12V1A开关电源设计

12V1A开关电源设计
12V1A开关电源设计

毕业设计说明书(论文)中文摘要

本文设计了一种基于脉冲宽度调制(PWM,Pulse Width Modulation)控制方式的开关电源,介绍了PWM开关电源的工作原理及发展历程,给出了利用PWM 技术控制开关电源的设计方案,给出其功能原理图及电路原理图;本设计还详细介绍了变压器设计;EMI滤波电路;PWM控制电路;输出反馈电路;保护电路;整流滤波电路;稳压电路等。该开关电频率高,效率高,功率密度高,可靠性高等。

关键字:PWM;开关电源;变压器;EMI

毕业设计说明书(论文)外文摘要

Title 12 V1A switch power source design

Abstract

This paper expounds a kind of based on the Pulse Width Modulation (PWM, Pulse Width Modulation) control mode of switch power, introduced the PWM switch power supply and working principle of the development course, presented by the PWM control switch power source design scheme is presented, and the functional principle diagram and the circuit principle diagram; Using PWM technology, can make the switch power supply, high frequency, high efficiency, high power density, high reliability. This design but also detailed introduces the transformer design; EMI filter circuit; PWM control circuit; Output feedback circuit; The protection circuit; Rectifier filter circuit; V oltage circuit, etc.

Keywords :PWM; Switching power supply; Transformer; EMI

目次

1绪论 (2)

2 开关电源的发展和趋势 (2)

3开关电源工作原理 (3)

3.1 方案论证 (3)

3.2设计要求 (4)

3.3开关电源系统方框图 (4)

4开关电源电路设计 (4)

4.1 EM I滤波电路设计 (4)

4.2 输入整流滤波设计 (5)

4.3变换电路及控制电路设计 (7)

4.4变压器设计 (10)

4.5反馈稳压电路设计 (12)

4.6 后级整流滤波电路设计 (14)

结论 (15)

致谢 (16)

参考文献 (17)

1 绪论

电子技术的高速发展,电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电力检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。开关电源比普通的线性电源效率高,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,开关电源比普通线性电源体积小,轻便化,更便于携带。

2 开关电源的发展和趋势

1955年美国罗耶(GH.Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换控制电路的开端,1957年美国查赛(Jen Sen)发明了自激式推挽双变压器,1964年美国开关电源科学家们提出取消工频变压器的串联开关电源的设想,这对电源向体积和重量的下降获得了一条根本的途径。到了1969年由于大功率硅晶体管的耐压提高,二极管反向恢复时间的缩短等元器件改善,终于做成了25千赫的开关电源。

目前,开关电源以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。目前市场上出售的开关电源中采用双极性晶体管制成的

100kHz、用MOS-FET制成的500kHz电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,会受电路中分布电感和电容或二极管中存储电荷的影响而产生浪涌或噪声。这样,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。其中,为防止随开关启-闭所发生的电压浪涌,可采用R-C或L-C缓冲器,而对由二极管存储电荷所致的电流浪涌可采用非晶态等磁芯制成的磁缓冲器。不过,对1MHz以上的高频,要采用谐振电路,以使开关上的电压或通过开关的电流呈正弦波,

这样既可减少开关损耗,同时也可控制浪涌的发生。这种开关方式称为谐振式开关。目前对这种开关电源的研究很活跃,因为采用这种方式不需要大幅度提高开关速度就可以在理论上把开关损耗降到零,而且噪声也小,可望成为开关电源高频化的一种主要方式。当前,世界上许多国家都在致力于数兆Hz的变换器的实用化研究。

3 开关电源工作原理

将交流电源输入经整流滤波后转换成直流,通过高频PWM(脉冲宽度调制)信号或PM(脉冲调制)电路控制开关管,将那个直流电压加到开关变压器初级上,开关变压器次级感应出高频电压,经整流滤波供给负载,输出部分通过,反馈电路反馈给控制电路,以达到稳定输出电压的目的。

PWM开关电源原理是通过“斩波”,即把输入的直流电压斩成幅值等于输入电源幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压组数。最后这些交流波形经过整流滤波后就得到直流输出电压。

3.1 方案论证

3.1.1 开关电压的三种控制方式

(1) 脉冲宽度调制(Pulse Width Modulation,缩写为PWM)

开关周期恒定,通过改变脉冲宽度来改变占空比的方式。经过长期的理论与实践,脉冲宽度调制(PWM)控制方式使用最广泛,最安全,最实用。

(2) 脉冲频率调制(Pulse Frequency Modulation,缩写为PFM)

导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。

(3) 混合调制

导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合

3.2 设计要求

1)交流输入电压变化范围为AC150V~AC280V;

2)直流输出电压为12V;

3) 输出电流为1A ;

4) 输出电压调整率≤1%;

5) 具有故障自诊断、过压、过流保护等功能。 3.3开关电源系统方框图

图 1 12V1A 开关电源系统方框图

4 开关电源电路设计

4.1 EMI 滤波电路设计

EMI 滤波器主要作用是抑制开关电源进出的电磁干扰,具有双向抑制性。开关电源EMI 滤波器的基本网络如图所示。

AC 输入 二极管 整流 电容电感滤波 直流 输出 基准 电压 分压 取样

EMI 滤波 PWM 控制器 整流桥 输入

电容 启动 电路 光电 耦合器 反馈

回路 开关管 反馈 限流 隔离

变压器

FUI AC X L1

图2 EMI 滤波器

图2中差模抑制电容为X ,共模电感为L 1。滤波器是由电感和电容组成的低通滤波电路所构成,由于干扰信号有差模和共模两种,因此滤波器要对这两种干扰都具有衰减作用。其基本原理为:

(1) 利用电容通高频隔低频的特性,将电源正极和负极高频干扰电流导入地线,或将电源正极高频干扰导入电源负极。

(2) 利用电感线圈的阻抗特性,将高频干扰电流反射回干扰源。图2中差模抑制电容C x1和C x2的范围是0.1~0.47μF ;共模抑制电感L 1范围5~25mH 。设计时,必须使共模滤波电路和差模滤波电路的谐振频率明显低于开关电源的工作频率,一般要低于10kHz ,即

LC f π21=

<10kHz 本设计中C 1取0.1uF 。则

)π631101.0101021

(-????≥L =2.5mH

L 1采用UU98型滤波器来实现。

4.2 输入整流滤波设计

4.2.1 开关电源的前级整流电路采用的是桥式整流电路

(1) 输出平均电压U o=0.9U 2,输出平均电流I o=U o/R L =0.9U 2/R L 。二极管上的平均电流为:I D =0.5I o 。

(2) 二极管上的最高反向电压:U DRM =2U 2。

(3) 开关电源的滤波电路采用的是电容滤波电路。对于电容滤波,它的优点有:输出电源高,在小电流时滤波效果较好。但电容滤波也有缺点,它的负载能力差,电源接通瞬间充电电流很大,整流管要承受很大正向浪涌电流。它实用负载电流较小的

场合。

4.2.2 整流滤波电路的电子元件选择

图3 整流滤波电路

图3给出本设计的整流滤波电路。图中整流二极管D1、D2、D3、D4分别取IN4007型二极管。C1值确定如下:

P o =V o ×I o =12×1=12W P in =η

Po ==15W 效率假设为100

80 V in (min )=V ac (min )×1.1 =150×1.1=165V

I DCIN(MAX)=in(m in)V P in =165

15=0.091A R L =

(max)(min)I V DCin in =091.0165=1814 Ω C 5>WRL 10>1814

5014.3210???=17.5×610- F 根据上述计算,选用10uF/400V 的电容。

桥式整流中二极管上的流过电流为整流输出电流的一半,其最大电流 I dcin(max)=0.0455A

因此取二极管额定电流

I f(av)为(1.5~2)I D(max)/1.57=(0.043~0.058)A

因最高反向电压

V DRM(MAX)=3962802=?V

选二极管额定电压为

(2~3)V DRM(MAX)=(792~1188)V

根据输入电压,电流的三倍选择整流二极管。

AC

D1D2D3D4C1

DC

IN4007其额定电流为1A;反向峰值电压为1000V。

因此整流电路中选择IN4007型二极管即可满足本设计需要。

4.3 变换电路及控制电路设计

本设计输出功率小,因此变换电路采用反激式电路括扑结构,反激式电路括扑适合的功率范围为几瓦到几十瓦。控制电路采用的是THX203H。THX203H的资料:高性能电流专为高性价比AC/DC 转换器设计。在85V-265V的宽电压范围内提供高达12W的连续输出功率,峰值输出功率更可达18W。优化的高合理性的电路设计结核高性能价格比的双极型制作工艺,最大程度上节约了产品的整体成本。该电源控制器可工作与典型的反激式电路括扑中,构成简洁的AC/DC转换器。IC内部的启动电路被设计成一种独特的电路吸入方式,可利用功率开关管本身的放大作用完成启动,这显著地降低了启动电阻的功率消耗;而在输出功率娇小时IC讲自动降低工作频率,从而实现了极低的待机功耗。在功率管截止时,内部电路讲功率管反向偏置,直接利用了双极型晶体管的CB高耐压特性,大幅提高功率管的耐电压能力直到700V 的高压,这保证了功率管的安全。IC内部还提供了完善的防过载饱和功能,可实时防范过载、变压器饱和、输出短路等异常状况,提高了电源的可靠性。电流限制及时钟频率可由外部器件进行设定。

图4 管脚图

4.3.1 特点

●内置700V高压功率开关管,极少的外围器件

●锁存脉宽调制,逐脉冲限流检测

●低输出降频功能,无输出功耗可低于0.3W

●内建斜坡与反馈补偿功能

●独立上限电流检测控制器,实时处理控制器的过流、过载

●关断周期发射极偏压输出,提高了功率管的耐压

●内置具有温度补偿的电流限制电阻,精确电流限制

●内置热保护电路

●利用开关功率管的放大作用完成启动,启动电阻的功耗减少10倍以上●极少的外围元器件

●低启动和工作电流

●VCC过压自动限制

●宽电压连续输出功率可达12W,峰值输出功率可达18W

图5 THX203H内部结构图

4.3.2 引脚功能描述 :

4.3.3 原理描述 ● 启动阶段,上电时VR 关闭;FB 上拉电流源关闭;OE 由功率管输入启动电流到VCC ;OB 控制功率管的基极电流,限制功率管集电极电流(即THX203H 启动接受电流),从而保证功率管的安全;在VCC 电压上升到8.8V ,启动阶段结束,进入正常阶段。

● 正常阶段,VCC 电压应保持在4.8~9.0V ,VR 输出2.5V 基准;FB 上拉电流源开启;振荡器输出OSC1决定最大占空比,输出OSC2试图触发电源进入开周期、及屏蔽功率管开启电流峰;若FB 小于1.8V (约在1.2-1.8V)之间振荡器周期将随之增加,FB 越小振荡器周期越宽、直至振荡器停振(此特性降低了开关电源的待机功耗);若外围反馈试图使VCC 大于9.6V ,则内电路反馈到FB 使VCC 稳压在9.6V (利用此特性可以不采用外围反馈电路,由内电路稳定输出电压,但稳压精度较低);开周期,OB 为功率管提供基极电流,OE 下拉功率管的发射极到IS ,而且OB 采用斜坡电流驱动(指OB 开电流是IS 的函数,当IS=0V 时OB 开电流约40mA ,然后OB 开电流随IS 线性增加,当IS 增加到0.6V 时OB 开电流约120mA ,此特性有效地利用了OB 的输出电流,降低了THX203H 的功耗),若IS 检测到FB 指定电流则进入关周期;关周期,OB 下拉,功率管不会立即判断,但OE 箝位1.5V (功率管判断后基地反向偏置,提高了耐压);在开或关周期,如检测到功率管超上限电流,则上限电流触发器优先置位,强制FB 下降,占空比变小,从而保护功率管和变压器;在下一管脚

符号 管脚描述 1

OB 功率管基极,启动电流输入,外接启动电阻 2

VCC 供电脚 3

GND 接地脚 4

CT 振荡电容脚,外接定时电容 5

FB 反馈脚 6

IS 开关电流取样与限制设定,外接电流取样电阻 7,8 OC 输出脚,接开关变压器

引脚功能一览表

个关周期开始沿或FB 小于1.8V ,上限电流触发器复位。另外,THX203H 内置热保护,在内温度高于140℃后调宽振荡器的周期,使THX203H 温度不超过150℃;内置斜坡补偿,在THX203H 大占空比或连续电流模式时能稳定开/关周期。

● 若VCC 降到4.3V 左右,振荡器关闭,OSC1、OSC2低电平,电源保持关周期;VCC 继续下降到3.7V 左右,THX203H 重新进入启动阶段。

4.4 变压器设计

本次设计12V1A 开关电源其功率为12W ,10W<12W<15W ,因此选择PC40EE19磁芯。

IC 采用THX203H ,其工作频率为f=61KHZ,占空比τ=0.57,耐压为700V 。 I p =I dcmin(max)=?τ

20.319A 功率关开通时间Ton

T on =

=f τ9.3610-?

一次电感值最小值Lp 为 mH p dc p 8.4319

.0103.9V 165I T V L 6on

(min)=??=?=- 根据PC40EE19磁芯的资料,223mm Ae =,大工作磁感应强度T B 510max =。2/1250N nH Al =

一次绕组所需最大匝数:

629.6110

1250108.493

≈=??=--Np 二次绕组所需匝数:

3249.31N V V V N p fry

0≈=?+=F s 其输出整流二极管导通压降为:

V 7.0F =V

V fry 为开关管开关器件,变压器副边电压根据电磁感应定律,反射到原边绕组两端的电压。V fry 越高,吸收回路上消耗的功率则会越高,效率就会降低。同时,V fry

越高,开关管的应力也越大。V fry 低,则副边二极管的反向电压应力变高,二极管吸

收损耗增大。取

V fry 25V = 驱动匝数参数为:

103.962165

25N V V N (min)fry

b ≈=?=?=p dcin 绕组导线线径In j D p ?=

π

4进行计算。J 为电流密度,取2/5mm A ,n 为相应绕组额定电流。 14.03

57.0319.03I I =?=?=τ

p prms A Np 的线径为:

19.014.014

.354I 4D ≈??=?=prms p j πmm 副绕组Ns 的额定电流峰值为:

16.0319.062

32I N N I =?=?=p p s s A 其额定电流值为:

06.03

57.0116.031I I =-=-=τs srms A 其线径:

mm j srms s 12.006.014

.354I 4D =??=?=

π 4.5 反馈稳压电路设计 开关电源的稳压反馈通常都使用TL431和EL817,如输出电压要求不高,也可以使用稳压二极管和EL817。

4.5.1 光耦合器的性能特点

光耦合器的主要优点是:单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。它广泛用于电平转换,信号隔离,级间隔

离,开关电路,远距离信号传输,脉冲放大,固态继电器(SSR),仪器仪表,通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压的目的。

4.5.2 光偶的输出比

电流传输比是光耦合器重要的参数,通常用直流电流传输比来表示。当输出电压保持恒定时,它等于直流输出电流I c 与直流输入电流If 的百分比,其公式为: CTR=

If

Ic 100% 4.5.3 TL431特性及应用

(1) TL431是一个有良好的热稳定性能的三端可调分流基准源。它的输出电压用两个电阻就可以任意地设置到从V ref (2.5V )到36V 范围内的任何值。该器件的典型动态阻抗为0.2欧,在很多应用中可以用它代替齐纳二极管,例如:数字电压表,运放电路、可调电源,开关电源等。

图6 TL431符号及引脚图 图7是该器件的符号。3个引脚分别为:阴极(CATHODE )、阳极(ANODE )和参考端(REF )。TL431的具体功能可以用如图10的功能模块示意。

图7 TL431功能模块示意图

由图8可以看到,V I 是一个内部的2.5V 基准源,接在运放的反相输入端。由运放的特性可知,只有当REF 端(同相端)的电压非常接近V I (2.5V )时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管,的电流将从1到100mA 变化。当然,该图绝不是TL431的实际内部结构,所以不能

简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的。

(2) TL431的恒压电路应用

图8 TL431的恒压电路

前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图11所示的电路,当R1和R2的阻值确定时,两者对V o的分压引入反馈,若V o增大,反馈量增大,TL431的分流也就增加,从而又导致V o下降。显见,这个深度的负反馈电路必然在V I等于基准电压处稳定,此时V o=(1+R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,V o=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1mA。当然,这个电路并不太实用,但它很清晰地展示了该器件的工作原理在应用中的方法,将这个电路稍加改动,就可以得到在很多实用的电源电路,如图10:

图10 大电流的分流稳压电路

4.6 后级整流滤波电路设计

后级整流滤波电路我们采用的是半波整流,如图11所示

D 高

器R 50HZ

图11 半波整流电路

在半波整流电路中,同步整流二极管的功耗可以用下式近似表示

P SR =I frms 2Ron+CinV 2gsF

半波整流电路中,同步整流二极管的耐压制计算如下:

V SR =V o +V in(max)NP NS =12+62

32165 =97V

结论

采用thx203h系列开关稳压集成电路作为PWM开关电源的控制器件,不仅可以提高稳压电源的工作效率,减少能源损耗,还可以对电源其过压过流保护,而且可减少外部交流电压大幅波动对开关管的干扰,同时可降低经电源窜入的高频干扰,这对保障开关电源的安全和可靠运行能起到事半功倍的作用。

致谢

本论文是在九州职业技术学院机电系马红梅老师的悉心指导下完成的。马红梅老师作为一名优秀的、经验丰富的教师,具有丰富的理论知识和实践经验,在整个论文实验和论文写作过程中,对我进行了耐心的指导和帮助,提出严格要求,引导我不断开阔思路,为我答疑解惑,鼓励我大胆创新,使我在这一段宝贵的时光中,既增长了知识、开阔了视野、锻炼了心态,又培养了良好的实验习惯和科研精神。在此,我向我的指导老师表示最诚挚的谢意!

在论文即将完成之际,我的心情久久无法平静,从开始选题到顺利论文完成,有不知多少多少可敬的师长、同学、朋友给了我无数的帮助。感谢九州职业技术学院同时也要感谢电子工程10班全体同学,正是由于你们的帮助和支持,我才能一个一个克服困难、解明疑惑,直至本文顺利完成,在这里请接受我诚挚的谢意。

参考文献

[1] 赵同贺等。新型开关电源典型电路设计与应用北京:机械工业出版社,2009.9

[2] 张占松,蔡宜三。开关电源的原理与设计北京:电子工业出版社,2004

[3] 王兆安,黄俊。电力电子技术北京:机械工业出版社,2009

[4] 周志敏, 周继海. 开关电源实用技术设计与应用. 人民邮电出版社, 2003

[5] 曾方,郭再泉. 电力电子技术西安电子科技大学出版社2004.7

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

开关电源设计步骤(精)

开关电源设计步骤 步骤1 确定开关电源的基本参数 ① 交流输入电压最小值u min ② 交流输入电压最大值u max ③ 电网频率F l 开关频率f ④ 输出电压V O (V ):已知 ⑤ 输出功率P O (W ):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级, Z=1表示发生在次级。一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin ① 令整流桥的响应时间tc=3ms ② 根据u ,查处C IN 值 ③ 得到V imin 步骤4 根据u ,确定V OR 、V B ① 根据u 由表查出V OR 、V B 值 ② 由V B 值来选择TVS 步骤5 根据Vimin 和V OR 来确定最大占空比Dmax V OR D m a x = ×100% V OR +V I m i n -V D S (O N ) ① 设定MOSFET 的导通电压V DS(ON) ② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6 确定C IN ,V Imin 值

步骤7 确定初级波形的参数 ① 输入电流的平均值I A VG P O I A VG= ηV Imin ② 初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③ 初级脉动电流I R ④ 初级有效值电流I RMS I RMS =I P √D max ×(K RP 2/3-K RP +1) 步骤8 根据电子数据表和所需I P 值 选择TOPSwitch 芯片 ① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值 I LIMIT(min)应满足:0.9 I LIMIT(min)≥I P 步骤9和10 计算芯片结温Tj ① 按下式结算: Tj =[I 2RMS ×R DS(ON)+1/2×C XT ×(V Imax +V OR ) 2 f ]×R θ+25℃ 式中C XT 是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 ② 如果Tj >100℃,应选功率较大的芯片 步骤11 验算I P IP=0.9I LIMIT(min) ① 输入新的K RP 且从最小值开始迭代,直到K RP =1 ② 检查I P 值是否符合要求 ③ 迭代K RP =1或I P =0.9I LIMIT(min) 步骤12 计算高频变压器初级电感量L P ,L P 单位为μH 106P O Z(1-η)+ η L P = × I 2P ×K RP (1-K RP /2)f η 步骤13 选择变压器所使用的磁芯和骨架,查出以下参数: ① 磁芯有效横截面积Sj (cm 2),即有效磁通面积。 ② 磁芯的有效磁路长度l (cm ) ③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2) ④ 骨架宽带b (mm ) 步骤14 为初级层数d 和次级绕组匝数Ns 赋值 ① 开始时取d =2(在整个迭代中使1≤d ≤2) ② 取Ns=1(100V/115V 交流输入),或Ns=0.6(220V 或宽范围交流输入) ③ Ns=0.6×(V O +V F1) ④ 在使用公式计算时可能需要迭代 步骤15 计算初级绕组匝数Np 和反馈绕组匝数N F ① 设定输出整流管正向压降V F1 ② 设定反馈电路整流管正向压降V F2 ③ 计算N P

毕业设计--12V5A开关电源设计

毕业综合实践 课题名称: 12V/5A开关电源设计 作者:学号: 09034224系别:电气电子工程系 专业:电子工程信息技术 指导老师:专业技术职务教授

毕业综合实践开题报告 姓名:学号: 09034224 专业:电子信息工程技术 课题名称: 12V/5A开关电源设计 指导教师: 2011 年 12 月 19 日

本课题意义及现状、需解决的问题和拟采用的解决方案 随着电子技术的高速发展、电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益紧密,任何电子设备都离不开可靠的电源,他们对电源的要求也越来越高。特别是随着小型电子设备的应用越来越广泛,也要求能够提供稳定的电源,以满足小型电子设备的用电需要。现状:电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。 本设计基于这个思想,设计、制作了一个开关稳压电源,输入交流电220V,输出12V/5A的直流稳压电源,具有过电流、过电压、短路保护。 本电路采用自激式震荡电路(RCC),它是经济开关电源、安装方便、调试简单,元器件少。这个电路的功能适用于手机充电器和一些仪表电源是很实用的一个电路。 指导教师意见: 指导教师: 年月日 专业教研室审查意见: 教研室负责人: 年月日

课题摘要 随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用典型的正激式开关电源结构设计形式,以(RCC)作为控制核心器件,运用脉宽调制的基本原理,并采用辅助电源供电方式为其供电,有利于增大主电源的输出功率。采用场效应管作为开关器件,其导通和截止速度很快,导通损耗小,这就为开关电源的高效性提供保障。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障,本电路注意改善负载调整率,降低了电磁串扰,达到绿色环保的目的。输出电压可调,使其可适用于不同场合。 关键词高频变压器场效应管正激式变换器脉宽调制

开关电源基础知识简介

1、输出纹波噪声的测量及输出电路的处理 PWM 开关电源的输出的纹波噪声与开产频率有关。其纹波噪声分为两大部分:纹波(包括开关频率的纹波和周期及随机性漂移)和噪声(开关过程中产生)。 周期及随机性漂移 在纹波与噪声的测量过程中,如果不使用正确的测量方法将无法正确地测量出真出的输出纹波噪声。下面是推荐的测量方法: 平行线测量法:输出管脚接平行线后接电容,在电容两端使用20MHz C 为瓷片电容,负载与模块之间的距离在51mm 和76mm(2in.和3in)之间。 在大多数电路中, 2、多路输出的交互调节及其应用 交互调节的优点。图中lo1路负载电流、Vo2为辅助路输出电压。由图可见,20% 100% Io2 在主路负载从20%~100%变化时,辅助路输出电压随 辅助路负载电流的变化曲线中,辅助路输出电压始终在±4%范围之内。即使在最坏的情况,即主路空载、辅助路江载,主路满载、辅助路空载时其输出电压也能保证在标称电压的±10%范围之内。由此,对于输出稳压精度要求不太高的情况下,这种不稳压的辅助输出不仅能够满足供电的条件,而且相对成本低、器件少、可靠性高。建议用户首先考虑不稳压的辅助输出的电源模块。 开关电源基础知识简介

3、容性负载能力与电源输出保护 建议用户对电源模块的阻性负载取大于10%额定负载,这样模块工作比较稳定。 电容作为电源去耦及抗干扰的手段,在现代电子线路中必不可少,本公司的电源模块考虑此因素,都有相当的容性负载能力。但由于考虑到电源的综合保护能力,尤其是输出过载保护, 容性负载能力不可能太大,否则保护特性将变差。因此用户在使用过程中负载电容总量不应 超过最大容性负载能力。 Vo 输出电流保护一般有四种方式: ●恒流式:当到达电流保护点时,输出电流随负载的 进一步的加重,略有增加,输出电压不断下降。 ●回折式:当到达电流保护点时,输出电流随负载的 的加重,输出电压不断下降,同时输出电流也不断下降。 ●恒流-截止式:当到达电流保护点时,首先是恒流式 ●精确自恢复截止式:输出电流到达保护点,电源模块输出被禁止,负载减轻电路自恢复。 在大部分电路中使用恒流式与截止式较多,比较理想的保护方式是精确自恢复截止式,或者恒流-截止式保护。其中恒流式、回折式保护本质上就是自恢复的,但输出短路时的功耗较大, 尤其是恒流式。而截止式、恒流-截止式保护的自恢复特性须加辅助复位电路来完成自恢复,其 输出过载时的功耗可以通过复位电路的周期进行调整,即调整间歇启动的时间间隔。一般电流 保护1.2~2倍标称输出电流。精确自恢复截止式电流保护点设定为标称输出电流1.2倍或1.3倍。 一般输出有过压嵌位保护。 4、负载瞬态响应 当输出的负载迅速发生变化时,输出的电压会出现 上冲或下跌。电源模块经过调整恢复原输出电压。这个 响应过程中有两个重要的指标:过冲电压( Vo)和恢复 时间(tr)。过冲越小,恢复时间越短,系统响应速度 越快。一般在25%的标称负载阶跃变化,输出电压的 过冲为4%VO,恢复时间为500μS左右。 5、外围推荐电路 1)输出电压的调节: 本公司产品中有TRIM输出管脚的产品,可以通过电阻或电位器对输出电压进行一定范围内的调节。将电位器的中心与TRIM相连,在有+S,-S管脚的模块中,其他两端分别接+S、-S,没有相应主路的输出正负极(+S接Vo1,-S接GND上,调节电位器即可。辅路跟随主路调节。电位器阻值根据输出电压的大小选用5~20K?比较合适。一般微调范围为±10%。

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

开关电源设计教程—理论基础篇

前工程师讲解:开关电源设计教程—理论基础篇 2015-02-06 09:24 来源:电源网作者:铃铛 很多工程师都能回想起自己初学电源时的情景,从最基础的理论基础开始,大量的查阅资料。经历了迷茫和困惑,用时间一点点的积累。小编将为大家整理一系列有关开关电源设计的教程,几乎包含了开关电源的所有拓扑。这些教程由前工程师编写,根据自身的自学经验为大家量身打造,希望能够帮助大家走出迷茫,尽快迈上正轨。 对于初学者来说,最难的不是学习资料,而是找到并且区别哪些资料是有价值的,并且哪些是有必要的。为了新手能够快速找到学习的路子,快速入门,真的迈进开关电源这个世界,现在将常用的拓扑一个一个写出来,用最简单,通俗的语言,用工程实践检验过的最可靠的理论。 先说说做开关电源需要具备的理论基础,做电源的工程师,分两类,一类是搞研究的,一类是搞工程的。 所谓搞研究的,就是研究各种新的技术、新材料、新工艺、新的拓扑结构等等。这些人需要很高的理论底子,当然必须是高学历,数学、电磁学、电子学、自动控制等等。 还有一种就是我们最常见的电源工程师,就是在公司开发部做项目的电子工程师。本文面对的是第二类的,也就是面对应用阶层的电源设计工程师。 必须加一句,像陶显芳老师赵修科老师这一类的大神级别的大师写的书,新手完全没必要使劲啃的,很费时费力。大可囫囵吞枣看一下,能懂多少是多少。然后在慢慢成长的过程中,回头再看,就会有很大的收获。 我们是做工程的,他们搞理论基础的。大师写的书,一下子完全看懂,不大可能。那些书很多方面写得很详细,有完整的理论推导,包括的也非常全面。但是我还是奉劝新手不要在数学公式里面纠结。 那些书完全可以作为技术手册来使用。做技术都有一个成长的过程,到了一定的程度,那些书就很有用处了。 应用类的工程师需要必须具备的理论基础有:模拟电子技术基础。先说模拟电子技术的学习深度问题。刚毕业,一般都不可能把模电学好,谁要是真的觉得自己刚毕业就很棒,那就有两种可能,要么自己自高自大,不知天高地厚。要么就是跟导师真正实际做过项目,并且勤奋学习理论的人。对于我们做电源的工程师来说,模电必须懂的东西列举一下: 电阻:电阻是各种电子电路里面最基础的原件,电阻在开关电源里面的应用主要有各种控制返回电路的分压网络,然后就是吸收回路里面的功率耗散。我们设计中必须关注的有电阻的封装,功耗,耐压,精度。 三极管:三极管在开关电源中有两类用途:第一,做开关管。开关电源的开关管现在主要有Mos管,三极管,IGBT。第二,信号处理。三极管在开关电源的控制电路里面,用的最多的也就是做个保护电路里面简单的小信号开关,然后就是做线性稳压电源(主电路里面的辅助电源)。 需要懂什么呢,刚开始,知道三极管怎么打开,怎么关闭就好。然后知道什么是线性工作状态,什么是开关状态。书上那些乱七八糟的计算,先放下来,平时基本用不上,用到了,再去查,很快就看懂了。千万不要一头钻进理论里面去,浪费时间,浪费精力,用到的时候,第一参考元器件规格书,第二请教别人,然后再回头看书。 二极管:正向导通,反向截止。知道什么是二极管结电容,二极管的关断时间,反向耐压,正向导通电压,正向持续电流,脉冲电流这些概念就OK了,基本够用了。工作中遇到问题,然后再回头看书。

各种开关电源介绍-开关电源设计知识大全

开关电源介绍 一、基础知识: 新型变压器:磁性元件,新型磁材料和新型变压器的开发。如集成磁路,平面型磁心,超薄型变压器;以及新型变压器如压电式,无磁芯印制电路变压器等,使开关电源的尺寸重量都可减少许多。 硬开关的条件下MOSFET和IGBT开关损耗分析: 1).开通损耗方面:由于MOSFET的输出电容大,器件处于断态时,输入电压加在输出电容上,输出电容储存较大能量。在相继开通时这些能量全部消耗在器件内,开通损耗大。器件的开通损耗和输出电容成正比,和频率成正比和输入电压的平方成正比[12]。而IGBT的输出电容比MOSFET小得多,断态时电容上储存的能量较小,故开通损耗较小。 2).关断损耗方面:MOSFET属单极型器件,可以通过在施加栅极反偏电压的方法,迅速抽走输入电容上的电荷,加速关断,使MOSFET关断时电流会迅速下降至零,不存在拖尾电流,故关断损耗小[10];而IGBT由于拖尾电流不可避免,且持续时间长(可达数微秒),故关断损耗大。 综合以上分析,硬开关条件下MOSFET的开关损耗主要是由开通损耗引起,而IGBT则主要是由关断损耗引起。因此使用MOSFET作为主开关器件的电路,应该工作于ZVS条件下,这样在器件开通前,漏极和源极之间的电压先降为零,输出电容上储存能量很小,可以大大降低MOSFET的开通损耗;而使用IGBT作为主开关器件的电路,应该工作于ZCS条件下,这样在器件关断前,流过器件的电流先降为零,可以大大降低因拖尾电流造成的关断损耗。 软开关:当电流过零时,使器件关断;当电压过零时,使器件开通-实现开关损耗为零。 变流器:把输入的电源,进行电压、电流变换,达到规定的要求后输出给用电设备。 DC-DC:直流变压器。斩波器。 为什么反激开关电源只能适合小功率?200W以下。正激开关电源适合大功率开关电源? 高效率小体积(高功率密度)一直是DC-DC变换器用户的追求,也是设计的要点。提高功率密度最有效的方式就是提高开关频率,线圈和变压器对高速变化的磁力线感应灵敏度高、特别高效率,衰减特别小,传递效率特别高,而对低频变化的磁力线灵敏度低、衰减大,传递效率差,因此高频下的磁芯体积会大幅度减小,但频率的提高会使开关管的开关损耗加大,对变换器的效率造成影响。如何在高频下减小开关管的开关损耗,是DC-DC变换器是否能实现高效率高功率密度的关键,在这种背景下,高频软开关技术逐渐成为研究的热点,LLC谐振变换器是在串联谐振变换器的基础上增加了一个与负载并联的电感,是目前效率最高的开关电源。

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

开关电源中的光耦经典电路设计分析

开关电源中的光耦经典电路设计分析 光耦(opticalcoupler )亦称光电隔离器、光耦合器或光电耦合器。它是以光 为 媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED 与受光器(光敏 半导体管)封装在同一管壳。当输入端加电信号时发光二极管发出光线,光敏三 极管接受光线之后就产生光电流,从输出端流出,从而实现了 “电一光一电”转换 典型应用电路如下图1-1所示。 光耦典型电路 TTL ? i=ow 0=OFF ■ 1_1 ■耦开关控 制流电机怕路图 光耦的主要优点是:信号单向传输,输入端与输出端完全实现了前端与负载 完 全的电气隔离,输出信号对输入端无影响,减小电路干扰,简化电路设计,工 作稳定,无触点,使用寿命长,传输效率高。光耦合器是 70年代发展起来的新 型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、 斩 波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离 5V icon R3 330 -----------------------

信号传输、脉冲放大、固态继电器(SSR )仪器仪表、通信设备及微机接口中。 在单片开关电源中,利用线性光耦合器可构成光耦反馈电路, 通过调节控制端电 流来改变占空比,达到精密稳压目的。 常用于反馈的光耦型号有 TLP521、PC817等。这里以TLP521为例,介绍这 类 光耦的特性。图2-1所示为光耦部结构图以及引脚图。 21 TLP521内部結构及管脚庄 TLP521的原边相当于一个发光二极管,原边电流 If 越大,光强越强,副边 三 极管的电流Ic 越大。副边三极管电流Ic 与原边二极管电流If 的比值称为光耦 的电 流放大系数,该系数随温度变化而变化,且受温度影响较大。作反馈用的光 耦正是 利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变 化剧烈 的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。此外, 6

RCC开关电源设计详细讲解39308

目录 摘要 ABSTRACT 绪论 第一章.RCC电路基础简介 1.1RCC电路工作原理 1.2RCC电路的稳压问题 1.3RCC电路占空比的计算 1.4RCC电路振荡频率的计算 1.5RCC电路变压器的设计 第二章.简易RCC基极驱动的缺点及改进设计 2.1 简易RCC电路的缺点 2.2 开关晶体管恒流驱动的设计 第三章.RCC电路的建模及仿真 3.1 RCC电路的建模及参数设计 3.1.1 主要技术指标 3.1.2 变压器的设计 3.1.3 电压控制电路的设计 3.1.4 驱动电路的设计 3.1.5 副边电容、二极管参数的设计

3.1.6 其他辅助电路的设计 3.2 RCC电路的仿真 3.2.1 RCC电路带额定负载时的仿真及设计标准的验证 3.2.2 RCC电路带轻载时的仿真 3.3 RCC电路的改进及改进后的仿真 3.3.1 RCC电路的恒流设计 3.3.2带有恒流源的RCC电路的仿真 第四章 RCC电路间歇振荡的应用实例 4.1 三星S10型放像机中的RCC型开关电源

RCC电路间歇振荡现象的研究 摘要:RCC变换器通常是指自振式反激变换器。它是由较少的几个器件就可以组成的高效电路,已经广泛用于小功率电路离线工作状态。由于控制电路能够与少量分立元件一起工作而不会出现差错,所以电路的总的花费要比普通的PWM反激逆变器低。一方面,当其控制电流过高时就会出现一种间歇振荡现象,从而使得电路的振荡周期在很大围变化,类如例如从数百赫兹到数千赫兹之间变化,因而在较大功率输出时将引起变压器等产生异常的噪音,所以需要抑制这种现象的产生。另一方面,当电路的输出功率输出较小时,却可以利用这种间歇振荡,使开关电路处于低能耗状态。当需要电路工作时,只需给电路一个信号脉冲即可。电路本文主要通过实验仿真的方法在RCC电路中加入某些特定的电路从而达到抑制消除这种间歇振荡,同时还简要阐述一些利用间歇振荡的例子。 Abstract:The self-oscillating flyback converter, often referred to as the ringing choke converter (RCC), is a robust, low component-count circuit that has been widely used in low power off-line applications. Since the control of the circuit can be implemented with very few discrete components without loss of performance, the overall cost of the circuit is generally lower than the conventional PWM flyback converter that employs a commercially available integrated control .

基于TL494的开关电源设计_毕业设计

毕业设计报告书设计题目:基于TL494的开关电源制作系部:电子信息系 专业:新能源应用技术 班级:能源1001

基于TL494的12V开关电源制作 摘要 随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备与人们的工作、生活的关系日益密切。近年来 ,随着功率电子器件(如GTR、MOSFET)、PWM技术以及电源理论发展 ,新一代的电源开始逐步取代传统的电源电路。该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文是基于TL494的12V开关电源设计,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。 关键词:直流磁偏自激振荡TL494

目录 第1章开关电源基础技术 (1) 1.1 开关电源概述 (1) 1.1.1 开关电源的工作原理 (1) 1.1.2 开关电源的组成 (2) 1.1.3 开关电源的特点 (3) 1.2 关电源典型结构 (3) 1.2.1 串联开关电源结构 (3) 1.2.2 并联开关电源结构 (4) 第2章开关电源主控元件 (6) 2.1 功率晶体管(GTR) (6) 2.1.1 功率晶体管的结构 (6) 2.1.2 功率晶体管的工作原理 (7) 2.1.3 功率晶体管的特性与参数 (7) 2.2 电力场效应晶体管(MOSFET) (8) 2.2.1 电力场效应晶体管特点 (8) 2.2.2 MOSFET的结构和工作原理 (8) 第3章开关电源中的TL494 (10) 3.1 TL494的内部功能 (10) 3.2 TL494的特点 (10) 3.3 TL494的工作原理 (11) 3.4 TL494内部电路 (12) 第4章开关电源的原理图设计 (14) 4.1 交流滤波设计 (14) 4.2 整流桥电路设计 (14) 4.3 半桥逆变和全波整流设计 (16) 4.4 变压器电路设计 (16) 4.5 主控电路设计 (17) 4.6 滤波电路设计 (18)

史上最全的开关电源设计经验资料

三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。 则代入k 后,dB =μ0×I ×dl ×R/4πR 3 对其积分可得B = 3 40R C R Idl ?? π μ

相关文档
最新文档