骨架变形的原因分析及其控制措施

骨架变形的原因分析及其控制措施
骨架变形的原因分析及其控制措施

客车车身骨架变形的原因分析及其控制措施

客车车身骨架变形是客车生产厂所面临的一个共性的问题,他是提高客车车身质量和焊接装配生产效率的主要瓶颈之一。骨架变形直接导致客车工艺车身校正工作量加大,而且因校正造成车身骨架局部凸凹不平,直接影响骨架强度。

原因分析

1、由于客车车身结构限制,造成客车车身腰梁上侧焊接部位面积远大于下侧焊接部位面积。

2、侧围骨架在胎具上组合时,由于焊接变形等原因,造成按照图纸要求定位焊接后舱门洞口对角线尺寸超差。

3、侧围从胎具上取出后,在地面进行侧围骨架内侧焊接,加大了洞口对角线的超差。

4、由于调运的原因造成骨架在中间部位变形。

5、车身骨架合装后,在骨架附件焊接时因车身骨架自重等原因

造成工艺车身再次变形。

6、预防控制措施

1、反变形法。对组焊胎具进行重新调整,按照统计分

析出来的数据有意识的将变形部位反向调整,同时在腰梁、

仓门立柱焊接部位约60mm处安装卡具,以此减少变形。

2、对定位焊进行统一要求。首先将基准件进行定位焊,

对接面高度平齐,再在型材接头两个拐角处进行点固焊,然

后实施满焊焊接。

3、焊接顺序调整。针对腰梁处变形,采取按顺序进行

焊接的方式进行预防控制。首先将左右侧围骨架从前至后分

成五个区域,焊接时每人负责一个区域所有焊接部位的焊

接。在车身长度方向上统一由左至右或由右至左顺序进行焊

接,在车身高度方向上,统一由上至下进行焊接。

4、三面焊接进行规范。对于同一根型材的焊接进行规

范,先焊角焊缝,再焊平焊缝,然后再焊侧围骨架附件。

5、加焊工艺支撑。对于关键部位或者容易因运转变形

之处在侧围骨架未从胎具中取出时加焊工艺型材支撑。

6、起吊方式的改变。组焊后的骨架从胎具中取出时,

由原中间部位两点受力改变为均布的4~5个点均匀受力。

同时改进吊具,变硬吊具为软吊具

7、左右侧围(先放大一点好放后台阶)----前轮罩----后台阶-----

左右侧围放回实际尺寸-----顶盖----前后围

控制焊接变形的工艺措施

控制焊接变形的工艺措施 宜按下列要求采用合理的焊接顺序控制变形: 1 对于对接接头、T 形接头和十字接头坡口焊接,在工件放置条件允许或易于翻身的情况下,宜采用双面坡口对称顺序焊接;对于有对称截面的构件,宜采用对称于构件中和轴的顺序焊接; 2 对双面非对称坡口焊接,宜采用先焊深坡口侧部分焊缝、 后焊浅坡口侧、最后焊完深坡口侧焊缝的顺序; 3 对长焊缝宜采用分段退焊法或与多人对称焊接法同时运用; 4 宜采用跳焊法,避免工件局部加热集中。 5 在节点形式、焊缝布置、焊接顺序确定的情况下,宜采用熔化极气体保护电弧焊或药芯焊丝自保护电弧焊等能量密度相对较高的焊接方法,并采用较小的热输入。 6 宜采用反变形法控制角变形。 7 对一般构件可用定位焊固定同时限制变形;对大型、厚板构件宜用刚性固定法增加结构焊接时的刚性。 8 对于大型结构宜采取分部组装焊接、分别矫正变形后再进行总装焊接或连接的施工方法。 钢材应符合以下要求: 1 清除待焊处表面的水、氧化皮、锈、油污; 2 焊接坡口边缘上钢材的夹层缺陷长度超过25mm 时,应采用无损探伤检测其深度,如深度不大于6mm,应用机械方法清除;如深度大于6mm,应用机械方法清除后焊接填满;若缺陷深度大于25mm 时,应采用超声波探伤测定其尺寸,当单个缺陷面积(a ×d)或聚集缺陷的总面积不超过被切割钢材总面积(B×L)的4%时为合格,否则该板

不宜使用; 3 钢材内部的夹层缺陷,其尺寸位置离母材坡口表面距离(b)大于或等于25mm 时不需要修理;如该距离小于25mm 则应进行修补; 4 夹层缺陷是裂纹时,如裂纹长度(a)和深度(d)均不大于50mm,其修补方法应符合第6.6 节的规定;如裂纹深度超过50mm 或累计长度超过板宽的20% 时,该钢板不宜使用。 焊接材料应符合下列规定: 1 焊条、焊丝、焊剂和熔嘴应储存在干燥、通风良好的地方,由专人保管; 2 焊条、熔嘴、焊剂和药芯焊丝在使用前,必须按产品说明书及有关工艺文件的规定进行烘干。 3 低氢型焊条烘干温度应为350~380_,保温时间应为1.5~2h,烘干后应缓冷放置于110~120_的保温箱中存放、待用;使用时应置于保温筒中;烘干后的低氢型焊条在大气中放置时间超过4h 应重新烘干;焊条重复烘干次数不宜超过2 次;受潮的焊条不应使用;

焊接变形控制方法

1、利用反变形法控制焊接变形 为了抵消和补偿焊接变形,在焊前进行装配时,先将工件向与焊接变形相反的方向进行人为的变形,这种方法称为反变形法。反变形法是生产中最常用的方法,通常适用于控制焊件的角变形和弯曲变形。 2、用刚性固定法控制焊接变形 利用夹具、支撑、专用胎具、定位焊等方法来增大结构的刚性,减小焊接变形的方法称为刚性固定法。刚性固定法简单易行,是生产中常用的一种减小焊接变形的方法。生产中常用刚性固定配合反变形来控制焊接变形。 3、选择合理的装焊顺序控制焊接变形 同一焊接结构,采用不同的装焊顺序,所引起的焊接变形量往往不同,应选择引起焊接变形最小的装焊顺序。一般采取先总装后焊接的顺序,结构焊后焊接变形较小。 4、选择合理的焊接顺序控制焊接变形 当焊接结构上有多条焊缝时,不同的焊接顺序将会引起不同的焊接变形量。合理的焊接顺序是指:当焊缝对称布置时,应采用对称焊接;当焊缝不对称布置时,应先焊焊缝小的一侧。此外,采用跳焊法、分段退焊法等控制焊接变形均有较好的效果。 5、散热法 散热法又称强迫冷却法。就是把焊接处热量散走,使焊缝附近的金属受热面大大减小,达到减小变形的目的。散热法有水浸法和散热垫法。 6、锤击法 利用锤击焊缝使焊缝延伸,就能在一定程度上克服由焊缝收缩所引起的变形。例如,薄板对接焊后会产生波浪变形,就可以用锤在焊缝长度方向上对焊缝进行锤击来克服其变形。 7、选择合理的焊接方法 选用能量比较集中的焊接方法如CO2气体保护焊、等离子弧焊来代替气焊和手工电弧焊进行薄板焊接,可减小变形量。 焊接电弧 焊接电弧是一种强烈的持久的气体放电现象。在这种气体放电过程中产生大量的热能和强烈的光辉 。通常,气体是不导电的,但是在一定的电场和温度条件下,可以使气体离解而导电。 焊接电弧就是在一定的电场作用下,将电弧空间的气体介质电离 ,使中性分子或原子离解为带正电荷的正离子和带负电荷的电子(或负离子), 这两种带电质点分别向着电场的两极方向运动,使局部气体空间导电,而形成电弧。 1、焊缝位置的影响 2.结构的刚性对焊接变形的影响3、装配和焊接顺序对结构变形的影响

浅埋软弱围岩隧道变形控制

浅埋软弱围岩隧道变形控制 摘要:本文以宁安铁路钟鸣2#隧道为例,重点阐述在浅埋软弱围岩隧道施工,通过各种技术措施对围岩变形进行控制的方法。 关键词:隧道,浅埋,软弱围岩,变形控制 abstract: this article to ning an railway chiming 2 # tunnel as an example, focuses on the shallow buried tunnel in weak rock construction, through various technical measures to control surrounding rock deformation method. key words: tunnel, shallow buried and weak surrounding rock, deformation control. 中图分类号:u452.1+2 文献标识码:a文章编号:2095-2104(2013)引言 在高铁建设过程中,出现了越来越多的地质条件复杂,浅埋软弱围岩的高风险隧道。由于这些浅埋地层的埋藏比较浅,大多是强风化破碎的围岩,地质条件变化较大,围岩应力分布复杂,且开挖断面大,造成了隧道施工过程中,施工难度增大,初支变形复杂和隧道整体稳定难以控制的情况,隐含着很多坍塌等安全隐患。本文以钟鸣2#隧道为研究对象,阐述在浅埋软弱围岩隧道施工过程中如何采取对策减小初支变形,确保施工安全的方法。 1 工程概况 钟鸣2#隧道位于宁安铁路铜陵境内,双线全长798m,施工里程为dk140+830~dk141+628。隧道穿越地层主要为含砾粉质黏土及泥质

O型密封圈及其槽的设计

O型密封圈及其槽的设计 2011-04-04 13:27:22| 分类:资料| 标签:|字号大中小订阅 O形圈密封是典型的挤压型密封。O形圈截面直径的压缩率和拉伸是密封设计的主要内容,对密封性能和使用寿命有重要意义。O形圈一般安装在密封沟槽内起密封作用。O形密封圈良好的密封效果很大程度上取决于O形圈尺寸与沟槽尺寸的正确匹配,形成合理的密封圈压缩量与拉伸量。密封装置设计加工时,若使O形圈压缩量过小,就会引起泄漏;压缩量过大则会导致O形密封圈橡胶应力松弛而引起泄漏。同样,O形圈工作中拉伸过度,也会加速老化而引起泄漏。世界各国的标准对此都有较严格的规定。 1、O形圈密封的设计原则 1)压缩率 压缩率W通常用下式表示: W= (do-h)/do% 式中do——O形圈在自由状态下的截面直径(mm) h ——O形圈槽底与被密封表面的距离,即O形圈压缩后的截面高度(mm)。 在选取O形圈的压缩率时,应从如下三个方面考虑: a.要有足够的密封接触面积 b.摩擦力尽量小 c.尽量避免永久变形。 从以上这些因素不难发现,它们相互之间存在着矛盾。压缩率大就可获得大的接触压力,但是过大的压缩率无疑会增大滑动摩擦力和永久变形。而压缩率过小则可能由于密封沟槽的同轴度误差和O形圈误差不符合要求,消失部分压缩量而引起泄漏。因此,在选择O形圈的压缩率时,要权衡个方面的因素。一般静密封压缩率大于动密封,但其极值应小于30%(和橡胶材料有关),否则压缩应力明显松弛,将产生过大的永久变形,在高温工况中尤为严重。 O 形圈密封压缩率W的选择应考虑使用条件,静密封或动密封;静密封又可分为径向密封与轴向密封;径向密封(或称圆柱静密封)的泄漏间隙是径向间隙,轴向密封(或称平面静密封)的泄漏间隙是轴向间隙。轴向密封根据压力介质作用于O形圈的内径还是外径又分受内压和外压两种情况,内压增加的拉伸,外压降低O形圈的初始拉伸。上述不同形式的静密封,密封介质对O形圈的作用力方向是不同的,所以预压力设计也不同。对于动密封则要区分是往复运动还是旋转运动密封。 1.静密封:圆柱静密封装置和往复运动式密封装置一样,一般取W=10%~15%;平面密封装置取 W=15%~30%。 2.对于动密封而言,可以分为三种情况: a.往复运动密封一般取W=10%~15%。 b.旋转运动密封在选取压缩率时必须要考虑焦耳热效应,一般来说,旋转运动用O形圈的内径要比轴径大3%~5%,外径的压缩率W=3%~8%。

控制压力容器管板焊接变形的方法

行业资料:________ 控制压力容器管板焊接变形的方法 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共8 页

控制压力容器管板焊接变形的方法 在压力容器制造中,由于在控制压力容器管板进行焊接时,没有对焊接工艺参数进行合理的选择,导致在焊接过程管板焊接变形,本文主要对控制压力容器管板焊接变形的方法进行探讨。随着科学技术的迅猛发展,压力容器被普遍应用到能源工业、石油化学工业、科研工业等工业的生产过程中。因为压力容器属于危险性比较高的一类物品,很容易出现燃烧起火、爆炸等情况,对相关人员和单位造成一定的经济损失和伤害。在压力容器在压力容器制造中,往往由于组装与施焊的顺序不当,以及焊接工艺参数选择的不合理,易引起管板焊接变形,导致密封不严,管子拉脱。因此,在压力容器制作的过程中,对密封性要求非常的高。为了有效的避免因为各种不利因素对导致压力容器的密封性降低,本文主要对控制压力容器管板焊接变形的方法进行探讨。管板焊接变形的原因及影响因素 管板焊接变形的原因主要表现在两个方面。一是主要是由于筒体与管板焊接的横向收缩变形在厚度方向上的不均匀分布引起的;管板与筒体的焊缝一般为单面单边V型坡口,焊接时焊缝的背面和正面的熔敷金属的填充量不一致,造成了构件平面的偏转,所以这种变形在客观上是绝对存在的;二是管板与筒体焊接角变形主要由两种变形组成,即筒体与管板角度变化和管板本身的角变形,前者相当于两个工件对接焊接引起的角变形,后者相当于在管板上堆焊时引起的角变形。而焊接变形的大小的主要取决于管板的刚性、焊接线能量、坡口角度、焊缝截面形状、熔敷金属填充量焊接操作等因素有关。根据管板变形的原因及影响因素,由于管板焊接不能实现双面焊,焊接时电流过大会引起烧穿伤及换 第 2 页共 8 页

身材变形的原因

身材变形的原因: 美体专家称,好的骨骼是好身材的基础,骨骼的生理曲线标准决定着你身材的好与不好,良好的骨架决定着你的身材,如果脊柱发生变形,你的身材也会跟着变形,例如女性在生育过程中、不良的坐、站、走姿都会导致人体骨骼变形;直接影响曲线完美。 皮肤就像是好身材的保护膜。皮肤是软组织,柔韧而有弹性,皮肤的厚度会随着年龄的增长而失去原有的弹性和韧性,皮肤变薄导致皮肤松弛,起皱等,于是这层保护膜不能有效的承受脂肪带来的压力和地心引力的作用,导致身材的变形!我们在年轻时候没有发觉自己的身材不好?那是因为皮肤非常的紧致,能有效的管理好皮下组织的脂肪,有足够的韧性管理好脂肪!导致身材变形的几率就少很多,女性在工作当中不正确的姿势,又要承担生育的重任,很显然就会变得伟大而又身材庞大变形了!如何能通过有效的恢复骨骼的正常状态和建立女性第二次皮肤就成了解决女性身材的重要问题。 塑形的方式:通过脂肪移位,代谢,定型三个阶段。 1、脂肪移位阶段; 2、代谢过程; 3、定型阶段; 服务对象:高收入人群、有需求、有消费观念的高端人群。 服务心态:项目是直接服务高收入人群、有需求、有消费意识的高端人群,打造高标准五星级服务(高标准服务,凸显出我们的特色)。高端客户群体对效果和服务质量非常注重,不在乎价格,肯定效果和

提出我们塑形的理念,效果具有合约保证,每一个项目服务都是有偿的服务。(姿态要放高,有利于增加客户对我们的信赖和给到顾客信心) 一、引导客户了解我们项目: 观念意识引导话术: A:(赞美口气)xx小姐,你知道吗?现在很多有身份的太太小姐都在开始使用国际高科技的身材管理模具,这个产品能让女性身材一直保持健康美丽,拥有18岁少女般你的身形。其实这样的高科技产品,也只有像你这样的身份、有品位的尊贵顾客才能使用的上啊。 B;(崇拜口气)xx小姐,你见识广博,听说现在有一些高科技的产品能让下垂变了形的身材调整维持到少女身形,能使人保持年轻。不知道你有见过这样的产品吗? 顾客(肯定见过或没有见过。。。) 那如果是您,你会接受并使用这样子的产品吗? C;xx小姐,我终于找到一个产品可以帮助您改善你现在的问题了,而且效果非常显著,我们有很多的顾客都已经在开始使用了,都非常满意,你的问题如果不按这样的方法解决,真的是很难改变的了。,J 继续下去到最后对你会造成更大的伤害,所以,你一定要使用这样的产品。 D;xx小姐,我们会所最近有个非常划算的抗衰老项目。使用后不但效果显著,维持的时间也长达3-5年。这样计算下来,相当于每天只

浅谈隧道工程施工变形监测和控制对策

浅谈隧道工程施工变形监测和控制对策 摘要随着我国经济的快速发展以及社会建设的大力推进,基础建设工程越来越多,并且呈现出规模化、复杂化、一体化等发展态势,对于施工技术和管理的要求大大增强。隧道施工是目前道路施工中的重点内容也是难点,特别是在特殊地质条件下以及为了满足更为严苛的施工要求而进行的隧道施工,通常会面临围岩变化状况,本文在多年实践的基础上对隧道工程施工变形进行深入的研究,在此基础上探讨了隧道变形的监测技术及控制措施。 关键词隧道工程围岩变化变形监测控制措施 隧道施工技术是随着我国交通事业的发展而逐渐确立并完善的,特别是在现今隧道施工多样化发展的情况下,加快技术引进与技术更新才能满足施工的要求和社会的快速发展。随着地铁、山区公路、地下交通等工程的开展,出现了数量众多的特长隧道施工和复杂地质环境中的隧道施工,在施工中加强监测与控制是隧道工程施工中的重点内容,通过对围岩变化进行及时的预测和应对,为工程的顺利进行奠定基础。 一、隧道施工变形监测概述 隧道施工具有很多不同于地面施工的特点,由于施工多是在岩石条件下进行,因此具体的施工操作往往受到岩层

结构以及岩土情况的影响。此外在进行施工时,机械振动或者开挖爆破也会造成岩石的变化,从而对施工带来影响。为了使工程安全顺利的完成,必须对隧道的变化信息进行严格的监控与上报,以便做出针对性的方案,保证工程质量。 二、隧道工程施工变形监测技术 根据隧道特征和岩石的性质应该选用不用的技术或方法对施工中的变形情况进行监测,先进的科学技术以及理论成果和技术成果为隧道变形监测提供了新的技术、设备和理念,目前在工程中主要应用的监测技术有以下几种。 1.隧道收敛监测技术。隧道收敛监测技术的优点是适合于大断面隧道施工的监测,缺点也较为明显,就是进行监测时需要大型设备的支持,并且技术较为复杂。根据测量使用的原理可以将收敛监测技术分为相对位移观察监测法和绝对三维位移观察监测法。 相对位移监测法的具体操作流程如下:首先将监测锚杆安装到监控断面上,并且保证锚杆的端部较为平整并且能够产生反光效应;以此基点为准,选取30m远的位置安装全站仪;运用坐标测量技术测出基点的三维坐标,通过将数据与全站仪内存中的坐标系相结合可以精确地计算出相对位置。 绝对三维位移监测法内容为:将测量仪器安装到坐标系明确的监测点,这样能够对监测点的变化情况进行准确全

O形密封圈的密封原理

O形密封圈简称O形圈,是一种截面为圆形的橡胶圈。O形密封圈是液压、气动系统中使用最广泛的一种密封件。O形圈有良好的密封性,既可用于静密封,也可用于往复运动密封中;不仅可单独使用,而且是许多组合式密封装置中的基本组成部分。它的适用范围很宽,如果材料选择得当,可以满足各种运动条件的要求,工作压力可从1.333×105Pa的真空到400MPa高压;温度范围可从-60℃到200℃。 与其它密封型式相比,O形密封圈具有以下特点: 1)结构尺寸小,装拆方便。 2)静、动密封均可使用,用作静密封时几乎没有泄漏。 3)使用单件O形密封圈,有双向密封作用。 4)动摩擦阻力较小。 5)价格低廉。 O形密封圈是一种挤压型密封,挤压型密封的基本工作原理是依靠密封件发生弹性变形,在密封接触面上造成接触压力,接触压力大于被密封介质的内压,则不发生泄漏,反之则发生泄漏。在用于静密封和动密封时,密封接触面接触压力产生原因和计算方法不尽相同,需分别说明。 1、用于静密封时的密封原理 在静密封中以O形圈应用最为广泛。如果设计、使用正确,O形密封圈在静密封中可以实现无泄漏的绝对密封。 O 形密封圈装入密封槽后,其截面承受接触压缩应力而产生弹性变形。对接触面产生一定的初始接触压力Po。即使没有介质压力或者压力很小,O形密封圈靠自身的弹性力作用而也能实现密封;当容腔内充入有压力的介质后,在介质压力的作用下,O形密封圈发生位移,移向低压侧,同时其弹性变形进一步加大,填充和封闭间隙δ。此时,坐用于密封副偶合面的接触压力上升为Pm: Pm=Po+Pp 式中Pp——经O形圈传给接触面的接触压力(0.1MPa) Pp=K·P K——压力传递系数,对于橡胶制O形密封圈K=1; P——被密封液体的压力(0.1MPa)。 从而大大增加了密封效果。由于一般K≥1,所以Pm>P。由此可见,只要O形密封圈存在初始压力,就能实现无泄漏的绝对密封。这种靠介质本身压力来改变O形密封圈接触状态,使之实现密封的性质,称为自封作用。 理论上,压缩变形即使为零,在油压力下也能密封,但实际上O形密封圈安装时可能会有偏心。所以,O形圈装入密封沟槽后,其断面一般受到7%—30%的压缩变形。静密封取较大的压缩率值,动密封取较小的压缩率值。这是因为合成橡胶在低温下要压缩,所以静密封O形圈的预压缩量应考虑补偿它的低温收缩量。 2、用于往复运动密封时的密封原理 在液压转动、气动元件与系统中,往复动密封是一种最常见的密封要求。动力缸活塞与缸体、活塞干预缸盖以及各类滑阀上都用到往复运动密封。缝隙由圆柱杆与圆柱孔形成,杆在圆柱孔内轴向运动。密封作用限制流体的轴向泄漏。用作往复运动密封时,O形圈的预密封效果和自密封作用与静密封一样,并且由于O形圈自身的弹力,而具有磨损后自动补偿的能力。但由于液体介质密封时,由于杆运动速度、液体的压力、粘度的作用,情况比静密封复杂。 当液体在压力作用下,液体分子与金属表面互相作用,油液中所含的―极性分子‖在金属表面上紧密而整齐的排列,沿滑移面与密封件间形成一个强固的边界层油膜,并且对滑移面

焊接变形的控制和预防

1、焊接变形的定义 在焊接过程中,焊缝金属和基材的冷热循环所引起的膨胀和收缩形成焊接变形。焊接时,沿 同一边持续焊接引起的变形比两边交叉焊接的变形大。在焊接引起的冷热循环中,很多因素 影响金属的收缩并导致变形,如金属在受热时其物理、机械性能发生变化。当热膨胀增加、 热量增大时(见图1),焊接区域温度升高,焊接区域钢板的弯曲强度、弹性、热导性能将降低。 2、产生焊接变形的原因 在金属冷热变化过程中,应了解怎样产生变形、为什么产生变形。图2 为一组钢板冷热变化 时产生的变形示例。均匀加热钢板时,向各个方向均匀膨胀,见图2a。当钢板冷却至室温时,也是均匀收缩并恢复至原始尺寸。如果钢板在加热时给予刚性约束(见图2b),两个侧边就不 会产生变形。但是,加热时钢板一定会膨胀,所以只能在无约束的垂直方向膨胀(厚度方向),从而使钢板变得更厚。同样,当钢板温度降至室温时,也将在各方向上收缩(见图2c),这样,工件就发生了永久性弯曲或扭曲变形。

在焊接受热过程中,膨胀和收缩作用于焊接金属和基材上,焊缝和基材因局部被加热而形成 很大的温度梯度。冷却时,焊接金属试图正常收缩至室温时的体积。但是,熔化的焊接金属 因基材而受到约束,焊缝金属和基材之间就会产生应力集中。焊缝附近区域因此产生应力集 中而伸展或弯曲或变薄,这些超过焊缝金属屈服应力的集中释放就形成了永久变形。当焊接 温度接近室温,整个基材受到约束而无 法变形,金属的伸缩应力接近屈服应力。如果约束(夹具固定工件或反收缩力)取消,残余应 力释放,基材将发生迁移,焊接工件将产生变形。金属内部结构因焊接不均匀的加热和冷却 产生的内应力叫焊接应力,由焊接应力造成的变形叫焊接变形。不同的焊接工艺引起的焊接 变形量不同。 3 影响焊接结构变形的主要因素和变形的种类 (1)影响焊接结构变形的主要因素。 a.焊缝在结构中的位置; b.结构刚性的大小; c.装配和焊接顺序; d.焊接规范的选择。 (2)焊接变形的种类。 a.纵向收缩和横向收缩(在焊缝长度方向上的收缩称纵向收缩,在垂直于焊缝纵向的收缩称 横向收缩); b.角变形; c.弯曲变形; d.波浪变形; e.扭曲变形。 (3)从焊接工艺上分析,影响焊接收缩量的因素。 a.采用焊条电弧焊焊接长焊缝时,一般采用焊前沿焊缝进行点固焊,有利于减小焊接变形,同时也有利于减小焊接内应力。 b.备料情况和装配质量对焊接变形也会产生影响。 c.焊接工艺中影响焊缝收缩量的因素有: ①线膨胀系数大的金属材料其焊接变形大,反之焊接变形小。 ②焊缝的纵向收缩量随着焊缝长度的增加而增加。 ③角焊缝的横向收缩比对接焊缝的横向收缩小。 ④间断焊缝比连续焊缝的收缩量小。 ⑤多层焊时,第一层引起的收缩量最大,以后各层逐渐减小。 ⑥在夹具固定条件下的焊接收缩量比没有夹具固定的焊接收缩量小,减少约40%~70%。

骨骼变形的危害

骨骼变形的危害 根据日本医学专家的研究表明,人体80%的慢性疾病多因骨骼变形所引起。骨骼,支撑着人体,而脊椎神经又是神经系统的中枢;如果骨骼和神经发生障碍,健康就会发生问题。 在欧美等发达国家,骨正基类的足底矫正产品已经成了上流社会中十分风靡的保健工具,大家竞相购买,形成了一种时尚的社会标榜,越来越多的人意识到足弓与健康运动的关系。很多人都知道:生命在于运动,但事实应该是:生命在于正确的运动!错误的运动方式会导致更为严重的健康隐患,只有正确的运动方式才能够起到保健养生的作用。 矫正骨骼从脚部基础做起 万丈高楼平地起,凭借的是牢固的地基,人体也同样,骨骼的形态取决于脚部。人体骨骼的变形87%是因脚的变形而引起。如果人体走路姿势不正确或穿不合适的鞋子或体重过重,则歪曲变形会从脚开始,造成人体足底部分关节及韧带松弛变形,脚弓的弧度变形,直接影响到人的膝关节、髋关节、足踝关节、脊椎骨,会造成这些关节骨络受压偏一侧磨损、歪曲变形,从而产生各种病变。 足底反射区 足是人之根,人体十二经脉之中有六条经脉系与足部,这些经络是运行气血、联络脏腑、沟通表里、贯穿上下的通路。足部的穴位有33个之多,占全身穴位的1/10,它们就像流水线上的机关,为维持气血的通畅、脏腑的协调、全身组织器官的联系、调节生命活动有着举足轻重的作用。 脚的重要性——脚是人的第二心脏 从站立都行走,心脏输送出血液循环全身,产生动力,使血液有压力流速。同时心脏又反复做周期性收缩,从心脏出来的血液运行的全身各处后,就能回收体内沉淀的毒素。如果脚部有毛病,较低的毛细血管就不能发挥正常的循环作用,就很容易产生下肢血液循环障碍,身体其它部位又能保持健康呢? 判断脚是否变形的方法 成年人的脚印都与标准的脚印相差甚远,因为走路、体重、鞋子等使足部变形、全身骨骼也有所变形。轻者会引发亚健康的各种症状,重者就是身体产生问题的根源。但因为骨骼的变形引发的问题是无法通过饮食改变的,只有矫正骨骼才是唯一的解决方法。 印足印的方法 1、先把不印的脚放在脚板上(脚板的中间位置)。 2、要印的脚放在有印纸的一面(脚放完后不要动,呈11字形态)。

隧道变形监测方案-新

隧道变形监测方案 1、目的 为明确隧道内变形观测的作业内容,规范技术细节及作业程序,总结隧道结构变形规律,为隧道结构维修养护提供依据,指导津滨轻轨隧道变形观测工作进行,从而保证行车安全,特制订本预案。 2、适用范围 2.1适用于津滨轻轨隧道变形观测的相关工作; 2.2线桥室从事变形观测的相关工作人员须依据本方案开展各项变形观测工作。 3、职责分工 隧道变形工作由线桥室主任及安技主管进行监督指导,桥梁维修主管负责变形观测工作的全面管理与协调,桥梁检测工程师协同隧道工程师、桥梁维修工程师负责隧道变形观测的相关技术工作,并由桥隧检测工区负责具体实施。 4、参考依据 《建筑变形测量规程》 《地下铁道、轨道交通工程测量规范》 《地下铁道工程施工及验收规范》 5、变形观测工作内容 5.1隧道沉降观测 监测隧道结构的沉降,主要是监测隧道结构的底板沉降,实质上是对道床的监测,主要包括区间隧道的沉降监测以及隧道与地下车站交接处的沉降差异监测。运营测量采用的坐标系统、高程系统、图式等与原施工测量相同。 5.1.1监测基准网 监测基准网是隧道沉降监测的参考系,由水准基点和工作基点构成,网形布设成附合水准路线或沿上、下行线隧道布设成结点水准路线形式,采用国家二等水准测量的观测标准进行。水准基点采用隧道线路两端远离测区的国家II等水准点,在沿线车站内和联络通道处布设工作基点,每个车站布设4个工作基点,联络通道处布设2个工作基点,水准基点与车站内、联络通道处工作基点共同构成监测基准网,如图1所示。基准网的高程值由国家水准点引入,每季度校核一

次,分析工作基点的稳定性;然后,再通过车站内两侧的工作基点,采用附合水准路线对每段隧道结构进行沉降观测。 图1 监测基准网示意图 5.1.2沉降监测点 津滨轻轨地下结构由明挖段和盾构组成,明挖段沉降监测点按施工浇筑段每段设4个点,分别布设在左右两侧墙上。具体布置见图2。 图2 明挖段沉降监测点布置示意图 为方便以后长期的位移监测工作,隧道内沉降监测点布设在隧道中线的道床上,隧道直线段每隔30m设一个测点,曲线处根据曲线半径大小设置测点间距,半径为400m曲线处每隔12m设一个测点,半径为800m曲线处每隔18m设一个测点,半径为2000m曲线处每隔30m设一个测点。具体布置见图3。

O形密封圈的密封原理

O形密封圈的密封原理 标签:密封圈密封原理 O形密封圈简称O形圈,是一种截面为圆形的橡胶圈。O形密封圈是液压、气动系统中使用最广泛的一种密封件。O形圈有良好的密封性,既可用于静密封,也可用于往复运动密封中;不仅可单独使用,而且是许多组合式密封装置中的基本组成部分。它的适用范围很宽,如果材料选择得当,可以满足各种运动条件的要求,工作压力可从1.333×105Pa的真空到400MPa高压;温度范围可从-60℃到200℃。与其它密封型式相比,O形密封圈具有以下特点:1)结构尺寸小,装拆方便。2)静、动密封均可使用,用作静密封时几乎没有泄漏。3)使用单件O形密封圈,有双向密封作用。4)动摩擦阻力较小。5)价格低廉。 O形密封圈是一种挤压型密封,挤压型密封的基本工作原理是依靠密封件发生弹性变形,在密封接触面上造成接触压力,接触压力大于被密封介质的内压,则不发生泄漏,反之则发生泄漏。在用于静密封和动密封时,密封接触面接触压力产生原因和计算方法不尽相同,需分别说明。1、用于静密封时的密封原理在静密封中以O形圈应用最为广泛。如果设计、使用正确,O形密封圈在静密封中可以实现无泄漏的绝对密封。 O形密封圈装入密封槽后,其截面承受接触压缩应力而产生弹性变形。对接触面产生一定的初始接触压力Po。即使没有介质压力或者压力很小,O形密封圈靠自身的弹性力作用而也能实

现密封;当容腔内充入有压力的介质后,在介质压力的作用下,O形密封圈发生位移,移向低压侧,同时其弹性变形进一步加大,填充和封闭间隙δ。此时,作用于密封副偶合面的接触压力上升为Pm:Pm=Po+Pp 式中Pp——经O形圈传给接触面的接触压力(0.1MPa)Pp=K·P K——压力传递系数,对于橡胶制O形密封圈K=1;P——被密封液体的压力(0.1MPa)。从而大大增加了密封效果。由于一般K≥1,所以Pm>P。由此可见,只要O形密封圈存在初始压力,就能实现无泄漏的绝对密封。这种靠介质本身压力来改变O形密封圈接触状态,使之实现密封的性质,称为自封作用。理论上,压缩变形即使为零,在油压力下也能密封,但实际上O形密封圈安装时可能会有偏心。所以,O形圈装入密封沟槽后,其断面一般受到7%—30%的压缩变形。静密封取较大的压缩率值,动密封取较小的压缩率值。这是因为合成橡胶在低温下要压缩,所以静密封O形圈的预压缩量应考虑补偿它的低温收缩量。2、用于往复运动密封时的密封原理在液压转动、气动元件与系统中,往复动密封是一种最常见的密封要求。动力缸活塞与缸体、活塞干预缸盖以及各类滑阀上都用到往复运动密封。缝隙由圆柱杆与圆柱孔形成,杆在圆柱孔内轴向运动。密封作用限制流体的轴向泄漏。用作往复运动密封时,O形圈的预密封效果和自密封作用与静密封一样,并且由于O形圈自身的弹力,而具有磨损后自动补偿的能力。但由于液体介质密封时,由于杆运动速度、液体的压力、粘

软弱围岩隧道变形及其控制技术相关分析

软弱围岩隧道变形及其控制技术相关分析 发表时间:2016-05-28T13:37:56.550Z 来源:《基层建设》2016年2期作者:张琨玮[导读] 中国电建集团成都勘测设计院有限公司四川成都 611130 一般影响软弱围岩变形的主要因素是围岩的性质,包括围岩级别,围岩结构,地应力,岩体的力学性质、隧道埋深等。张琨玮 中国电建集团成都勘测设计院有限公司四川成都 611130 摘要:隧道围岩大变形常表现为断面缩小、拱顶下沉、周边收敛、基底隆起等现象,导致成洞困难或初期支护严重破坏。隧道穿越埋深大、地应力高、岩体软弱等地质环境时,在开挖方法不当、支护抗力不足或不及时的情况下容易发生大变形。关键词:软弱围岩;隧道变形;控制引言 围岩是指受隧道开挖影响而发生应力状态改变的周围岩土体。根据岩土体的强度,可将围岩分为坚硬围岩和软弱围岩两大类,软弱围岩主要包括软弱、破碎、富水等不良地质条件下的围岩,但不包括岩溶、瓦斯等特殊的围岩。隧道穿越高地应力区及遇到软弱围岩体时,常产生软弱围岩大变形等相关地质灾害,对隧道软弱围岩大变形的有效合理防治与控制愈显紧迫与重要。 1软弱围岩隧道变形概述随着我国经济的高速发展,各项基础设施建设正在快速地推进。我国是一个地形地质复杂多样的国家,在山区进行交通工程建设不可避免的会遇到大量软岩隧道,并且埋深也在不断加大,随之带来了诸多问题,隧道大变形破坏就是其中之一。目前,关于隧道大变形仍没有一种学界公认的统一定义,根据前人的著述,其特点可描述为:深埋地下结构中表现出了与时间、岩体结构、水文地质条件、围岩岩性密切相关的特性,并受施工过程中的各种因素扰动的影响,这些因素反过来又影响施工和结构物长期运营的变形,比如交通隧道的变形。其中,软弱围岩隧道的时效特性正引起工程界的高度重视。软弱围岩具有明显的流变特性,与时间有着密不可分的关系,长期的工程实践表明,软弱围岩的变形和破坏并不是隧道运营初期立即完成的,而是经历很长时间不断变形的积累,出现大变形以致失稳和破坏。2隧道大变形原因分析2.1围岩软弱 一般影响软弱围岩变形的主要因素是围岩的性质,包括围岩级别,围岩结构,地应力,岩体的力学性质、隧道埋深等。软弱围岩是隧道发生大变形的内在因素,。例如,某工程中,围岩为粘土夹岩溶角砾,粘土松软,含水量高,角砾棱角分明,围岩十分软弱,用地质锤可轻松剥离。由于隧道右侧围岩强度低,开挖后硐室周边由三维应力状态转变成二维应力状态,洞周切向应力急剧增大,围岩强度应力比减小,使右侧围岩发生塑性破坏而向内挤入。围岩自身强度较低,对地下水敏感度高,隧道洞身开挖后围岩产生塑性变形松动圈范围大,作用在初期支护的压力较大,围岩变形持续的时间比较长。同时,通过采取适宜的超前预加固控制变形技术,还能够对隧道掌子面前方围岩变形情况进行有效的控制,进而避免发生掌子面坍塌现象。此外,对于断层破碎带以及软弱地层,尤其是在含有丰富的水源时,必须要对围岩进行超前加固施工,进而改善地层,保证隧道施工的安全。 2.2支护强度低 对于软弱围岩隧道,开挖后支护应尽早封闭成环,对于围岩压力持续增加,变形收敛时间长的隧道,应趁早施工二衬,利用模筑混凝土刚度大的特点,对控制持续变形有良好的效果。某工程隧道上台阶开挖后及时施作了初支,喷层厚度已达到要求,但上台阶拱脚锁脚锚管长度仅为2m,并没有穿过松动区,也没有注浆加固,因此不能充分发挥锁脚作用,故水平收敛很大。此外,格栅拱架刚度较低,拱架间距较大(1m),不能有效抵御拱脚剪力作用。 2.3水的影响 地表河流、冲沟与隧道距离较近,隧道上方冲沟附近发育有溶蚀漏斗,地表水可沿岩溶通道进入地下。围岩软弱松散,在地下水位以下处于饱和状态。在隧道开挖前该处岩土体中地下水位保持恒定,隧道开挖后地下水向坑道内渗流从而使隧道右侧地下水位降低,施作初期支护后由于喷混凝土有一定的阻水作用,阻断了右侧围岩地下水的渗流通道,使隧道右侧地下水位回升,故出现隧道左侧边墙干燥而右侧边墙湿润滴水的现状。同时,右侧拱墙支护结构承受静水压力的作用、。由于围岩含有黏土,遇水易发生膨胀、软化,从而使围岩自承能力迅速降低而压力不断增大,因此围岩和初支变形也表现为持续的发展。在地下水的作用下,围岩体积膨胀、强度降低,使得右侧初期支护同时承受膨胀压力与静水压力,变形不易控制。、3围岩大变形控制处理措施3.1加强超前地质预报工作一般情况下,在软弱围岩隧道施工过程中,都会遇到隧道开挖揭示地质情况与工程设计提供的地质存在较大差异的状况。基于此,除了需要在设计阶段加强地质勘察工作之外,还必须在施工阶段进行超前地质预报工作。之后还需按照超前地质预报设计方案的要求,对超前地质预报中涉及的细则进行详细的编制,然后才可开展地质预报工作。同时,对于那些地质较为简单的地段,可以采用以地质编录为主的途径进行相应的施工,并依据掌子面开挖揭示的地层岩性、地质构造以及节理裂缝发育情况等来分析与判断围岩的稳定性。而对于地质较为复杂地段的施工,应在完成地质编录工作的情况下,进行物探超前地质预报,进而为之后勘察资料的对比与分析工作提供基础与便利,最终实现提升预报质量与精度的目的。此外,对于那些特浅埋地质复杂地段,可通过水平钻孔等途径,明确掌子面前方地质情况,然后采取合理的开挖方式来保证工程施工安全。 3.2选择合理施工方法选择适宜的软弱围岩隧道开挖施工方法能够更好的保护围岩,减少塑性区域范围,进而最大限度地发挥出围岩的自承载效果,最终对围岩的变形量进行有效的控制。(1)在选择现场施工方式时,应依据地质与地层加固的具体情况来确定,并在实际施工过程中依据地质情况以及监控量测结果来及时的调整不合适的施工方法。(2)在采用爆破法掘进时,应全面掌握炮眼数量、深度以及装药量,进而在提高爆破控制技术的前提下,尽量减少爆破对围岩造成的破坏。 3.3加强支护强度和刚度

浅析隧道施工变形原因及控制措施

浅析隧道施工变形原因及控制措施 摘要:文章以浅埋暗挖施工隧道为例,介绍了该种施工方式诱发变形的原因,根据相关施工经验,提出了相应的控制预防措施,可供同类施工工程参考。 关键词:隧道;浅埋暗挖法;变形;控制措施 Abstract: the article with shallow depth excavation tunnel construction as an example, this paper introduces the construction method of the deformation of the induced reasons, according to relevant construction experience, and put forward the corresponding control precautionary measures for other similar construction projects. Keywords: tunnel; WaFa shallow depth; Deformation; Control measures 隧道由于受到所处周围环境的限制,对施工要求较高,浅埋暗挖法具有 诸多优点。例如经济效益好、适用能力强和扰动环境小等,因此越来越被广泛的应用于隧道施工中。虽然有许多优点,但隧道采用暗挖法施工也将必然地对周围土体产生或大或小扰动,从而引起土体移动变形,最后导致一系列病害,例如会使地表结构物倾斜、开裂甚至坍塌,道路路面发生破损、既有隧道或地下管线断裂、破损等环境岩土问题。因此针对隧道施工引起的施工变形问题,需仔细分析其产生的原因,根据相关研究理论与施工经验制定可靠的控制预防措施。 1、浅埋暗挖法施工过程中土体变形规律 根据浅埋暗挖隧道施工流程以及隧道施工引起的土体扰动机理可以得到,对于暗挖法隧道来说,可以总结出在施工过程中的土体变形规律可大致分为三个阶段: 1.1、土体开挖和初期支护 土体开挖,作初期支护是第一阶段的主要内容。在此阶段内,隧道本身处在一种临空的状态下。特别是在土体开挖后和初期支护强度达到要求前的这段时间内,临空状态尤为明显。我们可以假定土体在此阶段的移动是向内均匀收敛的。而且此阶段会产生土体损失,这是因为在开挖时,土体会释放积攒的应力,此时隧道所承受的支撑力较小,处在其周围一定范围内的土体会移动引起地层整体变形。

Y型密封圈规格型 及密封原理

Y型密封圈规格型号表

Y型密封圈知识 1.主要性能 Y形密封圈的截面呈Y形,是一种典型的唇形密封圈。 按其截面的高、宽比例不同,可分为宽型、窄型、Yx型等几类。 若按两唇的高度是否相等,则可分为轴、孔通用型的等高唇Y形密封圈和不等高唇的轴用Y形密封圈和孔用Y形密形圈,如图5-7所示。 Y形密封圈广泛应用于往复动密封装置中,其使用寿命高于O形密封圈。 Y形密封圈的适用工作压力不大于40M P a,工作温度为-30~+80℃。 工作速度范围:采用丁腈橡胶制作时为0.01~0.6m/s;采用氟橡胶制作时,为0.05~0.3m/s;采用聚氨酯橡胶制作时,则为0.01~1m/s。Y 形密封圈的密封性能、使用寿命及不用挡圈时的工作压力极限,都以聚氨酯橡胶材质为佳。 Y形密封圈的性能特点: 1)密封性能可靠; 2)摩擦阻力小,运动平稳; 3)耐压性好,适用压力范围广; 4)结构简单,价格低廉; 5)安装方便。 2.密封原理 Y形密封圈依靠其张开的唇边贴于密封副耦合面,并呈线状接触,在介质压力作用下产生“峰值”接触应力,压力越高,应力越大。当耦合件以工作速度相对运动时,在密封唇与滑移耦合面之间形成一层密封液膜,从而产生密封作用。密封唇边磨损后,由于介质压力的作用而具有一定的自动补偿能力。 图5-8所示为带有副唇的轴用Y形密封圈。每次往复运动后,在其主、副唇之间都会残留下微量液体(工作介质)。随着往复运动次数的

增多,残留液体将充满主、副唇之间的空间,形成一个特殊的“围困区”。 当主唇处于工作状态时,由于“围困区”内液体不可压缩,其间的压力远远高于小腔内的工作压力(见图5-8)。此时,副唇与耦合面的接触应力,也远远大于主唇与耦合面间的接触应力。因而,当轴外伸时迫使“围困区”内的液体压回小腔,从而形成了可靠的密封状态,提高了Y形密封圈的密封性能。“围困区”内的压力越高,则副唇对耦合面的接触应力越大,密封性能也就越良好。 3.应用 安装Y形密封圈时,唇口一定要对着压力高的一侧,才能起密封作用。 为了防止在高压状态下,Y型密封圈的根部因材质塑性变形而被挤入密封耦合面的间歇,故应控制滑移耦合件间的配合间隙δ的大小,见图5-9a。对于工作压力大于16M P a的Y形密封圈,为保证其使用寿命,防止密封圈的根部被挤入配合间隙,应在密封圈根部处安装挡圈,如图5-9b所示。 为了防止Y形密封圈在往复运动过程中出现翻转、扭曲等现象,即保持其运动平稳性,可在Y形密封圈的唇口处设置支承环,如图5-10所示。

造船焊接变形和反变形控制

造船中的焊接变形和反变形控制 1.研究背景 船舶工业是传统的劳动密集型装配制造业,焊接操作是其中主要的作业形式之一,焊接水平的高低在很大程度上决定了船体的质量和生产效率,而焊接变形又是焊接过程中最难控制的一环。焊接变形的存在不仅造成了焊接结构形状变异,尺寸精度下降和承载能力降低,而且在工作荷载作用下引起的附加弯矩和应力集中现象是船舶结构早期失效的主要原因,也是造成船舶结构疲劳强度降低的原因之一[1]。焊接变形对现代造船技术的应用产生了障碍。由于焊接变形对船舶建造质量、成本和周期都具有重要影响,工业界一直对其非常重视,对焊接变形从实验和理论上进行了大量研究,希望能够对焊接过程进行有效预测和控制。反变形可以控制焊接变形,降低残余应力,且方法简单易行,在船舶行业有广泛的应用。 2.背景内容 针对造船中的焊接变形,国内外专家进行大量的研究。焊接过程是一个非平衡的、时变的、带有随机因素影响的物理化学过程,它涉及电弧物理、传质传热和力学等方面。至今对焊接过程变形的实时检测与监控仍是困难的,不仅需要特殊的方法,而且对设备的要求也很高。随着计算机软、硬件技术的快速发展,使得焊接热加工过程的数值模拟应运而生,实践证明数值模拟对于研究焊接现象是一种非常有用的方法。 2.1国外专家的预测和研究 20世纪30年代以来,许多苏联学者就开始了焊接变形计算与控制研究。如C.A.库兹米诺夫[2]研究了典型船体结构总变形和局部变形的计算方法,提出了减少和补偿焊接变形以及矫正主船体结构的解决方案。Greene和Holzbaur[3]开展了降低焊接残余应力和变形的研究,目前降低残余应力和焊接变形技术大多数由他们制定的法则演变而来。法国的国际焊接研究所对“焊接结构中残余

1改进的骨骼蒙皮算法模拟皮肤变形

第26卷第12期 计算机应用与软件 Vo l 26No .12 2009年12月 Co m puter Applicati o ns and Soft w are Dec .2009 改进的骨骼蒙皮算法模拟皮肤变形 夏开建 王士同 (江南大学信息工程学院 江苏无锡214122) 收稿日期:2008-06-20。夏开建,硕士生,主研领域:计算机动画和仿真技术。 摘 要 骨骼蒙皮算法以其速度快等优点在角色人物变形动画中始终是使用最为广泛的皮肤变形算法。针对骨骼蒙皮算法所产 生的 塌陷 、 裹糖纸 等问题,在基于拉伸蒙皮算法的基础上,提出了一种向皮肤可变区域中增加辅助节点的改进的蒙皮变形技术。实验结果显示,该方法能够有效地消除骨骼蒙皮技术中存在的 裹糖纸效应 缺陷,真实感效果明显增加。关键词 骨骼动画 蒙皮算法 拉伸 辅助节点 S K IN DEFOR MATION SIMULATED W I TH IMPROVED S MOOTH S K INNING ALGORIT HM X i a K aijian W ang Shitong (S c h ool of Infor ma tion Technol ogy,Ji angnan University ,W uxi 214122,Ji ang su,Ch i na ) Abstrac t S m ooth skinn i ng is al w ays a mo st w ide l y usedm e t hod of sk i n defor m a ti on w ith the advantag e o f a f aster algor it h m f o r t he an i m a ti on of defor m able hu m an and creature characters .H ow ever i t suffers fro m a nu m be r of proble m s ,such as the co llapsi ng elbow and candy w rappe r effec t .The paper proposes a ne w skinn i ng de f o r m ati on techno l ogy that it i ncreases the aux ili ary nodes i n t he ski n variab l e reg i ons based on the stretch s m ooth sk i nn i ng algor i th m.The exper i m ent show s t hat the m e t hod can ban i sh candy w rappe r eff ec t defec ts ,and the rea li sti c e ffect is si gnificantly i ncreased . K eywords Ske leta l an i m ati on Smoo t h sk i nn i ng Stretch A ux iliary node 0 引 言 皮肤变形技术在角色动画 [1] 中是一个非常重要的研究课 题,近20年来已经得到了很多研究者的关注,但是由于人物动画和一些角色特征都非常复杂,这块研究领域仍然面临很大的困难和挑战。目前主要有两个常见的方法,一个是基于解剖学变形技术,另一个是基于特征皮肤的直接变形。 本文主要应用第二种方法,通常叫作骨骼蒙皮法。皮肤的外形主要是通过骨架上的连接点的转变来控制的,该算法比较简单,而且给动画师留出了足够的创造空间来得到自己想要的结果,但是,蒙皮算法也会出现很多缺陷,最常见的就是 塌陷 问题和 裹糖纸 效应,之后众多学者也作了一些改进,文献[2]讨论了蒙皮算法的严重缺陷,也就是蒙皮算法对大角度旋转的失真,并提出了基于顶点混合技术加以改进,之后文献[3]提出了基于骨骼混合算法,这种方法需要较多的手工调整参数,同时也只能用于有两个关节控制的顶点。文献[4]提出了一种几何方法,虽然该方法能够模拟出比较真实的结果,但是却大大地加大了计算量,同时也增加了计算机硬件的需求。之后文献[5]又在其基础上提出了一种基于皮肤拉伸的蒙皮算法,该算法比较简单,但是该方法加大了蒙皮算法的自由度,真实感问题上仍然存在一定的缺陷。 本文在上述文献的基础上,分析了骨骼蒙皮算法的基本原理和一些缺陷,在基于文献[5]的基于皮肤拉伸的蒙皮算法基础上,提出了一种向皮肤可变区域中增加辅助节点的改进的蒙皮变形技术。实验结果显示,该方法能够有效地改善骨骼蒙皮 技术的 裹糖纸效应 缺陷,真实感效果明显增加。 1 基本蒙皮算法原理 蒙皮是一种基于局部操作的表面变形算法,该方法可以通过图形化界面为每个皮肤顶点指定对应的骨骼以及对应的权 重。 蒙皮 算法速度较快,但是在指定权重时需要动画师具有一定的经验。 蒙皮 方法本质上是一种插值算法,其基本原理可以用下式表示: v != ?n i =1 i M i D i -1v ?n i=1 i =1(1) 其中,v 是变形前的皮肤顶点坐标,M i 表示在初始参考姿态下与皮肤顶点相关的第i 段骨骼的由局部坐标到全局坐标的转换矩阵,D i -1v 表示在第i 段骨骼局部坐标系中皮肤顶点的坐标值, i 表示第i 段骨骼对于当前顶点的权值,v !表示变形后的皮肤顶点坐标。 蒙皮 算法的基本思想是使关节附近的皮肤顶点同时受到与关节相邻的两段骨骼的影响,影响的大小由权值 i 确定。 2 存在的主要缺陷 骨骼蒙皮算法最容易出现的两个问题就是 塌陷 、 裹糖纸 问题。其中, 塌陷 指的是关节弯曲时,皮肤产生的压扁、

相关文档
最新文档