电气专业英语论文

电气专业英语论文
电气专业英语论文

沧州师范学院

专业外语阅读

文献综述

学院机械与电气工程学院

姓名赵汝志

学号1414216134

专业电气工程及其自动化

班级2014级1班

2017 年 1 月

电动机的简单介绍

摘要:电动机是指依据电磁感应定律实现电能转换或传递的一种电磁装置。它将电能转变为机械能,它主要包括一个用以产生磁场的电磁铁绕组或分布的定子绕组和一个旋转电枢或转子。在定子绕组旋转磁场的作用下,其在电枢鼠笼式铝框中有电流通过并受磁场的作用而使其转动。这些机器中有些类型可作电动机用,也可作发电机用。它是将电能转变为机械能的一种机器。通常电动机的作功部分作旋转运动,这种电动机称为转子电动机;也有作直线运动的,称为直线电动机。

关键词:电动机;电磁装置

一、基本介绍

1、发明过程:

电动机使用了通电导体在磁场中受力的作用的原理,发现这一原理的是丹麦物理学家—奥斯特,由于受康德哲学与谢林的自然哲学的影响,坚信自然力是可以相互转化的,长期探索电与磁之间的联系。1820年4月终于发现了电流对磁针的作用,即电流的磁效应。同年7月21日以《关于磁针上电冲突作用的实验》为题发表了他的发现。这篇短短的论文使欧洲物理学界产生了极大震动,导致了大批实验成果的出现,由此开辟了物理学的新领域──电磁学。

2、国内现状:

我国的电动机生产开始于1917年,该行业在国内已经形成比较完整的产业体系。我国电动机制造行业随着电力发展呈现出勃勃生机,产销规模和经济效益都有了大幅度提高。我国电机产品虽然种类繁多,但效率普遍不高。

二、基本分类

电动机按工作电源种类划分:可分为直流电机和交流电机。直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。其中交流电机还可分:同步电机和异步电机。同步电机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。异步电机可划分:感应电动机和交流换向器电动机。感应电动机可划分:三相异步电动机、单相异步电动机和罩极异步电动机等。交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。

三、工作原理

电动机种类有很多种,下面简单介绍三相异步电动机的工作原理:当电动机的三相定子绕组通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流,载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。当三相异

步电机接入三相交流电源时,三相定子绕组流过三相对称电流产生的三相磁动势并产生旋转磁场,该磁场以同步转速n0沿定子和转子内圆空间作顺时针方向旋转。

四、基本结构

三相异步电动机的两个基本组成部分为定子和转子。此外还有端盖、风扇等附属部分。

1、定子铁心:

定子铁心是异步电动机主磁通磁路的一部分。为了使异步电动机能产生较大的电磁转矩,希望有一个较强的旋转磁场,同时由于旋转磁场对定子铁心以同步转速旋转,定子铁心中的磁通的大小与方向都是变化的,必须设法减少由旋转磁场在定子铁心中所引起的涡流损耗和磁滞损耗,因此,定子铁心由导磁性能较好的0.5mm厚且冲有一定槽形的硅钢片叠压而成。

2、定子绕组:

定子绕组是异步电机定子部分的电路,它也是由许多线圈按一定规律联接面成。能分散嵌入半闭口槽的线圈由高强度漆包圆铜线或圆铝线绕成,放入半开口槽的成型线圈用高强度漆包扁沿线或扁铜线,或用玻璃丝包扁铜线绕成。开口槽也放入成型线圈,其绝缘通常采用云母带,线圈放入槽内必须与槽壁之间隔有“槽绝缘”,以免电机在运行时绕组对铁心出现击穿或短路故障。

3、转子铁心:

转子铁心也是电动机主磁通磁路的一部分,一般也由0.5毫米厚冲槽的硅钢片叠成,铁心固定在转轴或转子支架上。整个转子铁心的外表面成圆柱形。

4、转子绕组:

转子绕组分为笼型和绕线型两种结构,下面介绍绕线型绕组。它是一个对称三相绕组,这个对称三相绕组接成星形,并接到转轴上三个集电环,再通过电刷使转子绕组与外电路接通。

五、结论

电动机的运用在国内越来越多,种类繁多但是效率不高。在了解了电动机的基本原理后,随着对电动机认识的加深,未来会有更多高效率的电机产生。本文简单的提供了电动机的基础知识,是为了方便读者更好的了解电动机。

参考文献

[1]孙建忠,刘凤春。电机与拖动[M]。机械工业出版社。

[2]邱关源。电路[M]。高等教育出版社。

A brief introduction to the motor

Abstract:Electromagnetism is a kind of electromagnetism which can realize the conversion or transmission of electric energy according to the law of electromagnetic induction. It converts electrical energy into mechanical energy and consists essentially of an electromagnet winding or distributed stator windings for generating a magnetic field and a rotating armature or rotor. In the stator windings under the action of rotating magnetic field, the armature squirrel-cage aluminum in the current through the magnetic field and the role of its rotation. Some of these machines can be used for electric motors as well as generators. It is a machine that converts electrical energy into mechanical energy. Usually the work part of the motor for rotary motion, this motor is called the rotor motor; also for linear motion, known as the linear motor.

Keywords: motor; electromagnetic device

First, the basic introduction

1, the invention process:

The principle of the motor using the force of the conducting conductor in the magnetic field was discovered by the Danish physicist Oersted, because of the influence of Kant's philosophy and Schelling's natural philosophy, that the forces of nature can be transformed into each other , Long-term exploration of the relationship between electricity and magnetic. In 1820 April finally found the role of current on the magnetic needle, that is, the magnetic effect of the current. In July 21st the same year on the "needle on the power of the role of the experiment" as the title of his discovery. This short paper to the European physics community had a great shock, resulting in a large number of experimental results, which opened up a new field of physics ──electromagnetics.

2, the domestic situation:

China's motor production began in 1917, the industry in China has formed a relatively complete industrial system. China's electric motor manufacturing industry with the development of electric power has shown vitality, production and marketing scale and economic benefits have been greatly improved. Although a wide range of motor products in China, but the efficiency is generally not high.

Second, the basic classification

The motor according to the type of power supply division: can be divided into DC motor and AC motor. DC motor by structure and working principle can be divided into: brushless DC motor and brush DC motor. Brush DC motor can be divided into: permanent magnet DC motor and electromagnetic DC motor. Electromagnetic DC motor division: series excitation DC motor, shunt DC motor, he excited DC motor and DC motor excitation. Permanent magnet DC motor division:

rare earth permanent magnet DC motor, ferrite permanent magnet DC motor and aluminum nickel cobalt permanent magnet DC motor. Which AC motor can be divided into: synchronous motor and asynchronous motor. Synchronous motor can be divided: permanent magnet synchronous motor, reluctance synchronous motor and hysteresis synchronous motor. Induction motor can be divided into: induction motor and AC commutator motor. Induction motor can be divided into: three-phase asynchronous motor, single-phase asynchronous motor and shaded pole asynchronous motor. AC commutator motor can be divided into: single-phase series motor, AC-DC dual-motor and repulsion motor.

Third, the working principle

There are many types of motor, the following simple three-phase induction motor works: When the three-phase stator winding of the motor into the three-phase AC, will produce a rotating magnetic field, the rotating magnetic field rotor winding, which in the rotor winding The rotor current of the rotor will produce electromagnetic force under the action of the rotating magnetic field of the stator, so that the electromagnetic torque will be formed on the motor shaft, the motor will rotate and the direction of rotation will be the same as the rotating magnetic field. When the three-phase asynchronous motor access to three-phase AC power, three-phase stator windings flow through the three-phase symmetrical current generated by three-phase MMF and produce a rotating magnetic field, the synchronous speed of the magnetic field along the stator and rotor inner space for n0 Clockwise rotation.

Fourth, the basic structure

The two basic components of a three-phase asynchronous motor are the stator and the rotor. In addition, end caps, fans and other ancillary parts.

1, the stator core:

The stator core is a part of the main magnetic flux path of the induction motor. In order to make the induction motor can produce a larger electromagnetic torque, it is desirable to have a strong rotating magnetic field, and the magnetic flux in the stator core is changed in size and direction due to the rotating magnetic field rotating at a synchronous speed to the stator core. So that the stator core is made of a 0.5 mm-thick silicon steel sheet having a good magnetic permeability and laminated with a certain groove-shaped silicon steel sheet, so as to reduce the eddy current loss and hysteresis loss caused by the rotating magnetic field in the stator core.

2, the stator windings:

Stator winding is the stator part of the asynchronous motor circuit, it is also by a number of coils connected by a certain law into the surface. Can be dispersed semi-closed slot embedded in the coil by the high-strength enamelled round copper wire or round aluminum wire into the

half-slot slot into the forming coil with high-strength enamel along the flat or flat copper wire, or glass wire wrapped copper wire to make. Open slot is also placed in the forming coil, the insulation is usually used mica tape, the coil into the slot wall must be separated with the slot insulation to prevent the motor running in the winding of the core breakdown or short circuit failure.

3, the rotor core:

The rotor core is also part of the main magnetic flux path of the motor, and is usually also made of silicon steel sheet of 0.5 mm thick punching groove, and the iron core is fixed on the shaft or the rotor bracket. The outer surface of the entire rotor core is cylindrical.

4, the rotor winding:

Rotor winding is divided into two types of cage and winding structure, the following describes the winding winding. It is a symmetrical three-phase winding, the symmetrical three-phase windings connected to the star-shaped, and connected to the shaft on the three collector ring, and then through the brush to the rotor winding connected with the external circuit. V. Conclusion

The use of motors in the country more and more, but the efficiency is not high. In the understanding of the basic principles of the motor, with the deepening of the understanding of the motor, the future will have more efficient motor production. This article simply provides the basic knowledge of the motor is to facilitate the reader a better understanding of the motor.

references

[1] Sun Jianzhong, Liu Fengchun. Motor and drag [M]. Machinery Industry Press.

[2] Qiu Guan source.Circuit [M]. Higher Education Press.

电气专业英语论文

Page1 Electrical Energy Transmission(电能输送) From reference 1 Growing populations and industrializing countries create huge needs for electrical energy. Unfortunately, electricity is not always used in the same place that it is produced, meaning long-distance transmission lines and distribution systems are necessary. But transmitting electricity over distance and via networks involves energy loss. So, with growing demand comes the need to minimize this loss to achieve two main goals: reduce resource consumption while delivering more power to users. Reducing consumption can be done in at least two ways: deliver electrical energy more efficiently and change consumer habits. Transmission and distribution of electrical energy require cables and power transformers, which create three types of energy loss: the Joule effect, where energy is lost as heat in the conductor (a copper wire, for example); magnetic losses, where energy dissipates into a magnetic field; the dielectric effect, where energy is absorbed in the insulating material. The Joule effect in transmission cables accounts for losses of about 2.5 % while the losses in transformers range between 1 % and 2 % (depending on the type and ratings of the transformer). So, saving just 1 % on the electrical energy produced by a power plant of 1 000 megawatts means transmitting 10 MW more to consumers, which is far from negligible: with the same energy we can supply 1 000 - 2 000 more homes. Changing consumer habits involves awareness-raising programmers, often undertaken by governments or activist groups. Simple things, such as turning off lights in unoccupied rooms, or switching off the television at night (not just putting it into standby mode), or setting tasks such as laundry for non-peak hours are but a few examples among the myriad of possibilities. On the energy production side, building more efficient transmission and

自动控制论文 英文版

自动控制论文 作者洪劲松 专业电气工程及其自动化 学号120301628 指导教师赵国新

Automatic control is when no one is directly involved in the case, the use of additional equipment or control device, the machine, device, or a working state of the control object or parameters (charged) automatically according to the predetermined rules. The traditional industrial production process using dynamic control technology, can effectively improve the quality of the products and the enterprise economic benefit. In today's rapid development of science and technology, automatic control technology in the field of industrial and agricultural production, national defense and science and technology, has a very important role. In a short span of one hundred years, the development of automatic control theory has been surprising, has a huge impact on human society. Automatic control theory is the study of automatic control common law science and technology. It is both an ancient and has become a mature discipline, another door is developing, the strong vitality of the emerging disciplines. From 1868 maxwell J.C.M axwell low order system stability criterion is put forward to date more than one hundred years, the development of automatic control theory can be divided into four main stages: the first stage: the classical control theory (or) classical control theory of the formation, development and maturity; The second stage: the rise of modern control theory and development; The third stage: big system control the rise and development stage; The fourth stage: intelligent control stage of development. The basic characteristics of the first stage of the classical control theory is mainly used for linear time-invariant systems research, namely for describing the system of linear differential equation with constant coefficients of analysis and synthesis; It is used only for single input and single output feedback control system; Only discuss the relationship between the system input and output, and ignore the internal state of the system, is a method of external description of the system. The basic method used: root locus method, frequency method, PID regulator (frequency domain). Control theory in the early stage of development, the automatic adjustment principle is based on the feedback theory, mainly used in industrial control. Feedback theory for feedback control. Feedback control is one of the most basic is the most important control mode, after the introduction of feedback signal, system response to come from the external and internal interference become very dull, so as to improve the anti-interference ability and the control precision of the system. Feedback effects, meanwhile, brings the problem of system stability, which was once the system stability problem in people inspired people to conduct the thorough research to the feedback control system in the enthusiasm, promote the development of the theory of automatic control and improvement. So in a sense, the classical feedback control theory is accompanied by the emergence and development of control technology and gradually improve and mature. During the second world war, in order to design and manufacture of aircraft and Marine autopilot, artillery positioning system, radar tracking system based on feedback principle of military equipment, to further promote and perfect the development of automatic control theory. In 1868, maxwell (J.C.M axwell) lower order algebraic criterion of the stability of the system are put forward. In 1875 and 1896, mathematicians rous (Routh) and hull weitz (Hurwitz) respectively independently the stability criterion of high order system was put forward, namely the Routh Hurwitz criterion. During the second world war (1938-1945), Nyquist (H.N yquist) in 1948, proposed the theory of frequency

机械类英语论文及翻译翻译

High-speed milling High-speed machining is an advanced manufacturing technology, different from the traditional processing methods. The spindle speed, cutting feed rate, cutting a small amount of units within the time of removal of material has increased three to six times. With high efficiency, high precision and high quality surface as the basic characteristics of the automobile industry, aerospace, mold manufacturing and instrumentation industry, such as access to a wide range of applications, has made significant economic benefits, is the contemporary importance of advanced manufacturing technology. For a long time, people die on the processing has been using a grinding or milling EDM (EDM) processing, grinding, polishing methods. Although the high hardness of the EDM machine parts, but the lower the productivity of its application is limited. With the development of high-speed processing technology, used to replace high-speed cutting, grinding and polishing process to die processing has become possible. To shorten the processing cycle, processing and reliable quality assurance, lower processing costs. 1 One of the advantages of high-speed machining High-speed machining as a die-efficient manufacturing, high-quality, low power consumption in an advanced manufacturing technology. In conventional machining in a series of problems has plagued by high-speed machining of the application have been resolved. 1.1 Increase productivity High-speed cutting of the spindle speed, feed rate compared withtraditional machining, in the nature of the leap, the metal removal rate increased 30 percent to 40 percent, cutting force reduced by 30 percent, the cutting tool life increased by 70% . Hardened parts can be processed, a fixture in many parts to be completed rough, semi-finishing and fine, and all other processes, the complex can reach parts of the surface quality requirements, thus increasing the processing productivity and competitiveness of products in the market. 1.2 Improve processing accuracy and surface quality High-speed machines generally have high rigidity and precision, and other characteristics, processing, cutting the depth of small, fast and feed, cutting force low, the workpiece to reduce heat distortion, and high precision machining, surface roughness small. Milling will be no high-speed processing and milling marks the surface so that the parts greatly enhance the quality of the surface. Processing Aluminum when up Ra0.40.6um, pieces of steel processing at up to Ra0.2 ~ 0.4um.

微电子专业英语

微电子学专业词汇 A be absorb in 集中精力做某事 access control list 访问控制表 active attack 主动攻击 activeX control ActiveX控件 advanced encryption standard AES,高级加密标准 algorithm 算法 alteration of message 改变消息 application level attack 应用层攻击 argument 变量 asymmetric key cryptography 非对称密钥加密 attribute certificate属性证书 authentication 鉴别 authority 机构 availability 可用性 Abrupt junction 突变结 Accelerated testing 加速实验 Acceptor 受主 Acceptor atom 受主原子 Accumulation 积累、堆积 Accumulating contact 积累接触 Accumulation region 积累区 Accumulation layer 积累层 Active region 有源区 Active component 有源元 Active device 有源器件 Activation 激活 Activation energy 激活能 Active region 有源(放大)区 Admittance 导纳 Allowed band 允带 Alloy-junction device 合金结器件 Aluminum(Aluminium) 铝 Aluminum – oxide 铝氧化物 Aluminum passivation 铝钝化 Ambipolar 双极的 Ambient temperature 环境温度 Amorphous 无定形的,非晶体的 Amplifier 功放扩音器放大器Analogue(Analog) comparator 模拟比较器 Angstrom 埃 Anneal 退火

电气毕业论文英语文献原文 翻译

外文翻译院(系) 专业班级 姓名 学号 指导教师 年月日

Programmable designed for electro-pneumatic systems controller John F.Wakerly This project deals with the study of electro-pneumatic systems and the programmable controller that provides an effective and easy way to control the sequence of the pneumatic actuators movement and the states of pneumatic system. The project of a specific controller for pneumatic applications join the study of automation design and the control processing of pneumatic systems with the electronic design based on microcontrollers to implement the resources of the controller. 1. Introduction The automation systems that use electro-pneumatic technology are formed mainly by three kinds of elements: actuators or motors, sensors or buttons and control elements like valves. Nowadays, most of the control elements used to execute the logic of the system were substituted by the Programmable Logic Controller (PLC). Sensors and switches are plugged as inputs and the direct control valves for the actuators are plugged as outputs. An internal program executes all the logic necessary to the sequence of the movements, simulates other components like counter, timer and control the status of the system. With the use of the PLC, the project wins agility, because it is possible to create and simulate the system as many times as needed. Therefore, time can be saved, risk of mistakes reduced and complexity can be increased using the same elements. A conventional PLC, that is possible to find on the market from many companies, offers many resources to control not only pneumatic systems, but all kinds of system that uses electrical components. The PLC can be very versatile and robust to be applied in many kinds of application in the industry or even security system and automation of buildings.

自动化专业英语_考试版的文章翻译

UNIT 1 A 电路 电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。如果网络不包含能源,如 电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性. 就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为: u=iR (1-1A-1)式中 u=电压,伏特;i =电流,安培;R = 电阻,欧姆。 纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的 变化率。因此可得到:U=Ldi/dt 式中 di/dt = 电流变化率,安培/秒; L = 感应系数,享利。 电容两端建立的电压正比于电容两极板上积累的电荷q 。因为电荷的积累可表示为电荷增量dq的和或积分,因此得到的等式为 u= ,式中电容量C是与电压和电荷相关的比例常数。由定义可知,电流等于电荷随时间的变化率,可表示为i = dq/dt。因此电荷增量dq 等于电流乘以相应的时间增量,或dq = i dt,那么等式 (1-1A-3) 可写为式中 C = 电容量,法拉。 归纳式(1-1A-1)、(1-1A-2) 和 (1-1A-4)描述的三种无源电路元件如图1-1A-1所示。注意,图中电流的参考方向为惯用的参考方向,因此流过每一个元件的电流与电压降的方向一致。 有源电气元件涉及将其它能量转换为电能,例如,电池中的电能来自其储存的化学能,发电机的电能是旋转电枢机械能转换的结果。 有源电气元件存在两种基本形式:电压源和电流源。其理想状态为:电压源两端的电压恒定,与从 电压源中流出的电流无关。因为负载变化时电压基本恒定,所以上述电池和发电机被认为是电压源。另一方面,电流源产生电流,电流的大小与电源连接的负载无关。虽然电流源在实际中不常见,但其概念的确在表示借助于等值电路的放大器件,比如晶体管中具有广泛应用。电压源和电流源的符号表示如图1-1A-2所示。 分析电网络的一般方法是网孔分析法或回路分析法。应用于此方法的基本定律是基尔霍夫第一定律,基尔霍夫第一定律指出:一个闭合回路中的电压代数和为0,换句话说,任一闭合回路中的电压升等于电压降。网孔分析指的是:假设有一个电流——即所谓的回路电流——流过电路中的每一个回路,求每一个回路电压降的代数和,并令其为零。 考虑图1-1A-3a 所示的电路,其由串联到电压源上的电感和电阻组成,假设回路电流i ,那么回路总的电压降为因为在假定的电流方向上,输入电压代表电压升的方向,所以输电压在(1-1A-5)式中为负。因为电流方向是电压下降的方向,所以每一个无源元件的压降为正。利用电阻和电感压降公式,可得等式(1-1A-6)是电路电流的微分方程式。 或许在电路中,人们感兴趣的变量是电感电压而不是电感电流。正如图1-1A-1指出的用积分代替式(1-1A-6)中的i,可得1-1A-7 UNIT 3 A 逻辑变量与触发器

(完整word版)机械专业英语文章中英文对照

英语原文 NUMERICAL CONTROL Numerical control(N/C)is a form of programmable automation in which the processing equipment is controlled by means of numbers, letters, and other symbols, The numbers, letters, and symbols are coded in an appropriate format to define a program of instructions for a particular work part or job. When the job changes, the program of instructions is changed. The capability to change the program is what makes N/C suitable for low-and medium-volume production. It is much easier to write programs than to make major alterations of the processing equipment. There are two basic types of numerically controlled machine tools:point—to—point and continuous—path(also called contouring).Point—to—point machines use unsynchronized motors, with the result that the position of the machining head Can be assured only upon completion of a movement, or while only one motor is running. Machines of this type are principally used for straight—line cuts or for drilling or boring. The N/C system consists of the following components:data input, the tape reader with the control unit, feedback devices, and the metal—cutting machine tool or other type of N/C equipment. Data input, also called “man—to—control link”,may be provided to the machine tool manually, or entirely by automatic means. Manual methods when used as the sole source of input data are restricted to a relatively small number of inputs. Examples of manually operated devices are keyboard dials, pushbuttons, switches, or thumbwheel selectors. These are located on a console near the machine. Dials ale analog devices usually connected to a syn-chro-type resolver or potentiometer. In most cases, pushbuttons, switches, and other similar types of selectors are digital input devices. Manual input requires that the operator set the controls for each operation. It is a slow and tedious process and is seldom justified except in elementary machining applications or in special cases. In practically all cases, information is automatically supplied to the control unit and the machine tool by cards, punched tapes, or by magnetic tape. Eight—channel punched paper tape is the most commonly used form of data input for conventional N/C systems. The coded instructions on the tape consist of sections of punched holes called blocks. Each block represents a machine function, a machining operation, or a combination of the two. The entire N/C program on a tape is made up of an accumulation of these successive data blocks. Programs resulting in long tapes all wound on reels like motion-picture film. Programs on relatively short tapes may be continuously repeated by joining the two ends of the tape to form a loop. Once installed, the tape is used again and again without further handling. In this case, the operator simply loads and

电子信息专业英语复习资料

电子信息专业英语复习资料 一、基本术语(英译汉) 1.probe探针 2.real time operational system 实时操作系统 3.debugger 调试器 4.sourse code 源代码 5.software radio wireless LAN 软件无线电网络 6.base station 基站 7.top-down approach 自顶向下分析法 8.variable 变量 9.data compress 数据压缩 10.signal conditioning circuit 信号调理电路 11.Chebyshev Type Ⅰfilter 切比雪夫Ⅰ型滤波器 12.vertical resolution 垂直分辨率 13.device driver 设备驱动 https://www.360docs.net/doc/503361838.html,piler 编译器 15.template 模板 16.concurrent process 并发进程 17.object recognition 目标识别 18.Discrete Time Fourier Transform 离散傅立叶变换 https://www.360docs.net/doc/503361838.html,bined circuit 组合逻辑电路 20.impedance transform 阻抗变换器 21.voltage source 电压源22.passive component 无源器件 23.quality factor 品质因数 24.unit-impulse response 单位脉冲响应 25.noise origin 噪声源 26.Domino effect 多米诺效应 27.output load 输出负载 28.cordless phone 无绳电话 29.Antenna 天线 30.harmonic interference 谐波干涉 31.Parallel Resonant 并联谐振 32.voltage control oscillator 压控振荡器 33.adaptive delta modulation 自适应增量调制 34.amplitude modulation 调幅 二、缩略语(写出全称) 1.LSI:large scale integration 2.PMOS :p-type metal-oxide semiconductor 3.CT:cycle threshold 4.MRI:magnetic resonance imaging 5.ROM:read-only memory 6.DRAM :dynamic random access memory 7.TCXO :temperature compensated X'tal (crystal) Oscillator https://www.360docs.net/doc/503361838.html,B:Universal Serial Bus 9.DCT:discrete cosine transform

机械类英语文章

What is Hydraulic? A complete hydraulic system consists of five parts, namely, power components, the implementation of components, control components, no parts and hydraulic oil. The role of dynamic components of the original motive fluid into mechanical energy to the pressure that the hydraulic system of pumps, it is to power the entire hydraulic system. The structure of the form of hydraulic pump gears are generally pump, vane pump and piston pump. Implementation of components (such as hydraulic cylinders and hydraulic motors) which is the pressure of the liquid can be converted to mechanical energy to drive the load for a straight line reciprocating movement or rotational movement. Control components (that is, the various hydraulic valves) in the hydraulic system to control and regulate the pressure of liquid, flow rate and direction. According to the different control functions, hydraulic valves can be divided into the village of force control valve, flow control valves and directional control valve. Pressure control valves are divided into benefits flow valve (safety valve), pressure relief valve, sequence valve, pressure relays, etc.; flow control valves including throttle, adjusting the valves, flow diversion valve sets, etc.; directional control valve includes a one-way valve , one-way fluid control valve, shuttle valve, valve and so on. Under the control of different ways, can be divided into the hydraulic valve control switch valve, control valve and set the value of the ratio control valve. Auxiliary components, including fuel tanks, oil filters, tubing and pipe joints, seals, pressure gauge, oil level, such as oil dollars. Hydraulic oil in the hydraulic system is the work of the energy transfer medium, there are a variety of mineral oil, emulsion oil hydraulic molding Hop categories. Hydraulic principle It consists of two cylinders of different sizes and composition of fluid in the fluid full of water or oil. Water is called "hydraulic press"; the said oil-filled "hydraulic machine." Each of the two liquid a sliding piston, if the increase in the small piston on the pressure of a certain value, according to Pascal's law, small piston to the pressure of the pressure through the liquid passed to the large piston, piston top will go a long way to go. Based cross-sectional area of the small piston is S1, plus a small piston in the downward pressure on the F1. Thus, a small piston on the liquid pressure to P = F1/SI,Can be the same size in all directions to the transmission of liquid. "By the large piston is also equivalent to the inevitable pressure P. If the large piston is the cross-sectional area S2, the pressure P on the piston in the upward pressure generated F2 = PxS2 Cross-sectional area is a small multiple of the piston cross-sectional area. From the type known to add in a small piston of a smaller force, the piston will be in great force, for which the hydraulic machine used to suppress plywood, oil, extract heavy objects, such as forging steel. History of the development of hydraulic

相关文档
最新文档