(完整word版)数列中裂项求和的几种常见模型.docx

(完整word版)数列中裂项求和的几种常见模型.docx
(完整word版)数列中裂项求和的几种常见模型.docx

数列中裂项求和的几种常见模型

数列问题是高考的一大热点,而且综合性较强,既注重基础知识

的掌握,又注重数学思想与方法的运用。而此类问题大多涉及数列求

和,所以数列求和方法是学生必须掌握的,主要的求和方法有:公式

法、拆项重组法、并项求和法,裂项相消法、错位相加法、倒序相加

法等等,而裂项相消法是其中较为基础、较为灵活的一种,也是出现

频率最高,形式最多的一种。下面就例举几种裂项求和的常见模型,以供参考。

模型一:数列 { a n } 是以 d 为公差的等差数列,且

d 0,a n 0(n 1,2,3, ),则

1

1

1 1

a n

a

n 1

(

)

d a n

a

n 1

例 1 已知二次函数

y

f ( x) 的图像经过坐标原点,其导函数为

f ' (x) 6x 2 ,数列 { a n } 的前 n 项和为 S n ,点 (n, S n )(n N ) 均在函数

y

f ( x) 的

图像上。

(Ⅰ)求数列 { a n } 的通项公式;

(Ⅱ)设 b n

1 ,T n 是数列 {b n } 的前 n 项和,求使得 T n

m

对所有

a n

a

n 1

20

n N 都 成

的 最

m ;

(2006 年湖北省数学高考理科试题)

解:(Ⅰ)设这二次函数 f(x)

=ax 2+bx (a ≠0) , 则 f`(x)=2ax+b,

由于 f`(x)=6x

-2, 得

a=3 , b=

-2, 所以 f(x) =3x 2- 2x.

又因为点 (n, S n )( n N

) 均在函数 y f ( x) 的图像上,所以 S n =3n 2-2n.

当 n ≥2 时, a =S -S =(

2

n

=6n -5.

3n -2n )- ( n

1) 2

2( 1)

n n n -1

3

1

1

2

n

n N )

当 n =1 时,a = S =3×1-2=6×1- 5,所以,a =6n -5 (

(Ⅱ)由(Ⅰ)得知 b n 3 = 3

= 1

( 1 1 ) ,

a n

a

n 1

(6n 5) 6(n 1) 5 2 6n 5 6n

1

故 T n = n

b i =

1

1 ) 1 1 ) 1 1

=1

(1-

1 ).

(1 ( ... ( )

i 1

2 7 7 13

6n 5 6n 1

2

6n 1

因此,要使 1

(1-

6 1 1 )< m ( n N )成立的 m,必 且 足 1

2

n 20

2

≤ m

,即 m ≥10,所以 足要求的最小正整数 m

20

10..

例 2 在 xoy 平面上有一系列点

P 1 ( x 1, y 1 ),

P 2 ( x 2 , y 2 ) ,?, P n ( x n , y n ) ,?,(n ∈N * ),点 P n 在

函数 y x 2 ( x 0) 的 象上,以点 n

n

P 心的 P 与 x 都相切,且 P 与 P +1 又彼此外切 . 若 x 1 1, 且 x n 1 x n .

n

n

(I )求数列 { x n } 的通 公式;

(II ) P 的面 S n ,T n

S 1

S 2 L

S n , 求证 : T n

3 n

2

解:( I ) P n 与 P n+1

彼此外切,令 r n P n 的半径,

| P n P n 1 | r n r n 1 ,即 ( x n

x n 1 ) 2 ( y n

y n 1 )2

y n

y n 1,

两 平方并化 得 ( x n x n 1 )2 4 y n y n 1,

由 意得, P n 的半径 r n

y n

x n 2 ,( x n x n 1 )

2

4 x n 2

x n 2

1 ,

x n x n 1 0,

x n

x n 1 2x n x n 1 ,即 1

1

2( n N ),

x n 1 x n

数列 { 1 }是以 1

1 首 ,以

2 公差的等差数列,

x n x 1

所以

1

1 (n 1)

2 2n 1,即 x n

1 1

x n

2n (II ) S n

r n 2

y n 2

x n 4

1) 4 ,

(2n

因为 T n

S 1

S 2

S n

[1 1 1

]

3

2 (2n

1) 2

(1

1

1

1

)

1.3

3.5

(2n 3)( 2n

1)

{1

1

[(1 1) (1

1) ( 1 1 )]}

2 3 3 5

2n 3 2n 1

[1

1

(1

1 )] 3 2(2n

1)

3 .

2

2n 1 2

2

所以, T n

3 .

2

模型二:分母有理化,如:1n 1n

n n 1

例 3 已知f ( x)1(x2) , f ( x) 的反函数 g (x) ,点 A(a n ,1) 在曲

x24a n1

y g (x) 上 (n N ) ,且 a11

(I)明数列 { 12 } 等差数列;

a n

( Ⅱ ) b n1, S n b1b2b n,求 S n

11

a n a n1

解 (I)∵点 A( a n,1) 在曲y=g( x) 上( n∈N+) ,

n

a n1

∴点 (1, a n)在曲=(

x ) 上(

n

∈ +)a n1, 并且a n>0

a n1y f N

1

(24

)

a n

141,

11

4(n1, n N ) ,∴数列

1

2

} 等差数列a a

{

a

n 12

n 22a

a n1n n

(Ⅱ)∵数列 {1} 等差数列,并且首12 =1,公差4,

a n2a1

∴ 12=1+4( n—1),∴a n

21

,∵ a n>0,∴a n1,

a n4n34n3

b =1=14n14n3,

n

114n34n14

a n a n 1

∴S n=b1+b2+?+ b n=519

45....... 4 n 14n 3 =4n 1 1

444

N 例 4N 24012,不超

n 11

的最大整数。

n

(2008年全国高中数

学合浙江省)解: Q212

n1n n n n 1

2(n1n)1

2(nn1) , n

N N1N

n 1) ,

2 ( n 1n) 1 2 ( n

n

n1n 1n2

N1

1) , 2( N1)2(N 1 1)2( N

1

n 1n

N

2(2

2006

1) 2( N 1 1)

n 1

1 2 22006 1 ,

n

N 不超

n 1

1

的最大整数 22007 2 。

n

2n

1

1

模型三:

(2

n+1

- 1)(2 n

- 1)

=

2n

- 1

2n+1-1

例 5 数列 a n 的前 n 的和 S n 4

a n 1

2n 12 ,n=1,2,3, ?.

3

3

3

(Ⅰ)求首

a 1 与通 a n ;

n

n

(Ⅱ) T n

2

, n=1,2,3, ?, 明:

T i

3 S n

i 1

2

(2006 年全国数学

高考理科 )

4

1

n+1

2

4

.解 : ( Ⅰ ) 由 S n =3a n -3×2

+3, n=1,2,3

,? ,

① 得 a 1=S 1= 3a 1

12

- 3×4+3 所以 a 1=2.

4 1

n

2

再由①有 S n -1=3a n -1- 3×2 +3, n=2,3 ,4, ?

4 1 n+1

n

将①和②相减得 : a n =S n -S n - 1= 3(a n - a n -1) -3×(2 -2 ),n=2,3, ?

整理得 : a

n

+2n =4(a n - 1+2

n -

1

),n=2,3, ? ,

因而数列 { a n +2n } 是首

a1+2=4, 公比 4 的等比数列 ,

n n

n -1 n

? ,

n

n

n

? ,

即 a +2 =4×4 = 4 , n=1,2,3,

因而 a =4 -2 , n=1,2,3,

n

n

4 n n

1 n+1

2 1 ( Ⅱ ) 将 a n =4 -2 代入①得 S n =

3× (4

-2 )-3×2 +

3

=

3

×

(2 n+1-1)(2 n+1-2)

=

2

×(2 n+1-1)(2 n -1) 3

T n = 2n = 3 2n

= 3 1

1

)

S × (2 n+1

n

2 ×(

n

2 n+1

2

-1)(2 -1)

2 -1

-1

n

n

3 n 1

1

3

1

1

3 所以 ,

i 1

T i

=

2 i 1

( 2

i -1

2i+1

- 1) =

2×( 21

-1 - 2i+1

-1) <

2

模型四: a n 1

a n (a n

k)

,且 a n

0(n

1,2,3, ) ,

1

1 1

k

k

a n

a n

a

n 1

例 6函数 g( x)

1 x 3 ax

2 的象在 x 1 的切 平 行于 直

3

2x y

0.g( x) 的 函数 f ( x) . 数列 a n

足: a 1

1 ,

a n 1

f (a n ) .

2

( Ⅰ ) 求函数 f (x) 的解析式 ;

( Ⅱ ) 判断数列 a n 的增减性 , 并 出 明 ;

( Ⅲ ) 当 n

2, n N * , 明 : 1

1 1 1 1 L 1 1

2 .

a 1 a 2 a n

解:(Ⅰ)∵函数 g( x)

1 x 3 ax

2 的 函数 f (x) x 2 2ax ,由于在 x

1

3

的切 平行于

2x

y 0 ,∴ 1

2a 2

a

1

,∴ f ( x)

x 2

x

2

( Ⅱ ) ∵ a n 1

f (a n ) , ∴ a n 1

a n

2

a n

a n 1

a

n

a n 2

, ∵ a 1

1

, 故 a n

0 , 所

2

a n 1

a

n

0 , 所以 a n 是 增 .

( Ⅲ ) ∵ a n 1

a n (a n

1),∴ 1

1

= 1

_

1,∴1

1 1

a

n 1

a n (a n 1) a n 1 a n

1 a n

a n a

n 1

1

1 1 ,

1

1 1 ,

1

1

1 ? 1

1 1

1 a 1

a 1 a 2 1 a 2

a 2

a 3 1 a 3 a 3 a 4 1 a n

a n

a

n 1

令 S n

1

1 1 1

1 2 1 2

a 1

a 2

a 2

a 3

a

n 1 a

n 1

当 n 2 , S n

1

1

L 1

1

1

2

4

26

1 a 1

1 a n

1 a 1

1 a 2

1

1 a 2

3721

∴1

1

1

L

1

2

1 a 1

1

1 a n

a 2

例 7 已知数列

{ a n } 足 a 1 1,a n 1

a n 2n (n 1,2,3

) , { b n } 足 b 1 1,

b n 1 b n b n 2

(n 1,2,3 ) ,证明:

1

n 2

n

1

1 。

k 1 a k 1b k ka k 1 b k k

(2006 年全国高中数学联

合竞赛浙江省预赛试题 )

证明: 记 n

1

,则

1 I 2I n 。

I n

a k 1

b k ka

k 1

b k k I 1

k 1

2

n

1

n

1

n

1

而 I n

(a k 1 1)(b k k)

k 1 a k 1

1 k 1 b k

k 1

k

因为 a 1 1,a n 1

a n 2n ,所以 a k 1 1 k( k 1) 。

从而有

n 1 n

k 1 a k 11

k 1

1 1 1 。 (1)

1 n 1 k(k 1)

又因为 b k 1

b k b k

2

b k (b k k) ,所以 1

k 1

1 ,

k

k

b k 1 b k (b k k) b k b k

k

1 1

1

。从而有

n

11

1

1 1。 (2)

k 1

b k

b k

k b k

b

k 1

k b 1

b

n 1

b 1

由( 1)和( 2)即得

I n

1 。 综合得到

1 1

I n

2

左边不等式的等号成立当且仅当 n=1 时成立。

以上我们通过几个典型问题的解析,总结了四类裂项求和的常见模型,可以让我们更清楚的认识到裂项相消的来龙去脉,而这些模型是近几年高考中普遍采用的,要求我们注重培养学生的化归、转化的能力。

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

高二数学数列中裂项求和测试题

数列中裂项求和的几种常见模型 数列问题是高考的一大热点,而且综合性较强,既注重基础知识的掌握,又注重数学思想与方法的运用。而此类问题大多涉及数列求和,所以数列求和方法是学生必须掌握的,主要的求和方法有:公式法、拆项重组法、并项求和法,裂项相消法、错位相加法、倒序相加法等等,而裂项相消法是其中较为基础、较为灵活的一种,也是出现频率最高,形式最多的一种。下面就例举几种裂项求和的常见模型,以供参考。 模型一:数列{}n a 是以d 为公差的等差数列,且 ) ,3,2,1(0,0 n a d n ,则 )1 1(111 1 n n n n a a d a a 例1已知二次函数()y f x 的图像经过坐标原点,其导函数为' ()62f x x ,数列 {}n a 的前n 项和为n S ,点(,)()n n S n N 均在函数()y f x 的图像上。 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设11n n n b a a ,n T 是数列{}n b 的前n 项和,求使得20 n m T 对所有n N 都成立的最小正整数m ; (2006年湖北省数学高考理科试题) 解:(Ⅰ)设这二次函数f(x)=ax 2 +bx (a ≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x -2,得 a=3 , b=-2, 所以 f(x)=3x 2 -2x. 又因为点(,)()n n S n N 均在函数()y f x 的图像上,所以n S =3n 2 -2n. 当n ≥2时,a n =S n -S n -1=(3n 2 -2n )- )1(2)132 n n ( =6n -5. 当n =1时,a 1=S 1=3×12 -2=6×1-5,所以,a n =6n -5 (n N ) (Ⅱ)由(Ⅰ)得知13 n n n a a b = 5)1(6)56(3 n n =)1 61 561(21 n n ,

数列求和常见的7种方法

数列求与得基本方法与技巧 一、总论:数列求与7种方法: 利用等差、等比数列求与公式 错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与 分段求与法(合并法求与) 利用数列通项法求与 二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法, 三、逆序相加法、错位相减法就是数列求与得二个基本方法。 数列就是高中代数得重要内容,又就是学习高等数学得基础。在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需 要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、 一、利用常用求与公式求与 利用下列常用求与公式求与就是数列求与得最基本最重要得方法。 1、等差数列求与公式: 2、等比数列求与公式: 3、4、 5、 [例1]已知,求得前n项与。 解:由 由等比数列求与公式得(利用常用公式) ===1- [例2]设S n=1+2+3+…+n,n∈N*,求得最大值、 解:由等差数列求与公式得, (利用常用公式) ∴= == ∴当,即n=8时, 二、错位相减法求与 这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn} 得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。 [例3]求与:………………………① 解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积 设………………………。②(设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列得求与公式得: ∴ [例4] 求数列前n 项得与、 解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积 设…………………………………① ………………………………② (设制错位) ①—②得 (错位相减) ∴ 三、反序相加法求与 这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。 [例5] 求证: 证明: 设…………………………、。 ① 把①式右边倒转过来得 (反序) 又由可得 ………….。……、. ② ①+②得 (反序相加) ∴ [例6] 求得值 解:设…………、 ① 将①式右边反序得 ………….。② (反序) 又因为 ① +②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89 ∴ S=44、5 题1 已知函数 (1)证明:; (2)求得值。 解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知, 两式相加得: 所以、 练习、求值:

数列求和-裂项法

数列求和 ------裂项相消法 引例:教材P47 什么是裂项相消法?什么时候使用? 思考1: 变式: 思考2:在裂项的过程中,是怎样把项裂开的?关键是什么?怎样相互抵消的? 1.???? 求数列的前n 项和.11111,,,,,13243546n(n +2)222222224142434 2.,,,,,.41142143141n n n ?????-?-?-?- 求数列的前项和222235721 3..(12)(23)(34)[(1)]n n S n n +=++++???+ 求和∑求和:k n n k+1k k=12 4.S =(2-1)(2-1)2n n a a =若数列{},,可以用裂项相消法求数列前n 项和?11n(n +)

小结:什么是裂项相消法?什么时候使用裂项相消法?在使用的过程当中应当注 意什么?裂项相消法运用的数学思想是什么? 你是否有新的感受呢?请用一句话总结一下前面的内容。 思维拓展: 思考3:裂项相消法最大的成功--实现了消项,运用错位相减法也是消项,是不 是可以考虑用裂项法相消法可以求等比数列的和吗?可以求{}g 等差等比的和吗?试试看。 在等比数列{}(1)n a q 1中, 试一试:用裂项相消法 练习: 2*1122:{},().(1) 1111(2) .(1)(1)(1)3n n n n n a n S n n n N a n a a a a a a =+∈+++<+++ 例题数列的前项和为求;证明:对一切正整数,有2335721.2222n n n S +=++++ 求和211111-=++++L n n S a a q a q a q 211111-=++++L n n n qS a q a q a q a q 1(1)1-=-n n a q S q 11 (1)-=-n n q S a a q 121321* {},,,,,2.(){}(21)3()(){}.n n n n n n n n n n a a a a a a a a a a n b n N b n T a -----?=∈ 已知数列满足:是首项、公差均为的等差数列 Ⅰ求数列的通项公式; Ⅱ令,求数列的前项和

数列求和公式证明

1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边 数学归纳法可以证 也可以如下做比较有技巧性 n^2=n(n+1)-n 1^2+2^2+3^2+......+n^2 =1*2-1+2*3-2+....+n(n+1)-n =1*2+2*3+...+n(n+1)-(1+2+...+n) 由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3 所以1*2+2*3+...+n(n+1) =[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3 [前后消项] =[n(n+1)(n+2)]/3 所以1^2+2^2+3^2+......+n^2 =[n(n+1)(n+2)]/3-[n(n+1)]/2 =n(n+1)[(n+2)/3-1/2] =n(n+1)[(2n+1)/6] =n(n+1)(2n+1)/6 2)1×2+2×3+3×4+...+n×(n+1)=? 设n为奇数, 1*2+2*3+3*4+...+n(n+1)= =(1*2+2*3)+(3*4+4*5)+...+n(n+1) =2(2^2+4^2+6^2+...(n-1)^2)+n(n+1) =8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1) =8*[(n-1)/2][(n+1)/2]n/6+n(n+1) =n(n+1)(n+2)/3 设n为偶数, 请你自己证明一下! 所以, 1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3 设an=n×(n+1)=n^2+n Sn=1×2+2×3+3×4+...+n×(n+1) =(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n) =n(n+1)(2n+1)/6+n(n+1)/2 =n(n+1)(n+2)/3

数列中裂项求和的几种常见模型

数列中裂项求和的几种常见模型

数列中裂项求和的几种常见模型 数列问题是高考的一大热点,而且综合性较强,既注重基础知识的掌握,又注重数学思想与方法的运用。而此类问题大多涉及数列求和,所以数列求和方法是学生必须掌握的,主要的求和方法有:公式法、拆项重组法、并项求和法,裂项相消法、错位相加法、倒序相加法等等,而裂项相消法是其中较为基础、较为灵活的一种,也是出现频率最高,形式最多的一种。下面就例举几种裂项求和的常见模型,以供参考。 模型一:数列{}n a 是以d 为公差的等差数列,且),3,2,1(0,0 =≠≠n a d n ,则 )1 1(111 1++-=n n n n a a d a a 例1已知二次函数()y f x = 的图像经过坐标原点,其导函数为 '()62f x x =-,数列{}n a 的前 n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x = 的 图像上。 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1 1 n n n b a a += ,n T 是数列{}n b 的前n 项和,求使得20 n m T <对所有n N * ∈都成立的最小 正 整 数 m ; (2006年湖北省数学高考理科试题) 解:(Ⅰ)设这二次函数f(x)=ax 2 +bx (a ≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x -2,得 a=3 , b=-2, 所以 f(x)=3x 2 -2x. 又因为点(,)()n n S n N *∈均在函数()y f x = 的图像上,所以n S =3n 2 -2n. 当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[])1(2)132---n n ( =6n -5. 当n =1时,a 1=S 1=3×12 -2=6×1-5,所以,a n =6n -5 (n N *∈) (Ⅱ)由(Ⅰ)得知13+= n n n a a b =[]5)1(6)56(3---n n =)1 61 561( 21+--n n ,

数列前n项和的求和公式

数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2) 1(2) (11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11) 1() 1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6 1 12++==∑=n n n k S n k n 5、 213)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:13 2)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列 ??????,22,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ,… [例7] 求数列{n(n+1)(2n+1)}的前n 项和.

数列公式大全

数列公式大全 设An为等差数列,d为公差 性质1)An=A1+(n-1)d=Am+(n-m)d Sn=n(A1+An)/2=nA1+n(n-1)d/2 2)An=Sn-S(n-1),2An=A(n-1)+A(n+1)=A(n-k)+A(n+k) 3)若a+b=c+d,则Aa+Ab=Ac+Ad 设An为某数列,Sn为前n项和,则有以下几点性质: 4)形如Sn=an^2+bn+c(ab≠0),当且仅当c=0时,An为等差数列.即当An为等差 数,Sn是不含常数项的关于n的二次函数. 5)形如aAn=bA(n-1)+c(a≠b)的数列,总可以化为等比数列,即令ax=bx+c,即 x=c/(a-b),即An-c/(a-b)=a[A(n-1)-c/(a-b)] 所以Bn=An-b/(1-a)为等比数列 6)形如aAn+bA(n-1)+cA(n-2)=0(abc≠0)的数列,总可以化为等比数列,即令 ax^2+bx+c=0的根为x1,x2,则 An-x1A(n-1)=x2[A(n-1)-x1A(n-2)] An-x2A(n-1)=x1[A(n-1)-x2A(n-2)] 令B(n-1)=An-x1A(n-1) (1) B(n-1)'=An-x2A(n-1) (2) 则Bn,Bn'为等比数列,从而可以求出Bn,Bn'。再解(1)(2)方程组可求出An。 7)若An>0,形如An^a=cA(n-1)^b的数列可化为5)的形式,即两边取对数 即:algAn=blgA(n-1)+lgc,令Bn=lgAn,即aBn=bB(n-1)+c 等差数列:Sn=a1n+n(n-1)d/2

等比数列:1:q=1时;Sn=na1 2:q#1时;Sn=a1(1-q的n次方)/(1-q) 求和 等差“(首数+末数)*项数/2 等比数列求和公式=首项*(1-比值^项数)/(1-比值) 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式: 2、 等比数列求和公式: 自然数方幂和公式: 3、 4、 5、 [例] 求和1+x2+x4+x6+…x2n+4(x≠0) 解: ∵x≠0 ∴该数列是首项为1,公比为x2的等比数列而且有n+3项 当x2=1 即x=±1时 和为n+3 评注: (1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x是否为0进行讨

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11) 211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 题1.等比数列的前n项和S n=2n-1,则=

经典数列求和公式.docx

数 列 求 和 的 基 本 方 法 和 技 巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法 . 1、等差数列求和公式: S n n( a 1 a n ) na 1 n(n 1) d 2 2 na 1 ( q 1) 2、等比数列求和公式: S n a 1 (1 q n ) a 1 a n q 1) 1 q 1 (q q n 3、 S n k 1 k 1 n(n 1) 自然数列 2 4、 S n n k 2 1 n(n 1)(2n 1) 自然数平方 成的数列 k 1 6 [例1] 已知 log 3 x 1 ,求 x x 2 x 3 x n 的前 n 和 . log 2 3 解:由 log 3 x 1 log 3 x log 3 2 x 1 log 2 3 2 由等比数列求和公式得 S n x x 2 x 3 x n (利用常用公式) 1 1 = x(1 x n ) = 2 (1 2n ) =1- 1 1 x 1 1 2n 2 [例2] S n = 1+2+3+?+n , n ∈N *, 求 f (n) (n S n 的最大 . 32)S n 1 解:由等差数列求和公式得 S n 1 n(n 1), S n 1 ( n 1)(n 2) (利用常用公式) 2 2 ∴ f ( n) S n = n 2 n ( n 32)S n 1 34n 64 = 1 = 1 1 64 8 2 50 n 34 ( n ) 50 n n ∴当 n 8 ,即 n = 8 , f ( n) max 1 8 50 二、 位相减法求和

数列求和7种方法(方法全-例子多)

数列求和的基本方法和技巧(配以相应的练习) 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21

数列求通项公式求和裂项法-错位相减法-分组求和法

数列求通项及求和 1.数列{}n a 的前n 项和n s ,且满足1a =1,121+=+n n s a ,(* N n ∈)求{}n a 的通项 公式 2. 数列{}n a 的前n 项和n s ,且满足1a =1,35-=n n s a ,(* N n ∈)求{}n a 的通项 公式 3. 数列{}n a 的前n 项和n s ,且满足1a =1,n n a s 3 21-=,(* N n ∈) (1){}n n a a 21-+为等比数列;(2)求证? ?? ???n n a 2为等差数列 (3)求{}n a 的通项公式 4. 数列{}n a 的前n 项n s ,且满足1a =1,n n s a 31=+,(* N n ∈)求{}n a 的通项公式 5. 数列{}n a 的前n 项n s ,且满足1a =1,n n s a 3 11=+,(* N n ∈)求{}n a 的通项公式 6. 数列{}n a 的前n 项n s ,且满足1a =1,241+=+n n a s ,(* N n ∈)求{}n a 的通项 公式 7.数列{}n a 的前n 项n s ,且满足1a =1,3431=++n n s a ,(*N n ∈)求{}n a 的通项 公式 8. 数列{}n a 的前n 项n s ,且满足12+=n n a s ,(* N n ∈)求{}n a 的通项公式 9. 数列{}n a 的前n 项n s ,且满足,0>n a ()()216 1 ++=n n n a a s (*N n ∈)求{}n a 的通项 10. 数列{}n a 的前n 项n s ,且满足()1212+=+n n n a a s ,(* N n ∈)求{}n a 的通项 公式 11.数列{}n a 的前n 项n s ,且满足,0>n a ,2 22+=n n a s ,(* N n ∈)求{}n a 的通项公式 12. 数列{}n a 的前n 项n s ,且满足,9 2 1=a 1-=n n n s s a ,,2≥n 求{}n a 的通项公式 13. 数列{}n a 的前n 项n s ,且满足,11=a n n s n n a 21+=+, (* N n ∈)求{}n a 的通项公式 14. 数列{}n a 的前n 项n s ,且满足,0≠n a 12 1 +=n n n a a s ,求{}n a 的通项公式 例1、已知数列{a n }的通项公式为a n =1 2-n +3n ,求这个数列的前n 项和 例2、求下列数列的前n 项和:

数列求和裂项法错位相减法分组求和法

数列求和裂项法错位相减法分组求和法 Modified by JEEP on December 26th, 2020.

数列求和的三种特殊求法 例1、已知数列{a n }的通项公式为a n =12-n +3n ,求这个数列的前n 项和 例2、求下列数列的前n 项和: (1)211,412,813,……n n 21+,…… (2)1,211+,3211 ++…… n +??+++3211 …… (3)5,55,555.……,55……5,……(4),,,……,……5,…… 例3、已知数列的的通项,求数列的前n 项和: (1) )1(1+= n n a n (2)) 2(1 +=n n b n (3){a n }满足a n = 1 1++n n ,求S n (4)求和:+?+?= 5 34 3122 2 n S ……+) 12)(12()2(2 +-n n n (5)求和) 2)(1(1 43213211+++??+??+??=n n n S n 例4、求数列 ,,,3,2,32n na a a a (a 为常数)的前n 项和n S 。 练习:求和:21,223,325,……n n 2 1 2-,…… 知识演练: 1. (2009年广东第4题)已知等比数列}{n a 满足 )3(2,,2,1,02525≥=?=>-n a a n a n n n 且 ,则当1≥n 时,=+++-1221212log log log n a a a A .)12(-n n B .2)1(+n C .2n D .2)1(-n 2. (2010年山东第18题)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n = 2 11 n a -(n ∈N * ),求数列{}n b 的前n 项和n T . 3. (2005年湖北第19题)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且 .)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设n n n b a c =,求数列}{n c 的前n 项和T n 小结:数列求和的方法 分组求和,裂项相消(分式、根式),错位相减(差比数列) 数列求和的思维策略: 从通项入手,寻找数列特点

求前n项和公式的常用方法

求数列前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 一.用倒序相加法求数列的前n项和 如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S n=n(a1+a n)/2 解:S n=a1+a2+a3+...+a n① 倒序得:S n=a n+a n-1+a n-2+…+a1② ①+②得:2S n=(a1+a n)+(a2+a n-1)+(a3+a n-2)+…+(a n+a1) 又∵a1+a n=a2+a n-1=a3+a n-2=…=a n+a1 ∴2S n=n(a2+a n) S n=n(a1+a n)/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+a n=a2+a n-1=a3+a n-2=…=a n+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 二.用公式法求数列的前n项和 对等差数列、等比数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 例题2:求数列的前n项和S n 解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。 三.用裂项相消法求数列的前n项和 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 例题3:求数列(n∈N*)的和

数列求和裂项法,错位相减法,分组求和法

数列求和的三种特殊求法 例1、已知数列{a n }的通项公式为a n =12-n +3n ,求这个数列的前n 项和 例2、求下列数列的前n 项和: (1)211,412 ,813,……n n 2 1+,…… (2)1,211+,3211++……n +??+++3211…… (3)5,55,555.……,55……5,……(4)0.5,0.55,0.555,……,0.55……5,…… 例3、已知数列的的通项,求数列的前n 项和: (1) )1(1+=n n a n (2)) 2(1 +=n n b n (3){a n }满足a n =1 1 ++n n ,求S n (4)求和:+?+?=5343122 2n S ……+)12)(12()2(2+-n n n (5)求和) 2)(1(1 43213211+++??+??+??= n n n S n 例4、求数列ΛΛ,,,3,2,3 2 n na a a a (a 为常数)的前n 项和n S 。 练习:求和: 21,223,32 5,……n n 21 2-,……

知识演练: 1. (2009年广东第4题)已知等比数列}{n a 满足)3(2,,2,1,02525≥=?=>-n a a n a n n n 且Λ, 则当1≥n 时,=+++-1221212log log log n a a a Λ A .)12(-n n B .2 )1(+n C .2n D .2 )1(-n 2. (2010年山东第18题)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =211 n a -(n ∈N * ),求数列{}n b 的前n 项和n T . 3. (2005年湖北第19题)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且 .)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设n n n b a c = ,求数列}{n c 的前n 项和T n 小结:数列求和的方法 分组求和,裂项相消(分式、根式),错位相减(差比数列) 数列求和的思维策略: 从通项入手,寻找数列特点

裂项法求数列的和

裂项法求数列的和 【内容提要】笔者在多年的教学中遇到裂项法求和的题型,加以总结,供师生们参考.裂项相消法是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即 )()1(n f n f a n -+=,然后累加时抵消中间的许多项。 【关键词】裂项法 求数列的和 等差数列 1等差数列积的倒数和 已知等差数列{}n a 首项1a ,公差d 。求和:= n s ++322111a a a a …+ 1 1 +n n a a 解: 11+n n a a =n n a a -+11(111+-n n a a )=d 1(1 1 1+- n n a a ) = n s d 1(+-+-32211111a a a a …+111+-n n a a )=d 1(1 11 1+-n a a ) 其中nd a a n +=+11 求和:(1)= n s +?+?321211…+)1(1 +?n n (2) = n s +?+?741411…+) 13()23(1 +?-n n 2.含二次根式的数列和 已知正项等差数列{}n a 首项1a ,公差d 。求和:2 11a a s n += + 3 21a a ++… + 1 1++n n a a 。 解: 1 1 ++n n a a =) )((111n n n n n n a a a a a a -+-+++= d 1 (n n a a -+1)。 = n s d 1(+-+-2312…+ n n a a -+1)= d 1()11-+n a 其中nd a a n +=+11 求和:= n s +++ +3 212 11…+ 1 1++n n 3.含对数的数列和

数列中的裂项法求和举例

数列中的裂项法求和举例 杨恒运 江苏省扬中高级中学 (212200) 数列中的求和问题是一个基本问题,应该根据通项公式的形式确定用什么方法求数列的前 n 项和。裂项法求和的是数列求和中一种常用方法,应用非常广泛,下面就举例说明之。 1. 求通项公式 例1 已知数列{n a }满足: 121321,,n n a a a a a a a ---- 是首项为1公比为 13 的等比数列,求通项n a 由于121321n n n a a a a a a a a -+-+-++-= 很容易求出通项1 13n n a -?? = ? ?? 2. 求等差数列前 n 项和 例2 在数列{}n a 中,若21n n a n n s =+,求前项和 学生在求和中,数列中的基本元素及求和公式都会搞错,若用裂项法就很容易求出其前n 项和 略解:显然22 (1)n a n n =+- 122 22 22 2 2 2 1 (2 1)(3 2)(1) (1)12(1)n n n s a a a n n n n n a a n d =+++=-+-+++-=+-=+=+- 则一般地,若等差数列 ()() 1 122 12 11() 3(21)22 d 3 = n +12231122 =n a (1)2 n n a d n a d d n a d n a d d s n a d n n n d =+-= ++- ????-+- ? ???? ?? ??∴= +-+- ?? ??? +-则 3.求等比数列前n 项和 对于等比数列前n 项和的推导及记忆应用都是一个难点,若用裂项法的思想,就可以化繁为简

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

高中数学复习_数列求和_裂项相消法

裂项相消法求和 把数列的通项拆成两项之差、正负相消剩下首尾若干项。 1、 特别是对于? ?????+1n n a a c ,其中{}n a 是各项均不为0的等差数列,通常用裂项相消法,即利用 1+n n a a c =??? ? ??-+111n n a a d c ,其中()n n a a d -=+1 2、 常见拆项:1 11)1(1+-=+n n n n )1 21121(21)12)(12(1+--=+-n n n n ]) 2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n !)!1(!n n n n -+=? )! 1(1!1)!1(+-=+n n n n 例1 求数列1{ }(1)n n +的前n 和n S . 例2 求数列1{ }(2) n n +的前n 和n S .

例3 求数列1{ }(1)(2)n n n ++的前n 和n S . 例4 求数列 ???++???++,11,,321,211n n 的前n 项和. 例5:求数列 311?,421?,531?,…,) 2(1+n n ,…的前n 项和S 例6、 求和) 12)(12()2(5343122 22+-++?+?=n n n S n

一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) ()n n a a f a a f a a f n +-=-=-= 两边分别相加得 111()n n k a a f n +=-=∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)12 (1)(1)1 n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则

求数列通项公式及求和的基本方法

求数列通项公式及求和的基本方法 1.公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有 1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。 例一 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项 公式? 12n n a ?? = ??? . 反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键. 2.累加法:利用1211()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和). 已知112a =,112n n n a a +?? =+ ??? *()n N ∈,求数列{}n a 通项公式. 3. 累乘法:利用恒等式3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积). 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. n a n =. 反思: 用累乘法求通项公式的关键是将递推公式变形为1()n n a g n a +=.

4.构造新数列: 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+211 ,求n a 1131122n a n n =+-=- 解: 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足3 21=a ,n n a n n a 11+= +,求n a 。23n a n = 解: 变式:(全国I,)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则{a n }的 通项1___n a ?=?? 12 n n =≥ 2!n a n =)2(≥n 解

相关文档
最新文档