二阶常系数线性非齐次微分方程特解简易求法讲解

二阶变系数线性微分方程的特解

二阶变系数线性微分方程的特解 张金战 ( 陇南师范高等专科学校, 甘肃成县 742500) 摘要: 在已知二阶变系数齐次微分方程的一个非零特解的条件下, 可以得到 该齐次微分方程和与它对应的非齐次微分方程的通解, 本文给出了在二阶变系数齐次微分方程的系数满足一定条件下的特解形式. 关键词: 线性微分方程; 特解; 通解 中图分类号: O 175.1 文献标识码: A 文章编号: 1008- 9020( 2007) 02- 014- 02 1 、引言对于方程( 2) 的特解的确定, 有以下结论: 2二阶变系数线性微分方程是指定理 1 若存在实数 a,使 a+ap(x)+q(x)=0, 则方程( 2) 有特 ax 解 y=e. 1y"+p(x)y'+q(x)y=f(x) ( 1) 2axax2ax 证明 : 设 a+ap(x)+q(x)=0, 将 y=e,y'=ae, y"=ae代入方 111y"+p(x)y'+q(x)y=0 ( 2) 2axaxaxax 2程( 2) 的左端得 : ae+aep (x)+eq (x)=e[a+ap (x)+q (x)]=0, 即其中 p( x) ,q(x),f(x)都是关于 x 的连续函数, 方程( 1) 称为 ax y=e是方程( 2) 的特解. 1二阶变系数非齐次线性微分方程, 方程( 2) 称为方程( 1) 对应 x推论1 若 q(x)+p(x)+1=0,则方程( 2) 有特解 y=e. 1的齐次微分方程. 在已知方程( 2) 的一个非零特解的条件下, - x推论 2 若 q(x)- p(x)+1=0,则方程( 2) 有 特解 y=e. 1文[1]给出了求方程( 2) 的通解的刘维尔公式, 文[2]、文[3]给出 推论 3 若 q(x)=0,则方程( 2) 有特解 y=1. 1了方程( 1) 的一个通解公式.这样将求解方程( 1) 和( 2) 的问题 2 定理 2 若 k?1 且 k(k- 1)+kxp(x)+xq(x)=0,则方程( 2) 有特就转化成了找出方程( 2) 的一个非零特解的问题 , 但求方程 k解 y=x. 1( 2) 的特解没有一般方法, 通常用观察法, 多数情况下难以操 2kk- 1证明 : 设 k (k- 1)+kxp (x)+xq (x)=0, 将 y=x,y'=kx,y"=k

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?++-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-? , 1 3134673(31) k a a k k += ??????+ , 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36347 01[1][] 2323562356(31)33434673(31) n x x x x x y a a x n n n n =+++++++++?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级 2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值 条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?++-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0,,,1 n n a a a a a n -==== - 因而 567891111 ,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i = 的值代回2012n n y a a x a x a x =+++++……就得到 521 3 2!! k x x y x x k +=+++++ 2 422 (1),2!! k x x x x x xe k =++++ += 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的

常系数非齐次线性常微分方程解法之一pdf

常系数线性微分方程复习 一、常系数线性微分方程的形式和名词解释 1. n 阶常系数线性微分方程的标准形式为: ) (1)1(1)(t f y a y a y a y n n n n =+′+++??L 其中 a 1,a 2,L ,a n 是常数,f (t )为连续函数 2. n 阶微分方程的含有n 个独立的任意常数的解,叫做一般解(通解)。 3. 微分方程不含任意常数的解,叫做特解。 4. 把微分方程与初始条件合在一起叫做微分方程的初值问题。初值问题的解是即满足 微分方程又满足初始条件的特解。 二、常系数线性齐次微分方程的解法 01)1(1)(=+′+++??y a y a y a y n n n n L 其中a 1,a 2,L ,a n 是常数,等号右端自由项为零 1. 求齐次线性微分方程的特征方程(只要将齐次线性微分方程式中的 y (k )换写成 λk , k = 0,1,L ,n ,即得其特征方程)。 011 1=++++??n n n n a a a λλ λL 2. 求特征方程的根(称为微分方程的特征根)。 3. 求得了方程的 n 个特征根,就可得到微分方程的n 个线性无关的一般解(根的形 式不同,解的形式也不同)。 (1) 特征方程有n 个互异的实根 λ1, λ2 ,L ,λn 。 方程的通解为 t n t t c c c y n 21e e e 21λλλ+++=L 例 求齐次微分方程032=?′?′′y y y 的通解 特征方程 0322=??λλ 求出特征方程的根3121=?=λλ 方程的通解 t t c c y ?+=e e 231 (2) 特征方程有n 个实根,但存在重根(设λ0是方程的k 重根)。 方程的通解为 t n t k t k k c c t c t c c y k n 10e e )e (1121λλλ++++++=++?L L 例 求齐次微分方程043=?′′+′′′y y y 的通解 特征方程0432 3 =?+λλ 求出特征方程的根21 321?===λλλ

最新二阶变系数线性微分方程的一些解法

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程的 一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1 +u 2 12dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x) dx dy 1 +q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 212dx y d +p(x) dx dy 1 +q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1dz =-[1 y 2 +p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

二阶变系数齐次微分方程

毕业论文 题目二阶变系数齐次线性微分方程的若干解法 院系滨江学院 专业信息与计算科学 学生姓名xxx XX 学号xxxXX 指导教师XXX 职称教授 二O一二年五月二十日

目录 摘要 ...................................................................... 3 引言 . (3) 1、 用常数变易法求解二阶变系数齐次微分方程的解 (3) 1.1 已知方程的一个特解求通解 (3) 2、 化为恰当方程通过降阶法求解二阶变系数齐次微分方程的解 (5) 2.1求满足定理1的恰当方程的通解 ......................................... 5 2.2 求满足定理2的恰当方程的通解 (6) 3、 化为RICCAIT 方程求二阶变系数齐次线性微分方程的解 (6) 3.1若方程系数满足()'()p x q x =情况 ....................................... 8 3.2若方程系数满足()()1p x q x +=-情况 ................................... 9 3.3 若方程系数满足()()1p x q x -=情况 (10) 结束语 ................................................................... 11 参考文献 . (11)

二阶变系数齐次线性微分方程的若干解法 姓名 xx大学xx专业,南京 210044 摘要:二阶线性齐次微分方程无论是在微分方程理论上还是在应用上都占有重要位置。现在对于常系数的线性微分方程的解法研究已经比较完备。但对于变系数线性微分方程如何求解,却没有通用的方法,因此探求二阶变系数微分方程的解法就很有必要。本文主要讨论二阶变系数齐次线性微分方程的解法问题,通过利用常数变易法,和系数在满足特定条件下,化为恰当方程和riccati方程来求解二阶变系数齐次微分方程的解法,直接通过具体例题解决具有满足相同条件关系的二阶变系数齐次微分方程的解,从而进一步加深对二阶变系数齐次线性微分方程的解法的理解。 关键词:二阶变系数齐次线性微分方程;常数变易法;降阶法;恰当方程;riccati方程;通解; 引言:尽管由于计算数学和计算技术的迅猛发展,通过电子计算机可以迅速而且比较准确 地处理有关微分方程的求解问题。但是,在实际学习生活中对于一个常微分方程,不论从理论研究的角度,或从实际应用的角度看,都具有十分重要的地位。现在我们对于常系数线性微分方程的解法,已非常完备,但是对于理论比较完整的、有广泛应用的线性变系数微分方程至今却没有一般的求解方法,因此二阶变系数齐次微分方程的求解问题一直是人们感兴趣的研究课题。本文对系数满足特定条件的二阶变系数微分方程,通过观察其形式,巧妙利用常数变易法,化为恰当方程,和化为riccati方程来求解。主要针对不同类型的二阶变系数方程用不同的方法实现解决部分满足一定条件下的方程的解的目的。诣在通过具体例题的解法,解决系数满足特定条件下的二阶变系数齐次线性微分方程求解的问题,从而使我们能更进一步加深对二阶变系数齐次微分方程解法的理解,以便适应在工程技术的实际领域或学生在学习相关专业中的需要。 本文主要通过把方程转化为我们所熟悉形式,来讨论二阶变系数齐次微分方程 y p x y q x y ++= ''()'()0 (1)p x q x是关于x的连续函数。 的解,其中(),() 1、用常数变易法求解二阶变系数齐次微分方程的通解 1.1 已知方程一个特解求方程通解 在我们课本上所学的关于求解二阶常系数齐次线性微分方程,我们可以通过特征方程法求其线性无关的特解, 然后再利用微分方程解的相关性质从而求得其通解,对于这个方法我们已经很熟悉了。那对于二阶变系数齐次线性微分方程求解怎么进行?因为二阶变系数齐

二阶变系数线性微分方程的一些解法

第九节 二阶变系数线性微分方程 的一些解法 常系数线性齐次方程和某些特殊自由项的常系数线性非齐次方程的解法已在第七节中介绍,而对于变系数线性方程,要求其解一般是很困难的。本节介绍处理这类方程的二种方法 §9.1 降阶法 在第五节中我们利用变量替换法使方程降阶,从而求得方程的解,这种方法也可用于二阶变系数线性方程的求解。 考虑二阶线性齐次方程 22dx y d +p(x) dx dy +q(x)y =0 (9.1) 设已知其一个非零特解y 1,作变量替换,令 y =uy 1 (9.2) 其中u =u(x)为未知函数,求导数有 dx dy =y 1dx du +u dx dy 1 求二阶导数有22dx y d =y 122dx u d +2dx du dx dy 1 +u 2 12dx y d 代入(9.1)式得

y 122dx u d +(2dx dy 1+p(x)y 1)dx du +(212dx y d +p(x) dx dy 1 +q(x)y 1)u =0 (9.3) 这是一个关于u 的二阶线性齐次方程,各项系数是x 的已知函数,因为y 1是(9.1)的解,所以其中 212dx y d +p(x) dx dy 1 +q(x)y 1≡0 故(9.3)式化为 y 122dx u d +(2dx dy 1+p(x)y 1) dx du =0 再作变量替换,令dx dy =z 得 y 1dx dz +(2dx dy 1 +p(x)y 1)z =0 分离变量 z 1 dz =-[1y 2+p(x)]dx 两边积分,得其通解 z =21 2y C e -∫p(x)dx 其中C 2为任意常数 积分得u =C 2∫21 y 1e -∫p(x)dx dx +C 1代回原变量得(9.1) 的通解 y =y 1[C 1+C 2∫21 y 1e -∫p(x)dx dx ]

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy ΛΛΛΛΛ (3.1) 的方程组,(其中n y y y ,,,21Λ是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n Λ使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ΛΛ==成立,则 )(,),(),(21x y x y x y n Λ称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21Λ的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ΛΛΛΛΛ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x ΛΛΛΛΛΛΛΛ 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y ===Λ的解,叫做初值问题的解。

常系数非齐次线性微分方程的几种解法

常 广东广州 华南师范大学 (郑海珍20052201323 李璇20052201333) 『摘要』:常系数非齐次线性微分方程是微分方程中典型的一类,它 在自然科学领域里有比较广泛的应用。本文收集并归纳了求非齐次线性微分方程特解的几种方法,包括常数变易法、化为高维线性微分方程组的方法、代换降阶法、比较系数法,以及在比较系数法的基础上推广而出的简易待定系数法。以求更多地收集并掌握求非齐次线性微分方程特解的方法。 『关键词』:常系数非齐次线性微分方程; 特解; 通解; 『正文』: 常系数非齐次线性微分方程形如: )()2(2)1(1)(t f x p x p x p x n n n n =++++-- (1) 的求解步骤一般是:先求方程(1)对应齐次方程的基本解组 )(),(),(21t x t x t x n , 再设法求出方程(1)的一个特解 ) (~t x ,则方程(1)的通解易得为 ),(~)()(1 t x t x c t x n i i i +=∑= n i c i ,,2,1, =为任意常数。一般来说,求齐次线性微分方程的基本解组比较容 易,问题在于怎样求解方程(1)的特解)(~t x 。下面将一一介绍几种求方程(1) 的特解的方法。 首先给出本文常用符号:

n n n p p F +++=- )1(1)()(λλλ 为方程(1)的特征方程。k λλλ,,,21 是特征根,其对应的重数分别为 k u u u ,,21。)(,),(),(21t x t x t x n 是方程(1)对应齐方程的基本解组。 一、 常数变易法 [ 1 ] 可设方程(1)的特解形如: )()()()()()()(~2211t x t c t x t c t x t c t x n n +++= ………………… (1.1) 其中n i c i ,,2,1, =是待定常函数。将其代入方程(1),并附加n-1个条件,便可得方程组(*) ??????? ??='++'+'='++'+'=''++''+''='++'+'------)()()()(0)()()(0)()()(0)()()()1(2)1(21 )1(1)2(2)2(21 )2(122 112211t f t c x t c x t c x t c x t c x t c x t c x t c x t c x t c x t c x t c x n n n n n n n n n n n n n n ………………(*) 解方程组(*)得到)(,),(),(21 t c t c t c n ''' 的表达式,对它们分别进行积分,从而得n i c i ,,2,1, =,再将它们代入(1.1)式中,继而得到了方程(1)的一个特解 )(~t x 。 此法对于自由项)(t f 的形式没有限制,故使用范围较广。但求解的工作量 大。 二、 将方程(1)化成为高维线性方程组的方法 [ 1 ] 令 , ,,,) 1(21-='==n n x x x x x x 则 ,,,,)1(13221 n n n x x x x x x x x x =='=''='='='-- ) ()(121)2(2)1(1)(t f x p x p x p t f x p x p x p x x n n n n n n n n +----=+----=='---

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

第八节二阶常系数齐次线性微分方程

第八节 二阶常系数齐次线性微分方程 教学目的:掌握二阶常系数齐次线性微分方程的特征方程,特征根,及对应于特征根的三种 情况,通解的三种不同形式。 教学重点:特征方程,特征根,及对应于特征根的三种情况,通解的三种不同形式。 教学难点:根据特征根的三种不同情况,得到三种不同形式的通解。 教学内容: 若 22()()0d y dy P x Q x y dx dx ++= (1) 中(),()P x Q x 为常数,称之为二阶常系数齐次微分方程,而(1)称之为二阶变系数齐次微分方程。 记: '''0y py qy ++= (2) 将rx y e =代入(2)中有2()0rx r pr q e ++=,称20r pr q ++=为(2)的特征方程。 20r pr q ++= (3) 设12,r r 为(3)的解。 (1)当12r r ≠即240p q ->时,1 212r x r x y C e C e =+为其通解。 (2)当12r r r ==即240p q -=时, (3)只有一个解rx y Ce =。 (3)当r i αβ=±即240p q -<时,有()i x y e αβ±=是解。 利用欧拉公式可得实解,故通解为 12(cos sin )x y e C x C x αββ=+。 求二阶常系数齐次线性微分方程 '''0y py qy ++= (2) 的通解的步骤如下: 1. 写出微分方程(2)的特征方程 2 0r pr q ++= (3) 2. 求出特征方程(3)的两个根1r 、2r 。

3. 根据特征方程(3)的两个根的不同情形,按照下列表格写出微分方程(2)的通解: 例1 求微分方程230y y y ''--=的通解。 解 所给微分方程的特征方程为 2230r r --= 其根121 ,3r r =-=是两个不相等的实根,因此所求通解为 312x x y C e C e -=+ 例2 求方程222 0d s ds s dt dt ++=满足初始条件0|4t s ==,0|2t s ='=-的特解。 解 所给方程的特征方程为 2210r r ++= 其根121r r ==-是两个相等的实根,因此所求微分方程的通解为 ()12t s C C t e -=+ 将条件0|4t s ==代入通解,得14C =,从而 ()24t s C t e -=+ 将上式对t 求导,得 ()224t s C C t e -'=-- 再把条件0|2t s ='=-代入上式,得22C =。于是所求特解为 ()42t s t e -=+ 例3 求微分方程250y y y '''-+=的通解。 解 所给微分方程的特征方程为

一阶线性非齐次微分方程

一阶线性非齐次微分方程一、线性方程 方程 dy dx P x y Q x += ()() 1 叫做一阶线性微分方程(因为它对于未知函数及其导数均为一次的)。 如果 Q x()≡0,则方程称为齐次的; 如果 Q x()不恒等于零,则方程称为非齐次的。 a)首先,我们讨论1式所对应的齐次方程 dy dx P x y += ()0 2 的通解问题。 分离变量得dy y P x dx =-() 两边积分得ln()ln y P x dx c =-+ ? 或 y c e P x dx =?-?() 其次,我们使用所谓的常数变易法来求非齐次线性方程1的通解。 将1的通解中的常数c换成的未知函数u x(),即作变换 y u e P x dx =?-?() 两边乘以得P x y uP x e P x dx ()()() ?=-? 两边求导得dy dx u e uP x e P x dx P x dx ='- -?-? ()() () 代入方程1得

'=-?u e Q x P x dx ()() , '=?u Q x e P x dx ()() u c Q x e dx P x dx =+??()() 于是得到非齐次线性方程1的通解 []y e c Q x e dx P x dx P x dx =?+-???()()() 将它写成两项之和 y c e e Q x e dx P x dx P x dx P x dx =?+?--????()()()() 【例1】求方程 dy dx y x x -+=+21 132() 的通解。 解:] 23)1([1212dx e x c e y dx x dx x ??++??=+-+-- ] 23)1([22)1(ln )1(ln dx e x c e x x +-+??++?= =+?++-?()[()]x c x dx 1121 2 =+?++()[()]x c x 12121 2 由此例的求解可知,若能确定一个方程为一阶线性非齐次方程,求解它只需套用公式。

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++=L (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ?

注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --? ??=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1)的解等于 一阶线性齐次常微分方程( A.2)的通解()d p x x Ce -?加上函数()d ()d *()()d p x x p x x y x e e f x x -??=?。容易验证,*()y x 是方程(A.1)的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程 解 此时()2()1p x f x =-=,,由(A.5)式,解为 其中C 是任意常数。 A.2 二阶线性常微分方程 将具有以下形式的方程 "()'()()y p x y q x y f x x I ++=∈,, (A.6) 称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x 的已知连续函数。称 "()'()0y p x y q x y x I ++=∈,, (A.7) 为与(A.6)相伴的齐次方程. A .2.1 二阶线性微分方程解的结构 首先讨论齐次方程(A.7)解的结构。

二阶线性偏微分方程的分类与小结

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

二阶常系数齐次线性微分方程的通解证明教学提纲

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明 来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。 一、二阶常系数齐次线性微分方程的通解分析 通解公式:设0y py qy '''++=,,p q 为常数,特征方程02=++q p λλ的特征根为 12,λλ,则 1)当12λλ≠且为实数时,通解为1212x x y C e C e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+; 证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++= 212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=, 令2z y y λ'=-,则11110x dz z z z z c e dx λλλ'-=? =?=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得 221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----??=+=+?? (1)

一阶偏微分方程基本知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 1.1首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y , ( 1.1) 在变换 ( ) 1'12,,,,n n y y y y y y -=== ( 1.2) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=? ? ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。但是除了常 系数线性方程组外,求一般的( 1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。先看几个例子。 例1 求解微分方程组 ()()22221,1.dx dy y x x y x y x y dt dt =-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()2222221 12 d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( 1.5) 1C 为积分常数。( 1.5)叫做( 1.4)的首次积分。

第二章 二阶线性偏微分方程的分类

第二章 二阶线性偏微分方程的分类 1.把下列方程化为标准形式: (1)02=+++++u cu bu au au au y x yy xy xx 解:因为 02 22112 12=?-=-a a a a a a 所以该方程是抛物型方程,其特征方程为 12 2 =-± =a a a a dx dy 。 它只有一族实的特征线 c x y =- 在这种情况下,我们设x y -=ξ,x =η(或令y =η,总之,此处η是与ξ无关的任一函数,当然宜取最简单的函数形式x =η或y =η)。 方法一:用抛物型方程的标准形式 ][12122 F Cu u B u B A +++- =ηξηηη 先算出: ? ??? ? ? ?? ? ? ?-====?+?+?+?+?=++++=?+-+?+?+?=++++==?+?+=++=b c C b c b a a a b b a a a B c b a a a b b a a a B a a a a a a a A y x yy xy xx y x yy xy xx y y x x 0F ,1010020 2 1)1(0020 2 002 2212212112 2122121112 221221122ηηηηηξξξξξηηηη ∴])[(1 u bu u c b a u +++--=ηξηη 即 01=+ + -+ u a u a b u a b c u ηξηη 方法二:应用特征方程,作自变量变换,求出 ??? ??=+-=+-=+--==+-= ,2 ,ξξηξξξηηξηξξηηηξξηξξξηξu u u u u u u u u u u u u u u u u u yy xy xx y x 代入原方程得,0)(=++-+u bu u b c au ηξξη

相关文档
最新文档