巷道围岩控制方法与支护方式

巷道围岩控制方法与支护方式
巷道围岩控制方法与支护方式

巷道围岩控制方法与支护方式

[摘要]在煤矿生产过程中,巷道围岩控制与巷道的支护是非常重要的环节,关系到煤炭生产的高产高效与采煤安全生产。降低巷道围岩应力,提高围岩的稳定性,合理选择支护是巷道围岩控制的主要途径。本文主要阐述了巷道围岩压力及影响因素、巷道围岩控制措施、方法和巷道保护与支护措施等技术问题。

【关键词】巷道;围岩控制;支护方式

在煤矿生产过程中,巷道围岩控制与巷道的支护是非常重要的环节,关系到煤炭生产的高产高效与采煤安全生产。降低巷道围岩应力,提高围岩的稳定性,合理选择支护是巷道围岩控制的主要途径。回采导致的支承压力不但数倍于原岩应力,并且,影响范围大。巷道受回采影响后,围岩应力、围岩变形成几倍、几十倍急增。巷道围岩控制的实质是利用煤层开采引起采场周围岩体应力重新分布的规律,正确选择巷道布置和护巷方法,使巷道位于应力降低区内,防范回采引起的支承压力的影响,控制围岩压力。本文主要阐述了巷道围岩压力及影响因素、巷道围岩控制措施、方法和巷道保护与支护措施等技术问题。

1、巷道围岩压力及影响因素

1.1、围岩压力

(1)松动围岩压力。因巷道挖掘而松动、塌落的岩体,其重力直接作用在支架结构物上的压力,表现为松动围岩压力载荷形式,如支护没有有效控制围岩变形,围岩形成松动垮塌圈时,造成松动围岩压力,顶压显现严重。

(2)变形围岩压力。支护可控制围岩变形的发展时,围岩位移挤压支架而出现的压力,即:变形围岩压力。在围岩、支护力学体系中,围岩与支架互相作用,围岩就对支架施加变形压力。弹性变形压力是围岩弹性变形时作用在支架上的压力,弹性变形出现的速度很快,变形量相当小,围岩、支护相互作用的过程,实际作用较小。塑性变形压力是因为围岩塑性变形和破裂,围岩向巷道空间位移,使支护结构受压,这是变形围岩压力的基本形式。塑性变形的状况由巷道塑性区和破裂区的范围所决定。塑性区的扩展具有时间效应,它不再扩展时,围岩变形速度就下降。

(3)膨胀围岩压力。

与变形压力不同,它是由吸水膨胀导致的。从表面上看,膨胀压力是变形压力,而两者的变形机制完全不同。一个是与水发生理化反应;一个是围岩应力与结构效应。

巷道支护方法

巷道支护方法 一、围岩分类稳固程度岩性主要特征 (1)1类a:极差断层破碎,稳定性极差。 (2)1类b:局部冒顿,破坏形式多为冒顿、破碎及松散。 (3)2类:岩性泥化程度较轻,岩石裂隙发育层理发育完整,夹层强度较低,破坏形式多为局部片帮或冒落。 (4)3类:岩体较完整,节理及裂隙发育不完整。 (5)4类:岩石较完整,自身强度较高,构造影响较小。 二、针对四类围岩的支护方式 (1)1类a围岩支护。由于该层次支护的岩体多破碎,且整体稳固性较差,破坏形式多为冒顿,可采用锚索及锚喷网的支护方法。并在掘进时可采用锚喷的支护方式,支护段的距离面长度小于 2 m。所采用的混凝土型号为C20,喷浆厚度为100 mm,锚杆间距为900 mm×1 000 mm,长度为2 000 mm,网格型号为100 mm×100 mm。 (2)1类b围岩支护。该阶段围岩的整体稳固性较差,且裂隙发育,以碎块状的结构为主,节理面泥化,多为冒落、片帮等破坏形式。因此,可采用锚喷网联合支护的方法,且在局部加上钢筋梯子梁及锚索。支护参数设置为:锚杆间排距为900 mm×1 000 mm;顶锚杆为φ20 mm,长度为2 000 mm;帮锚杆φ18 mm,长度为2 000 mm。金属网的规格为1.1 m×1.2 m,网格100 mm×100 mm,

钢筋直径也为4 mm ~6mm。对于巷道淋水较大的位置,应将1个导水孔安好与直径相匹配的胶管,并进行注浆加固,封住淋水; (3)2类围岩支护。该围岩稳定性较差,且多出现片帮、冒落。鉴于此种情况,可采用锚喷支护,并对其进行局部加网,提高围岩的自撑能力,最终确保巷道的安全性。所采用的混凝土型号为C20,锚杆间的距离为900 mm×1 000 mm,下盘运输巷道顶部锚杆直接可取20 mm,其他巷道顶部的锚杆可取18 mm,喷浆厚度为950 mm。对于特殊位置可采用锚喷网联合支护方法,其金属网的规格为1.1 m×1.2 m,网格100 mm×100 mm,钢筋直径为4 mm ~6mm; (4)3类围岩支护。该阶段的围岩稳定性相对处于稳定状态,其岩石种类大多与角闪斜长片麻岩有着密切关系,且是矿山的主要岩石,分布范围较广,且拥有较好的稳定性。然而,伴随着时间的不断延长,也存在一定的风化问题,特别是遇到淋水现象时,极易泥化,最终影响整体的稳定性。因此,可采用喷射混凝土支护的方法。所使用的混凝土型号为C20,厚度根据围岩实际情况而定,其范围在85mm~95 mm左右,封闭围岩及淋水,并杜绝岩体风化现象的发生。为提高施工速度及质量,可在矿山巷道断面初次喷射45 mm,在1个月内对其进行复喷,并重新计算其厚度。若围岩在某个别位置有风化现象,可采用单根或多根螺纹钢锚杆布置,锚杆间距950 mm,锚杆直径约为50 mm; (5)4类围岩支护。由于该阶段围岩的稳定性较好,且岩性是完整

巷道锚杆支护参数设计

巷道锚杆支护参数设计 一、锚杆支护理论研究 (一)锚杆支护综述 1、锚杆支护技术的发展 锚杆支护作为一种有效的、技术经济优越的采准巷道支护方式,自美国1912年在aberschlesin(阿伯施莱辛)的Friedens(弗里登斯)煤矿首次使用锚杆支护顶板至今已有90多年的历史。 1945~1950年,机械式锚杆研究与应用; 1950~1960年,采矿业广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; 1960~1970年,树脂锚杆推出并在矿山得到了应用; 1970~1980年,发明管缝式锚杆、胀管式锚杆并得到了应用,同时研究新的设计方法,长锚索产生; 1980~1990年,混合锚头锚杆、组合锚杆、特种锚杆等得到了应用,树脂锚固材料得到改进。 美国、澳大利亚、加拿大等国由于煤层埋藏条件好,加之锚杆支护技术不断发展和日益成熟,因而锚杆支护使用很普遍,在煤矿巷道的支护中的比重几乎达到了100%。 澳大利亚锚杆支护技术已经形成比较完整的体系,处于国际领先水平。澳大利亚的煤矿巷道几乎全部采用W型钢带树脂全长锚固组合锚杆支护技术,尽管其巷道断面比较大,但支护效果非常好。对于复合顶板、破碎顶板及其巷道交叉点、大跨度硐室等难维护的地方,采用锚索注浆进行补强加固,控制了围岩的强烈变形。美国一直采用锚杆支护巷道,锚杆消耗量很大。锚杆种类也较多,有胀壳式、

树脂式、复合锚杆等。组合件有钢带。具体应用时,根据岩层条件选择不同的支护方式和参数。 锚杆支护发展最快的是英国。在1987年以前,英国煤矿巷道支护90%以上采用金属支架,而且主要是矿用工字钢拱型刚性支架。由于回采工作面单产低、效率低、巷道支护成本高,因而亏损严重。为了摆脱煤炭行业的这种困境,在巷道支护方面积极发展锚杆支护,到1987年,英国从澳大利亚引进了成套的锚杆支护技术,从而扭转了过去的被动局面,煤巷锚杆支护得到迅速发展,经过近10年实验的基础上,又进行了改进和提高,到1994年在巷道支护中所占的比重己达到80%以上。锚杆支护技术的广泛采用给英国煤矿带来巨大的活力和经济效益。 德国是U型钢支架使用最早、技术上最为成熟的国家,自1932年发明U型钢支架以来,U型钢支架发展迅速,支护比重很快达到了90%以上,从井底车场一直到采煤工作面两巷均采用U型钢可缩性支架。但是自20世纪80年代以来,随着矿井开采深度日益增加,维护日益困难。面临这种困境,德国采用不断增加金属支架的型钢质量,逐步减小棚距的做法,这不仅使巷道支护费用增高,而且施工、运输更加困难和复杂。即便如此,巷道维护困难的状况仍然难以改观,于是寻求成本低,运输和施工简单方便、控制围岩变形效果好的锚杆支护变得尤为重要。到20世纪80年代初期,锚杆支护在鲁尔矿区实验成功后获得推广,现己应用到千米的深井巷道中,取得了许多成功的经验。 法国煤巷锚杆支护的发展也很迅速,到1986年其比重己达50%。在采区巷道支护中同时发展金属支架、锚杆支护、混凝土支架。 俄罗斯锚杆支护的发展也引人瞩目。他们研制了多种类型的锚杆,在俄罗斯第一大矿区——库兹巴斯矿区锚杆支护巷道所占比重己达50%。 我国在煤矿岩巷中使用锚杆支护也已有近50余年的历史。从1956年起在煤矿岩巷中使用锚杆支护,20世纪60年代锚杆支护开始进入采区,但由于煤层巷道围岩松软,受采动影响后围岩变形量很大,对支护技术要求很高,加之锚杆支护理论、设计方法,锚杆材料、施工机具、检测手段等还不够完善,因而发展缓慢。“八五”期间,原煤炭工业部把煤巷锚杆支护技术作为重点项目进行攻关,在“九五”期间,原煤炭工业部将“锚杆支护”列为煤炭工业科技发展的五个项目之一,

深部煤矿应力分布特征及巷道围岩控制技术 韩孝广

深部煤矿应力分布特征及巷道围岩控制技术韩孝广 发表时间:2019-01-09T14:22:32.410Z 来源:《建筑学研究前沿》2018年第31期作者:韩孝广王涛[导读] 本文分析了深部煤矿应力分布特征及巷道围岩控制技术。 山东省滕州曹庄煤炭有限责任公司山东滕州 277519 摘要:近年来,矿井开采深度逐年增加,巷道周边的地应力也相对提高。本文分析了深部煤矿应力分布特征及巷道围岩控制技术。 关键词:深部煤矿;应力分布特征;巷道围岩 前言 深部煤炭开采的最大特点是煤炭资源开采前煤岩体处于高原岩应力状态,而进行采掘活动后,裸露采掘空间表面垂直方向的应力迅速降到大气压。这种变化引起围岩应力的调整,出现很高的集中应力,在围岩中形成很大的应力梯度。围岩应力分布不是一成不变的,而是随着采掘活动的进行不断变化。当煤岩体不能承受这种应力变化时,就会出现各种灾害,这对深部煤矿的安全、高效开采带来巨大威胁。 1 深部煤矿应力分布特征 1.1 深部煤矿地应力测量与分析 目前,许多矿区对深部煤矿的地应力特征缺乏理性认识。当前直接用于地应力场的研究数据较为缺乏,许多煤矿对支护问题、冲击地压等,与地应力场联系较少。矿井深度的增加导致地应力值增加,破坏巷道能力加强。 当前的地应力测量主要以空心包体法为主,某些条件下也可采用水压致裂法。研究地应力学者通过整理600~1500m的深部矿区数据,剔除特殊地质环境测量数据后,总结出地应力测量的方法主要有:水压致裂法(用于一般地质条件)、结合应力解除法。 1.2 深部煤矿地区的地应力方向特征 经过对我国深部煤矿地区的地应力测量研究,发现我国深部矿区地应力方向存在一些特征:岩层中的水平应力方向特征较为显著;最大水平应力角度下量值较垂直应力大。 2 深部巷道围岩控制技术 巷道围岩控制技术按原理可分为3大类:①支护法。它是作用在巷道围岩表面的支护方式,如各种类型的支架、砌碹支护,为了改善支架受力状况,提高支护阻力,还可实施壁后充填和喷浆等。②加固法。其是插入或灌入煤岩体内部起加固作用,使煤岩体自稳的方法,如各种锚杆与锚索、注浆加固,锚杆、锚索分为插入煤岩体内的部分(杆体、锚固剂),以及设置在巷道表面的构件(托板、钢带及金属网),因此,“锚杆支护”确切意义上应称为“锚杆加固”或“锚杆加固与支护”。③应力控制法。它是改善巷道围岩应力状态,从而使巷道处于应力降低区的方法,包括巷道布置优化及各种人工卸压法。 2.1 巷道布置优化及应力控制法 针对深部巷道围岩应力高、变形大,甚至会出现冲击地压、煤与瓦斯突出等动力灾害,进行采掘优化、巷道布置优化,改善巷道受力状态是首先应考虑的方法。将巷道布置在应力降低区,如沿已稳定的采空区边缘掘进巷道(沿空掘巷),将巷道布置在采空区下方(掘前预采、上行开采等),均可明显降低巷道受力,改善围岩应力状态。 在深部开采中,有些煤矿水平应力大于垂直应力,而且水平应力具有明显的方向性,最大水平主应力明显高于最小水平主应力。在这种条件下,当巷道轴线与最大水平主应力平行,巷道受水平应力的影响最小,有利于顶底板稳定。根据地应力实测数据优化巷道布置方向,对巷道稳定性会起到事半功倍的作用。此外,巷道布置应尽量避开大型地质构造(断层、褶曲、陷落柱等)。 根据深部煤矿地应力场分布特征,对巷道断面形状与尺寸进行优化,可改善巷道周边附近围岩应力分布,有利于围岩稳定。人工卸压法,包括切缝、爆破、钻孔及掘卸压巷等,可转移巷道周边附近的高应力,改善围岩应力状态,在适宜的条件下可作为一种辅助的围岩控制手段。 2.2 深部巷道支护与加固法 目前,深部巷道支护与加固形式主要有:锚杆、锚喷支护,U型钢可缩性支架,注浆加固,复合支护(采用2种或2种以上的支护加固方式联合支护巷道,如锚喷+注浆加固,锚喷+U型钢可缩性支架,U型钢支架+注浆加固,以及锚喷+注浆+U型钢支架等型式)。经过多年研究与实践,我国煤矿已形成了基于煤岩体地质力学测试、以预应力锚固与注浆为核心的巷道支护成套技术。对于深部巷道,锚固与注浆技术也是经济有效的围岩控制技术。 1)预应力锚固技术。在深部巷道采用的预应力锚杆、锚索支护技术,其支护原理是大幅提高支护系统的初始刚度与强度,形成高支护应力场,降低采动应力场梯度,主动控制围岩扩容变形,保持其完整性。同时,支护系统应具有高延伸率,允许围岩有较大连续变形,通过预留变形量,使巷道发生可控变形后仍能满足使用要求。不同巷道条件应有不同的锚杆支护形式:预应力锚杆支护适用于围岩比较完整的岩石巷道、岩石顶板煤巷等;预应力锚杆与锚索支护可应用于煤顶巷道、无煤柱护巷、软岩巷道、高应力巷道、动压巷道及大断面巷道等多种比较困难的条件;全预应力锚索支护,顶板、两帮,甚至底板全部采用预应力锚索支护,适用于深部高应力巷道、强烈动压巷道等非常困难的条件。 2)注浆加固技术。在松软破碎煤岩体中开掘巷道,围岩自稳时间短、破碎范围大,在这种条件下,注浆加固是围岩控制的有效途径。注浆加固利用浆液充填围岩内的裂隙,将破碎煤岩体固结起来,提高围岩整体强度,增加围岩自身承载能力。我国煤矿目前采用的注浆材料主要分为2大类:一类是水泥基材料,是注浆加固应用最广的材料;另一类是高分子材料,如聚氨酯、脲醛树脂等。此外,还开发出多种复合材料,以改善注浆材料的性能,降低注浆材料的成本。在井下应用时,可根据巷道具体地质与生产条件进行选择。 3)预应力锚固与注浆联合加固技术。当巷道围岩松软破碎,锚杆与锚索锚固力不能保证时,预应力锚杆、锚索与注浆联合是一种有效的加固技术。注浆可将松软破碎围岩粘结,提高围岩整体强度,同时为锚杆与锚索提供可锚的基础,保证锚杆与锚索预应力与工作阻力能有效扩散到围岩中。注浆后采用预应力锚杆与锚索支护,可有效控制围岩扩容变形,保持围岩长期稳定。此外,还开发了多种注浆锚杆、注浆锚索及钻锚注一体化锚杆,适用于不同条件的巷道加固。

巷道支护方案

支护方案 一、概述 二、处理方案 现场勘查后,根据现场各部位情况制定施工方案。下盘运输巷采用喷锚网支护,距已施工完成工作面3米;采矿进路开口5m采用喷锚网,矿体部分采用素喷混凝土;交叉点右侧墙体先施工喷锚网支护,再外部砌护;材料库房钢筋混凝土支护。具体施工方案如下: 1、喷锚网支护 喷锚网支护混凝土强度等级均为C25;喷锚网钢筋网采用∮8 mm钢筋,钢筋网间距100mmx100mm;锚杆采用∮20 mm螺纹钢筋,1m ×1m间距交错布置,锚杆长度2.2m,施工中可根据具体情况调整钢筋网和锚杆的设置参数。喷射混凝土支护、喷锚支护和喷锚网支护断面应按照相应施工规范进行施工。 1)喷射混凝土 喷射混凝土要求凝结硬化快、早期强度高,优先选用硅酸盐水泥和普通硅酸盐水泥。为了保证混凝土强度,防止混凝土硬化后的收缩和减少粉尘,喷射混凝土中的细骨料采用坚硬干净、细度模数宜大于2.5的中砂或粗砂。 为了减少回弹和防止管路堵塞,喷射混凝土的粗骨料粒径应不大于15mm。根据采用的速凝剂性能,通过试验确定其掺量,使喷射混凝土初凝不应大于5min,终凝不应大于10min。 一次喷射厚度。若一次喷射厚度过大,由于重力作用会使混凝土颗粒间的凝着力减弱,混凝土将发生坠落;若喷层厚度太小,石子无法嵌入灰浆层,将会使回弹增大。一次喷射合理厚度,墙50mm,拱

30mm。 分层喷射的间歇时间。当一次喷射厚度达不到设计厚度,需进行分次喷射时,后一层的喷射应在前一层混凝土终凝后进行。在常温15℃~20℃下喷射掺有速凝剂的混凝土时,分层喷射的间歇时间为15~20min。 混和料的存放时间。由于砂、石含有一定水分,与水泥混合后,存放时间应尽量缩短。不掺速凝剂时,存放时间不应超过2h;掺速凝剂时,存放时间不应超过20min,最好随拌随用。 喷射顺序是先墙后拱,自下而上进行。喷射前应埋设控制喷厚的标志,调节好给料速度。在喷射中,喷头应保持不断移动,以便减少回弹,保持喷层厚度均匀。如使喷头按圆形和椭圆形轨迹做螺旋式连续喷射,环形圈应为长轴400~600mm,短轴150~200mm。随时检测喷层厚度,确保达到设计厚度,岩面有较大凹陷处,应予以喷射找平。 2)锚杆施工 锚杆孔的施工应遵守下列规定:钻锚杆孔前,应根据设计要求和围岩情况,定出孔位,做出标记;锚杆孔距的允许偏差为150mm;钻孔的孔深、孔径均应符合设计要求。钻孔深度不宜比规定值大200mm以上,钻头直径不应比规定的钻孔直径小3.0mm以上;钻孔与锚杆预定方位的偏差为1°~3°。 锚杆安装前检查锚杆原材料型号、规格、品种。检查孔内积水和岩粉是否吹洗干净,不合格的锚杆孔要重钻。 采用药卷锚固剂进行锚固,锚杆安装采用先灌后锚法,把锚杆体插入孔眼直到底部,杆体安装后,不得随意敲击。锚杆锚入围岩的长度不低于2米。 要定期对安装好锚杆进行抗拔力测试,锚杆抗拔力可通过拉拔器作拉拔试验测出数值,不合格的锚杆可用加密锚杆的方法予以补强,并分析总结原因。 孔口承压垫座应符合下列要求:钻孔孔口必须设有平整、牢固的承压垫座;承压垫座的几何尺寸、结构强度必须满足设计要求,承压面与锚杆垂直。

巷道支护上应采取的支护原则

巷道支护上应采取的支护原则: 根据生产实际及目前矿井巷道压力显现情况,集团公司不同矿井(区)矿井压力大小不一,目前压力较大地点主要有三矿采区巷道、二矿各井个别采区及大巷等为压力较大地点。 集团公司目前压力相对较小地点:四矿、一矿。 应根据掘进巷道压力值大小确定相应的支护方式,在选择支护方式上宜采用强度大于巷道压力的支护方式。巷道压力大小具体可分为压力较小地段、压力大地段、压力较大地段。同时提倡较大断面施工,在设计时应合理确定支护断面,在满足通风、运输、行人基础上应适当考虑巷道变形,相应扩大设计断面,利于翻修。同时在支护方式选择上要充分考虑施工进度,在保证支护强度的前提下保证巷道施工速度,以适应采区准备需要。第三在原始块段允许的地点提倡锚网、锚网u型钢联合支护方式。 1、技术设计上,大巷、石门等布置上要考虑采动影响问题,尽量不受采区开采动压影响,合理确定间距,在采区布置上,要考虑对巷道压力的影响或少受影响。 2、科学支护,建立健全矿压观测、监测队伍,做好矿压观测、监测工作,收集整理矿压数据、分析矿压显现规律,为巷道有效支护提供科学依据,根据巷道压力值大小合理确定巷道支护方式。

3、合理确定巷道支护方式,做到基本上支得住。对巷道掘送的岩石巷道,顶板坚硬且压力不大的,可采用裸体不支护或光爆喷浆支护方式,对于一般岩巷有一定压力的巷道可采用锚杆、锚网、锚喷支护方式;在原始段掘送巷道中提倡锚网、锚网U型钢联合支护方式,对于压力较小的地点,服务时间较短的巷道应推广锚杆锚网支护方式,根据不同地点选择相应强度锚杆,科学设计锚杆长度,排、间距,压力显现较大地点根据巷道服务年限宜采用选择支护强度较大的支护方式,如U型钢支护,锚网、锚索喷浆、U型钢联合支护等,合理确定巷道断面,锚杆的长度,排、间距,U型钢棚距,单、双棚等。定期、不定期对巷道矿压进行观测、监测,对于巷道翻修要根据矿压数据,分析矿压规律,提倡及时卸压,定时松帮、松顶,并根据巷道压力变形情况及时进行翻修,在巷道变形较小时进行提前翻修,节省人力、减少支护材料报废量,翻修时要采用合适的大断面,采用超大强度的支护。 4、加强巷道施工质量,严格按规程、规定作业,保证支护符合规定要求,巷道要保证成形质量,使其巷道承载能力稳定均匀承压,搞好光爆作业,合理炮眼布置,降低最小抵抗线,适量装药,大力推广应用综掘机掘进,较少爆破对围岩的震动;锚杆、锚索做好锚药的填装,抓好锚眼深度、角度、排间距等工艺施工,紧固好锚杆螺丝,喷浆材料符合

矿井深部开采沿空巷道的围岩控制技术研究

矿井深部开采沿空巷道的围岩控制技术研究 摘要:针对深部综放沿空巷道围岩稳定性差、变形大、难支护的特点,通过理论分析、数值模拟和现场实验等方法,从巷道支护方式和巷道断面优化两方面讨论了深部综放沿空巷道的控制技术。研究结果表明:直墙半圆拱形断面、锚梁网索联合支护方式能够较好的控制深部综放沿空巷道围岩,减少巷道围岩变形,增强其稳定性。 关键词:深部综放沿空巷道半圆拱形锚网索联合支护断面优化 1、引言 随着对能源需求量的增加和开采强度的不断加大,我国矿山相继进入深部开采。目前,我国煤矿开采深度以每年8~12m的速度增加,而东部矿井更以每年10~25m的速度增加,预计未来20年,我国很多煤矿将进入1000m~1500m的深度开采。另一方面,我国已探明煤炭资源埋深在1000m以下的储量为2.95万亿吨,约占煤炭资源总量的53%,因此,现在及未来一段时间内,我国煤矿开采将逐渐转入深部开采。 由于深部岩体所处的地球物理环境及其应力场的复杂性,在浅部开采基础上发展起来的传统支护理论、支护参数已难以适应深部巷道支护设计和实践的需要。深部综放沿空巷道,作为一类较特殊的回采巷道,与普通的回采巷道相比,具有以下特点:(1)综放沿空巷道布置在靠近采空区的煤体中,巷道围岩结构破碎,在掘进和回采过程中,巷道将发生较大的变形;(2)对于综放沿空巷道而言,由于巷道上方为顶煤,上覆岩层运动波及的范围及影响程度相应地增大,回采过程中的矿压显现将更加剧烈;(3)综放工作面年产量多在100万t左右,开采强度大,机械设备体积较大,且所需风量剧增,这就要求巷道具有较大的断面;(4)深部综放沿空巷道埋深大,地应力相对较大。由于以上原因,深部综放沿空巷道围岩的稳定性及其控制一直是采矿领域中的研究热点和难点。本文主要从支护方式与参数、巷道断面优化等方面讨论深部综放沿空巷道围岩的控制技术。 2、综放沿空巷道断面的优化 由于施工简单,易于成型等优点,矩形和梯形断面形状是目前国内综放沿空煤巷的主要断面形状。但根据弹性力学、岩石力学知道,这两种巷道断面都容易在4个拐角处产生应力集中,不利于巷道围岩的稳定性。直墙半圆拱形断面具有易于巷道顶板稳定、易于施工等优点,目前已经成为岩石巷道的主要形式;但由于半圆拱形巷道施工较复杂,不易成型等缺点,在煤巷中很少应用。由于深部综放沿空巷道的特殊性,尤其是综合机械化掘进易于完成直墙半圆拱形断面的开挖,因此,直墙半圆拱形断面可优先应用于综掘施工的深部综放沿空巷道中。下面将通过数值计算件模拟这两种断面对浅部、深部巷道围岩,特别是对深部综放沿空巷道顶部煤岩体稳定性的影响。

巷道支护理论计算

各种理论计算方法 一、按悬吊理论计算锚杆参数 适用于层状岩层,平顶巷道顶板锚杆;距离顶板周边往上1-1.5m 处最好有一层厚度大于2m 的坚固稳定老顶;上述范围没有老顶时,公式仍可套用。 1、锚杆长度计算: L=L 1+L 2+L 3 式中 L ——锚杆长度,cm ; L 1——锚杆外露长度,为垫板厚度+螺母厚+0.3mm ;cm L 2——破碎直接顶厚度,一般按经验取0.4m ; L 3——锚杆伸入老顶长度,按经验取≥0.30m ,或按锚固粘结力(π d τL 3)等于锚杆拉断承载力(πd 2σ/4)估算, 其中:当f ≥3时,L 2= B , 当f ≤2时, 式中B ——巷道开掘宽度,m ; f ——岩石坚固系数。 H ——巷道掘进高度,m φ——两帮岩层的似内摩擦角。 D ——为锚杆直径, τ——为锚固剂与锚杆粘结强度,MPa σ——为锚杆抗拉强度,MPa 。 2、锚固力Q :锚杆锚固力应等于杆体承载力,杆体能承载平均作用范围内岩石的重力。 Q =π(d/2)2σ=kab γL 2 式中:σ——锚杆抗拉强度,MPa d ——杆体直径 k ——安全系数,取1.5-1.8 a ——锚杆间距 b ——锚杆排距 γ——岩体容重 L 2——巷道顶板破碎带高度。 3、锚杆间距、排距计算: 设计令间距、排距均为a ,则 a=(Q/K L 2γ)1/2 式中α——锚杆间排距,m ; Q ——锚杆设计锚固力,150KN/根 L 2——冒落拱高度,取0.25m ; γ——被悬吊岩石的重力密度,取27KN/m 3; K ——安全系数,一般取1.5-1.8。 4、混凝土喷层厚度t 根据锚杆喷射混凝土支护技术规范,喷射混凝土支护厚度,最小不应小于50mm ,时。2≤f

深井软岩巷道破坏机理与围岩控制技术研究

深井软岩巷道破坏机理与围岩控制技术研究 李智峰 (黑龙江科技学院,黑龙江哈尔滨150027) 摘 要 矿井开采进入深部以后,原有的支护方式及支护强度已很难适应深井煤巷的变形特征,巷道围岩变形根本无法满足矿井安全生产的 需要。该文通过对深井软岩巷道的变形破坏机理,采用锚杆为主的联合支护技术,实现了深井软岩巷道围岩控制的长期稳定,也为该类巷道推行锚杆联合支护技术提供了参考和借鉴。关键词 深井 软岩 锚喷支护中图分类号TD327 文献标识码 A *收稿日期:2012-02-27 作者简介:李智峰(1972-),男,辽宁彰武人,中级职称,毕业于黑龙江科技学院计算机科学与技术专业,大学本科。现为黑龙江科技学院安全工程学院教师,主要从事科研管理和煤矿安全方面的研究工作。 随着煤矿开采强度与范围显著增加,巷道布置出 现了以下发展方向:(1)在巷道层位方面,永久性巷道从岩巷向煤巷发展,以提高掘进速度,缩短建井周期;放顶煤开采技术的广泛应用,使得回采巷道从岩石项板煤巷向煤层项板巷道和全煤巷道发展。(2)在巷道断面形状与大小方面,拱形断面向矩形断面发展,以提高掘进速度与断面利用率,回采巷道有利于采煤工作面的快速推进;小断面向大断面发展,以满足大型采掘设备与高开采强度的要求。(3)在回采巷道数量方面,单巷布置向多巷发展,以满足高瓦斯矿井及大型矿井运输、通风的要求。(4)从巷道赋存条件方面,埋深从浅部向深部发展,简单地质条件向复杂地质条件发展,特别是深井软岩巷道围岩控制问题,增加了巷道支 护难度,对支护技术提出更高、更苛刻的要求 [1-3] 。因此,本文从深井软岩巷道破坏机理,针对具体实际情况确定巷道支护方式和技术参数,通过现场工业试验获得良好的技术经济效果。1 深井软岩巷道破坏机理 随着开采深度的增加,地应力也随之增加,由于围岩强度小,巷道围岩应力状态达到或超过岩石的塑性变形临界或强度极限,要达到一个新的平衡,必须由深部岩石来承载巷道动压,当一个平衡点被破坏,就要求有一个新的平衡点来支持,这样必然造成巷道围岩松动圈增大,由浅入深,因而巷道收敛变形量急剧增加,稳定性差,给巷道稳定性控制带来困难。1.1深井巷道矿山压力 深井巷道稳定性差的根本原因是深井巷道的矿山压力较大,或简单地说是原始地应力大,假定巷道承受的垂向地应力等于地层重力。对于深度达到800m 的巷道,则自重应力可达到20MPa ,如果巷道围岩的轴抗压强度为40MPa ,则有巷道的不稳定系数为0.5,则巷 道围岩会因应力集中达到单轴抗压强度极限。对于受 到采场矿压作用的巷道,则更容易发生变形破坏。1.2深井巷道变形破坏规律 若以巷道松动圈的厚度来表示巷道变形破坏情况,则可发现:随采深的加大,各种岩性巷道的松动圈的厚度随着加厚;岩性越软则松动圈厚度越大,承受动压作用的各种岩性巷道松动圈的厚度值更大一些。鸡西荣华煤矿主要大巷所在水平的岩层主要为泥岩、煤和炭质泥岩,经观测泥岩、煤和炭质泥岩松动圈最大在2 2.5m 之间,属于深井软岩,极难支护。1.3深井软岩巷道稳定性控制 通过以上分析,巷道稳定性主要取决于3方面的因素:(1)巷道围岩应力场,主要由开采深度和采动影响决定;(2)巷道围岩的力学性质,主要由岩层结构、岩石强度和裂隙发育情况等因素起作用;(3)巷道支护方式和参数。 因此,深井软岩围岩控制应从煤层赋存情况、开采 深度和井田的地质情况为依据, 从巷道的支护方式和参数入手,不断优化支护方案,增强围岩强度,提高支护能力来控制巷道的稳定性。2锚杆支护在软岩巷道中的应用 2.1 支护方式的选择 以鸡西荣华矿水平运输大巷为例介绍软岩巷道围岩控制方式。 软岩支护设计必须采取卸压、让压与加固围岩、提高围岩自承能力相结合的方法,若采用料石砌碹的支护方法,不仅工序复杂,支护工期长,工人劳动强度大,成本高,而且因砌筑材料是刚性的,起不到卸压、让压的作用,当围岩应力发生变化时,极易破坏,不能解决软岩支护问题;采用U 型钢支架支护,虽然承载能力高,可缩性强,但硐室高度、跨度较大,施工困难,成本较高,且它不能对巷道围岩提供主动支护作用,也不是一种理想的支护方式。根据荣华水平运输大巷围岩的 实际情况, 对设计依据进行了详尽分析后,确定采用以高强度左旋无纵筋螺纹钢树脂锚杆为主的锚、网、索与喷射混凝土联合支护。通过高强度左旋无纵筋螺纹钢树脂锚杆对围岩进行主动加固,保持围(下转第155页) 3 512012年第5 期

巷道支护技术

2.1 巷道围岩控制理论 1907年俄国学者普罗托吉雅可诺夫提出普氏冒落拱理论[1-2],该理论认为:巷道开掘后,已采空间上部岩层将逐步垮落,其上方会形成一个抛物线形的自然平衡拱,下方冒落拱的高度与岩层强度和巷道宽度有关。该理论适用于确定巷道围岩强度不高、开采深度不是很大的巷道支护反力。20世纪50年代以来,人们开始用弹塑性力学解决巷道支护问题,其中最著名的是Fenner [3]公式和Kastner 公式[4]。 Fenner 公式为: ()[]10cot sin 1cot -??? ??+-+-=???σ?N i R r C C P (1) 式中,i P —支护反力;C —围岩内聚力;?—内摩擦角;0σ—原岩应力;r —巷道半径;R —塑性圈半径;?N —塑性系数,κ??sin 1sin 1-+= N 。 Kastner 公式为: ()()?????sin 1sin 20sin 1cot cot -??? ??-?++-=R r C P C P i (2) 式中,i P —支护反力;C —围岩内聚力;?—内摩擦角;0P —初始应力;r —巷道半径;R —塑性圈半径。 国内外巷道顶板控制理论发展很快[3-4],我国在1956年开始使用锚杆支护,迄今为止,已有50多年的历史。锚杆支护机理研究随着锚杆支护实践的不断发展,国内外已经取得大量研究成果[5-10]。 (1)悬吊理论 1952年路易斯阿帕内科L(ouis.Apnake)等提出了悬吊理论,悬吊理论认为锚杆支护的作用就是将巷道顶板较软弱岩层悬吊在上部稳固的岩层上,在预加张紧力的作用下,每根锚杆承担其周围一定范围内岩体的重量,锚杆的锚固力应大于其所悬吊的岩体的重力。 (2)组合梁理论

巷道围岩控制方法与支护方式

巷道围岩控制方法与支护方式 [摘要]在煤矿生产过程中,巷道围岩控制与巷道的支护是非常重要的环节,关系到煤炭生产的高产高效与采煤安全生产。降低巷道围岩应力,提高围岩的稳定性,合理选择支护是巷道围岩控制的主要途径。本文主要阐述了巷道围岩压力及影响因素、巷道围岩控制措施、方法和巷道保护与支护措施等技术问题。 【关键词】巷道;围岩控制;支护方式 在煤矿生产过程中,巷道围岩控制与巷道的支护是非常重要的环节,关系到煤炭生产的高产高效与采煤安全生产。降低巷道围岩应力,提高围岩的稳定性,合理选择支护是巷道围岩控制的主要途径。回采导致的支承压力不但数倍于原岩应力,并且,影响范围大。巷道受回采影响后,围岩应力、围岩变形成几倍、几十倍急增。巷道围岩控制的实质是利用煤层开采引起采场周围岩体应力重新分布的规律,正确选择巷道布置和护巷方法,使巷道位于应力降低区内,防范回采引起的支承压力的影响,控制围岩压力。本文主要阐述了巷道围岩压力及影响因素、巷道围岩控制措施、方法和巷道保护与支护措施等技术问题。 1、巷道围岩压力及影响因素 1.1、围岩压力 (1)松动围岩压力。因巷道挖掘而松动、塌落的岩体,其重力直接作用在支架结构物上的压力,表现为松动围岩压力载荷形式,如支护没有有效控制围岩变形,围岩形成松动垮塌圈时,造成松动围岩压力,顶压显现严重。 (2)变形围岩压力。支护可控制围岩变形的发展时,围岩位移挤压支架而出现的压力,即:变形围岩压力。在围岩、支护力学体系中,围岩与支架互相作用,围岩就对支架施加变形压力。弹性变形压力是围岩弹性变形时作用在支架上的压力,弹性变形出现的速度很快,变形量相当小,围岩、支护相互作用的过程,实际作用较小。塑性变形压力是因为围岩塑性变形和破裂,围岩向巷道空间位移,使支护结构受压,这是变形围岩压力的基本形式。塑性变形的状况由巷道塑性区和破裂区的范围所决定。塑性区的扩展具有时间效应,它不再扩展时,围岩变形速度就下降。 (3)膨胀围岩压力。 与变形压力不同,它是由吸水膨胀导致的。从表面上看,膨胀压力是变形压力,而两者的变形机制完全不同。一个是与水发生理化反应;一个是围岩应力与结构效应。

巷道锚杆支护设计专题报告

巷道锚杆支护 摘要 煤巷锚杆支护的技术已趋于成熟但是锚杆支护仍然存在较多问题。第一,锚杆支护工程隐蔽性强,监测技术不能完全满足煤矿的需要,安全可靠根本没有保证。第二,我国煤炭资源分布范围广,地质条件复杂多变,好多复杂地质条件下锚杆支护并未达到理想的支护效果。该设计是从锚杆支护的隐蔽性和我国复杂多变的地质条件等特点出发。围绕这些特点,从杆体材料,加工方法,支护设计理念、施工质量,检测设备,监测手段等方面入手进行试验研究,提高支护质量,实现高产高效。 关键词:巷道;锚杆支护;高强度锚杆;监测 1问题的提出 由于锚杆支护能够改变围岩的力学特性,能获得良好的支护效果,带来传统支护方式无法比拟的技术经济效益,在国内外已受到了普遍的重视并得到了快速的发展及广泛的应用。因此,探索正确的巷道支护理论、选择安全可靠的支护方法、确定经济合理的支护参数以及实用高效的施工工艺成了长期以来人们所致力解决的一个重大理论及技术课题,对于煤矿来说具有重大意义。锚杆支护是巷道支护的一次重大革命,它可以起到加固、悬吊、合成梁和挤压连接体等作用,在支护中使用锚杆可以改变岩体的受力状态,不仅增加了岩石本身的稳定程度,而且使被支护岩体由荷载变为承载体,提高了岩体承载能力。同时,大量工程实践表明,锚杆支护具有用料节省、巷道断面利用率高、支护及时、劳动强度小、经济效益高以及对巷道围岩变形的适应性好等诸多优。因而,井下巷道采用锚杆支护是一种行之有效的支护手段,成为世界主要产煤国家煤矿支护的主要形式,美国、澳大利亚的煤矿巷道普遍采用锚杆支护,其支护比例己接近100%,英法两国煤巷的锚杆支护比例也分别达到了50%和80%以上,而我国煤矿锚杆支护在煤巷中仅占20%左右,和世界先进水平相比存在较大差距。其主要原因是巷道事故率很高。巷道变形破坏、片帮冒顶等事故在地下工程中是最常见的。据不完全统计,煤矿事故中59%以上是巷道事故。究其原因,还是对巷道变形破坏规律认识不清、支护理论不完善,从而造成支护设计工程类比居多,缺乏科学的指导,巷道支护方式选择不合理,因而也就无法保证巷道在不同地质条件下稳定和安全使用。所以本文系统的介绍锚杆支护。

浅谈巷道支护形式的选择

浅谈巷道支护形式的选择 [摘要]本文结合了某煤矿在不同岩性的条件下,所采用的支护方式,并阐述了巷道的支护类型和适用条件。 【关键词】巷道支护;形式;选择 一、巷道围岩的应力分布 1、采动、采动空间和围岩 在岩体中开掘巷道和进行回采工作,称为对岩体的采动,采动所形成的空间称为“采动空间”,采动空间周围的岩体称为围岩,采动空间上方的岩层称顶板,下方的岩层称底板,两侧的岩体称为两帮。 2、巷道的应力分布 采动后围岩的原始平衡状态遭到破坏,各部分应力将重新分布,应力重新颁的结果是顶板的两端出现应力集中区。其中顶板各岩层将因失去支撑面,在自重的作用下,弯曲下沉。结果在其底部出现拉应力,当拉应力超过限度,顶板岩层遭到破坏,围岩应力的重新分布促使岩层产生新的运动。 3、自然平衡拱的形成及破坏 当开掘井下巷道或采出煤炭后,顶板被暴露出来,好象一根梁一样承受着上下岩石的压力。如果不及时进行支护,经过一段时间,梁将向下弯曲,靠近巷道顶板的岩石产生拉应力,当拉应力超过岩石所能承受的极限时,岩石将产生裂隙;并随着裂隙不断增加,岩石开始破碎、脱落下来,其冒落范围不断向上发展,最后形成一个岩拱就不再冒落了,这种拱叫自然平衡拱。 综上所述,掘进巷道时应做好支护工作,防止顶板冒落、片帮和底鼓。因此,在掘进巷道过程中,针对巷道围岩的岩性情况适当选择恰当的支护类型是十分重要的。 某煤矿主要开采龙岩组一段的37#、38#、39#及41#煤层及龙岩组三段的2#、20#、23#、24#、28#、29#煤层。 1)龙岩组一段中部富煤带,自41号煤底板砂岩至36号煤顶板之上砂岩底界,厚度约125米,岩性以粗粉砂岩为主,含煤7层,主要可采4层(37#、38#、39#、41#),局部可采1层36#,各煤层的顶底板岩性为37#:顶板为泥岩或细粉砂岩,底板为粗粉砂岩;38#:顶板为厚层状泥岩,底板为粉砂岩;39#:顶板为

矿山岩层控制

采场顶板支护方法和顶板控制 摘要:在实际生产过程中,工作面常有下述一系列矿山压力现象,并且习惯上用这些现象作为衡量矿山压力显现程度的指标。随着我国各种支护设备的使用,我国煤矿回采开采已进入现代化水平,工作面的推进速度,以及当工作面甩掉这些已发生错动的老顶时,时常发生顶板的周期来压,裂隙带岩层形成的结构将始终经历“稳定—失稳—再稳定”的变化。这种变化将呈现周而复始的过程。回采工作面应用的液压支架主要是由梁与柱组合而成的,不仅能实现支设与回撤的自动化,而且对顶板的管理和维护起到很关键的作用,使工作面推进一系列工序也同时实现了机械化,充分减轻了繁重的体力劳动。 关键词矿山压力回采开采周期来压液压支架顶板管理 一.巷道围岩控制理论与实践的发展 (1)巷道布置改革及无煤柱护巷技术 我国在采准巷道矿压理论指导下,形成了完善的巷道合理布置系统。在分析开采引起的围岩应力重新分部规律的基础上,研究沿空巷道一侧煤柱边缘带的应力重新分部和支架与围岩关系,掌握无煤柱护巷机理,推进无煤柱护巷技术。同时,发展整体浇注式巷旁充填技术,为沿空留巷的扩大应用开辟了广阔前景。 (2)研究巷道支架与围岩关系采用先进支护技术 研究巷道支架的合理性能和结构形式,既能有效地抑制围岩变形,又能与围岩变形相互协调,减少支架损坏和改善巷道维护。为此,

研制了适用于不同条件的U型钢、工字钢结构可缩性支架,完善了辅助配套设施,发展了支架壁后充填。 (3)软岩巷道围岩控制理论与实践的发展 自70年代以来,有计划地开展软岩巷道支护技术科技攻关。对软岩巷道围岩控制的基础理论、软岩的岩性分析及工程地质条件、围岩变形力学机制、巷道支护设计、施工工艺及监测进行全面系统研究。针对软岩的类别和变形力学机制,发展了锚喷网支护技术、U型钢支护壁后充填技术、防治底臌封闭支护技术、围岩爆破卸压和注浆加固技术。 (4)巷道围岩控制设计决策及支护质量与顶板动态监测 依据巷道围岩稳定性分类及巷道支护形式与合理支护参数选择 专家系数,预测巷道围岩稳定性类别、预计围岩移近量、选择支护型式、确定支护参数。实行巷道支护质量与顶板动态全过程监测,通过施工过程中的现场监测、信息反馈、不断修正支护设计和调整支护参数。使巷道围岩控制逐步由经验判断和定性评估向定量分析和科学管理转化。 二.采场上覆岩层活动规律的假说 自从采用长壁工作面开采以来,上覆岩层中是否存在着大结构,以及此结构是什么形式,一直是采矿科学研究的重要课题。 1.压力拱假说

巷道支护工操作规程

巷道支护工操作规程 第一段一般规定 一、施工前,支护工必须认真学习并掌握作业规程中规定的支护形式和支护技术参数;施工过程中,必须按支护说明书和质量标准要求精心操作,安全施工。 二、施工中不得使用下列支护材料及支架: 1、不符合作业规程的支护材料。 2、腐朽、劈裂、折断的坑木。 3、露筋、折断、缺损的混凝土棚。 4、严重锈蚀或变形的金属支架及未经检测工作阻力的摩擦支柱。 5、过期、失效的树脂锚固剂、水泥锚固剂、速凝剂、减水剂、水泥,未经淘洗的黄沙、碎石或不合格的锚杆杆体。 三、施工时,严禁空顶作业。必须按照作业规程规定采用前探梁支护。前探梁的材料、结构形式、质量要求应符合作业规程规定。 四、支护过程中,必须对工作地点的电缆、风筒、风管、水管及机电设备妥加保护,不得损坏。 五、采用棚子支护或砌碹支护时,棚腿或碹墙基础严禁架筑在浮煤浮矸上。采用锚喷支护时,锚杆的锚固力,喷射混凝土厚度、强度等参数必须达到设计要求。 六、放炮崩倒崩坏的支架应及时修复或更换。修复支架前,应先找掉危石、活矸。扶棚或更换支架,应从外向里依次进行。 七、在倾斜巷道内架棚,必须有一定的迎山角。迎山角值应符合

作业规程的规定,严禁支架后倾。 八、架棚巷道棚子之间必须安设拉杆或撑木。上下山巷道棚子之间,必须使用金属拉杆,迎头10米内还应敷设防倒器或采取其它防止放炮崩倒支架的措施。 九、对工程质量必须坚持班检和抽检制度,了隐蔽工程要填写“隐蔽工程记录”单。 十、在压力过大的巷道架设对棚时,对棚应一次施工,不准采用补棚的方法,以免对棚高低不平,受力不均。 十一、在人工假顶下掘进巷道时,必须及时支护,以免出现坠网现象。若顶网破损,必须先补网再进行支护。 十二、巷道支护高度超过2米,或在倾角大于30度的上山进行支护施工,必须有脚手架或搭设工作平台。 第二段操作前准备工作 一、施工前,要备齐支护材料和施工工具,以及用于临时支护的前探梁和处理冒顶的应急材料。 二、支护前和支护过程中,要经常敲帮问顶,用长柄工具及时处理危岩、活石。 三、支护前,应按中、腰线检查巷道毛断面的规格质量,处理好不合格部位。 四、施工前,要掩护好风、水、电等管、线设施;施工设备要安放到规定地点。 第三段架棚支护

煤层巷道支护设计

五虎山煤矿9号煤层巷道支护设计 姓名:刘晓晨 班级:安全连1201 学号:311201010217 时间:2015年5月1日

我国西部地区的煤炭资源十分丰富,占全国煤炭总量的80%以上,神华集团年煤炭产量超过1亿.t所属矿区煤层埋藏较浅,上覆为风积砂岩,因此顶板管理及围岩支护与其他矿区不同.本文利用RFPA岩石破裂过程分析系统软件,对神华集团乌达矿区五虎山煤矿9号煤层巷道围岩变形和破坏过程进行了动态仿真模拟,并根据模拟结果,分析了随着煤层上山的掘进中上覆岩层的破断过程、特征与来压特点,揭示了煤层顶板的破断及煤壁支撑压力的变化规律.五虎山煤矿隶属于神华集团,由于生产接续的需要,将对9号煤层进行开采. 9号煤层平均厚度3·5 m,煤质松脆,直接顶以泥质页岩为主,中间夹有砂岩,平均厚度4·8 m,节理裂隙发育.老顶以中砂岩和粗砂岩为主,平均厚7·1 m. 9号煤层进风上山是在煤层中掘进,初始的顶板支护方法采用锚杆支护,间排距800 mm×800 mm,不能满足工程需要.为防止顶板垮落,对该巷道的支护方案进行改进,以有效地控制顶板和围岩的变化. 1 支护方案初步设计 9号煤层进风上山是在煤层中掘进,因煤层顶板都具有成层性,所以顶板的破坏基本上是从离层开始.因此煤巷顶板锚杆支护的主要作用就是抑制顶板的离层,其次是将已经离层的顶板围岩悬吊在其上方较稳定的岩层上.当煤层直接顶厚达几米以上时,要将锚杆锚固在稳定岩层内是不可能的,须采用预应力锚索将巷道上部一定范围内的岩石固定在离巷道表面较远的稳定岩石上,这样可提高巷道围岩的整体性和内在抗力,有效控制围岩有害变形的发展,增加围岩的稳定程度.在暗斜井9号煤层下部车场岩巷段(开口段)断面形状为矩形巷道,如

主要巷道支护技术研究措施

神华宁煤集团清水营煤矿 主要巷道支护技术研究方案 神华宁煤集团 山东科技大学 二○○九年六月

1 工程的必要性1 1.1 现状分析1 1.2 国内外同类技术发展状况4 1.3 研究目的及意义5 2 研究开发内容6 3 主要经济技术指标、工程最终目标7 4 关键技术及创新点7 5 研究或研制开发的技术路线,实施的方式、方法、步骤7 5.1 课题的总体研究思路7 5.2 研究方法8 5.3 技术路线8 5.4 实施方式<具体方案)9 5.5 矿压观测18 6 技术、经济可行性及可靠性分析、论证19 7 现有基础、技术条件,保证体系20 7.1 实用矿山压力理论已经取得了系统的突破性成果20 7.2 岩石破坏与失稳理论20 7.3 深部巷道支护取得一些创新性研究成果21 7.4 实践基础22 8 经济、社会效益分析24 9 工程实施进度计划24 10 经费计划25

QSYK-1 神华宁煤集团清水营煤矿 主要巷道支护技术研究方案 1工程的必要性 1.1现状分析 1.1.1矿井地质情况 矿区钻孔揭露地层自下而上有三叠系、侏罗系、白垩系、古近系、第四系,含煤地层为侏罗系中统延安组,钻孔揭露厚度245.01~304.86m,平均276.50m,岩性由灰、灰白色长石石英砂岩、深灰色、灰黑色粉砂岩、泥岩、煤和少量含铝质泥岩组成。主要可采煤层顶板均为易冒落、不稳定—中等冒落、中等稳定岩层,底板为不稳定岩层。 矿井地层中含水层属弱~中等富水性,分别为第四系孔隙潜水含水层<Ⅰ)、白垩系砾岩裂隙孔隙层间承压含水层<Ⅱ)、侏罗系上统安定组~中统直罗组裂隙孔隙含水层<Ⅲ)、二~八煤间砂岩裂隙孔隙承压含水层<Ⅳ)、八~十八煤间砂岩裂隙孔隙承压含水层<Ⅴ)、十八煤以下至底部分界线砂岩含水层组<Ⅵ),隔水层以低阻、高密度的粉砂岩、泥岩为主,主要有四层,分别为安定~直罗组裂隙孔隙含水层顶板隔水层、二~八煤含水层顶板隔水层、八煤及其顶底板泥岩隔水层、十八煤及其顶底板泥岩隔水层。 1.1.2主要巷道设计布置层位 <1)主斜井、副斜井由六煤-五煤露头对应地面位置开口,由四上- 三煤间进入煤系地层,穿过三煤后进入二煤底板。主斜井坡度为22°~24°~25°,副斜井坡度为22°~25°,所处层位为四上- 二煤之间的砂岩层。该层位由灰、灰白、深灰色不同粒级的砂岩组成,属二煤- 八煤间砂岩含水层

相关文档
最新文档