盐胁迫对植物的影响及植物的抗盐机理

盐胁迫对植物的影响及植物的抗盐机理
盐胁迫对植物的影响及植物的抗盐机理

盐胁迫对植物的影响及植物的抗盐机理

摘要: 盐是影响植物生长和产量的主要环境因子之一, 根据国内外最新的研究资料, 从盐胁迫对植物的生长、水分关系、叶片解剖学、光和色素及蛋白、脂类、离子水平、抗氧化酶及抗氧化剂、氮素代谢、苹果酸盐代谢、叶绿体超微结构的影响, 及影响光合作用的机制等方面入手, 对植物盐胁迫研究现状及进展情况进行了综述, 旨在为开展植物抗盐机理研究、选育培育耐盐植物新品种提供依据。

关键词: 植物盐胁迫抗盐性机理

Effects of Salt Stress on Plants and the Mechanism of Salt Tolerance

Abstract: Salinity is the major environmental factor limit ing plant growth and productivity. According to the documents and data at home and abroad, the research currents of salt stress in plants were summarized including the effect on plant growth, the water relations, leaf anatomy, photosynthetic pigments and proteins, lipids, ion levels, antioxidative enzymes and antioxidants etc. This r eview may help to study the salt2toler ant mechanism and breeding new salt-toler ant plants.

Key words: plant, salt2stress, salt2tolerant, mechanism

目前, 受全球气候变化、人口不断增长的影响,土壤盐碱化日趋严重。盐分是影响植物生长和产量的一个重要环境因子, 高盐会造成植物减产或死亡。过去的二十年已有很多有关盐胁迫生物学及植物对高盐反应的报道。这些研究涉及到胁迫相关的生物学、生理学、生化及植物对盐胁迫产生的一些复杂的反应等很多方面。本文分别在盐胁迫对植物产生的影响、植物抗盐途径、抗盐的生理基础和分子机制等方面进行了综述。

1 盐胁迫对植物的影响

各种盐类都是由阴阳离子组成的, 盐碱土中所含的盐类, 主要是由四种阴离子(Cl- 、SO42- 、CO32- 、HCO3- ) 和三种阳离子( Na+ 、Ca2+ 、Mg2+ ) 组合而成。阳离子与Cl- 、SO42- 所形成的盐为中性盐; 阳离子与CO32- 、HCO3- 所形成的盐为碱性盐, 其中对植物危害的盐类主要为Na 盐和Ca 盐, 其中以Na盐的危害最为普遍。盐胁迫下, 所有植物的生长都会受到抑制, 不同植物对于致死盐浓度的耐受水平和生长降低率不同。盐胁迫几乎影响植物所有的重

要生命过程, 如生长、光合、蛋白合成、能量和脂类代谢。

1. 1 对生长及植株形态的影响

盐胁迫会造成植物发育迟缓, 抑制植物组织和器官的生长和分化, 使植物的发育进程提前。植物被转移到盐逆境中几分钟后, 生长速率即有所下降,其下降程度与根际渗透压呈正比。最初盐胁迫造成植物叶面积扩展速率降低, 随着含盐量的增加, 叶面积停止增加, 叶、茎和根的鲜重及干重降低。盐分主要是通过减少单株植物的光合面积而造成植物碳同化量的减少。在控制条件下测试了11 种木麻黄属植物以后, 发现木麻黄的发芽率和生长速率随NaCl浓度的增加而降低[1] 。植物叶片中Na+ 的过量积累常见叶尖和叶缘焦枯( 钠灼伤) , 而且会抑制对钙的吸收, 造成植物的缺钙现象, 新叶抽出困难, 早衰, 结实少或不结实;

Ca2+ 过量可能导致缺乏硼、铁、锌、锰等养分;Mg2+过量则会使植物叶缘焦枯, 导致缺钾, 老叶叶尖叶缘开始失绿黄化, 直至焦枯。SO2-4 离子浓度高也会引起缺钙, 使植物的叶片发黄, 从叶柄处脱落。氯离子的过量积累也会引起氧灼伤, 植株生长停滞、叶片黄化, 叶缘似烧伤, 早熟性发黄及叶片脱落, 而且还会影响硝态氮的吸收和利用。

1. 2 对水分关系的影响

植物的水势和渗透压势与盐分的增加呈负相关, 而细胞膨胀压则会随着盐分的增加而升高。

多年生草Urochondr a setulosa 在含盐基质上培养时,叶片的水分、渗透势和气孔导度与盐分的增加具有极大的负相关, 压力势随着盐分的增加而降低[2] 。在盐地碱蓬中, 随着盐分的增加, 叶片的水势和蒸发

速率会显著降低, 然而它的叶片相对含水量却没有变化[ 3] 。

1. 3 对叶片解剖学的影响

盐分会增加豆类、棉花叶片的表皮厚度、叶肉厚度、栅栏细胞长度、栅栏细胞直径和海绵细胞的直径。相反, 红树植物小花鬼针草叶片中, 表皮和叶肉的厚度及细胞间隙会随NaCl 处理水平的升高而迅速减小。番茄中叶面积和气孔密度随盐浓度的升高而降低[4] 。盐胁迫会导致甘薯叶片中液泡形成、内质网部分膨胀、线粒体脊数目减少、线粒体膨大、囊泡形成、液泡膜破碎或胞质降解[5] 。

1. 4 对光和色素及蛋白的影响

通常在盐胁迫下, 叶片中叶绿素含量和类胡萝卜素总量下降, 老叶枯萎并凋落。盐胁迫下, 番茄叶片中Chl- a+ b、Chl- a 和B- 胡萝卜素的含量降低[6] 。藻青菌中藻青蛋白/ 叶绿素比降低, 而类胡萝卜素/ 叶绿素却没有明显变[ 7] 。小麦经NaCl处理后, 262kDa 蛋白含量增加, 132和202kDa 蛋白含量减少, 242kDa 蛋白完全消失[ 8] 。小花鬼针草中一种232kDa 的多肽在400 mM NaCl 处理45 天后会完全消失, 而当盐胁迫消失时, 这条蛋白带重新出现[9] 。

1. 5 对脂类的影响

脂类对于很多生理胁迫的耐受都有很重要的作用, 不饱和脂肪酸可以消除水胁迫和盐胁迫的危害。花生中脂类含量在低浓度NaCl 条件下增加, 高盐下降低[10] 。NaCl 胁迫下, 盐沼草根部质膜中脂类成份发生改变, 而且固醇和磷脂的摩尔比随盐分的增加而降低, 但固醇/ 磷脂却不受影响[ 11] 。从抗100 mM NaCl 番茄愈伤组织中分离的质膜囊泡中,磷脂和固醇含量较高, 磷脂/ 游离固醇较低磷脂脂肪酸不饱和指数较低[ 12] 。

1. 6 对离子水平的影响

盐胁迫下, 植物在吸收矿物元素的过程中, 盐离子与各种营养元素相互竞争而造成矿质营养胁迫,严重影响植物正常生长。高浓度Na+ 严重阻碍植物对K+ 的吸收和运输。在很多植物中, Na+ 和Cl-含量随NaCl 处理水平的升高而增加, 而Ca2+ , K+和Mg2+ 含量降低。200 mM NaCl 处理后, 骆驼刺叶Na+ 含量是对照的45 倍, 而且植株在叶片含有如此高浓度Na+ 的情况下仍然没有死亡[13] 。盐分会增加蚕豆Na+ 、Cl- 和Ca2+ 含量, 而K+ / Na+ 降低[ 14] 。

1. 7 对抗氧化酶及抗氧化剂的影响

盐胁迫影响植物体内SOD、CAT 和POD 等抗氧化酶类的活性。刘婉等认为, 盐胁迫下小麦叶片中抗坏血酸含量下降, 用活性氧清除剂处理可明显缓解抗坏血酸含量下降, 且外源抗坏血酸能明显缓解由盐胁迫造成的细胞膜伤害[15] 。Sreenivasulu 等用相同浓度梯度的NaCl 处理耐盐和盐敏感的谷

子, 发现耐盐谷子幼苗中总SOD 活性随盐浓度的提高而逐渐升高, 盐敏感幼苗中总SOD 的活性逐渐下降[ 16] 。

1. 8 对氮代谢的影响

硝酸还原酶具有催化NO-3 到NO-2 的还原作用, 这种酶对盐胁迫很敏感。盐胁迫下甘薯叶片内硝酸还原酶活性(NRA) 呈不同程度的降低, 引起其反应底物NO-3 的累积及反应产物NO-2 的下降, 使一系列含氮化合物的代谢紊乱, 叶片总氮含量下降[ 17] 。鹰嘴豆中盐会通过降低结瘤生长及固氮酶的活性, 从而抑制氮素固定[18] 。盐胁迫下小花鬼针草叶片中NRA 活性、总氮含量及硝酸盐吸收水平都会受到抑制[9] 。盐土植物冰草经盐刺激后, Mc-ICDH1 表达并在叶中积累, 表皮细胞和维管组织中NADP- ICDH 蛋白表达量最高。铁氧还蛋白依赖型谷氨酸合成酶在叶片中的活性及转录水平降低[ 19] 。

1. 9 对苹果酸盐代谢的影响

在高等植物叶绿体中, NADP- MDH 将草酰乙酸转化为苹果酸。盐生植物冰草受盐胁迫时, 处于稳定状态的NADP- MDH 的转录水平瞬间降低, 然后升高至对照的三倍, 而根中的转录水平却非常低,不受盐胁迫的影响, 说明此酶可能参与CAM 过程中的CO2 固定途径[19] 。柠檬桉用NaCl 处理3 周后, 植株Na+ 水平升高, 植株生长没有受到抑制, 苹果酸代谢途径发生改变[20] 。

1. 10 对叶绿体超微结构的影响

盐胁迫使叶绿体中类囊体膜成分与超微结构发生改变。盐胁迫下, 甘薯叶肉细胞中叶绿体的类囊体膜膨胀, 大部分破碎[21] ; 马铃薯叶绿体基粒垛叠的数目和高度降低, 类囊体膨胀, 淀粉粒变大[22] ; 番茄叶片中叶绿体聚集, 细胞膜变形卷曲, 叶绿体基粒或类囊体结构消失[ 6] 。电镜下可以清楚的观察到叶绿体超微结构的改变, 包括出现巨型淀粉粒、类囊体膜膨胀、附近的叶绿体基粒消失、叶肉细胞变大等现象[ 23] 。盐胁迫下小花鬼针草叶片中叶绿体的类囊体结构出现明显的损坏[24] 。

1. 11 盐胁迫影响光合作用的机制

有很多报道证明盐胁迫会影响光合作用[18] , 但也有一些报道发现, 低盐刺激不会抑制光合作用而且有时对光合有促进作用[ 13] 。骆驼刺叶片中CO2同化率在低盐( 50 mM NaCl) 条件下升高, 在100mM NaCl 处理后没有显著变化, 而经200 mM NaCl处理后, CO2 同化率降低到对照的60% 。气孔电导率的变化趋势与CO2 同化率一致, 细胞间CO2 浓度降低[ 25] 。桑树经盐胁迫后, CO2 同化率、气孔电导率和蒸腾速率降低, 而细胞间CO2 浓度升高[ 26] 。NaCl 胁迫降低紫花苜蓿叶片中叶绿素含量和净光合速率, 增加呼吸速率和CO2 补偿点浓度, 而类胡萝卜素含量没有显著影响[15] 。盐胁迫抑制螺旋藻光合作用的表观量子效率及PS ò活性, 显著促进PS?活性和暗呼吸。整个电子传递链的活性也会降低, 而且这种活性不能被人工电子供体二苯基二氨尿所恢复。低盐( 100 mM) 条件下PS ò电子传递速度增加, 而高盐会降低PS ò电子传递速度。盐胁迫下, 随着盐浓度的提高PS ò电子传递速度明显下降。盐胁迫下植物的光合速率较低, 但是光合潜能受到的影响不显著。光合速率的降低可能有以下几方面的原因: ( 1) 细胞膜脱水降低了对CO2 的渗透性; ( 2) 盐毒害; ( 3) 气孔主动关闭引起的CO2 供应量减少; ( 4) 盐分引起衰老叶片增多; ( 5) 细胞质结构改变引起的酶活性发生变化; ( 6) 库活力降低引起的负反馈。植物对盐胁迫的反应涉及到生理和生化两个方面的变化, 目的是在高渗透压的外界环境中仍然保持水分平衡及正常的光合活性, 对盐胁迫产生耐受。研究盐分影响光合作用的机制可以帮助我们改善植物的生长条件并提高产量, 为将来的基因工程育种提高依据。

2 植物的抗盐机理

抗盐性是植物在高盐基质上生长并完成整个生命周期的一个能力。根据适应能力的不同可把植物分为盐生植物与淡土植物。能在高盐环境中生存并生长良好的植物称为盐生植物。不同的盐生植物,虽然它们都生活在同样的高盐分下, 但其抗盐机理却是不一样的。迄今为止, 植物耐盐机理尚不十分清楚。

2. 1 植物抗盐的生理基础

2. 1. 1 渗透调节

渗透调节能力是植物耐盐的最基本特征之一。盐生植物体内存在着一套渗透调节机制, 通过无机离子和有机亲和物质的参与, 降低细胞液的渗透势,从而使水分顺利地进入植物体内, 保证了植物生理活动的进行。参与渗透调节的无机离子主要是Na+ 、K+ 、Ca2+ 和Cl- 。很多非盐生植物选择K+ 而排斥Na+ , 而盐生植物却选择Na+ 排斥K+ 。盐生植物体内含有高浓度的Na+ 被认为与它的抗盐性有紧密的关系。为了保持液泡中的离子平衡, 细胞质中要累积大量低分子量的成分, 如多元醇、糖类、氨基酸及其衍生物。细胞内脯氨酸的积累可以提高

植物的耐盐性。在盐胁迫条件下, 脯氨酸可以作为渗透调节剂、氮源、酶和细胞结构保护剂, 防止质膜通透性的变化, 保护质膜的完整性, 稳定膜结构。此外, 近几年来还发现了一些大分子量的蛋白质如调渗蛋白、胚胎发育晚期丰富表达蛋白LEA等。这些溶质分子不但能降低细胞渗透势, 增强吸水能力, 以维持细胞膨压, 提高植物对逆境的适应能力, 还能稳定酶、蛋白复合体( 如PS ò外周多肽) 等生物大分子的结构与功能, 保持膜的有序态, 在细胞内起渗透调节作用[27] 。因此, 这些物质一般也称之为渗透调节物质。

2. 1. 2 离子的区域化

植物重要的耐盐机制之一就是离子平衡和区域化。离子平衡是组织或细胞保持内部稳定状态的一种方式, 这种方式使植物在外界环境刺激下有效地降低细胞内Na+ 的浓度, 增加K+ 的吸收, 恢复Na+ / K+ 比例, 使细胞获得耐盐性。Na+ 的区域化可以保护在高盐条件下细胞质中基本酶反应的正常进行, 并且可以维持正常的膨压[28] 。盐生植物受盐胁迫时, 往往把盐从细胞质和细胞器中清除出去, 使其集中于液泡中, 这种现象称为盐的区域化。一方面使渗透压保持一定梯度, 让水分进入细胞; 另一方面维持细胞质中正常的盐浓度, 避免高浓度盐对质膜的伤害, 保持生物酶活性, 维持细胞内离子平衡。非盐生植物一般不具有离子区域化的能力。离子在液泡中的区域化主要依赖于离子的跨膜运输。

2. 1. 3 改变光合作用途径

盐胁迫会通过降低水势抑制光合作用。所以,耐盐的主要途径应该是增加水的利用率。一些盐生植物, 如豆瓣绿属植物、马齿苋科植物以及番茄科植物冰草等, 在盐渍或水分胁迫下可以改变光合碳同化途径, 即由C3 途径变为CAM 途径。CAM 植物在夜间开放气孔进行CO2 的吸收和固定, 白天气孔关闭减少蒸腾失水。一些盐生植物如獐毛, 在盐渍条件下, 其代谢途径可由C3 途径改变为C4 途径, 增强了光合作用。

2. 1. 4 抗氧化防御系统的活性

植物的膜系统主要是由膜脂和膜蛋白组成的。植物受盐胁迫时, 体内会产生大量的氧自由基( 活性氧) , 从而引起膜脂的氧化伤害。植物体内有抗氧化

的过氧化酶系统, 当受盐胁迫时, 过氧化酶系统活动加强, 以清除过多的活性氧。盐胁迫下植物体内抗氧化防御系统由一些能清除活性氧的酶系和抗氧化

物质组成, 如SOD、POD、CAT、ASA、GSH、类胡萝卜素等, 它们协同起作用共同抵抗盐胁迫诱导的氧化伤害, 单一的抗氧化酶不足以防御这种氧化胁迫。在盐胁迫下, 植物体内SOD 等酶的活性与植物的抗氧化胁迫能力呈正相关, 而且在盐胁迫下, 盐生植物与非盐生植物相比, 其SOD、CAT 、POD 活性更高,因而更能有效地清除活性氧, 阻抑膜脂过氧化。

2. 1. 5 植物激素调节

盐胁迫下, 植物体内的IAA、CTK、GA、ETH、ABA 等均发生不同程度的变化, 但最复杂的变化是ABA 和CTK。大多数植物在盐胁迫下表现出不同程度的ABA 积累。Munns 和Sharp 认为, 在盐胁迫下ABA 作为最初调节过程的信号调节植物对盐胁迫的适应性反应[29] 。短期盐胁迫下植物生长主要受根部盐渗透的影响, 叶片生长受ABA 的调节。长期盐胁迫下, 植物生长受抑主要来自离子毒害。对

耐盐性不同的植物, 如棉花、大麦、番茄和菜豆等的研究均发现, ABA 具有调节植物对长期盐胁迫的反应, 提高植物耐盐性的作用。许多实验也证实外源ABA 能提高离体细胞对盐分的适应性和促进蛋白质的合成, 增强植物抗盐性[30] 。

2. 2 植物耐盐的分子机制

在分子水平上, 盐胁迫可使植物中一些基因的表达状况发生改变, 合成或抑制某些蛋白质的合成,提高其抗盐性。在植物耐盐相关基因的克隆方面,近十多年来主要涉及到渗透调节、光合作用与代谢、钙调蛋白、通道蛋白的基因克隆等几个方面。根据编码蛋白的类型, 抗盐基因可以分为三类: 渗透调节酶类基因、离子区域化酶类基因和自由基清除酶类基因。

2. 2. 1 渗透调节酶类基因

在正常条件下这些渗透调节物质的调控基因表达量极低, 但是在盐胁迫条件下会大量表达并产生一些小分子有机物, 如脯氨酸、甜菜碱、糖醇等。通过这些小分子物质维持细胞渗透势, 提高植物的耐盐性。

3 结语与展望

综上所述, 我们不难看出利用转基因技术培育耐盐品种为抗盐育种的研究开辟了广阔的应用前景, 特别是将现代生物技术与传统育种方法相结合,为抗盐育种取得突破展示了希望。当前, 应用于植物耐盐性改良的外源目的基因主要包括编码膜上离子转运的蛋白基因、编码渗透调节产物的合成酶基因、抗氧化物质的合成酶基因等。这些基因除了在模式植物中表达并提高了转基因耐盐性之外, 部分

基因在一些具有重要经济价值的作物如水稻、小麦、棉花等也进行了异源表达研究, 转基因作物的耐盐性得到了改良。但应该指出的是, 尽管一些转基因作物在田间也表现了耐盐性的提高, 盐胁迫条件下一些重要的农艺性状也得到改良, 但由于植物耐盐性是一个受多基因控制的复杂的数量性状, 其耐盐机制涉及到

从植株到器官、组织、生理生化直至分子的各个水平, 机制十分复杂。到目前为止, 对植物耐盐的分子机制并不十分清楚, 真正意义的能用于生产的转基因抗盐作物尚未问世, 仍有大量的工作等待人们去完成。继续深入探讨其耐盐性机制将有助于我们在耐盐育种中取得突破性进展。随着突变体筛选技术、植物基因工程、分子生物学技术在植物耐盐研究上的广泛应用, 人们对植物耐盐机制的理解将更为深入。自然界里存在着许多天然的耐盐植物如碱篷、滨黎等, 我们可以用这些植物为对象, 对它们的耐盐机制进行研究并分离抗盐基因, 并用这些抗盐基因进行转基因植物研究。将会有更多的耐盐突变体和耐盐转基因植物被培育出来, 最终培育出能够广泛应用于生产的耐盐作物品种, 从而推动我国和世界的盐碱地及次生盐碱地的开发利用。

参考文献

[ 1] 马焕成, 蒋东明. 木本植物抗盐性研究进展. 西南林学院学报,

1998, 18( 1) : 52~ 59

[ 2] Gulzar S, Khan M A, Ungar IA. Salt tolerance of a coast al salt

marsh grass. Commun. Soil Sci. Plant Anal, 2003, 34: 2595~ 2605

[ 3] Lu C M. , Qiu N W, Lu, Q T. Does salt stress lead to increased sus2

cept ibility of photosystem II to photoinhibit ion and changes in pho2

tosynthetic pigment composit ion in halophyt e Suaeda salsa grown

outdoors?. Plant Sci, 2002, 163: 1063~ 1068

[ 4] Romeroaranda R, Soria T , Cuart ero J. T omato plant2wat er upt ake

and plant2water relat ionships under saline growth condit ions. Plant

Sci, 2001, 160: 265~ 272

[ 5] Mit suya S, Takeoka Y, Miyake H . Effect s of sodium chloride on fo2

liar ult rast ructure of sweet pot ato plant let s grown under light and

dark condit ions in vitro. J . Plant Physiol, 2000, 157: 661~ 667

[ 6] Khavarinejad RA, Mostofi Y. Effect s of NaCl on photosynth etic

pigment s, saccharides, and chloroplast ult rast ructure in leaves of

tomato cult ivars. Photosynthet ica, 1998, 35: 151~ 154

[ 7] Lu CM, Vonshak A. Characterization of PS II photochemist ry in

salt- adapted cells of cyanobact erium Spirulina plat ensis. NewPhy2

tol , 1999, 141: 231~ 239

[ 8] Elsh int inawy F, Elshourbagy M N. Alleviat ion of changes in protein metabolism in NaCl stressed wheat seedlings by thiamin e. Biol

Plant , 2001, 44: 541~ 545

[ 9] Parida AK, Das AB, Mohanty P. Defense pot ent ials to NaCl in a mangrove: different ial changes of isoforms of some antioxidat ive en2 zymes. J. Plant Physiol, 2004, 161:531~ 542

[ 10] Hassanein AM. Alterations in prot ein and esterase patt erns of peanut in response to salinity stress. Biol. Plant , 1999, 42: 241 ~

248

[ 11] Wu J L, Seliskar DM, Gallagh er JL. St ress tolerance in the marsh plane Spartina pat ens: impact of NaCl on growth and root plasma membrane lipid composit ion. Physiol Plant , 1998, 102: 307~ 317

[ 12] Kerk eb L, Donaire J P, RodriguezRosales M P. Plasma membrane

H+ - ATPase act ivity is involved in adapt at ion of tomato calli to NaCl. Physiol Plant , 2001, 111: 483~ 490

[ 13] Kurban H , Saneoka H, Nehira K. Effect of salinity on growth, photosynthesis and mineral composition in l eguminous plant Alha2

gi p seud oalhagi . Soil Sci. Plant Nut r. , 1999, 45: 851~ 862

[ 14] Gadallah MAA. Effect s of proline and glycinebet aine on Vici a f a2 ba response to salt st ress. Biol. Plant, 1999, 42: 249~ 257

[ 15] 刘婉, 胡文玉. NaCl 胁迫下离体小麦叶片内抗坏血酸与几种生理生化指标变化的关系. 植物生理学通讯, 1997, 33( 6) : 423 ~

425

[ 16] Sreenivasulu, Grimm B, Wobus U. Different ial response of ant iox i2 dant compounds to salinity st ress in salt2tolerant and salt2sensit ive seedings of f ox tail mil let . Phsiol. Planta, 2000, 109: 435~ 442

[ 17] 刘伟, 潘延国, 柯玉琴. 盐胁迫对甘薯叶片氮代谢的影响. 福建农业大学学报, 1998, 27: 490~ 494

[ 18] Soussi M,Lluch C, Ocana A. Comparat ive study of nitrogen fixa2

t ion and carbon met abolism in two chick2pea cult ivars under salt

st ress. J. Exp. Bot . , 1999, 50: 1701~ 1708

[ 19] Popova OV, Ismailov SF, Popova TN. Salt2induced expression of NADP- dependent isocit rate dehydrogenase and ferredoxin2depen2 dent glut amat e synthase in M. cryst all inum. Planta, 2002, 215:

906~ 913

[ 20] DeAragao MEF, Jolivet Y, Lima MD. NaCl2induced changes of

NAD( P) malic enzyme act ivit ies in Eucalyptus ci triodora leaves.

T rees- St ruct . Funct , 1997, 12: 66~ 72

[ 21] Mit suya S,T akeoka Y, Miyake H . Effect s of sodium chloride on foliar ult rast ructure of sweet pot ato ( Ip omoea batat as Lam. ) plantlet s grown under light and dark conditions in vit ro. J. Plant Physiol. , 2000, 157: 661~ 667

[ 22] Bruns S,Hecht C. Light and elect ron2microscope studies on the leaves of several potato cult ivars aft er applicat ion of salt at various

development al stages. Pot ato Res. , 1990, 33: 33~ 41

[ 23] Keiper F, Chen D, DeFilippis L. Respiratory, photosynthet ic and ultrast ructural changes accompanying salt adapt at ion in E . mi cro2 corys. J. Plant Physiol, 1998, 152: 564~ 573

[ 24] Parida AK, Das AB, Mit tra B. Effect s of NaCl stress on the st ruc2 ture, pigment complex compsit ion and photosynthet ic act ivity of mangrove Bruguiera parviflora chloroplasts. Photosynthet ica,

2003, 41: 191~ 200

[ 25] Agast ian P, Kingsley SJ, Vivekanandan M. Effect of salinity on photosynthesis and biochemical charact erist ics in mulberry geno2 types. Photosynthet ica, 2000, 38: 287~ 290

[ 26] Khavarinejad RA, Chaparzadeh N. The effects of NaCl and CaCl2

on photosynthesis and growth of alfalfa plants. Photosynthet ica, 1998, 35: 461~ 466

[ 27] 李永华, 邹琦. 植物体内甜菜碱合成相关酶的基因工程. 植物

生理学通讯, 2002, ( 38) 5: 500~ 505

[ 28] Gaxiola R A,Rao R, Sherman A, et al. The Arabidopsis thal iana proton t ransport ers, AtNhx1 and Avp1, can funct ion in cat ion detoxificat ion in yeast . Proc. Nat l.Acad. Sci. USA, 1999, 96: 1480

~ 1485

[ 29] Munns and Sharp. Involvenent of abscisic acid in cont rolling plant growth in soils of low water pot ent ial. Aust J Plant Physiol, 1993,

20: 425~ 437

[ 30] Eberhardt and Wegamnn. Effect s of abscisic acid and proline on adapation of tobacco callus cultures to salinity and osmot ic stock. J Plant Physiol, 1989, 76: 282~ 288

[ 31] Delauney A J, Verma DPS. A soybean gene encoding $ 12pyrro2

line2 s2carboxylat e reductase was isolated by funct ional comp lemen2 tation in E . col i and is foun d to be osmoregulat ed. Mol Gen

Gendt, 1990, 221: 299~ 305

[ 32] 郭蓓, 邱丽娟, 李向华等. 植物盐诱导基因的研究进展. 农业

生物技术学报, 1999, 7 ( 4) : 401~ 408

[ 33] Kishor P B, Hong Z, Miao G, et al. Overexpression of delt a12 pyrroline252carboxylat e synthase increases proline product ion and confers osmotolerance in t ransgenic plants. Plant Phys iol. 1995,

108: 1387~ 1394

[ 34] Apse M P, Blumwald E Engineering salt tolerance in plants. Cur2 rent Opinion in Biot echnology, 2002, 13: 146~ 150

[ 35] Falkenberg P, Storm AR. Purificat ion and characterization of os2 moregulatory betaine aldehyde dehydrogenase of E . coli . Biochim BiophysAct a, 1990, 1034: 253~ 259

[ 36] 王慧中, 黄大年, 鲁瑞芳等. 转mt lD/ gutD 双价基因水稻的耐盐性. 科学通报, 2000, 45 ( 7) : 724~ 729

[ 37] Garg A K, Kim J, Owens TG, et al. T rehalose Accumulat ion in

Rice Plant s Confers H igh T olerance Levels to Different Abiotic Stresses. Proc Nat l Acad Sci USA. 2002, 99( 25) : 15898~ 15903

[ 38] Glenn E P, Brown J J , Blumwald E. Salt tolerance and crop po2

t ent ial of halophyt es. Crit Rev Plant Sci, 1999, 18: 227~ 256

[ 39] Apes M P, Aharon GS. Salt tolerance conferred by overexp res2 sion of a vacuolar Na+ /H+ ant iport in A rabidopsis. Science,

1999, 285: 1256~ 1258

[ 40] Shi H, Ishit aniM, Kim C. The A rabidopsis thaliana salt tolerance gene SOS1 encodes a put at ive Na+ / H+ ant iport er. Proc Natl Acad Sci USA, 2000, 97 ( 12) : 6896~ 6901

[ 41] Wadit ee R, Hibino T, T anaka Y, et al. Overexpression of a Na+ / H+ ant iport er confers salt tolerance on a freshwater cyanobacteri2 um, making it capable of growth in sea wat er. Proc Natl Acad Sci

U SA, 2002, 99: 4109~ 4114

[ 42] Ma X L, Zhang Q, Sh i H Z, et al. Molecular cloning and different expression of a vacuolar Na+ /H+ antiporter gene in Suaeda salsa under salt st ress. Biologia Plantarum, 2004, 48 ( 2) : 219~ 225

[ 43] Brini F, Gaxiola R A, Berkowit z G A, et al. Cloning an d character2 ization of a wheat vacuolar cat ion /proton antiporter and pyrophos2 phatase proton pump. Plant Physiology and Biochemistry, 2005,

43:347~ 354

[ 44] Zorb C, Noll A, Karl S, Leib K, Yan F, Schubert S. Molecular charact erization of Na+ /H+ ant iport ers ( ZmNHX) of maize ( Zea mays L. ) and their expression under salt stress. J Plant Physiol, 2005, 162( 1) : 55~ 66

[ 45] He C, Yan J, Shen G, Fu L, et al. Expression of an Arabidopsis vacuolar sodium/ proton ant iport er gene in cotton improves photo2 synthet ic performance under salt con dit ions and increases fiber yield in the field. Plant and Cell Physiology, 2005, 46( 11) : 1848

~ 1854

[ 46] T anaka Y, Hibino T, Hayashi Y et al. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn2SOD in chloroplast s, Plant Science, 1999, 148: 131~ 138

[ 47] Kazuo Tsugane, Kyoko Kobayashi, Yasuo Niwa, et al. A Recessive Arabidopsis Mut ant That Grows Photoautot rophically under Salt Stress Shows Enhanced Act ive Oxygen Detox ificat ion . T he Plant Cell, 1999, 11:1195~ 1206

[ 48] Van Camp W, Capiau K, Van Mont agu M, et al. Enhancement of oxidat ive st ress tolerance in transgen ic tobacco plant s overex press2 ing Fe ~ superoxide dismut ase in chloroplast s. Plant Physiol.

植物对盐胁迫的反应

植物对盐胁迫的反应 植物对盐胁迫的反应及其抗盐机理研究进展 杨晓慧1,2,蒋卫杰1*,魏珉2,余宏军1 (1.中国农业科学院蔬菜花卉研究所,北京100081;2.山东农业大学园艺科学与工程学院,山东泰安271018) REVIEW ON PLANT RESPONSE AND RESISTANCE MECHANISM TO SALT STRESS YANG Xiao-hui1,2,JIANG Wei-jie1*,WEI Min2,YU Hong-jun1( 1.Institute of Vegetables and Flowers,Chinese Academy of Agricultural Science,Beijing100081,China;2.College of Horticulture Science and Engineering,Shandong Agriculture University,Taian 271018,China) Key words:Iron stress,Osmotic stress,Salt resistant mechanism,Plant 摘要:本文从植物形态发育、质膜透性、光合和呼吸作用以及能量代谢等方面概述了盐胁迫下植物的生理生化反应,分析了盐害条件下离子胁迫和渗透胁迫作用机理以及植物的耐盐机制:植物小分子物质的积累、离子摄入和区域化、基因表达和大分子蛋白质的合成等,并简要综述了植物抗盐的分子生物学研究进展。 关键词:离子胁迫;渗透胁迫;耐盐机制;植物 中图分类号:S601文献标识码:A文章编号:1000-2324(2006)

盐胁迫对植物的影响

盐胁迫对植物的影响 植物的抗盐性: 我国长江以北以及沿海许多地区,土壤中盐碱含量往往过高,对植物造成危害。这种由于土壤盐碱含量过高对植物造成的危害称为盐害,植物对盐害的适应能力叫抗盐性。根据许多研究报道,土壤含盐量超过0.2%~0.25%时就会造成危害。钠盐是形成盐分过多的主要盐类,习惯上把硫酸钠与碳酸钠含量较高的土壤叫盐土,但二者同时存在,不能绝对划分,实际上把盐分过多的土壤统称为碱土。世界上盐碱土面积很大,估计占灌溉农田的1/3,约4×107ha,而且随着灌溉农业的发展,盐碱面积将继续扩大。我国盐碱土主要分布于西北、华北、东北和海滨地区,盐碱土总面积约2~7×107ha,而且这些地区都属平原,盐地土层深厚,如能改良盐碱危害,发展农业的潜力很大,特别应值得重视。 土壤盐分过多对植物的危害: 1.生理干旱:土壤中可溶性盐类过多,由于渗透势增高而使土壤水势降低,根据水从高水势向低水势流动的原理,根细胞的水势必须低于周围介质的水势才能吸水,所以土壤盐分愈多根吸水愈困难,甚至植株体内水分有外渗的危险。因而盐害的通常表现实际上是旱害,尤其在大气相对湿度低的情况下,随蒸腾作用加强,盐害更为严重,一般作物在湿季耐盐性增强。 2.离子的毒害作用:在盐分过多的土壤中植物生长不良的原因,不完全是生理干旱或吸水困难,而是由于吸收某种盐类过多而排斥了对另一些营养元素的吸收,产生了类似单盐毒害的作用。 3.破坏正常代谢:盐分过多对光合作用、呼吸作用和蛋白质代谢影响很大。盐分过多会抑制叶绿素生物合成和各种酶的产生,尤其是影响叶绿素-蛋白复合体的形成。盐分过多还会使PEP羧化酶与RuBP 羧化酶活性降低,使光呼吸加强。生长在盐分过多的土壤中的作物(棉花、蚕豆、番茄等),其净光合速率一般低于淡土的植物,不过盐分过多对光合作用的影响是初期明显降低,而后又逐渐恢复,这似乎是一种适应性变化。盐分过多对呼吸的影响,多数情况下表现为呼吸作用降低,也有些植物增加盐分具有提高呼吸的效应,如小麦的根。呼吸增高是由于Na+活化了离子转移系统,尤其是对质膜上的Na+、K+与A TP活化,刺激了呼吸作用。盐分过多对植物的光合与呼吸的影响尽管不一致,但总的趋势是呼吸消耗增多,净光合速度降低,不利于生长。 一、实验目的 盐胁迫对植物生长发育的各个阶段都有不同程度的影响,如种子萌发、幼苗生长、成株生长等。不同种类的植物受盐胁迫影响的程度也各不相同。本实验主要观察Na2CO3对小麦种子萌发过程的影响,探讨小麦种子在盐胁迫下的萌发特性,对小麦的耐盐能力做出了初步评价。通过实验了解盐胁迫对植物(种子萌发)的影响;掌握种子萌发过程中发芽率、发芽势、发芽指数、芽长、总长、芽重、总重等各项指标的观察和计算方法;各项指标在盐胁迫条件下的变化趋势,绘制盐浓度与生长指标相关曲线,并分析盐胁迫对种子萌发的影响。 二、仪器设备和材料 电子天平;培养皿(直径120mm),滤纸(直径125mm定量滤纸若干),500ml、200ml烧杯,250ml 容量瓶,10ml移液管,玻璃棒,镊子,毫米刻度尺,剪刀;次氯酸钠、碳酸钠;小麦种子等。 三、实验方法和步骤 1.预处理 (1)种子的预处理:用10%的次氯酸钠消毒10min,蒸馏水冲洗数次后,于培养皿中做发芽实验。

植物盐胁迫及其抗性生理研究进展解读

植物盐胁迫及其抗性生理研究进展 李艺华1罗丽2 (1、漳州华安县科技局华安 363800 2、福建农林大学园艺学院福州 350002 摘要:盐胁迫是制约农作物产量的主要逆境因素之一。本文综合了几年来植物盐胁迫研究的报道,对盐胁迫下植物生理生化和生长发育变化、植物自身生理系统的响应以及增强植物抗盐胁迫的方法进行综述和讨论。 关键词:植物抗盐胁迫生理 中图分类号:Q945.7 文献标识码:A 文章编号:1006—2327—(200603—0046—04 盐胁迫是目前制约农作物产量的主要逆境因素之一[1],既有渗透胁迫又有离子胁迫[2]。随着土壤盐渍化面积的扩展,许多非盐生植物因受盐胁迫而导致产量和品质的快速下降,已成为中国西北部和沿海地区迫切解决的难题。迄今,植物盐胁迫这方面有较多的研究报道,多数侧重于某一植物或是植物某一生长阶段耐盐胁迫性与抗盐胁迫性的研究,缺少对植物抗盐胁迫有一个较为系统的综合阐述。鉴于植物抗盐胁迫的研究面的广泛性和分散性,本文综合了几年来抗盐胁迫研究报道,对植物抗盐胁迫的生理机制做一个综合阐述,为阐明植物对盐胁迫的反应机制提供一个较系统的理论依据。 1 盐胁迫对植物生理生化和生长发育的影响 盐胁迫对植物生理生化的影响可分为三方面:离子毒害、渗透胁迫和营养亏缺。离子毒害作用包括过量的有毒离子钠和氯对细胞膜系统的伤害,导致细胞膜透性的增大,电解质的外渗以及由此而引起的细胞代谢失调;渗透胁迫是由于根系环境中盐分浓度的提高、水势下降而引起的植物吸水困难;营养亏缺则是由于根系吸收过程中高浓度Na和Cl 离子存在,干扰了植物对营养元素K、Ca和N的吸收,造成植物体内营养元素的缺乏,影响植物生长发育[1]。大量试验结果表明,盐胁迫不同程度地影响植物的光合作用、呼吸作用和渗透作用,影响植物的同、异化功能[3],当盐

植物耐盐性研究进展3

第5卷第3期北华大学学报(自然科学版)Vol.5No.3 2004年6月JOURNAL OF BEIHUA UN IV ERSIT Y(Natural Science)J un.2004 文章编号:100924822(2004)0320257207 植物耐盐性研究进展 于海武1,李 莹2 (1.北京林业大学生物科学与技术学院,北京 100083;2.北华大学林学院,吉林吉林 132013) 摘要:综述了植物的耐盐机理和植物耐盐育种的研究情况,讨论了耐盐基因工程研究中存在的一些问题,并重点对现有植物的耐盐性筛选和抗渗透胁迫基因工程中的诱导渗透调节剂合成做了论述. 关键词:耐盐性;耐盐机理;基因工程;渗透调节剂 中图分类号:S332.6 文献标识码:A  盐碱土是陆地上分布广泛的一种土壤类型,约占陆地总面积的25%.在我国,从滨海到内陆,从低地到高原都分布着不同类型的盐碱土壤[1],我国盐碱土的总面积约有3000多万hm2,其中已开垦的有600多万hm2,还有2000多万hm2盐荒地等待开垦利用[1].此外,全国约有600多万hm2,约占耕地总面积10%的次生盐渍化土壤.盐碱土主要分布在平原地区,地形平坦,土层深厚,一般都有较丰富的地下水源,对发展农业生产,尤其对于实现农业机械化、水利化极为有利,是一类潜力很大的土壤资源.目前,人们主要通过2种方式来利用盐碱地:1是通过合理的排灌、淡水洗涤、施用化学改良药剂来改造土壤[2],为植物创造有利的生长环境.实践证明,这种方法成本高,效果也不理想;2是选育和培育耐盐植物品种来适应盐渍环境并最终达到改善环境的目的,此方法更加具有应用前景. 1 植物的耐盐机理 植物耐盐性差别很大.根据植物耐盐能力的不同,可将植物分成非盐生和盐生植物2类.赵可夫等又将盐生植物分为3类:真盐生植物、泌盐盐生植物和假盐生植物[1].目前大部分的耐盐性研究工作都是以真盐生植物为基础开展的,所以对它的耐盐机理也就研究得比较多.近年来,在筛选和培育耐盐细胞系、转移渗透调节剂合成基因、合理利用盐诱导基因等方面都开展了许多研究工作,并取得了一些成果.许多研究表明:植物要适应盐渍化的生境,必须具备克服盐离子毒害(离子胁迫)和抵抗低水势(渗透胁迫)的能力,否则就无法生存[3,4].马建华等认为:植物在高盐土壤中主要先受到水分胁迫,而后就是离子胁迫[5].所以在耐盐机理中人们对离子区隔化和渗透调节做了相对较多的研究. 1.1 离子区隔化 许多真盐生植物通过调节离子的吸收和区隔化来抵抗或减轻盐胁迫.在植物体内积累过多的盐离子就会给细胞内的酶类造成伤害,干扰细胞的正常代谢.研究表明,盐胁迫条件下,植物细胞中积累的大部分无机离子被运输并贮藏在液泡中,使得植物因为渗透势降低而吸收水分,同时,避免了过量的无机离子对代谢造成的伤害,这就是离子的区隔化.在耐盐植物和非耐盐植物中都存在离子区隔化,这说明离子区隔化可能是植物所普遍具有的能力[6].盐的区隔化作用主要是依赖位于膜上的“泵”实现离子跨膜运输完成的[7,8].这种运输系统需要A TP酶,A TP水解产生能量将H+“泵”到液泡膜外,造成质子电化学梯度,驱动钠离子的跨膜运输,从而实现盐离子的区隔化.Na+积累于液泡维持了细胞质中较低的Na+/K+比例也是植物耐盐的特点之一[9]. 收稿日期:2003212204 基金项目:国家“973”计划项目(G1999016005) 作者简介:于海武(1977-),男,在读硕士,主要从事杨树抗逆性育种研究.

植物对盐胁迫的反应及其抗盐机理研究进展

山东农业大学学报(自然科学版),2006,37(2):302~305 Journa l of Shandong Agricu lt ura lUn i versity(Natura l Sc i ence) 文#献#综#述 植物对盐胁迫的反应及其抗盐机理研究进展 杨晓慧1,2,蒋卫杰1*,魏珉2,余宏军1 (1.中国农业科学院蔬菜花卉研究所,北京100081;2.山东农业大学园艺科学与工程学院,山东泰安271018) REV IE W ON PLANT RESPONSE AND RE SISTANCE M ECHAN IS M TO S ALT STRESS YANG X i a o-hu i1,2,JI A NG We i-jie1*,WE IM i n2,Y U H ong-jun1 (1.I n stitute ofV egetab l es and Flo wers,Ch inese A cade m y ofAgricu l tural Sci ence,Beijing100081,Ch i na; 2.Coll ege ofH orti cu lt u re Science and Engi n eeri ng,Shandong Agricu l tureU n i versit y,Ta i an271018,Ch i na) K ey words:Iron stress,Os motic stress,Salt resistantm echan i s m,Plant 摘要:本文从植物形态发育、质膜透性、光合和呼吸作用以及能量代谢等方面概述了盐胁迫下植物的生理生化反应,分析了盐害条件下离子胁迫和渗透胁迫作用机理以及植物的耐盐机制:植物小分子物质的积累、离子摄入和区域化、基因表达和大分子蛋白质的合成等,并简要综述了植物抗盐的分子生物学研究进展。 关键词:离子胁迫;渗透胁迫;耐盐机制;植物 中图分类号:S601文献标识码:A文章编号:1000-2324(2006)02-0302-04 1植物对盐胁迫的反应 1.1盐胁迫对植物形态发育的影响 盐胁迫对植物个体形态发育的整体表现为抑制组织和器官的生长,加速发育过程,缩短营养生长和开花期。P laut等(1985)研究发现,90mmol/L NaC l胁迫抑制甜菜块根的干物质积累,但低浓度NaC l可增加叶面积。Nunes(1984)认为这主要是细胞体积增加而不是细胞分裂的结果。盐分对佛手瓜的生长及腋芽的萌动均有抑制作用,幼苗的生长速度与中期细胞指数的变化具有一致性,说明盐分影响植物生长的途径是通过细胞的有丝分裂来完成的[2]。在NaC l胁迫(0.1%、0. 2%、0.3%、0.4%)条件下,马铃薯试管苗生长受到显著抑制,且随着盐浓度的增加,各处理间差异加大[3]。戴伟民等[4]研究发现,随盐浓度的增加,番茄幼苗的下胚轴粗度、侧根数逐渐减少,根干重逐渐降低。根据牟永花的研究,50、100mm ol/L NaC l使番茄株高和干物质积累均有不同程度的降低,但对根冠比无影响[5]。用25、50mmol/L NaC l处理黄瓜幼苗,发现植株株高、鲜重和干重均降低[6]。杨秀玲等[7]也发现,随着N aC l浓度(75、100、125、150mm ol/L)的增高,黄瓜幼苗地上和地下部鲜重以及根冠比(R/T)也均表现为下降。 1.2盐胁迫对植物生理生化代谢的影响 1.2.1水分平衡与质膜透性Levltt在1980年即指出,不同环境胁迫作用于植物时都会发生水胁迫。在盐胁迫下,植物细胞脱水,膜系统破坏,位于膜上的酶功能紊乱,各种代谢无序进行,导致质膜透性的改变。而且,高浓度NaC l可置换细胞膜结合的Ca2+,使膜结合Na+增加,膜结构和功能破坏,细胞内的K+、磷和有机溶质外渗。 1.2.2光合作用盐胁迫下,植物组织因缺水而引起气孔关闭,叶绿体受损,光合相关酶失活或变性,光合速率下降,同化产物合成减少。叶绿体是植物光合作用的主要场所,而类囊体膜是光能吸收、传递和转换的结构基础,植物进行光能吸收、传递和转换的各种色素蛋白复合体都分布在类囊体膜上。盐胁迫下,过量盐离子积累使类囊体膜糖脂含量显著下降,不饱和脂肪酸含量降低,而饱和脂肪酸含量升高,从而影响细胞膜的光合特性。叶绿素是类囊体膜上色素蛋白复合体的重要组成部分,所以盐胁迫下叶绿素含量的降低必将影响色素蛋白复合体的功能,使垛叠状态的类囊体膜比例减小,叶绿体中基粒数量和质量下降,光合强度降低[8]。 R ub isco(核酮糖-1,5-二磷酸羧化酶)和PEP(磷酸烯醇式丙酮酸)羧化酶是光合作用的两种重要酶。盐胁迫下,收稿日期:2005-06-25 基金项目:基金项目:国家863项目(2004AA247030,2004AA247010);国家科技攻关项目(2004BA521B01);农业部蔬菜遗传与生理重点开放实验室项目. 作者简介:杨晓慧(1980-),女,硕士研究生,从事设施园艺与无土栽培. *通讯作者:Aut hor f or correspo ndence.E-m a i:l ji ang w@j m ai.l https://www.360docs.net/doc/4f15281499.html,

作物耐盐性研究

作物耐盐性研究 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在%~%时就已对植物生长不利,而盐土表层含盐量往往可达%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼

苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 。 2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。 群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究

盐胁迫对植物的影响及植物的抗盐机理

盐胁迫对植物的影响及植物的抗盐机理 摘要: 盐是影响植物生长和产量的主要环境因子之一, 根据国内外最新的研究资料, 从盐胁迫对植物的生长、水分关系、叶片解剖学、光和色素及蛋白、脂类、离子水平、抗氧化酶及抗氧化剂、氮素代谢、苹果酸盐代谢、叶绿体超微结构的影响, 及影响光合作用的机制等方面入手, 对植物盐胁迫研究现状及进展情况进行了综述, 旨在为开展植物抗盐机理研究、选育培育耐盐植物新品种提供依据。 关键词: 植物盐胁迫抗盐性机理 Effects of Salt Stress on Plants and the Mechanism of Salt Tolerance Abstract: Salinity is the major environmental factor limit ing plant growth and productivity. According to the documents and data at home and abroad, the research currents of salt stress in plants were summarized including the effect on plant growth, the water relations, leaf anatomy, photosynthetic pigments and proteins, lipids, ion levels, antioxidative enzymes and antioxidants etc. This r eview may help to study the salt2toler ant mechanism and breeding new salt-toler ant plants. Key words: plant, salt2stress, salt2tolerant, mechanism 目前, 受全球气候变化、人口不断增长的影响,土壤盐碱化日趋严重。盐分是影响植物生长和产量的一个重要环境因子, 高盐会造成植物减产或死亡。过去的二十年已有很多有关盐胁迫生物学及植物对高盐反应的报道。这些研究涉及到胁迫相关的生物学、生理学、生化及植物对盐胁迫产生的一些复杂的反应等很多方面。本文分别在盐胁迫对植物产生的影响、植物抗盐途径、抗盐的生理基础和分子机制等方面进行了综述。 1 盐胁迫对植物的影响 各种盐类都是由阴阳离子组成的, 盐碱土中所含的盐类, 主要是由四种阴离子(Cl- 、SO42- 、CO32- 、HCO3- ) 和三种阳离子( Na+ 、Ca2+ 、Mg2+ ) 组合而成。阳离子与Cl- 、SO42- 所形成的盐为中性盐; 阳离子与CO32- 、HCO3- 所形成的盐为碱性盐, 其中对植物危害的盐类主要为Na 盐和Ca 盐, 其中以Na盐的危害最为普遍。盐胁迫下, 所有植物的生长都会受到抑制, 不同植物对于致死盐浓度的耐受水平和生长降低率不同。盐胁迫几乎影响植物所有的重 要生命过程, 如生长、光合、蛋白合成、能量和脂类代谢。 1. 1 对生长及植株形态的影响 盐胁迫会造成植物发育迟缓, 抑制植物组织和器官的生长和分化, 使植物的发育进程提前。植物被转移到盐逆境中几分钟后, 生长速率即有所下降,其下降程度与根际渗透压呈正比。最初盐胁迫造成植物叶面积扩展速率降低, 随着含盐量的增加, 叶面积停止增加, 叶、茎和根的鲜重及干重降低。盐分主要是通过减少单株植物的光合面积而造成植物碳同化量的减少。在控制条件下测试了11 种木麻黄属植物以后, 发现木麻黄的发芽率和生长速率随NaCl浓度的增加而降低[1] 。植物叶片中Na+ 的过量积累常见叶尖和叶缘焦枯( 钠灼伤) , 而且会抑制对钙的吸收, 造成植物的缺钙现象, 新叶抽出困难, 早衰, 结实少或不结实; Ca2+ 过量可能导致缺乏硼、铁、锌、锰等养分;Mg2+过量则会使植物叶缘焦枯, 导致缺钾, 老叶叶尖叶缘开始失绿黄化, 直至焦枯。SO2-4 离子浓度高也会引起缺钙, 使植物的叶片发黄, 从叶柄处脱落。氯离子的过量积累也会引起氧灼伤, 植株生长停滞、叶片黄化, 叶缘似烧伤, 早熟性发黄及叶片脱落, 而且还会影响硝态氮的吸收和利用。 1. 2 对水分关系的影响 植物的水势和渗透压势与盐分的增加呈负相关, 而细胞膨胀压则会随着盐分的增加而升高。

盐分胁迫对植物生长和生理影响

盐分胁迫对植物生长生理的影响 张华新,刘正祥等研究了光叶漆、银水牛果等11种树种后发现,盐胁迫后,各树种的苗高生长量下降、生物量累积减少,且随着处理浓度的增加均呈下降趋势,,各树种的根冠比值增大1 王润贤,周兴元,葛晋纲等人对草的研究后发现,在草坪草适应范围之内,根系活力和蛋白质含量呈先升后降的趋势,如超过忍受范围则持续下降。随盐分胁迫强度的增加和胁迫时间的延长,草坪草叶片的WSD上升,脯氮酸含量均表现为先升后降的趋势,但因胁迫程度和草种的不同,其峰值和下降幅度有较大差异。各项生理指标变化的趋势因草种的不同而有较大的差异,与其耐盐性有关,可以作为判定草坪草抗盐能力的评定依据。2 孙方行,李国雷对刺槐进行3天和17天盐胁迫处理后发现,MDA含量和细胞膜透性存在极显著正相关。叶绿素浓度和可溶性蛋白含量也存在极显著关。SOD活性和叶绿素浓度成负相关。从逐步回归分析可以看出细胞膜透性是影响高生长的主要指标3 张金香,钱金娥等人发现,经过前处理的1/2海水区中生长的苗木其叶、茎、根的生长量均超过淡水区中生长的苗木。说明一定程度的耐盐锻炼能够增强苗木对盐碱、干旱环境的适应能力4 张士功,高吉寅,宋景芝发现,6-苄基腺嘌呤、水杨酸、阿斯匹林,硝酸钙能够在一定程度上限制幼苗对Na+的吸收,阻滞其向地上部分运输的数量和速度。提高体内K+含量、向上运输效率,降低地上部分对Na+、K+的选择性(SNa+、K+>,同时6-苄基腺嘌呤还能够促进幼苗根系对Cl-的吸收,并有效地将Cl-限制在根部,阻滞Cl-向上运输,相对降低地上部分的Cl,这些都有利于

提高小麦幼苗抗盐性和对盐分胁迫的适应性5 王强,石伟勇,符建荣,指出,叶面喷施海藻液肥能提高黄瓜根冠比和干物质含量,提高根系总吸收面积和活跃吸收面积。不同浓度的海藻液肥均能降低盐胁迫对叶片质膜的伤害,提高SOD、POD等酶的活性,降低膜脂过氧化产物MDA的积累,提高脯氨酸、可溶性糖、可溶性蛋白等渗透调节物质的含量6 许兴,郑国琦.等指出,在等渗条件下,NaCl胁迫引起的小麦叶片组织含水量的下降、胁迫伤害率的增大及叶片和根部的脯氨酸、可溶性糖、Na+、K+含量的增加,均大于PEG胁迫引起的变化7 郑国琦,许兴,徐兆桢研究了盐分胁迫对植物的伤害和探讨了植物的耐盐的生物学机理以及通过基于改良作物耐盐性的研究进程。8 吴忠东,王全九.研究发现,在不同的生育期降水量条件下,冬小麦对盐分胁迫有着不同的响应。生育期一般年和湿润年可以采用的最高矿化度为3 g/L,而在生育期偏旱年,如果不采取其他措施的条件下,可以采用的最高矿化度为2 g/L,该结果为合理开发利用当地的地下咸水资源提供了一定的依据。9 郭淑霞,龚元石在研究盐分胁迫对菠菜生长和吸氮量的影响后发现,对菠菜进行盐分胁迫,前 44 天,随着盐分胁迫程度增加,菠菜相对生长速率

盐碱土现状及植物耐盐性研究的意义

1 盐碱土现状及植物耐盐性研究的意义 盐碱土是民间对盐土和碱土的统称。土壤含盐量在0.1%-0.2%以上,或者土壤胶体吸附一定数量的交换性钠,碱化度在15%-20%以上,对作物的正常生长产生严重影响,这样的土属于盐碱土,盐碱土又称盐渍土。在亚洲、非洲和北美西部地区有不同程度的分布,是一种重要的土地资源。按照形成原因,盐碱土包括原生盐渍化土地和次生盐渍土。据不完全统计,全世界大约有9.5亿公顷盐碱地[1-2]。由于世界范围内环境问题日益加剧,未经处理的工业废水乱排,工业垃圾废料不规范的堆积,世界范围内乱砍滥伐普遍存在,原始森林和原始湿地破坏严重,全球气候日趋异常;在农业生产中,节水农业尚未普及,大水漫灌等浇灌方式依然流行,在许多发展中国家,为了增加片面增加土地的单位面积产量,不合理的使用化肥,诸多自然或人为因素,导致世界范围内的次生盐渍土地日益增多,农业的可持续发展受到严重抑制[3-6]。中国的盐碱地主要分布在华北、东北和西北的内陆干旱、半干旱地区,东部沿海的滨海地区也有分布。世界人口逐年增多,可供耕地则因人为的不合理利用以及自然灾害频发而日渐减少,人均可耕地面积更是呈直线下降。然而,与此同时,世界范围内大面积的盐碱地仍未得到有效的利用。对盐碱地的综合开发利用日益走入人们的视野,人们试图从农业、化学、生物等方向对盐碱土地进行开发利用。依据改良措施的不同,对于盐碱地的开发利用可以取得不同的效果。改良盐土可以通过排水、洗盐等措施,或用种植绿肥、施有机肥或种水稻等农作物对其盐进行改良。这些方法对盐碱土的改良虽然有一定的效果,但是效果不稳定,并且在实践应用中,大量的人力、物力以及财力的投入无形中极大增加了该项措施的成本[7]。这种方法治标却不能治本。通过引种盐土植物,培育新的耐盐品种,利用盐生植物对盐碱土壤的改良作用,这种方式称为生物措施。生物措施可以将盐碱土中的盐分、离子富集在植物体中,从而从根本上解决盐碱土上植物无法正常生长的现状,选择适当的经济作物,既可以获得可观的经济效益,还能绿化环境,获得生态效益。 由于盐渍化会降低作物的发芽率,普通作物在盐碱条件下难以生长存活,因此耐盐碱作物的引进及品种的培育,成为当前研究的热点[8]。种植植物可以增加盐碱地的植被覆盖面积,减少土壤水分蒸发,降低土壤盐分;另外利用某些植物

植物抗逆机制研究进展

植物抗逆机制研究进展 摘要:随着全球性生态环境日渐恶化,各种各样的环境胁迫对植物的正常生长带来了不同程度的影响。中国是一个农业大国,每年因各种环境因素及土地条件所导致的产量和经济损失巨大,因此植物整体抗逆性研究愈来愈受到重视。本文以干旱胁迫、盐胁迫及低温胁迫为切入口,详细论述了不同因素对植物的影响以及植物对抗的胁迫的机制。同时介绍了基因组学在植物抗逆性基因研究中的应用。为将来的研究提供新的思路。 关键词:抗逆机制;基因组学 背景 植物生存的环境并不总是适宜的,经常受到复杂多变的逆境胁迫,植物的环境胁迫因素分物理、化学和生物3大类。其中,物理类有:干旱、热害、冷害、冻害、淹水(涝,渍)、光辐射、机械损伤、电伤害、磁伤害、风害;化学类有:元素缺乏、元素过剩、低pH、高pH、盐碱、空气污染、杀虫剂和除草剂、毒素、生化互作物质;生物类有:竞争、抑制、生化互作、共生微生物缺乏、人类活动、病虫害、动物危害、有害微生物[1]。我国是农业大国,干旱、盐碱和低温等逆境每年都会严重影响农作物的正常生长发育和产量。随着分子生物学技术的不断发展,植物抗逆性机制成为当前研究的热点,对植物适应逆境机制的研究从生理水平步入分子水平,甚至利用基因组学等技术,进行新的抗逆性基因的筛选,为抗逆性植物的杂交提供新思路。 1 植物抗逆性举例 1.1 干旱对植物的影响及植物的抗旱机制 植物在自然界中生长时,由于气候环境等因素,会出现植物耗水量大于吸水量的情况,此时植物体内水分亏缺,即为干旱缺水胁迫[2]。根据水分亏缺的原因,可以将干旱胁迫分成三类:1、大气干旱。空气湿度降低或是烈日炙烤,加剧植物蒸腾作用,此为植物失水量大于根系吸水量而导致的缺水;2、土壤干旱。由于土壤中缺乏水分,导致植物根系吸水困难,无法供应生长代谢及蒸腾作用所需水分;3、生理干旱。土壤温度过低或土壤中化肥、有毒物质浓度过高,导致植物根系不能从土壤中吸收水分。 干旱时,原生质仍保有一部分束缚水,使得其不至于变性凝聚,从而避免了机械损伤的发生。干旱条件下,植物细胞内会大量聚集海藻糖、蔗糖、麦芽糖等糖类物质,它们会发生玻璃溶胶化,充满细胞的原生质,起到一定的保水作用,同时还增加了原生质的黏性,限制了大分子的混合,保持了细胞的相对稳态[3]。同时为保护细胞内水分平衡,植物通过无机离子和小分子有机代谢产物的积累﹑转运和区域化等机制解除渗透胁迫。如H+-ATPase是质膜与液泡膜上的一种H+泵,可维持细胞质Na+﹑Cl-浓度。Na+/H+逆向转运蛋白则在外界环境的Na+浓度提高时,通过Na+/H+逆向转移将Na+转运到液泡中,从而减少细胞质中的Na+浓度[4]。 1.2 盐胁迫对植物的影响及植物抗盐机制 土壤盐分过多会对植物造成盐胁迫。当土壤含盐量超过0.20%~0.25%时,我们认为就会引发盐胁迫。盐胁迫对植物伤害很大,一类是盐离子本身对植物的毒害,包括

作物耐盐性研究

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在0.2%~0.5%时就已对植物生长不利,而盐土表层含盐量往往可达0.6%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。

2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程中分化成盐腺,通过盐腺把吸收到体内的盐分排出体

拟南芥耐盐相关基因及其抗盐机理的研究

拟南芥耐盐相关基因及其抗盐机理的研究 刘金亮 (西北师范大学,甘肃兰州730070) 摘要:盐胁迫是限制植物生长发育的重要因子之一,目前,土壤盐渍化是世界农业生产面临的严重问题之一,发展耐盐作物是取得粮食产量持续增长的重要手段,但是由于缺乏对作物耐盐的分子机理以及与耐盐有关基因的了解,阻碍了耐盐作物的培育。近年来,随着分子生物学技术的发展以及对植物盐胁迫应答分子机理研究不断深入,特别是以拟南芥(Arabidopsis thaliana)作为模式植物在盐胁迫条件下离子平衡和植物耐盐反应调节途径的研究,取得了突破性的进展。发现植物体主要通过调节细胞内外离子平衡和细胞内氧化压力的方式适应盐胁迫。在植物体受到盐胁迫的影响时,一方面会通过激活细胞质膜上的Ca2+通道,进而激活SOS基因家族中SOS3、SOS2和SOS1基因编码的蛋白发生一系列的偶联反应,同时Atnhx基因家族、Athkt1基因等也参与此过程中离子平衡的调节;另一方面由于植物细胞内活性氧水平上升,氧化压力增加,将导致细胞内与活性氧清除有关的编码蛋白基因激活,降低细胞内氧化压力,以适应盐胁迫。 关键词:拟南芥;盐胁迫;耐盐基因;抗盐机理 A View On Salt Tolerance Gene Of the Arabidopsis and Mechanism Jin-Liang Liu,Han-Qing Feng (Northwest Normal University,GanSu LanZhou730070) Abstract:Salt stress is one of the important plant growth restrictions.currently,soil salinization as a restriction factor is faced by world agricultural production.Hence,engineering crops that are resistant to salinity stress is critical for sustaining food production,however,as the knowledge about the basis of salt-stress signaling and tolerance mechanisms shorted,sets back the development of salt-tolerance to some extent.In recent years,with the development of molecular biology technology and the response of plant under salt stress further studied,Arabidopsis thaliana as a mode plant having been widely studied about its ionic equilibrium and salt resistance reaction adjustment ways under salt stress.we can learn that under salt stress the plant mainly through regulate ions balance and oxidative stress to adapt the environment changing. When the plant is impacted by the stress,on the one hand,the channels of Ca2+existing on the plasma membranes will be activated,as a result,the sos gene families like SOS1,SOS2and SOS1

盐胁迫对植物的影响

盐胁迫对植物的影响 植物的抗盐性: 我国长江以北以及沿海许多地区,土壤中盐碱含量往往过高,对植物造成危害。这种由于土壤盐碱含量过高对植物造成的危害称为盐害,植物对盐害的适应能力叫抗盐性。根据许多研究报道,土壤含盐量超过0、2%~0、25%时就会造成危害。钠盐就是形成盐分过多的主要盐类,习惯上把硫酸钠与碳酸钠含量较高的土壤叫盐土,但二者同时存在,不能绝对划分,实际上把盐分过多的土壤统称为碱土。世界上盐碱土面积很大,估计占灌溉农田的1/3,约4×107ha,而且随着灌溉农业的发展,盐碱面积将继续扩大。我国盐碱土主要分布于西北、华北、东北与海滨地区,盐碱土总面积约2~7×107ha,而且这些地区都属平原,盐地土层深厚,如能改良盐碱危害,发展农业的潜力很大,特别应值得重视。 土壤盐分过多对植物的危害: 1、生理干旱:土壤中可溶性盐类过多,由于渗透势增高而使土壤水势降低,根据水从高水势向低水势流动的原理,根细胞的水势必须低于周围介质的水势才能吸水,所以土壤盐分愈多根吸水愈困难,甚至植株体内水分有外渗的危险。因而盐害的通常表现实际上就是旱害,尤其在大气相对湿度低的情况下,随蒸腾作用加强,盐害更为严重,一般作物在湿季耐盐性增强。 2、离子的毒害作用:在盐分过多的土壤中植物生长不良的原因,不完全就是生理干旱或吸水困难,而就是由于吸收某种盐类过多而排斥了对另一些营养元素的吸收,产生了类似单盐毒害的作用。 3、破坏正常代谢:盐分过多对光合作用、呼吸作用与蛋白质代谢影响很大。盐分过多会抑制叶绿素生物合成与各种酶的产生,尤其就是影响叶绿素-蛋白复合体的形成。盐分过多还会使PEP羧化酶与RuBP羧化酶活性降低,使光呼吸加强。生长在盐分过多的土壤中的作物(棉花、蚕豆、番茄等),其净光合速率一般低于淡土的植物,不过盐分过多对光合作用的影响就是初期明显降低,而后又逐渐恢复,这似乎就是一种适应性变化。盐分过多对呼吸的影响,多数情况下表现为呼吸作用降低,也有些植物增加盐分具有提高呼吸的效应,如小麦的根。呼吸增高就是由于Na+活化了离子转移系统,尤其就是对质膜上的Na+、K+与ATP活化,刺激了呼吸作用。盐分过多对植物的光合与呼吸的影响尽管不一致,但总的趋势就是呼吸消耗增多,净光合速度降低,不利于生长。 一、实验目的 盐胁迫对植物生长发育的各个阶段都有不同程度的影响,如种子萌发、幼苗生长、成株生长等。不同种类的植物受盐胁迫影响的程度也各不相同。本实验主要观察Na2CO3对小麦种子萌发过程的影响,探讨小麦种子在盐胁迫下的萌发特性,对小麦的耐盐能力做出了初步评价。通过实验了解盐胁迫对植物(种子萌发)的影响;掌握种子萌发过程中发芽率、发芽势、发芽指数、芽长、总长、芽重、总重等各项指标的观察与计算方法;各项指标在盐胁迫条件下的变化趋势,绘制盐浓度与生长指标相关曲线,并分析盐胁迫对种子萌发的影响。 二、仪器设备与材料 电子天平;培养皿(直径120mm),滤纸(直径125mm定量滤纸若干),500ml、200ml烧杯,250ml容量瓶,10ml移液管,玻璃棒,镊子,毫米刻度尺,剪刀;次氯酸钠、碳酸钠;小麦种子等。 三、实验方法与步骤 1、预处理 (1)种子的预处理:用10%的次氯酸钠消毒10min,蒸馏水冲洗数次后,于培养皿中做发芽实验。

盐胁迫对植物生长发育及代谢的影响

盐胁迫对植物生长发育及代谢的影响文章:盐胁迫对植物的影响及植物盐适应性研究进展 内容概要: 盐分是影响植物生长发育的重要环境因素之一。该文综述了盐胁迫对种子萌发,生长发育及光合作用的影响,并从植物自身结构、活性氧清除、渗透调节物质、离子稳态等方面评述植物对盐分的适应性机制。目前植物盐胁迫适应机制的研究取得了一定进展,但仍有待于进一步深入研究。 读后心得: 盐害是21世纪世界农业的重要问题,也是当前我国经济发展所面临的生态危机之一。盐渍化土壤严重影响植物的生长发育,阻碍农牧业生产的发展和农牧民收入的增加。为了抵御盐分胁迫,适应生存环境,植物产生了一系列生理生化的改变以调节水分及离子平衡,维持正常的光合作用。 1 盐对种子萌发的影响 盐浓度影响种子的萌发主要有三方面效应,即增效效应、负效效应和完全抑制效应。低浓度盐分对种子萌发有促进作用,随盐分升高,种子发芽率、发芽指数和活力指数均降低,盐浓度过高会抑制种子萌发。浓度0.4%以下的盐胁迫能促进荆条、白蜡和沙枣种子的萌发,随着盐浓度增加种子萌发受到不良影响,光照对植物种子的萌发有明显的促进作用。夏至草种子的发芽率、发芽势、发芽指数、胚根、胚轴生长也均随着盐浓度的增加呈下降趋势,对无芒雀麦的研究也得出相似的结论。在不同钠盐胁迫下,碱性盐、较中性盐更显著地降低了高冰草种子的发芽率。由此可见,不同的盐分对种子萌发影响效应不同。 盐分可从如下两个方面影响种子的萌发:一是建立渗透势阻止水分吸收,二是为对胚或发育着的幼苗有毒离子的进入提供条件。孙小芳等将胁迫对棉花种子萌发和幼苗生长的伤害概括为三个方面:一是渗透胁迫,高盐浓度造成棉花种子吸水进程迟缓,发芽势小,种子萌动慢。二是离子的毒害,三是盐分对酶活性的抑制嘲。盐生植物互花米草种子萌发在受到盐抑制后,如果去掉盐胁迫并置于淡水中,其萌发率仍可恢复一部分例,这种抑制作用的解除可以部分说明种子萌发受抑制是由于渗透效应造成的。另外,盐胁迫可使西藏南美藜种子的胚乳变小,这可能是抑制种子萌发的又一原因。 2 盐对植物生长发育的影响 盐胁迫下,植物根系最早感受逆境胁迫信号,并产生相应的生理反应,继而影响地上部生长,盐胁迫常导致植物根系生长受抑制。短期盐胁迫下,植物根系总吸收面积受到一定抑制、质膜透性升高并伴随吸水能力下降,随着盐胁迫时间的延长,根系活力和根系活跃吸收面积受抑制程度加大,根系吸收能力持续下降,同时蒸腾速率(Tr)的下降导致蒸腾拉力降低,水分失衡加剧,叶片相对含水量

植物耐盐性比较

实验报告 植物耐盐性比较 摘要:通过不同浓度的盐溶液(0、100、200、300、450mmol/L)对小麦种子以及植株进行盐胁迫处理,研究盐胁迫对小麦种子萌发的影响。结果表明,随着盐浓度的增加,小麦幼苗受害程度增加,生长受到了明显抑制,叶片内丙二醛含量也随浓度增加而呈递增趋势。 关键词:盐胁迫,小麦,丙二醛 1 引言: 土壤中可溶性盐过多对植物的不利影响叫盐害(salt injury)。海滨地区因土壤蒸发或者咸水灌溉,海水倒灌等因素,可使土壤表层的盐分升高到1%以上。盐分过多使土壤水势下降,严重地阻碍植物生长发育,这已成为盐碱地区限制作物收成的制约因素。盐胁迫对植物造成的伤害主要有吸水困难、生物膜破坏、生理紊乱(氨害、叶绿素被破坏、光合减弱、气孔关闭、呼吸速率下降、丙二醛含量升高、营养缺乏等)。 我国盐碱土主要分布于北方和沿海地区,约2千万公顷,另外还有7百万公顷的盐化土壤。一般盐土含盐量在0.2%~0.5%时就已对植物生长不利,而盐土表层含盐量往往可达0.6%~10%。如果能提高作物抗盐力,并改良盐碱土,那么这将对农业生产的发展产生极大的推动力。台州为滨海城市,滩涂总面积66654公顷,调查盐碱地对植物生长的影响,开发利用广大的中重度盐碱地,既可以阻止土壤盐渍化的进一步加剧,又能扩大农田的种植面积,解决人口增多与耕地减少的矛盾。为此我们在实验室条件下设计简单实验,研究植物耐盐性。

2 材料与方法 2.1 材料 选取饱满的小麦种子,消毒后播种。于一定时间后得幼苗用以实验。 2.2 方法 2.2.1 不同浓度NaCl对小麦幼苗生长的影响 取5个一次性杯子做上标记,分别加入0,100,200,300,450 mmol/L 的NaCl溶液,用保鲜膜扎口,并扎上数孔,选取长势一致的小麦幼苗,每杯种植5棵小麦幼苗,置于相同的环境下生长。 2.2.2 幼苗长势的观察 一周后观察各浓度处理下幼苗的长势并测量株高。 2.2.3 MDA含量测定 称取各处理小麦叶片0.5g,加10%三氯乙酸3mL和少量石英砂,研磨,进一步加2 mL10%三氯乙酸充分研磨。转入离心管,于4000转/分离心10 min,上清液转到试管中。 取2 mL 提取液,加2 mL0.6%TBA,加盖,沸水浴中煮沸15 min,迅速冷却后于532、450及600 nm波长下测定吸光值。 MDA的浓度按照如下公式计算:MDA(μmol/L)=6.45(OD532-OD600)-0.56 OD450;可溶性糖的浓度(mmol/L)=11.71 OD450。最后计算每克鲜重样品中MDA含量= MDA(μmol/L)/0.2(g)×0.004(L),每克鲜重样品中可溶性糖的含量=11.71 OD450/0.2(g)×0.004(L)。 2.2.4 计算与处理 Excel软件统计数据并分析。

相关文档
最新文档