粉末冶金原理试题

粉末冶金原理试题
粉末冶金原理试题

18、分析烧结时形成连通孔隙和闭孔隙的条件。

开孔:Ps=Pv -γ/ρ

Ps仅是表面张应力(-γ/ρ)中的一部分,因为气体压力Pv与表面张应力的符号相反。当孔隙与颗粒表面连通

即开孔时,Pv可取1atm,只有当烧结颈ρ长大,表面张

力减小到与Pv平衡时,烧结收缩停止

闭孔:Ps=Pv-2γ/r孔r孔:孔隙半径

-2γ/r孔表示作用在孔隙表面使孔隙缩小的张应力。当

孔隙收缩时,气体若来不及扩散出去,形成闭孔隙。如果

张应力大于气体压力Pv,孔隙继续收缩。Pv大到超出表

面张力时,隔离孔隙停止收缩

21、在哪些情况下需要向粉末中添加成形剂?为什么?

(a)硬质粉末,由于粉末变形抗力很高,无法通过压制所产生的变形而赋予粉末坯体足够的强度,一般采用添加成形剂的方

法以改善粉末成形性能,提高生坯强度,便于成形。橡胶、

石蜡、PEG、PVA等。

(b)流动性差的粉末、细粉或轻粉(填充性能不好,自动成形不好,影响压件密度的均匀性)。添加成形剂能适当增大粉末

粒度,减小颗粒间的摩擦力。

22、在粉末刚性模压制过程中,通常存在哪两种摩擦力?哪种摩擦力会造成压坯密度分布?而在CIP中的情况又如何?

性模压制过程中,通常存在外摩擦力和内摩擦力,其中外摩擦力会造成压坯密度分布不均匀,CIP中不存在外摩擦力。

23、为什么作用在烧结颈表面的拉应力随着烧结过程的进行而降低?

σ=-γ/ρ

作用在颈部的张应力指向颈外,导致烧结颈长大,孔隙体积收缩。与此同时,随着烧结过程的进行,烧结颈扩大,∣ρ∣的数值增大,烧结驱动力逐步减小。

25、在制备超细晶粒YG硬质合金中,为什么通过添加铬和钒的碳化物能够控制合金中硬质相晶粒的长大?

铬和钒的碳化物在液态钴相中溶解度大,能降低体系的共晶温度,并且抑制剂组元偏聚WC/Co界面,抑制WC晶粒的溶解和干扰液态钴相中的W,C原子在WC晶粒上的析出,从而阻止WC晶粒在烧结过程中的粗化。

26、简述温压技术能较大幅度提高铁基粉末冶金零件密度的机理?1)温压过程中,加工硬化的速度与程度降低,塑性变形充分进行,为颗粒重排提高协调性变形;

2)采用新型润滑剂,降低粉末与模壁间、粉末颗粒间的摩擦,提高有效压制力,便于颗粒相互填充,有利于颗粒重排;

总之,温压技术能改善主导致密化机理的塑性变形和颗粒重排,故而能较大幅度提高铁基粉末冶金零件密度。

27、一个具有下图中的形状的粉末坯体,若采用整体下模冲结构会带来什么后果?为什么?如何改正模冲结构的设计?备注:两台阶均为圆柱形。

答:

采用整体下模冲结构导致两台阶圆

柱压坯的密度分布不均匀。密度不同的

连接处就会由于应力的重新分布而产生断裂或分层。压坯密度的不均匀也将使烧结后的制品因收缩不一急剧变形而出现开裂或歪扭。

故为了使具有复杂形状的横截面不同的压坯密度均匀,必须设计出不同动作的组合模冲,并且应使它们的压缩比相等。

29、(粉末烧结钢的晶粒为什么比普通钢细小?)有一汽车制造商的质检部配合开发部拟用铁基粉末冶金零件取代原机加工45#钢件,对粉末冶金零件供应商按同材质提供的样件进行金相检验。质检人员发现粉末冶金件中的铁晶粒与原45#钢机加工件之间有无差异?为什么?

粉末冶金件中的铁晶粒比原45#钢机加工件的晶粒细小。

原因:

1)粉末冶金件在烧结过程中,孔隙、夹杂物对晶界迁移的阻碍;

a、孔隙的存在阻止晶界的迁移。粉末颗粒的原始边界随着烧

结过程的进行一般发展成晶界。而烧结坯中的大量孔隙大都

与晶界相连接,会对晶界迁移施加了阻碍作用

b、粉末中的夹杂物也对晶粒长大施加一定的阻碍作用。这些

夹杂物包括硅酸盐和金属的氧化物。其对晶界迁移的阻碍作

用大于孔隙。因为孔隙随着烧结过程的进行可减弱或消失。

而夹杂物一般难以消除(若夹杂物在烧结过程中稳定时)2)烧结温度低于铸造温度;

因而,粉末烧结材料的晶粒一般较普通钢细小。

31、某公司采用还原铁粉作主要原料制造材质为Fe-2Cu-1C的一零件,粉末中添加了0.7%的硬脂酸锌做润滑剂,在吨位为100吨的压机上成形,在压制后发现零件的压坯密度偏低。在不改变装备的情况下,该公司的技术人员最终解决了压坯密度偏低的问题。请问其可能采取了什么技术措施?为什么?

1)压制前,将还原铁粉进行还原退火处理。刚生产的还原铁粉有加工硬化,且氧碳含量相对较高,影响粉末压缩性。故进行

还原退火,消除粉末加工硬化,减少杂质含量,降低氧碳含量,提高粉末总铁量,有利于提高粉末压缩性,进而提高压坯密度。 2)改善粉末流动性,提高模具的光洁度和硬度。

34、液相烧结的三个基本条件是什么?它们对液相烧结致密化的贡献是如何体现的?

三个基本条件:液相必须润湿固相颗粒、固相在液相中具有有限的溶解度、液相数量

1)液相必须润湿固相颗粒,这是液相烧结得以进行的前提。液相只有具备完全或部分润湿的条件,才能渗入颗粒的微孔和裂隙

甚至晶粒间界,促进致密化

2)有限的溶解可改善润湿性,增加了固相物质迁移通道,加速烧结;并且颗粒表面突出部位的化学位较高产生优先溶解,通过

扩散和液相流动在颗粒凹陷处析出,改善固相晶粒的形貌和减

小颗粒重排的阻力,促进致密化

3)在一般情况下,液相数量的增加有利于液相均匀地包覆固相颗粒,为颗粒重排列提供足够的空间和致密化创造条件。

36、在金属粉末注射成形过程中,为什么必须采用细粉末作原料?(或用细粉末作原料具有哪些技术上的优越性?)通常采用哪两种基本的脱脂方法?

1)颗粒细小,比表面积大,表面能越高,能提高粉末烧结驱动力;

2)颗粒细化,颗粒间的联结力提高,提高脱脂后坯体的强度;

3)细颗粒阻力大,融体与粘结剂在流动中不易分离,便于混练与注射。

通常采用热脱脂和溶剂脱脂。先采用溶剂脱脂在注射坯体中形成开孔隙网络,为后续热脱脂的分解产物的排出提供物质传输通道,↓分解产物可能形成的内压和造成脱脂缺陷的机会,↑脱脂速度。

37、对于一多台阶的粉末冶金零件,设计压模是应注意哪两个问题?

1)组合模冲,2)恒压缩比。

在压制横截面不同的多台阶的压坯时,必须保证整个压坯内的密度相同,否则在脱模过程中,密度不同的连接处就会由于应

力的重新分布而产生断裂或分层。压坯密度的不均匀也将使烧结后的制品因收缩不一急剧变形而出现开裂或歪扭。

故为了使具有复杂形状的横截面不同的压坯密度均匀,必须设计出不同动作的组合模冲,并且应使它们的压缩比相等。38、表面迁移包括哪些烧结机构?当烧结进行到一定程度,孔隙产生封闭后,它们起何作用?

1)表面扩散:球表面层原子向颈部扩散。

2)蒸发-凝聚:表面层原子向空间蒸发,借蒸汽压差通过气相向

颈部空间扩散,沉积在颈部。

孔隙产生封闭后,表面扩散只能促进孔隙表面光滑,导致孔隙

球化。蒸发-凝聚也对孔隙的球化也起作用。

39、分析模压时产生压坯密度分布不均匀的原因。

刚模压制时,由于粉末颗粒与模具(阴模内壁、模冲、芯棒)之间的因相对运动而出现的摩擦力的作用,消耗有效外压,造成在压坯高度方向压力降和在压制面上的压力再分布,因此造成压坯的各处密度不均匀。

42、简述在目前材料技术中获得纳米晶材料十分困难的原因。

制备纳米晶材料关键是在保持块体材料呈现纳米晶结构,而又能获得全致密化。

1)从烧结热力学角度,纳米粉体具有极大的表面能,既为烧结过程中的全致密化提供驱动力,也为晶粒长大提供驱动力;

2)从烧结动力学角度,烧结动力学方程(X/a)m=F(T).t/a m-n,由于纳米粉末颗粒的a值很小,达到相同的x/a值所需时间很短,烧结温度降低。纳米粉末具有本征的偏离平衡态的亚稳结构,热激活过程导致纳米结构不稳定。

所以,获得纳米晶材料十分困难

43、从烧结驱动力的角度,分析纳米粉末烧结活性极好的原因。

1)烧结热力学:具有巨大的表面能,为烧结过程提供很高的烧结驱动力,使烧结过程加快

2)烧结动力学:由烧结动力学方程(X/a)m=F(T).t/a m-n,纳米粉末颗粒的a值很小,达到相同的x/a值所需时间很短,烧结温度降低。故纳米粉末烧结活性很高

44、分析氧化铝弥散强化铜复合材料在高温(如850°C)具有高

硬度的原因。

氧化铝弥散强化铜复合材料显微结构稳定(亚结构稳定,再结晶温度高):在高温下,晶内弥散质点阻碍位错亚结构中位错逃逸,并且晶界上的弥散质点阻碍晶界迁移,因此在高温下材料硬度高

45、为什么在模压坯件中出现密度分布?产生密度分布有什么主要危害?

原因:刚模压制时,由于粉末颗粒与模具(阴模内壁、模冲、芯棒)之间的因相对运动而出现的摩擦力的作用,消耗有效外压,造成在压坯高度方向压力降和在压制面上的压力再分布,因此造成压坯的各处密度不均匀。

危害:a、不能正常实现成形,如出现分层,断裂,掉边角等;b、烧结收缩不均匀,导致变形;c、限制拱压产品的形状和高度。

46、影响粉末流动性的因素有哪些?如果一种粉末的流动性较差,对粉末冶金零部件的后续加工带来什么危害?

影响因素: a、形状复杂,表面粗糙,颗粒间的相互摩擦和咬合阻碍它们相互移动,流动性差;b、理论密度增加,比重大,流动性增加;c、粒度组成,细粉增加,流动性下降。

危害:流动性差的粉末,压制时粉末填充模腔的均匀性差,造成压坯的各处密度不均匀,使零件不能正常实现成形,如出现分层,断裂,掉边角等;并且烧结收缩不均匀,导致变形;

48、粉末压坯强度的影响因素有哪些?分别以硬质合金和铁基粉末冶金零件为例,可采取哪些技术措施如何提高坯件强度?1)影响因素:颗粒间的结合强度(机械啮合)和接触面积

颗粒间的结合强度:a.颗粒表面的粗糙度 b.颗粒形状粉末颗粒形状越复杂,表面越粗糙,则粉末颗粒之间彼此啮合的越紧密,压坯强度越高。c.颗粒表面洁净程度d.压制压力:压力提高,结合强度提高(与变形度有关e.颗粒的塑性(与结合面积有关)f.硬脂酸锌及成形剂添加与否g.高模量组份的含量:含量高,结合强度大颗粒间接触面积:即颗粒间的邻接度颗粒的显微硬度、粒度组成、压制时颗粒间的相互填充程度,进而提高接触面积;压制压力:压力大,塑性变形大,S提高;颗粒形状:复杂,结合强度提高,但S降低

49、为什么说温压技术是传统模压技术的发展与延伸?

温压:系指粉末与模具被加热到较低温度(一般为150℃)下的刚模压制方法。

a、除粉末与模具需加热以外,与常规模压几乎相同;

b、温压与粉末热压完全不同,温压的加热温度远低于热压(高

于主要组分的再结晶温度);

c、温压保持了传统模压的高效、高精度优势,而且被压制的粉

末冶金零部件的尺寸精度很高,表面光洁;

d、提高了铁基零部件的性能和服役可靠性,拓宽了部件的应用

范围;

故说温压技术是是传统模压技术的发展与延伸。

50、分析在YG硬质合金生产过程中,允许合金中碳含量可在WC的化学计量附近波动原因(金中碳含量可在一定范围内偏离WC的化学计量而不致引起合金强度的大幅度降低的原因)

WC的理论碳含量为6.12%。若化合碳的含量低于这一数值,则在硬质合金中形成脆性相-η相;若高于这一数值则会生成游离石墨。这二者都是硬质合金的结构缺陷,导致硬质合金强度的大幅度下降。但当合金中碳含量在6.05-6.2%范围内波动时,合金强度变化不大。

1)添加了晶粒长大抑制剂TaC、VC、Cr2C3等,以其化合物(或相应氧化物)粉末形式添加到W粉、碳黑混合物中

2)杂质元素(Ca、Mg、Si等)的氧化物与碳反应

51、分析温度液相烧结三个条件的必要性。

1)液相必须润湿固相颗粒,这是液相烧结得以进行的前提(否则产

生反烧结现象)。即烧结体系需满足方程γS=γSL+γLCOSθ(θ为润湿角),并且需满足的润湿条件是θ<90;

2)固相在液相中具有有限的溶解度。有限的溶解,可改善润湿性、增加液相的数量,并且发生马栾哥尼效应有利于液相迁移,同时增加了固相物质迁移通道,改善固相晶粒的形貌和减小颗粒重排的阻力;

3)液相数量:在一般情况下,液相数量的增加有利于液相均匀地包覆固相颗粒,为颗粒重排列提供足够的空间和致密化创造条件。同时,也可减小固相颗粒间的接触机会。

53、有一铁基粉末冶金齿轮在成形后一端出现了掉边、掉角现象,请提出相应的解决这一技术问题的方法。成形后一端出现了掉边、掉角现象,主要是由于压坯的密度分布不均匀,导致不能正常实现成形。采用温压技术:低的脱模压力,高的压坯强度,弹性后效小,密度分布均匀。

54、什么是弹性后效?其主要影响因素有哪些?

当压力去除之后和将压坯脱拱之后,由于内应力作用,压坯产生的膨胀现象称为弹性后效。

弹性后效的大小取决于残留应力的高低,主要影响因素:

a.压制压力:压制压力高,弹性内应力高

b.粉末颗粒的弹性模量:弹性模量越高,弹性后效越大

c.粉末粒度组成:越合理,产生的弹性应力越小;粒度小,弹性后效大

d.颗粒形状:形状复杂,弹性应力大,弹性后效大

e.颗粒表面氧化

f.粉末混合物的成份(如石

墨含量)

A.Fe-2Cu B、Fe-2Cu-0.8C B的弹性后效明显,因为C 的模量很高

55、比较活化烧结与强化烧结的异同。

活化烧结:系指能降低烧结活化能,使体系的烧结在较低的温度下以较快的速度进行、烧结体性能得以提高的烧结方法。(采用化学或物理的措施,使烧结温度降低、烧结过

程加快,或使烧结体的密度和其它性能得到提高的方法称为活化烧结)

强化烧结:是泛指能够增加烧结速率,或能够强化烧结体性能(合金化或抑制晶粒长大)的所有烧结过程

同:目的相同异:途径(定义)

57、表面迁移包括哪两种?请利用双球模型图示说明。

表面迁移包括:

表面扩散:球表面层原子向颈部扩散。

蒸发-凝聚:表面层原子向空间蒸发,借蒸汽压差通过气相向颈部空间扩散,沉积在颈部。

59、液相烧结包括哪几种形式?

瞬时液相烧结:在烧结中、初期存在液相,后期液相消失。烧结

中初期为液相烧结,后期为固相烧结。

稳定液相烧结:烧结过程始终存在液相。

熔浸:多孔骨架的固相烧结和低熔点金属渗入骨架后的液相烧结过程。前期为固相烧结,后期为液相烧结。全致密假合金如

W-Cu等。

超固相线液相烧结:液相在粉末颗粒内形成,是一种在微区范围内

较普通液相烧结更为均匀的烧结过程。

60、对于刚性模压制,粉末混合物中通常要添加哪两类辅助物质?为什么?

通常要添加成形剂和润滑剂。

原因:)对于硬质粉末,由于粉末变形抗力很高,无法通过压制所产生的变形而赋予粉末坯体足够的强度,一般采用添加成形剂的方法以改善粉末成形性能,提高生坯强度,便于成形;2)流动性差的粉末、细粉或轻粉(填充性能不好,自动成形不好,影响压件密度的均匀性)。添加成形剂能适当增大粉末粒度,减小颗粒间的摩擦力;3)粉末颗粒与模壁间的摩擦导致压坯密度分布不均匀和影响被压制工

件的表面质量,降低模具的使用寿命,故要添加润滑剂减小粉末与模壁间和粉末颗粒间的摩擦。

62、现有两个分别经单向压制和双向压制的圆柱形(直径为20mm,

高度为25mm)WC-10Co

粉末坯件,请用图示比较两者之间在外形方面的差异,并分析其原因。

单向压制:一端外表光滑明亮,另一端则比较暗淡;双向压制:两端都光滑明亮,中间则比较暗淡。原因:单向压制,由于外摩擦压力损失致使压坯密度分布不均匀,上端有效压制压力大、密度大,下端有效压制压力小、密度小;双向压制时,两端有效压制压力大、密度高,中间有效压制压力相对小、密度较两端低。

并且压坯密度分布较单向压制的均匀。

63、热等静压用模套材料包括哪三大类?金属、陶瓷、玻璃

64、采用钢模单向压制一根尺寸为φ50*100mmYG10合金的粉末压坯,并在合适的工艺条件下烧结。请画出其最终轮廓的大致外形(标出加压方向,但不必标注其具体尺寸)。为什么?若要得到尺寸较均一的烧结棒材,可采用什么成形技术实现?

答:

第一种情况:第二种情况:

密度分布均匀,烧结尺寸变化均匀有压制压力损失,

上下端密度分布不

均匀。烧结时,上

层密度高收缩小,

下层密度低收缩

大,故上宽下窄

可采用冷等静压(CIP)技术:消除了粉末与模套之间的外摩擦,密度分布均匀,压制压力降低。

65、根据您已掌握的烧结机构,哪些对粉末压坯致密化有贡献?哪些有利于孔隙球化?

致密化:粘性流动、体积扩散、晶界扩散、塑性流动、表面扩散(烧结早期)

球化:表面扩散(后期)、蒸发-凝聚

66、互不溶二元系(A-B)粉末烧结时必须满足什么热力学条件?

1)互不溶系的烧结服从不等式:γAB<γA +γB,即A-B的比界面能必须小于A、B单独存在的比表面能之和;

2)在满足上式的前提下,如果γAB>|γA -γB|,在两组元的颗粒间形成烧结颈的同时,它们可互相靠拢至某一临界值;如果γAB<|γA -γB|,则开始时通过表面扩散,比表面能低的组元覆盖在另一组元的颗粒表面,然后同单元系烧结一样,在类似复合粉末的颗粒间形成烧结颈。不论是上述中的哪种情况,只有γAB越小,烧结的动力就越大。

67、烧结气氛的两个作用是什么?

1)保护功能:控制烧结体与环境之间的化学反应,如氧化和脱碳,

2)净化功能:及时带走烧结坯体中润滑剂和成形剂的分解产物。

68、有一个经单向压制的铁基(Fe-0.5C)圆柱形粉末压坯,在氮基气氛中于1120°C烧结40分钟,请画出烧结后坯件的大致外形,简述其原因。

答:原因:单向压制,由于外摩擦压力损失致使压坯密度分布不均匀,上端密度大、弹性后效大,下端密度小、弹性后效小。在烧结过程中,由于密度大的收缩小,密度小的收缩大。故出现上端宽、下端窄的形状。

69、W-7Ni-3Fe,WC-Co和Fe-20Cu经液相烧结后,其中高熔点相晶粒的大致形状是什么?试分析其原因。

W-7Ni-3Fe重合金:W晶体以金属键和离子结合,具有一定的方向性,高能晶面优先沉积机率↑,→卵形。WC-Co合金:WC晶体以共价键和离子键结合,具有极强的方向性,析出在特定的晶面进行,→多边形。Fe-20Cu:Fe为金属晶体,晶面能接近各向同性,各个方向上的析出时机率几乎相同,→近球形。

71、在模具设计合理下,如何制造形状复杂的零部件?

1)采用合适粒度组成和表面较粗糙的近球形粉末——高的压坯强度

2)采用温压技术:a、低的脱模压力

b、高压坯密度和强度

c、弹性后效小

d、密度分布均匀

72、HIP与HP性能比较。(HIP优越)

a、HIP比HP密度高。HIP(0.5Tm)比HP(0.7Tm)温度低。晶粒

更细小(粉末高速钢)。有利于制备Tm相差悬殊的层叠复合材料。压制压力更高

73、巴尔申压制方程的三个基本假设是什么?

1)将粉末体视为弹性体:运用虎克定律于压制方程2)不考虑粉末的加工硬化3)忽略模壁摩擦。

74、分别分析单轴压制和等静压制的差别及应力特点。

单轴压制和等静压制的差别在于粉体的受力状态不同,一般单轴压制在刚模中完成,等静压制则在软膜中进行;在单轴压制,由于只是在单轴方向施加外力,模壁侧压力小于压制方向受力,因此应力状态各向异性,σ1》σ2=σ3导致压坯中各处密度分布不均匀;等静压制时由于应力来自各个方向,且通过水等静压力进行,各方向压力大小相等,粉体中各处应力分布均匀,σ1=σ2=σ3,因此压坯中各处的密度基本一致

77、讨论固相烧结后期,孔隙为什么会球化,小孔隙为什么会消失?

答:

固相烧结后期,形成大量的隔离的闭孔隙。通过表面扩散和蒸发凝聚,孔隙中凸部位的物质迁移到凹部位,促进孔隙表面光滑,从而使孔隙球化

由于体积扩散,空位的内孔隙向颗粒表面扩散以及空位由小孔隙向大孔隙扩散,烧结体发生收缩,小孔隙不断消失

9 、一压坯高度是直径的三倍,压力自上而下单向压制,在压坯三分

之二高度处压力只有压坯顶部压力的四分之三,求压制压力为

500Mpa 时,压坯三分之一高度和压坯低部的压制压力?

解:

根据已知条件,在 h=2/3H 时, P2=3/4P1 ,计算得 EXP ( -Q1 )=3/4

h=1/3H 时, P3=P1EXP ( -Q2 ) =281 。 25Mpa 在压坯底部压制压力 P=210 。 94MPa

11、一个密度为9.3g/cm3、A-B50(数字表示材料的质量百分数)的粉末压坯,请计算该压坯中的孔隙度。

注:1)精确到小数点后一位;2)物质A的理论密度=10g/cm3,物质B的理论密度=20g/cm3

解:

理论密度ρm =1/ΣMi/(ρm)i

i=1—n(组分数)或代表i组分

Mi为质量分数

ρm=1/(50%/10+50%/20)=13.3 g/cm3

孔隙度:θ=1—ρ/ρm=1-9.3/13.3=0.301=30.1%

12、当保护气体压力为一个大气压时,表面张力为0.25N,求烧结体

中尺寸不再发生变化时的孔隙直径。

解:

-2γ/r

P =P

v

当P=0时,烧结体中尺寸不再发生变化 P v=2γ/r

=2*0.25/105=5*10-6m=5μm r=2γ/ P

v

d=2r=10μm

发进入气相,被还原后沉降在大颗粒上,导致颗粒长大的

过程

和固溶体后继而析出,进行物质迁移的过程

蒸汽与氢分压比的量度

子迁移实现颗粒间联结的过程。

内同时施以高温和高压,使粉末体被压制和烧结成致密的

零件或材料的过程

末体的压制方法

较快的速度进行、烧结体性能得以提高的烧结方法。(采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结体的密度和其它性能得到提高的方法称为活化烧结)

化或抑制晶粒长大)的所有烧结过程

碳,以材料中的碳含量表示气氛的碳势

运动而出现的摩擦

小团粒间的摩擦力,大幅度降低颗粒运动时的摩擦面积,增大运动单元的动力的过程

的现象

应变量即弹性后效及其与模壁之间的摩擦系数直接相关

压制方法

金近净成形技术,将粉末与热塑性材料均匀混合使

成为具有良好流动性能(在一定温度下)的流态物

质,而后把这种流态物在注射成形机上经过一定的

温度和压力,注入模具内成形

中心受阻力愈小。结果中心部位的挤压物料的流动速

度比外层挤压物料的流动速度快,这种现象称为超前

现象

间扩散,沉积在颈部。

颈部迁移。

屈服强度时,发生塑性变形,导致物质向颈部迁移。

导致物质迁移。

末烧结体系,是一种简单形式的固相烧结。(单元

系烧结是指纯金属或有固定化学成分的化合物或

均匀固熔体在固态下的烧结,过程不出现新的组成

物或新相,也不发生凝聚状态的改变(不出现液

相),故也称为单相烧结)

体)在固相线以下烧结的过程

度的多元系烧结过程,即烧结过程中出现液相的粉

末烧结过程统称为液相烧结

期为液相烧结,后期为固相烧结。

过程。前期为固相烧结,后期为液相烧结。全致密假合金如W-Cu等。

普通液相烧结更为均匀的烧结过程

相流动的现象

力(比表面能)γs 、γl以及两相的界面张力(界面能)γsl所决定

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一>G B/

590 66 < 690 35 60 烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为%。▲ 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值烧结铁-铜合金和 烧结铜钢的化学 成分(%). 材料牌号 Fe Cu C FC-0200 烧结铁-镍合金和烧结镍 钢的化学成分(%). 材料牌号Fe Ni Cu C FN-0200 注: 用差减法求出的其它 元素(包括为了特殊目的 而添加的其它元素)总量 的最大值为% ⊙ 铁-铜合金和铜钢粉末冶金材料性能(MPIF-35) 材料编号最小强 度 (A)(E) 拉伸性能 横 向 断 裂 压缩 屈服 强度 %) 硬度 密度屈 服 极 限 极限 强度 屈服强 度 %) 伸 长 率 宏观 (表 现) 微观 (换算 的) MPa MPa MPa % MPa MPa 络氏g/cm3 FC-0200-15 -18 -21 -24 100 170 140 310 120 11HR B N/A 120 190 160 350140 18 140 210 180 390 160 26 170 230 200 430 180 36 FC-0205-30 -35 -40 -45 210 240 240 < 410 340 37HR B N/A 240 280 280 < 520 370 48 280 340 310 < 660 390 60 310 410 340 < 790 410 72 FC-0205-60HT -70HT -80HT -90HT 410 480 < 660 390 19HR C 58HRC 480 550< 760 490 25 58 550620 (D) < 830 590 31 58 620 690 < 930 660 36 58 FC-0208-30 -40 210 240 240 < 410 390 50HR B N/A

粉末冶金原理_考研复习纲要

课程名称:粉末冶金学 Powder Metallurgy Science 第一章导论 1粉末冶金技术的发展史History of powder metallurgy 粉末冶金是采用金属粉末(或非金属粉末混合物)为原料,经成形和烧结操作制造金属材料、复合材料及其零部件的加工方法。 粉末冶金既是一项新型材料加工技术,又是一项古老的技术。 .早在五千年前就出现了粉末冶金技术雏形,古埃及人用此法制造铁器件; .1700年前,印度人采用类似方法制造了重达的“DELI 柱”(含硅Fe合金,耐蚀性好)。 .19世纪初,由于化学实验用铂(如坩埚)的需要,俄罗斯人、英国人采用粉末压制、烧结和热锻的方法制造致密铂,成为现代粉末冶金技术的基础。 .20世纪初,现代粉末冶金的发展起因于爱迪生的长寿命白炽灯丝的需要。钨灯丝的生产标志着粉末冶金技术的迅速发展。 .1923年硬质合金的出现导致机加工的革命。 .20世纪30年代铜基含油轴承的制造成功,并在汽车、纺织、航空、食品等工业部门的广泛应用。随后,铁基粉末冶金零部件的生产,发挥了粉末冶金以低的制造成本生产高性能零部件的技术优点。 .20世纪40年代,二战期间,促使人们开发研制高级的新材料(高温材料),如金属陶瓷、弥散强化合金作为飞机发动机的关键零部件。 .战后,迫使人们开发研制更高性能的新材料,如粉末高速钢、粉末超合金、高强度铁基粉末冶金零部件(热锻)。大大扩大了粉末冶金零部件及其材料的应用领域。 .粉末冶金在新材料的研制开发过程中发挥其独特的技术优势。 2粉末冶金工艺 粉末冶金技术的大致工艺过程如下:

↓ 成形(模压、CIP、粉浆浇注、轧制、挤压、温压、注射成形等) ↓ 烧结(加压烧结、热压、HIP等) ↓ —后续处理 Typical Processing flowchart for Powder Metallurgy Technique 3粉末冶金技术的特点 .低的生产成本: 能耗小,生产率高,材料利用率高,设备投资少。 ↑↑↑ 工艺流程短和加工温度低加工工序少少切削、无切削 .材料成分设计灵活、微观结构可控(由工艺特征决定): 能制造普通熔练法不可能生产的材料,如W-Cu、SnO 2 -Ag、WC-Co、Cu-石墨、金 属陶瓷(TiC-NiCr,Al 2O 3 -Ni或Cu,TiB 2 -Cu等)、弥散强化材料(Al 2 O 3 -Cu Al 2 O 3 -Al, Y 2O 3 -Fe基合金)、粉末超合金(非相图成分)、难熔金属及其合金如钨钼、含油 轴承、过滤材料等。 .高的性能: 粉末高速钢、粉末超合金因无成分偏析和稳定的组织(细的晶粒)而性能优于熔炼法制备的合金;纳米材料,金属-陶瓷梯度复合材料(梯度硬质合金)。 主要不足之处: .由于受设备容量的限制,传统粉末冶金工艺制造的粉末冶金零部件的尺寸较其它加工方法(铸造,机加工等)小; .材料韧性不高; .零部件的形状复杂程度和综合力学性能有限等。

综述:硬质合金

硬质合金的研究和应用 The studies and applications of cemented carbide 作者:何梓秋机械类创新实验班 3112010441 内容摘要:硬质合金由于具有高硬度,高抗压强度,高热硬性以及高耐磨性,高耐腐蚀性,常用于制造切削工具和耐磨零部件。广泛应用于军工、航天航空、机械加工、冶金等领域。本文将通过新型硬质合金的研发和硬质合金制造工艺的进步两条路径对硬质合金的研究进行介绍。再结合各种硬质合金的特性,介绍其具体的应用。 Abstract:Because cemented carbide has high hardness,high compressive strength,high abrasive resistance and high corrosion resistance,it is always used for manufacture cutting tools and wear-resistant parts.It provides widely applications in war industry,aerospace,machine work,metallurgy and so on.This thesis will describe the studies of cemented carbide on two ways,the inventions of new-type cemented carbide and the progress of manufacturing process for cemented carbide.And then this thesis will introduce the specific applications combining the characteristics of every type of cemented carbide. 关键词:硬质合金,研究,应用,金属碳化物,粉末冶金 Keywords:cemented carbide,studies,applications,metal carbide,powder metallurgy 关于硬质合金的基础知识 一.硬质合金的起源 早在1923年,德国科学家施勒特尔为了提高拉丝模质量,往碳化钨粉末中加进10%~20%的钴做粘结剂,发明了世界上人工制成的第一种硬质合金。 虽然用这种硬质合金制造成的刀具进行切割钢材很容易产生刀刃磨损甚至断裂,但是硬质合金因此得以面世,为至今几乎长达一个世纪的硬质合金研究、发展及应用开辟了起点。 二.硬质合金的成分、分类和牌号 硬质合金是一种金属陶瓷,它的组成是:基体为金属碳化物(如WC、TiC、TaC等),Co、Ni、Mo等金属粉末则充当粘结剂。于是硬质合金具是有金属性质的粉末冶金材料,它具有高硬度,高抗压强度,高热硬性以及高耐磨性,高耐腐蚀性,常用于制造切削工具、刀具、钴具和耐磨零部件。它的分类及牌号如下: 1.钨钴类硬质合金 主要成分是碳化钨(WC)和粘结剂钴(Co)。牌号由“YG”(“硬、钴”两字汉语拼音字首)和平均含钴量(质量分数X 100)组成。例如YG6,表示平均ωCo=6%,余量为碳化钨的钨钴类硬质合金。

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一> GB/T14667.1-93 <二> MPIF-35

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊

粉末冶金原理

1.粉末冶金:制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料, 经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。 2.二次颗粒:单颗粒以某种方式聚集就构成二次颗粒 3.松装密度:粉末在规定条件下自然充填容器时,单位体积内自由松装粉末体的质量 g/cm3。 4.孔隙率:孔隙体积与粉末体的表观体积之比的百分数称为孔隙度(θ)。 5.中位径:将各种粒级粉末个数或百分数逐一相加累积并做图,可以得到累积分布曲线, 分布曲线对应50%处称为中位径 弹性后效:在压制过程中,粉末由于受力而发生弹性变形和塑性变形,压坯内存在着很大的内应力,当外力停止作用后,压坯便出现膨胀现象 6.合批:将成分相同而粒度不同的粉末进行混合,称为合批 7.烧结机构:研究烧结过程中各种可能的物质迁移方式及速率。 8.热压:热压又称为加压烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常 烧结温度或更低一些的温度,经过较短时间烧结成致密而均匀的制品。 9.活化烧结:是指采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结 体的密度和其它性能得到提高的方法。 10.单颗粒:粉末中能分开并独立存在的最小实体称为单颗粒。 11.振实密度:粉末装于振动容器,规定条件下,经振动敲打后测得的粉末密度。 12.粒度:以mm或μm的表示的颗粒的大小称颗粒直径,简称粒径或粒度。 13.混合:将两种或两种以上不同成分的粉末混合均匀。分为机械法和化学法。 14.搭桥:粉末在松装堆集时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成 拱桥孔洞的现象。 15.快速冷凝技术的特点:(1)急冷可大幅度地减小合金成分的偏析;(2)急冷可增加合 金的固溶能力;(3)急冷可消除相偏聚和形成非平衡相;(4)某些有害相可能由于急冷而受到抑制甚至消除;(5)由于晶粒细化达微晶程度,在适当应变速度下可能出现超塑性等。 16.粉末颗粒的聚集形式:聚合体、团粒、絮凝体;区别:通过聚集方式得到的二次颗 粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华力粘接而成的,其结合强度不大,用研磨。擦碎等方法在液体介质中容易分散成更小的团粒或二次颗粒或单颗粒;絮凝体则是在粉磨悬浊液中,由单颗粒或二次颗粒结合成的更松软的聚集颗粒。 17.减少因摩擦出现的压力损失的措施:1)添加润滑剂、2)提高模具光洁度和硬度、3) 改进成形方式,如采用双面压制等。 18.粉末冶金技术的优点:1. 能生产用普通熔炼方法无法生产的具有特殊性能的材料:① 能控制制品的孔隙度(多孔材料、多孔含油轴承等);②能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材料(钨-铜假合金型的电触头材料、金属和非金属组成的摩擦材料等);③能生产各种复合材料。 2.粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越:①高合金粉末冶金材料的性能比熔铸法生产的好(粉末高速钢可避免成分的偏析);②生产难熔金属材料或制品,一般要依靠粉末冶金法(钨、钼、铌等难熔金属)。缺点:1、粉末成本高;2、制品的大小和形状受到一定限制;3、烧结零件的韧性较差。 19.粉末料预处理的方式及作用:1、退火:还原氧化物,消除杂质,提高纯度;消除加工 硬化,稳定粉末的晶体结构;钝化金属,防止自燃。2、混合:使不同成分的粉末混合均匀,便于压制成形和后续处理。3、筛分:筛分的目的在于把颗粒大小不匀的原始粉

特种陶瓷的制备工艺综述及其发展趋势

特种陶瓷的制备工艺综述及其发展前景 摘要:本文主要介绍了粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法以及未来的发展趋势。目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些面临急需解决的问题。当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。压力成形不能满足形状复杂性和密度均匀性的要求。多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。 关键词:特种陶瓷;成形;烧结;粉末冶金;陶瓷材料 引言 陶瓷分为普通陶瓷和特种陶瓷两大类,特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。因此研究特种陶瓷制备技术至关重要。 1 陶瓷原料的制备方法 粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。 由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著

粉末冶金材料标准表完整版本

公司制造的铁基粉末冶金零件执行标准与成分性能 <一> GB/T14667.1-93 <二> MPIF-35 编辑版word

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊 编辑版word

粉末冶金成形技术教程文件

粉末冶金成形技术

第四章粉末冶金成形技术 一、粉末冶金成形定义: 用金属粉末或金属与非金属粉末的混合物作原料,采用压制、烧结及后处理等工序来制造某些金属材料、复合材料或制品的工艺技术。粉末冶金生产工艺与陶瓷制品的生产工艺相似,因此粉末冶金成型技术又常常叫金属陶瓷法。 方法:将均匀混合的粉末材料压制成形,借助粉末原子间的吸引力和机械啮合作用,使制品结合成为具有一定强度的整体,然后再高温烧结,进一步提高制品的强度,获得与一般合金相似的组织。 二、粉末冶金材料或制品 1. 难熔金属及其合金(如钨、钨——钼合金); 2. 组元彼此不相溶,熔点十分悬殊的特殊性能材料,如钨——铜合金; 3. 难溶的化合物或金属组成的复合材料(如硬质合金、金属陶瓷) 三、粉末冶金成型技术特点: 1. 某些特殊性能材料的唯一成型方法; 2. 可直接制出尺寸准确,表面光洁的零件,是少甚至无切削的生产工艺; 3. 节约材料和加工工时; 4. 制品强度较低; 5. 流动性较差,形状受限; 6. 压制成型的压强较高,制品尺寸较小; 7. 压模成本较高。 四、粉末冶金成形过程 原始粉末+添加剂→混合→压制成型→烧结→零件成品

五、粉末冶金工艺理论基础 一)、金属粉末的性能 金属粉末的性能对其成型和烧结过程及制品质量有重要影响,分为化学成分、物理性能和工艺性能。 固态物质按分散程度不同分为致密体、粉末和胶体。 致密体:通常所说的固体,粒径在1mm以上; 胶体微粒:粒径在0.1μm以下; 粉末体或简称粉末:粒径介于二者之间。 1. 粉末的化学成分 主要金属或组元的含量,杂质或夹杂物的含量,气体的含量。 金属的含量一般不低于98-99%。 2. 粉末的物理性能 1)颗粒形状:球状、粒状、片状和针状。影响粉末的流动性、松装密度等。 2)粒度:粉末颗粒的线性尺寸,用“目”来表示,用筛分法等测量。对压制时的比压、烧结时的收缩及烧结制品的力学性能有影响。 3)粒度分布:按粒度不同分为若干级,每一级粉末(按质量、数量或体积)所占的百分比。对粉末的压制和烧结有影响。 4)颗粒比表面积:单位质量粉末的总表面积,可算出颗粒的平均尺寸。对粉末的压制和烧结有影响。 3. 粉末的工艺性能 1)流动性:粉末的流动能力,用50g粉末在规定条件下从标准漏斗中流出所需的时间来表示,单位为s/50g。

粉末冶金原理重点

装球量:球磨筒内磨球的数量。 球料比:磨球与磨料的质量比电流效率:一定电量电解出的产物的实际质量与通过同样电量理论上应电解出的产物质量之比,用公式表示为n i=M/ (qlt)x 100% 粒度分布:指不同粒径的的颗粒在粉末总质量中所占的百分数,可以用某种统计分布曲线或统计分布函数描述。 松装密度:粉末在规定条件下自然填充容器时,单位体积内粉末的质量,单位为 g/cm3。 振实密度:在规定条件下,粉末受敲打或振动填充规定容器时单位体积的粉末质量。单颗粒:晶粒或多晶粒聚集,粉末中能分开并独立存在的最小实体。 一次颗粒:最先形成的不可以独立存在的颗粒,它只有聚集成二次颗粒时才能独立存在。 二次颗粒:由两个以上的一次颗粒结合而又不易分离的能独立存在的聚集颗粒称为二次颗粒。 压缩性: 粉末被压紧的能力 成形性: 粉末压制后,压坯保持既定形状的能力 净压力: 单元系烧结:纯金属、固定化学成分的化合物和均匀固溶体的粉末烧结体系,是一种简单形式的固相烧结。 多元系固相烧结:由两种以上组元(元素、化合物、合金、固溶体)在固相线以下烧结的过程。 气氛的碳势:某一含碳量的材料在某种气氛烧结时既不渗碳也不脱碳,以材料中碳含量表示气氛中的碳势。 活化烧结:系指能降低烧结活化能,是体系的烧结在较低的温度下以较快的速度进行,烧结体性能得以提高的烧结方法。 氢损值:金属粉末的试样在纯氢气中煅烧足够长时间,粉末中的氧被还原成了水蒸气,某些元素与氢气生成挥发性的化合物,与挥发性金属一同排除,测的试样粉末的相对质量损失,称为氢损。 液相烧结:烧结温度高于烧结体系低熔组分的熔点或共晶温度的多元系烧结过程,即烧结过程中出现液相的粉末烧结过程统称为液相烧结。 机械合金化是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。 热等静压:把粉末压坯或把装入特制容器内的粉末体在等静高压容器内同时施以高温和高压,使粉末体被压制和烧结成致密的零件或材料的过程 冷等静压:室温下,利用高压流体静压力直接作用在弹性模套内的粉末体的压制方法 1 、粉末制备的方法有哪些,各自的特点是什么? 1 物理化学法 1 还原法:碳还原法(铁粉)气体(氢和一氧化碳)还原法(W,Mo,Fe,Ni,Cu,Co 及其合金粉末) 金属热还原法(Ta,Nb,Ti,Zr,Th,U)-SHS自蔓延高温合成。 1.2还原-化合法:适合于金属碳化物、硼化物、硅化物、氮化物粉末 1.3化学气相沉积CVD 1.4物理气相沉积PVD或PCVD (复合粉)

粉末冶金成形技术

第四章粉末冶金成形技术 一、粉末冶金成形定义: 用金属粉末或金属与非金属粉末的混合物作原料,采用压制、烧结及后处理等工序来制造某些金属材料、复合材料或制品的工艺技术。粉末冶金生产工艺与陶瓷制品的生产工艺相似,因此粉末冶金成型技术又常常叫金属陶瓷法。 方法:将均匀混合的粉末材料压制成形,借助粉末原子间的吸引力和机械啮合作用,使制品结合成为具有一定强度的整体,然后再高温烧结,进一步提高制品的强度,获得与一般合金相似的组织。 二、粉末冶金材料或制品 1. 难熔金属及其合金(如钨、钨——钼合金); 2. 组元彼此不相溶,熔点十分悬殊的特殊性能材料,如钨——铜合金; 3. 难溶的化合物或金属组成的复合材料(如硬质合金、金属陶瓷) 三、粉末冶金成型技术特点: 1. 某些特殊性能材料的唯一成型方法; 2. 可直接制出尺寸准确,表面光洁的零件,是少甚至无切削的生产工艺; 3. 节约材料和加工工时; 4. 制品强度较低; 5. 流动性较差,形状受限; 6. 压制成型的压强较高,制品尺寸较小; 7. 压模成本较高。 四、粉末冶金成形过程 原始粉末+添加剂→混合→压制成型→烧结→零件成品 五、粉末冶金工艺理论基础 一)、金属粉末的性能 金属粉末的性能对其成型和烧结过程及制品质量有重要影响,分为化学成分、物理性能和工艺性能。 固态物质按分散程度不同分为致密体、粉末和胶体。 致密体:通常所说的固体,粒径在1mm以上; 胶体微粒:粒径在0.1μm以下; 粉末体或简称粉末:粒径介于二者之间。 1. 粉末的化学成分 主要金属或组元的含量,杂质或夹杂物的含量,气体的含量。 金属的含量一般不低于98-99%。 2. 粉末的物理性能 1)颗粒形状:球状、粒状、片状和针状。影响粉末的流动性、松装密度等。 2)粒度:粉末颗粒的线性尺寸,用“目”来表示,用筛分法等测量。对压制时的比压、烧结时的收缩及烧结制品的力学性能有影响。 3)粒度分布:按粒度不同分为若干级,每一级粉末(按质量、数量或体积)所占的百分比。对粉末的压制和烧结有影响。 4)颗粒比表面积:单位质量粉末的总表面积,可算出颗粒的平均尺寸。对粉末的压制和烧结有影响。 3. 粉末的工艺性能 1)流动性:粉末的流动能力,用50g粉末在规定条件下从标准漏斗中流出所需的时间来表示,单位为s/50g。

粉末冶金材料标准表

粉末冶金材料标准表 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

公司制造的铁基粉末冶金零件执行标准与成分性能<一>G B/

590 66 < 690 35 60 烧结铁和烧结碳钢的化学成分 (%). 材料牌号Fe C F-0000 注: 用差减法求出的其它元素 (包括为了特殊目的而添 加的其它元素)总量的最大值 为%。▲ 注: 用差减法求出的其它元素 (包括为了特殊目的而添 加的其它元素)总量的最大值 烧结铁-铜合金和 烧结铜钢的化学 成分(%). 材料牌号Fe Cu C FC-0200 烧结铁-镍合金和烧结镍 钢的化学成分(%). 材料牌号Fe Ni Cu C FN-0200 注: 用差减法求出的其它 元素(包括为了特殊目的 而添加的其它元素)总量 的最大值为% ⊙ 铁-铜合金和铜钢粉末冶金材料性能(MPIF-35) 材料编号 最小强 度 (A)(E) 拉伸性能 横 向 断 裂 压缩 屈服 强度 %) 硬度 密度 屈 服 极 限 极限 强度 屈服强 度 %) 伸 长 率 宏观 (表 现) 微观 (换算 的) MPa MPa MPa % MPa MPa 络氏g/cm3 FC-0200-15 -18 -21 -24 100 170 140 310 120 11HR B N/A 120 190 160 350140 18 140 210 180 390 160 26 170 230 200 430 180 36 FC-0205-30 -35 -40 -45 210 240 240 < 410 340 37HR B N/A 240 280 280 < 520 370 48 280 340 310 < 660 390 60 310 410 340 < 790 410 72 FC-0205-60HT -70HT -80HT -90HT 410 480 < 660 390 19HR C 58HRC 480 550< 760 490 25 58 550620 (D) < 830 590 31 58 620 690 < 930 660 36 58

粉末冶金工艺及材料基础知识介绍

粉末冶金工艺及材料基础知识介绍 粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。粉末冶金材料和工艺与传统材料工艺相比,具有以下特点: 1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。 2.提高材料性能。用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。 3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。提高材料利用率,降低成本。 粉末冶金的品种繁多,主要有:钨等难熔金属及合金制品;用Co、Ni等作粘结剂的碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)等硬质合金,用于制造切削刀具和耐磨刀具中的钻头、车刀、铣刀,还可制造模具等;Cu合金、不锈钢及Ni等多孔材料,用于制造烧结含油轴承、烧结金属过滤器及纺织环等。

1 粉末冶金基础知识 ⒈1 粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。 2.粉末的物理性能 ⑴粒度及粒度分布

粉末冶金原理考试题标准答案

2006 粉末冶金原理课程I考试题标准答案 一、名词解释:( 20 分,每小题 2 分) 临界转速:机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落时,筒体的转动速度 比表面积:单位质量或单位体积粉末具有的表面积 一次颗粒:由多个一次颗粒在没有冶金键合而结合成粉末颗粒称为二次颗粒; 离解压:每种金属氧化物都有离解的趋势,而且随温度提高,氧离解的趋势越大,离解后的氧形成氧分压越大,离解压即是此氧分压。 电化当量:这是表述电解过程输入电量与粉末产出的定量关系,表达为每 96500库仑应该有一克当量的物质经电解析出 气相迁移:细小金属氧化物粉末颗粒由于较大的蒸气压,在高温经挥发进入气相,被还原后沉降在大颗粒上,导致颗粒长大的过程 颗粒密度:真密度、似密度、相对密度 比形状因子:将粉末颗粒面积因子与体积因子之比称为比形状因子 压坯密度:压坯质量与压坯体积的比值 粒度分布:将粉末样品分成若干粒径,并以这些粒径的粉末质量(颗粒数量、粉末体积)占粉末样品总质量(总颗粒数量、总粉末体积)的百分数对粒径作图,即为粒度分布 二、分析讨论:( 25 分) 1 、粉末冶金技术有何重要优缺点,并举例说明。( 10 分) 重要优点: * 能够制备部分其他方法难以制备的材料,如难熔金属,假合金、多孔材料、特殊功能材料(硬质合金); * 因为粉末冶金在成形过程采用与最终产品形状非常接近的模具,因此产品加工量少而节省材料; * 对于一部分产品,尤其是形状特异的产品,采用模具生产易于,且工件加工量少,制作成本低 , 如齿轮产品。重要缺点: * 由于粉末冶金产品中的孔隙难以消除,因此粉末冶金产品力学性能较相同铸造加工产品偏低; * 由于成形过程需要模具和相应压机,因此大型工件或产品难以制造; * 规模效益比较小 2 、气体雾化制粉过程可分解为几个区域,每个区域的特点是什么?( 10 分) 气体雾化制粉过程可分解为金属液流紊流区,原始液滴形成区,有效雾化区和冷却区等四个区域。其特点如下: 金属液流紊流区:金属液流在雾化气体的回流作用下,金属流柱流动受到阻碍,破坏了层流状态,产生紊流; 原始液滴形成区:由于下端雾化气体的冲刷,对紊流金属液流产生牵张作用,金属流柱被拉断,形成带状 - 管状原始液滴; 有效雾化区:音高速运动雾化气体携带大量动能对形成带状 - 管状原始液滴的冲击,使之破碎,成为微小金属液滴冷却区。此时,微小液滴离开有效雾化区,冷却,并由于表面张力作用逐渐球化。 3 、分析为什么要采用蓝钨作为还原制备钨粉的原料?( 5 分) 采用蓝钨作为原料制备钨粉的主要优点是 * 可以获得粒度细小的一次颗粒,尽管二次颗粒较采用 WO3 作为原料制备的钨粉二次颗粒要大。 * 采用蓝钨作为原料,蓝钨二次颗粒大,(一次颗粒小),在 H2 中挥发少,通过气相迁移长大的机会降低,获得 WO2 颗粒小;在一段还原获得 WO2 后,在干氢中高温进一步还原,颗粒长大不明显,且产量高。

粉末冶金常识

粉末冶金常识 1.粉末冶金常识之什么是粉末冶金 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称"金属粉末")。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为"粉末冶金材料")或制品(称为"粉末冶金制品")。 2、粉末冶金常识之粉末冶金最突出的优点是什么 粉末冶金最突出的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造出合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高达95%以上,它还能在一些制品中以铁代,做到了"省材、节能"。 粉末冶金件 3、粉末冶金常识之什么是"铁基"什么是铁基粉末冶金 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类 粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3)消除颗粒的加工硬化。 粉末冶金工艺流程图 8、粉末冶金常识之用于粉末冶金的粉末性能测定一般有哪几项 用于粉末冶金的粉末性能测定一般有三项:化学成分、物理性能和工艺性能。9、用于粉末冶金的粉末物理性能主要包括那几项

粉末冶金原理知识要点

1粉末冶金的特点: 粉末冶金在技术上和经济上具有一系列的特点。 从制取材料方面来看,粉末冶金方法能生产具有特殊性能的结构材料、功能材料和复合材料。(1)粉末冶金方法能生产普通熔炼法无法生产的具有特殊性能的材料: 1)能控制制品的孔隙度; 2)能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材料; 3)能生产各种复合材料; (2)粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越: 1)高合金粉末冶金材料的性能比熔铸法生产的好; 2)生产难熔金属材料和制品,一般要依靠粉末冶金法; 从制造机械零件方面来看,粉末冶金法制造的机械零件时一种少切削、无切削的新工艺,可以大量减少机加工量,节约金属材料,提高劳动生产率。 总之,粉末冶金法既是一种能生产具有特殊性能材料的技术,又是一种制造廉价优质机械零件的工艺。 2粉末冶金的工艺过程 (1)生产粉末。粉末的生产过程包括粉末的制取、粉料的混合等步骤。为改善粉末的成型性和可塑性通常加入汽油、橡胶或石蜡等增塑剂。 (2)压制成型。粉末在500~600MPa压力下,压成所需形状。 (3)烧结。在保护气氛的高温炉或真空炉中进行。烧结不同于金属熔化,烧结时至少有一种元素仍处于固态。烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等一系列的物理化学过程,成为具有一定孔隙度的冶金产品。 (4)后处理。一般情况下,烧结好的制件可直接使用。但对于某些尺寸要求精度高并且有高的硬度、耐磨性的制件还要进行烧结后处理。后处理包括精压、滚压、挤压、淬火、表面淬火、浸油、及熔渗等。 现代粉末冶金的主要工艺过程 生产粉末 制坯 烧结 3、粉末冶金发展中的三个重要标志: 第一是克服了难熔金属(如钨、钼等)熔铸过程中产生的困难 第二是本世纪30年代用粉末冶金方法制取多孔含油轴承取得成功 第三是向更高级的新材料新工艺发展。 4、怎样理解“粉末冶金技术既古老又年轻”? 粉末冶金是一项新兴技术,但也是一项古老技术。根据考古学资料,远在纪元前3000年左右,埃及人就在一种风箱中用碳还原氧化铁得到海绵铁,经高温锻造制成致密块,再锤打成铁的器件。3世纪时,印度的铁匠用此种方法制造了“德里柱”,重达6.5t。 19世纪初,相继在俄罗斯和英国出现将铂粉经冷压、烧结,再进行热锻得致密铂,并加工成铂制品的工艺·19世纪50年代出现了铂的熔炼法后,这种粉末冶金工艺便停止应用,但它对现代粉末冶金工艺打下了良好的基础。 直到1909年库利奇(W. D. Coolidge)的电灯钨丝问世后,粉末冶金才得到了迅速的发展。 5、粉末冶金在现代工业中的应用情况 高性能结构材料、金属陶瓷、超导材料、非晶态材料、纳米材料、复合材料、多孔材料 粉末冶金在解决材料领域问题的范围是很广泛的。就材料成分而言,有铁基粉末冶金、有色金属粉末冶金、稀有金属粉末冶金等。就材料性能而言,既有多孔材料,又有致密材料;既有硬质材料,又有很软的材料,既有重合金,也有很轻的泡沫材料;既有磁性材料,也有其他性能材料。就材料类型而言,既有金属材料,又有复合材料。复合

粉末冶金的工艺流程-粉末成形

粉末成形 简介 粉末冶金生产中的基本工序之一,目的是将松散的粉末制成具有预定几何形状、尺寸、密度和强度的半成品或成品。模压(钢模)成形是粉末冶金生产中采用最广的成形方法。18世纪下半叶和19世纪上半叶,西班牙、俄国和英国为制造铂制品,都曾采用了相似的粉末冶金工艺。当时俄国索博列夫斯基(П.Г.Соболевсκий)使用的是钢模和螺旋压机。英国的沃拉斯顿(W.H.Wollaston)使用压力更大的拉杆式压机和纯度更高的铂粉,制得了几乎没有残余孔隙的致密铂材。后来,模压成形方法逐渐完善,并用来制造各种形状的铜基含油轴承等产品。20世纪30年代以来,在粉末冶金零件的工业化生产过程中,压机设备、模具设计等方面不断改进,模压成形方法得到了更大的发展,机械化和自动化已达到较高的程度。为了扩大制品的尺寸和形状范围,特别是为了提高制品密度和改善密度的均匀性相继出现和发展了多种成形方法。早期出现的有粉末轧制、冷等静压制、挤压、热压等;50年代以来又出现了热等静压制、热挤压、热锻等热成形方法。这些方法推动了全致密、高性能粉末金属材料的生产。 主要功能 (1)将粉末成形为所要求的形状; (2)赋予坯体以精确的几何形状与尺寸,这时应考虑烧结时的尺寸变化; (3)赋予坯体要求的孔隙度和孔隙类型; (4)赋予坯体以适当的强度,以便搬运。 根据成形时是否从外部施加压力,可分为压制成形和无压成形两大类。 压制成形主要有:封闭钢模冷压成形、流体等静压制成形、粉末塑性成形、三轴向压制成形、高能率成形、挤压成形、轧制成形、振动压制成形等; 无压成形主要有:粉浆浇注、松装烧结等。 模压成形 模压成形将金属粉末装入钢模型腔,通过模冲对粉末加压使之成形。 模压过程装在模腔中的粉末由于颗粒间的摩擦和机械啮合作用会产生所谓“拱桥”现象,形成许多大小不一的孔隙。加压时,粉末体的体积被压缩,其过程一般用压坯相对密度-压制压力曲线表示(图1)。在开始阶段粉末颗粒相对移动并重新分布,孔隙被填充,从而使压坯密度急剧增加,达到最大装填密度;这时粉末颗粒已被相互压紧,故当压制压力增大时,压坯密度几乎不变,曲线呈现平坦。随后继续增加压制压力,粉末颗粒将发生弹、塑性变形或脆性断裂,使压坯进一步致密化。由于颗粒间的机械啮合和接触面上的金属原子间的引力,压制后的粉末体成为具有一定强度的压坯。 压制压力与压坯密度分布在模压过程中压制压力主要消耗于以下两部分:①克服粉末颗粒之间的摩擦力(称为内摩擦力)和粉末颗粒的变形抗力;②克服粉末颗粒对模壁的摩擦力(称为外摩擦力)。由于外摩擦力的存在,模压成形的压坯密度分布实际上是不均匀的。例如单向压制时,离施压模冲头较近的部分密度较

粉末冶金工艺特点及工艺基本流程介绍

粉末冶金工艺特点及工艺基本流程介绍 粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合材料以及各种类型制品的工艺技术。广义的粉末冶金制品业涵括了铁石刀具、硬质合金、磁性材料以及粉末冶金制品等。狭义的粉末冶金制品业仅指粉末冶金制品,包括粉末冶金零件(占绝大部分)、含油轴承和金属射出成型制品等。

工艺特点 1、制品的致密度可控,如多孔材料、好密度材料等; 2、晶粒细小、显微组织均匀、无成分偏析; 3、近型成形,原材料利用率>95%; 4、少无切削,切削加工仅40~50%; 5、材料组元可控,利于制备复合材料; 6 、制备难溶金属、陶瓷材料与核材料。 工艺基本流程 1、制粉 制粉是将原料制成粉末的过程,常用的制粉方法有氧化物还原法和机械法。 2、混料 混料是将各种所需的粉末按一定的比例混合,并使其均匀化制成坯粉的过程。分干式、半干式和湿式三种,分别用于不同要求。

3、成形 成形是将混合均匀的混料,装入压模重压制成具有一定形状、尺寸和密度的型坯的过程。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。

烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。

烧结后的处理,可以根据产品要求的不同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。

粉末冶金日本工业标准JISZ

日本工业标准 JIS Z 2550-1983 机械结构零件用烧结材料 Sinted Materials for Structural Parts 1. 适用标准本标准规定了机械结构零件用烧结金属材料。但是,这种材料都是烧结态材料。 备考作为参考,在本标准中一并记入了国际单位制(SI)的单位与数值,它们都附加有{}。 2.种类与记号材料的种类与记号是根据材料的化学成分与机械性能来划分的,如表1所示。 3. 质量材料的机械性能、密度及化学成分如表2所示。

① 1N/mm2=1MPa。 ②化学成分中,SMS1种相当SUS 316和SUS 304,SMS2种相当410。 ③所谓其它,是磷、硫、锰、硅等。 备考:表2也适用于烧结后进行尺寸整形者。 参考:(1)关于SMF种材料的硬度与热处理,各种烧结材料的表面处理,含油处理后的各项性能,作为参考值,在解说中给出。 再者,关于含碳量与适用的热处理可参照解说。 (2)用高纯氢中烧结或真空烧结制造的不锈钢系的质量,例如解说中所示。 4. 试验

4.1 机械性能试验 4.1.1 拉伸试验 (1)试件试件是用下列方法制造的: (a)压制压坯用阴模内部的形状与尺寸 (b)压坯压坯高度为4.00~5.00mm,压坯中不得有肉眼可见的分层及其它缺陷。 (c)润滑方法用油布拭擦阴模内表面,或用将60g硬脂酸锌溶于1L四氯化碳中制成的溶液涂覆阴模内表面。另外,将硬脂酸锌之类的润滑剂添加于使用的粉末中,充分进行混合也可以。 (d)成形成形压坯所需之粉末量依据测定质量,测定充填体积,或将粉末充满阴模后将上表面刮平来决定。 成形方面,有规定成形压力和规定压坯密度二种情况。在规定压制压力的场合,一组压坯对于规定的压力变化不得大于±3%,质量方面,对于平均值的变化不得大于±2%。在规定压坯密度的场合,一组压坯对于规定的高度变化不得大于±2%,和质量方面,对于规定的值变化不得大于±1%。 另外,关于压制速度,保压时间,脱模方法及一组压坯的数量,皆由当事者间协商决定。 (e)烧结烧结条件根据当事者间的协定进行。但是,对于烧结温度范围,保温时间,加热—冷却条件及烧结气氛的各项条件都必须进行记录。 (2)试验方法试验方法按照JIS Z 2241(金属材料拉伸试验方法)进行。 4.1.2 冲击试验 (1)试件试件是用下列方法制造的: (a)压制压坯用阴模内部的形状及尺寸图2示阴模内部的形状及尺寸。

相关文档
最新文档