化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物:拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中

拉曼光谱原理及应用简介

拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。(一)含义 光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相 同的成分.非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的 能量。

c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。4因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。5共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术

Raman 拉曼光谱原理及应用

拉曼光谱学 ——原理及应用HORIBA Jobin Yvon北京办事处

报告内容 ?1-什么是拉曼光谱? –简单介绍 ?2-拉曼光谱仪工作原理介绍 ?3-拉曼光谱在材料研究中的应用介绍?4-HORIBA Jobin Yvon拉曼光谱仪简介

1928年,印度科学家C.V Raman in首先在CCL 4光谱 中发现了当光与分子相互作用后,一部分光的波长 会发生改变(颜色发生变化),通过对于这些颜色 发生变化的散射光的研究,可以得到分子结构的信 息,因此这种效应命名为Raman效应。 时间 和发现人? Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science

λlaser λscatter >λlaser 瑞利散射λscatter = λlaser 拉曼散射 光散射的过程:激光入射到样品,产生散射光。 散射光弹性散射(频率不发生改变-瑞利散射) 非弹性散射(频率发生改变-拉曼散射)

2 0004 000 6 0008 00010 000I n t e n s i t y (c n t )400600Raman Shift (cm -1) 520不同材料的拉曼光 谱有各自的不同于其它材料的特征的光谱-特征谱 z 为表征和鉴别材料提 供了指纹谱 z 深入开展光谱学和材 料物性研究打下基础 1332 1580 20000 15000 10000 5000 100012001400160018002000 Wavenumber (cm-1)?组分信息?结构信息

激光拉曼光谱技术

激光拉曼光谱技术 摘要:论文综述了激光拉曼光谱的发展历史,拉曼光谱原理,其中有自发拉曼散射,相干反射托克斯拉曼散射光谱和受 激拉曼散射。 关键词:激光拉曼光谱原理自发反斯托克斯受激 正文 1.拉曼光谱的发展历史 印度物理学家拉曼于1928年用水银灯照射苯液体,发 现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分 布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种 新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。拉曼因发现这一新的分子辐射和所取得的许多光散射研究 成果而获得了1930年诺贝尔物理奖。与此同时,前苏联兰 茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象, 即由光学声子引起的拉曼散射,称之谓并合散射。 法国罗卡特、卡本斯以及美国伍德证实了拉曼的观察 研究的结果。然而到1940年,拉曼光谱的地位一落千丈。 主要是因为拉曼效应太弱(约为入射光强的10-6),人们难以 观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上 的高阶拉曼散射效应。并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技 术的进步和商品化更使拉曼光谱的应用一度衰落。1960年 以后,红宝石激光器的出现,使得拉曼散射的研究进入了一 个全新的时期。由于激光器的单色性好,方向性强,功率密 度高,用它作为激发光源,大大提高了激发效率。成为拉曼 光谱的理想光源。随探测技术的改进和对被测样品要求的 降低,目前在物理、化学、医药、工业等各个领域拉曼光谱

得到了广泛的应用,越来越受研究者的重视。 70年代中期,激光拉曼探针的出现,给微区分析注人活力。80年代以来,美国Spex公司和英国Rr i ns how公司 相继推出,位曼探针共焦激光拉曼光谱仪,由于采用了凹陷 滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,因而不在需要采用双联单色器甚至三联单色器,而只需要采用单一单色器,使光源的效率大大提高,这样入射光的功率 可以很低,灵敏度得到很大的提高。Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼 光谱的应用范围更加广阔。 2拉曼光谱的原理 2.1自发拉曼散射 泵浦光注入光纤后,其部分能量转为拉曼散射光,当 泵浦光的强度小于阈值时,这时光纤分子的热平衡没有被 破坏,这种拉曼散射叫自发拉曼散射。拉曼散射的产生原 因是光子与分子之间发生了能量交换改变了光子的能量。2.2拉曼散射的产生 光子和样品分子之间的作用可以从能级之间的跃迁来 分析。样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。样品分子在准激发态时是不稳定的,它将回到电子能级的基态。若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞 利散射。如果样品分子回到电子能级基态中的较高振动能 级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为St okes线。如果样品分子在与入射光子作用前的瞬间不是处于电子能级 基态的最低振动能级,而是处于电子能级基态中的某个振动能级激发态,则入射光光子作用使之跃迁到准激发态后,该 分子退激回到电子能级基态的振动能级基态,这样散射光能量大于入射光子能量,其谱线位于瑞利谱线的高频侧,称为

时间分辨荧光分析技术

1.1 时间分辨荧光分析技术 时间分辨荧光生化分析技术是基于稀土荧光配合物特殊的荧光性质而建立起来的,自1978年提出以来[1],已广泛的应用于免疫分析、核酸测定、荧光显微镜成像、细胞识别、单细胞原位测定、生物芯片等生化领域,并发展出了相应的时间分辨荧光免疫测定法、时间分辨荧光DNA 杂交测定法、时间分辨荧光显微镜成像测定法、时间分辨荧光细胞活性测定法及时间分辨荧光生物芯片测定法等分支。 本节主要对稀土荧光配合物的发光机理、荧光性质,时间分辨荧光测定的原理,时间分辨荧光免疫分析技术,时间分辨荧光显微镜成像技术的研究进展等加以介绍。 1.1.1 稀土荧光配合物的发光机理及荧光性质 稀土元素指的是元素周期表中IIIB 族的镧系元素以及钪和钇,共17种元素。其中镧系元素的外层电子结构为4f 0-145d 0-106s 1-2,由于5s 和5p 电子对4f 电子的屏蔽作用,导致这些金属及其离子的性质十分相似。图1.1给出了四种三价稀土离子的基态及激发态电子能级图[2]。 1020 152530355 E N E R G Y ,103c m -1 6 H 5/2 G 5/2 6 H 15/2 7 F 0 F 2D 0 5D 1 7F 6 F 5 4 5D 3 13/2 4 9/2 Sm 3+ Eu 3+ Tb 3+ Dy 3+ H 9/2 图1.1 部分三价稀土离子的电子能级图 Fig. 1.1 Electronic energy levels of certain lanthanide(III) ions 大部分稀土离子本身是不具有荧光性质的,只有Sm 3+、Eu 3+、Tb 3+和Dy 3+的水溶液在紫外光或可见光的激发下能够发出微弱的荧光。当Sm 3+、Eu 3+、Tb 3+和Dy 3+与某些有机配位体形成配合物时其荧光强度会显著增强,这种发光是基于配合物内由配位体到中心稀土离子的能量转移所产生的[3-8]。以铕(III)配合物为

新型的激光拉曼光谱系统 - inVia

新型的激光拉曼光谱系统-inV ia 刘竟青 (雷尼绍(Renishaw)北京办事处 北京 100028) 摘 要 介绍inVia新型拉曼光谱系统的仪器构成、性能和特点,以及inVia拉曼光谱仪和多种微区探测仪器联用的最新发展方向。 关键词 激光拉曼 瑞利滤光片 灵敏度 微区探测仪器的联用 拉曼散射作为一种光和物质的相互作用虽然在上世纪20年代就被预言,尔后又为实验所证实,但专门的拉曼光谱仪器是60年代激光问世后,到70年代才开始得以成为实用的、并且商业化的一种光谱仪器。而国内则在80年代改革开放后,才逐步认识和推广这种较新的光谱手段。它主要通过光散射对物质的指纹性的振动谱进行测量,与红外光谱互相补充,对物质进行认证和对其结构进行研究。 随着光电子材料、计算机技术等高科技的发展,拉曼光谱仪在90年代有革新性的新一代,即英国Renishaw公司领先设计并生产以一种全息滤光片为关键器件的新型拉曼光谱系统。由于这个器件解决激光瑞利散射对较弱的拉曼信号的收集所产生的强干扰,因而新型的拉曼光谱系统是彻底改变80年代只能靠大型长焦距多级光栅光谱仪以及大功率激光组成的复杂的光谱系统进行难度较大拉曼实验工作的局面。inVia是代表性的最新型号。 10年来,这种新型拉曼光谱系统的问世给用户带来极大的方便,也就使得激光拉曼光谱仪走出高校和研究所作物理和化学的基础研究的实验室,为应用科学、材料科学、工业在线检测以及地质、刑侦、博物馆/文物……乃至为更大范围的人所认识和使用,因而Renishaw对拉曼光谱的应用发展和推广作出不可否认的贡献。 1 新型拉曼光谱系统-inV ia的组成和工作原理 拉曼光谱仪器的必要部分有:激发光源(激光器),激光引入光路的元件(将激光束引向样品),样品室(大样品室或显微样品台),信号光路(将拉曼散射信号引向光谱仪),光谱仪,探测器,及计算机控制部分和软件。 图1是inVia这种新型拉曼光谱仪系统的外形。图2是它的主要组成部分光路示意图。90年代Renishaw领先设计的新型激光拉曼光谱系统的实现最根本的是得益于一种特别的全息瑞利滤光片。因为拉曼信号收集的主要困难在于与激光同频率的瑞利散射比拉曼散射要强10个数量级以上,而拉曼峰又离激光很近。这种窄带的陷波滤光片(Notch)的特点是,能针对性地将以激光波长为中心的几个纳米的波长范围内的瑞利散射光能量有效地滤除达5到6个数量级之多,而让该波长范围之外的光信号顺利通过。这样后面只需再用小型光谱仪色散分出光谱,激光用20mW的小型激光器也就够了。整个系统变得体积小,紧凑,容易整合在一起,进而稳定性大大增强。加上软件的长足进步,使得新型拉曼光谱系统使用非常方便 。 图1 in Via激光显微共焦拉曼光谱系统 inVia(标准型)可不同程度增加自动化部分,升级直至InCia2Re2 flex(全自动型) 2 inVia的技术关键点 介绍inVia最关键和最具有特色的几个方面。211 最好的整体灵敏度 显而易见,对拉曼散射这种弱信号,整个仪器的灵敏度是第一位的。inVia首先使用两片瑞利滤光片设计出一个特殊的器件,可滤除达10个数量级之多,而透过率达80%。用于激光拉曼光谱系统,并申请专利。这个器件位于光路的“咽喉要道”(见图2),它既起着将引入系统的激光向显微镜方向(即样品处)高效反射(95%)的作用,又让来自显微镜的信号能高效(80%)透过,去到光谱仪和CC D检测器。 53

化学发光免疫技术与时间分辨技术的异同点

化学发光免疫技术与时间分辨技术的异同点 概念 化学发光免疫分析(chemiluminescenceimmunoassay,CLIA),是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。 时间分辨荧光免疫测定(TRFIA)是以镧系元素标记抗原或抗体,并与时间分辨测定技术结合而建立起来的一种新型非放射性微量免疫分析技术,它根据镧系元素螯合物的发光特点,用时间分辨技术测量荧光,同时检测波长和时间两个参数进行信号分辨,可有效地排除非特异荧光的干扰,极大地提高了分析灵敏度。 原理 化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测 量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。鲁米诺(1umino1)、异鲁米诺(isolumino1)及其衍生物、吖啶酯(acIidinim ester)衍生物、辣根过氧化物酶(horseradishperoxidase,HRP)和碱性磷酸酶(alkaline phosphatase,ALP)是目前CLIA中使用最多的四类标记物。 时间分辨荧光免疫测定(TRFIA)基本原理 用三价稀土离子及其鳌合剂作为示踪物,代替荧光物质、同位素或酶,标 记蛋白质、激素、抗原、抗体、核酸探针等物质,当免疫反应体系发生后,根据稀土离子螯合物的荧光光谱的特点,用时间分辨荧光分析仪测定免疫反应最后产物中荧光强度。根据荧光强度或相对荧光强度比值,来判断反应体系中分析物的浓度,达到定量分析之目的。 应用 化学发光免疫分析技术(CLIA) 各种激素、病毒抗原抗体、肿瘤标志物、感染性疾病、心脏标志物、治疗药物检测等各种抗原、抗体和半抗原 时间分辨荧光免疫测定(TRFIA)应用广泛 1.多肽类:蛋白质、激素(甲状腺激素、甾体类激素)。 2.病原体抗原/抗体 3.病毒性肝炎标志物 4.肿瘤相关抗原 5.药物 6.核酸 优缺点

拉曼光谱实验报告

拉曼光谱实验报告 拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。由分子振动、固体中光学声子等激发与激光相互作用产生的非弹性散射称为拉曼散射。 1928年拉曼光谱C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。小拉曼光谱与分子的转动能级有关,大拉曼光谱与分子振动-转动能级有关。拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子(即吸收的能量大于释放的能量),同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为υ0的光子,发射υ0+υ1的光子(即释放的能量大于吸收的能量),同时分子从高能态跃迁到低能态(反斯托克斯线)。分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。与分子红外光谱

不同,极性分子和非极性分子都能产生拉曼光谱。激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值

化学发光免疫技术与时间分辨技术的异同点

化学发光免疫技术与时间分辨技术的异同点 Newly compiled on November 23, 2020

化学发光免疫技术与时间分辨技术的异同点 概念 化学发光免疫分析(chemiluminescence immunoassay,),是将具有高灵敏度的测定技术与高特异性的免疫反应相结合,用于各种抗原、、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。是继放免分析、酶免分析、和之后发展起来的一项最新免疫测定技术。 时间分辨荧光免疫测定(TRFIA)是以标记抗原或抗体,并与时间分辨测定技术结合而建立起来的一种新型非放射性微量免疫分析技术,它根据镧系元素的发光特点,用时间分辨技术测量荧光,同时检测波长和时间两个参数进行信号分辨,可有效地排除非特异荧光的干扰,极大地提高了分析灵敏度。 原理 化学发光免疫分析包含两个部分, 即免疫反应系统和分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个的中间体, 当这种激发态中间体回到稳定的时, 同时发射出光子(hM) , 利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。鲁米诺 (1umino1)、异鲁米诺(isolumino1)及其衍生物、吖啶酯(acIidinimester)衍生物、辣根过氧化物酶(horseradishperoxidase,HRP)和碱性磷酸酶(alkalinephosphatase,ALP)是目前CLIA中使用最多的四类标记物。 时间分辨荧光免疫测定(TRFIA)基本原理 用三价稀土离子及其鳌合剂作为示踪物,代替荧光物质、同位素或酶,标 记蛋白质、激素、抗原、抗体、核酸探针等物质,当免疫反应体系发生后,根据稀土离子螯合物的荧光光谱的特点,用时间分辨荧光分析仪测定免疫反应最后产物中荧光强度。根据荧光强度或相对荧光强度比值,来判断反应体系中分析物的浓度,达到定量分析之目的。 应用 (CLIA)

时间分辨荧光免疫分析技术及临床应用

时间分辨荧光免疫分析技术及临床应用 武学成1,2(综述),何 林1,周克元2(审校) (1.深圳人民医院检验医学部,广东深圳518001;2.广东医学院,广东湛江524001) 中图分类号:R44616 文献标识码:A 文章编号:100622084(2006)0720434203 摘要:标记免疫分析技术的出现使临床生化分析由常量分析向微量分析转变。20世纪80年代出现的时间分辨荧光免疫分析技术,以其独特的优势成为最有发展前途的非放射免疫标记技术。本文主要介绍时间分辨荧光免疫技术基本原理、基础试剂、基本技术以及近年来临床应用。 关键词:时间分辨荧光免疫分析技术;铕;标记技术 The R esearch and C linical Application of Time2resolved F luoroimmunoassay WU Xue2cheng1,2,HE Lin1, ZHOU K e2yuan2.(1.The Medical Laboratory Department o f Shenzhen People′s Hospital,Shenzhen518001,China; 2.Guangdong Medical College,Zhanjiang524001,China) Abstract:The marked immunoassay technique gives the changes from macroanalysis to microanalysis.T ime2 res olved fluoroimmunoassay technology is a non2radio2immunity labeling technique having m ost perspective future because of its unique advantage since1980s.This article reviewed s ome aspects about it including fundamental principle,basic reagent,basic technique and the its clinical application in recent years. K ey w ords:T ime2res olved fluoroimmunoassay;Europium;Labeling technique 随着生物标记技术的不断进步,免疫分析技术得到了长 足的发展。免疫分析技术逐步由放射免疫分析技术向非放射 免疫技术转变。在此期间,涌现了一大批非放射免疫技术,例 如酶免分析技术、化学发光免疫分析技术、时间分辨荧光免疫 分析技术(time2res olved fluoreimmuoassay,TRFI A)等。但是从灵 敏度来说只有时间分辨荧光免疫分析技术可与放射免疫媲 美。TRFI A是20世纪80年代迅速发展起来的的一种公认的 最有发展前途的非放射免疫标记技术。 1 时间分辨荧光免疫分析技术的基本原理 TRFI A是用镧系金属离子作为示踪物标记蛋白质、多肽、 激素、抗体、核酸探针或生物活性细胞,与其螯合剂、增强液 (有一部分不需要)在待反应体系(如:抗原抗体免疫反应、生 物素亲和素反应、核酸探针杂交反应、靶细胞与效应细胞的杀 伤反应等)发生反应后,用时间分辨荧光仪测定最后产物中的 荧光强度,根据荧光强度和相对荧光强度比值,推测反应体系 中分析物的浓度,达到定量分析的目的。 2 时间分辨荧光分析技术简介 TRFI A的基础试剂包括示踪剂、稀有元素双功能螯合剂、 分析缓冲液、增强溶液。基本技术包括包被技术、标记技术、 反应模式。 2.1 基础试剂 2.1.1 示踪剂的选择和使用 所使用的稀土元素主要位于 元素周期表中的ⅢB族,包括钪(scandium,SC)、钇(yttrium,Y) 和镧系元素。到目前为止,只有铕(europium,Eu)、铽(terbium, Tb)、钐(samarium,Sm)、钕(neodymium,Nd)、镝(dysprosium,Dy) 等5种被用作TRFI A示踪剂,尤以Eu3+常用。一般用Eu2O3 制备成EuCl 3 ,再经纯化和常温真空抽干,然后干燥保存。用 Eu3+等镧系元素作为示踪剂有以下特点:①荧光物质激发光 谱曲线的最大吸收波长和发射光谱的最大发射波长之间的 差,称为S tokes位移。普通荧光物质荧光光谱的S tokes位移 只有几十纳米,激发光谱和发射光谱通常有部分重叠,互相干 扰严重。游离铕的荧光信号虽然相当微弱,但当Eu3+与螯合剂形成螯合物时,产生分子内和分子间能量传递,使Eu3+的荧光强度显著增强,S tokes位移达200nm,很容易分辨激发光和发射光,从而排除激发光干扰;②镧系元素与普通的荧光团比较,镧系元素离子螯合物荧光的衰变时间(decay time)长,为传统荧光的103~106倍。稀土离子及一些常见荧光物质的荧光寿命(见表1)。镧系元素的荧光不仅强度高,而 且半衰期也很长,介于10~1000μs之间。这样,用时间分辨荧光仪测量Eu3+螯合物的荧光时,在脉冲光源激发之后,可以适当的延迟一段时间,待血清、容器、样品管和其他成分的短半衰期荧光衰变后再测量,这时就只存Eu3+标记物的特异性荧光,即通过时间分辨,极大地降低了本底荧光,实现了高信噪比,这是TRFI A高灵敏度和低干扰的原因之一。如果在使用链霉亲合素2生物素系统,可更好地降低非特异性荧光的干扰[1];③镧系螯合物激发光光谱较宽,最大激发波长在300~500nm,可通过增加激发光能量来提高灵敏度。而它的发射光谱带很窄,甚至不到10nm,可采用只允许发射荧光通过的滤光片,进一步降低本底荧光;④Eu3+等镧系标记物与放射性同位素相比不受半衰期的影响。如125I标记试剂最长可用3个月,酶标记物常因其纯度、显色底物不稳定等问题,使其应用受到限制。Eu3+与双功能螯合剂螯合,可形成稳定的螯合物,稳定性很高,2年内能保证质量。再者,Eu3+标记物体积很小(为原子标记),标记后不会影响被标记物的空间立体结构,这既保证了被检测物质的稳定性(尤其对蛋白质影响更小),又可实现多位点标记[2]。标记物稳定就可以对标记物进行多次激发,通过对每次激发的荧光信号累加后取平均值的办法,可大大减少偶然误差,提高准确度。同时多位点标记技术,不仅使检测更灵敏,也使一个试剂盒能够同时检测出两种或两种以上的项目。 2.1.2 稀有元素双功能螯合剂 稀土元素作为金属离子,很难直接与抗原抗体结合,因此在标记时需要有一种双功能基团的螯合物,它们分子内或带氨基和羧基或带有异硫氰酸基和羧酸基,一端与稀土离子连接,一端与抗原或抗体的自由氨基(组氨酸、酪氨酸)连接。目前常用镧系元素标记的双功能螯合剂有异硫氰酸2苯基2二乙胺四乙酸(IC B2E DT A)、β2萘甲酰三氟丙酮(β2NT A)、二乙基三胺五乙酸环酐(DTPAA)、4,72二氯磺基苯21,102菲罗啉22,9二羧酸(BCPDA)及对2异硫氰酸2苄基2二乙三胺四乙酸(P2IC B2DTT A)等5种。Y uan等[3]合成出一种稳定的能发出强烈荧光的Eu3+络合剂4,4′2二(1,1′,2,2′,

拉曼光谱技术概述及应用

拉曼光谱技术概述及应用 姓名:杨海源学号:2011201373 摘要 随着人们对拉曼光谱技术研究的深入,拉曼光谱在许多领域中得到越来越多的应用。本文介绍了拉曼光谱检测技术的基本原理及特点,介绍了傅立叶变换拉曼光谱、共焦显微拉曼光谱、表面增强激光拉曼光谱、固体光声拉曼光谱的原理及其应用。综述了拉曼光谱在食品检测中的应用。主要介绍了拉曼光谱在生物、医药、材料化学、食品领域的应用。在许多领域快速检测、质量控制、无损检测等方面,拉曼光谱必将发挥越来越大的作用。 关键词: 拉曼光谱,检测, 应用 ABSTRACT With the development of research of Raman scattering technology, Raman spectroscopy are increasingly employed in Many Fields.This paper introduces the basic principle and characteristics of raman spectroscopy analytical technology, The research development and application of Raman spectroscopy in many yeilds were discussed. The principle and application of FT-Raman,confocal microprobe Raman, surface-Enhance laser-Raman,photoacoustic Raman spectroscopy in solid were summarized. Reviewe the application of Raman spectroscopy in biology,food,medicine and chemical materials. It will provide a great step forward in many fields assay on rapid detection, quality control and non-destruction detection. Keywords:Raman spectroscopy, detection, application

化学发光免疫技术与时间分辨技术的异同点

化学发光免疫技术与时间分辨技术的异同点概念 优缺点

优点 化学发光免疫分析法(CLIA) ?单个样本检测速度快,适合做急诊; ?灵敏度较高; ?自动化程度高; 时间分辨荧光免疫技术(TRFIA) ?发射光和激发光有较大的STOKES位移——高特异性 ?长寿命荧光,降低其他物质的荧光干扰——高灵敏度 ?半衰期长达几十万年,试剂受干扰小——高稳定性 ?荧光寿命长,易于自动化 ?重复性好 ?标准曲线范围宽 ?结果可靠 与其它技术的相对优势: (1)、是现有的免疫检测方法中灵敏度最高的 (2)、是现有的免疫检测方法中稳定性最好的 (3)、多标记检测是目前所有免疫检测技术中独一无二的缺点 化学发光免疫分析法(CLIA) ?发光过程短 ?本底较高 ?仪器故障率较高 ?试剂稳定性差 ?检测精度不高 试剂价格高 时间分辨荧光免疫测定(TRFIA) ?测量方式复杂 ?仪器成本及维护费用高 ?环境及样品中同元素可导致本底干扰等 类型原理及试剂发光类型 化学发光免疫分析(CLIA)用化学发光物质直接标 记抗原或抗体组成 吖啶酯 (acrydinum esters) 时间分辨免疫荧光分析(TRFIA)* 是用三价稀土离子及其 螯合剂作为示踪物 铕( Eu3+ )、铽( Te3+ ) 及钐( Sm3+ )、镝 ( De3+ ) 化学发光与时间分辨荧光方法学比较 化学发光时间分辨荧光发光效率1% 95%

重复检测不可重复可无数次重复 本底噪声干扰大零本底 灵敏级数10 -15 10 -18 标记物大分子化合物原子 标记位点1个/抗体可达20个/抗体 标准曲线稳定2~4周稳定达一年以上 多标记无有,最多可达四个标记科研开发无有 化学发光免疫技术原理图 时间分辨免疫技术原理图

第十五章 激光拉曼光谱分析.

第15章激光共焦显微拉曼光谱分析 拉曼散射是印度科学家Raman在1928年发现的,拉曼光谱因之而得名。光和介质分子相互作用时会引起介质分子作受迫振动从而产生散射光,其中大部分散射光的频率和入射光的频率相同,这种散射被称为瑞利散射,英国物理学家瑞利于1899年曾对其进行了详细的研究。在散射光中,还有一部分散射光的频率和入射光的频率不同。拉曼在他的实验室里用一个大透镜将太阳光聚焦到一瓶苯的溶液中,经过滤光的太阳光呈现蓝色,但是当光束再次进入溶液后,除了入射的蓝光之外,拉曼还观察到了很微弱的绿光,拉曼认为这是光与溶剂分子相互作用产生的一种新频率的光谱线。因为这一重大发现,拉曼于1930年荣获诺贝尔物理学奖。 拉曼光谱得到的是物质的分子振动和转动光谱,是物质的指纹性信息,因此拉曼可以作为认证物质和分析物质成分的一种有力工具。而且拉曼峰的频率对物质结构的微小变化非常敏感,所以也常通过对拉曼峰的微小变化的观察,来研究在某些特定条件下,例如改变温度、压力和掺杂特性等,所引起的物质结构的变化,从而间接推出材料不同部分微观上的环境因素的信息,如应力分布等。 拉曼光谱技术具有很多优点:光谱的信息量大,谱图易辨认,特征峰明显;对样品无接触,无损伤;样品无需制备;能够快速分析、鉴别各种材料的特性与结构;激光拉曼光谱仪的显微共焦功能可做微区微量以及分层材料的分析(1 μm左右光斑;能适合黑色和含水样品以及高低温和高压条件下测量;此外,拉曼光谱仪使用简单,稳固而且体积适中,维护成本也相对较低。 激光拉曼光谱是激光光谱学中的一个重要分支,应用十分广泛。在化学方面应可应用于有机化学、无机化学、生物化学、石油化工、高分子化学、催化和环境科学、分子鉴定、分子结构等研究;在物理学方面可以应用于发展新型激光器、产生超短脉冲、分子瞬态寿命研究等,此外在相干时间、固体能谱方面也有及其广泛的应用。 15.1基本原理

时间分辨荧光技术

时间分辨荧光技术 时间分辨荧光免疫测定(TRFIA)是一种非同位素免疫分析技术,它用镧系元素标记抗原或抗体,根据镧系元素螯合物的发光特点,用时间分辨技术测量荧光,同时检测波长和时间两个参数进行信号分辨,可有效地排除非特异荧光的干扰,极大地提高了分析灵敏度。 (一)TRFIA分析原理 在生物流体和血清中的许多复合物和蛋白本身就可以发荧光,因此使用传统的发色团进而进行荧光检测的灵敏度就会严重下降。大部分背景荧光信号是短时存在的,因此将长衰减寿命的标记物与时间分辨荧光技术相结合,就可以使瞬时荧光干扰减到最小化。 时间分辨荧光分析法(TRFIA)实际上是在荧光分析(FIA)的基础上发展起来的,它是一种特殊的荧光分析。荧光分析利用了荧光的波长与其激发波长的巨大差异克服了普通紫外-可见分光分析法中杂色光的影响,同时,荧光分析与普通分光不同,光电接受器与激发光不在同一直线上,激发光不能直接到达光电接受器,从而大幅度地提高了光学分析的灵敏度。但是,当进行超微量分析的时候,激发光的杂散光的影响就显得严重了。因此,解决激发光的杂散光的影响成了提高灵敏度的瓶颈。 解决杂散光影响的最好方法当然是测量时没有激发光的存在。但普通的荧光标志物荧光寿命非常短,激发光消失,荧光也消失。不过有非常少的稀土金属(Eu、Tb、Sm、Dy)的荧光寿命较长,可达1~2ms,能够满足测量要求,因此而产生了时间分辨荧光分析法,即使用长效荧光标记物,在关闭激发光后再测定荧光强度的分析方法医学教|育网搜集整理。 平时常用的稀土金属主要是Eu(铕)和Tb(铽),Eu荧光寿命1ms,在水中不稳定,但加入增强剂后可以克服;Tb荧光寿命1.6ms,水中稳定,但其荧光波长短、散射严重、能量大易使组分分解,因此从测量方法学上看Tb很好,但不适合用于生物分析,故Eu最为常用。 (二)时间分辨信号原理 普通物质荧光光谱分为激发光谱和发射光谱,在选择荧光物质作为标记物时,必须考虑激发光谱和发射光谱之间的波长差,即Stakes位移的大小。如果Stakes位移小,激发光谱和发射光谱常有重叠,相互干扰,影响检测结果的准确性。镧系元素的荧光光谱有较大的Stakes位移,最大可达290nm,激发光谱和发射光谱间不会相互重叠,加上其发射的光谱信号峰很窄,荧光寿命长,铕的荧光寿命可达730us,检测中只要在每个激发光脉冲过后采用延缓测量时间的方式,待短寿命的背景荧光衰变消失后,再打开取样门仪器记录长寿命铕鳌合物发射的特异性荧光,可以避免本底荧光干扰,提高检测的精密度。

相关文档
最新文档