原子荧光光谱法测定水环境中汞

原子荧光光谱法测定水环境中汞
原子荧光光谱法测定水环境中汞

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

————————————————————————————————作者:————————————————————————————————日期:

第十章原子吸收光谱分析法 1.共振线与元素的特征谱线 基态→第一激发态,吸收一定频率的辐射能量,产生共振吸收线(简称共振线);吸收光谱。 激发态→基态,发射出一定频率的辐射,产生共振吸收线(也简称共振线);发射光谱。 元素的特征谱线: (1)各种元素的原子结构和外层电子排布不同,基态→第一激发态:跃迁吸收能量不同——具有特征性。 (2)各种元素的基态→第一激发态,最易发生,吸收最强,最灵敏线。特征谱线。 (3)利用特征谱线可以进行定量分析。 2.吸收峰形状 原子结构较分子结构简单,理论上应产生线状光谱吸收线。实际上用特征吸收频率左右范围的辐射光照射时,获得一峰形吸收(具有一定宽度)。 由 I t =I e-Kvb 透射光强度I t 和吸收系数及辐射频率有关。以K v 与v作图得图10一1所示 的具有一定宽度的吸收峰。

3.表征吸收线轮廓(峰)的参数 (峰值频率):最大吸收系数对应的频率或波长; 中心频率v 中心波长:最大吸收系数对应的频率或波长λ(单位为nm); 半宽度:△v 0B 4.吸收峰变宽原因 (1)自然宽度在没有外界影响下,谱线仍具有一定的宽度称为自然宽度。它与激发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。不同谱线有不同的自然宽度,多数情况下约为10-5nm数量级。 多普勒效应:一个运动着的原子发出的光, (2)多普勒变宽(温度变宽)△v 如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。 (3)劳伦兹变宽,赫鲁兹马克变宽(碰撞变宽)△v 由于原子相互碰撞使能 L 量发生稍微变化。 劳伦兹变宽:待测原子和其他原子碰撞。 赫鲁兹马克变宽:同种原子碰撞。 (4)自吸变宽空心阴极灯光源发射的共振线被灯内同种基态原子所吸收产生自吸现象,灯电流越大,自吸现象越严重,造成谱线变宽。 (5)场致变宽场致变宽是指外界电场、带电粒子、离子形成的电场及磁场的作用使谱线变宽的现象,但一般影响较小。 为主。 在一般分析条件下△V 5.积分吸收与峰值吸收 光谱通带0.2 nm,而原子吸收线的半宽度10-3nm,如图10—2所示。 若用一般光源照射时,吸收光的强度变化仅为0.5%。灵敏度极差。

实验一,二 原子荧光光谱法测量条件的选择和水样中总砷的测定

实验一原子荧光光谱法测量条件的选择 一、实验目的 1.了解原子荧光光谱仪的基本结构及使用方法; 2.掌握原子吸收光谱分析测量条件的选择方法及测量条件的相互关系及影响,确定各项条件的最佳值。 二、方法原理 原子荧光光谱仪工作原理: 在一定工作条件下,荧光强度I F与被测元素的浓度c成正比,其关系如下: I F = K c 氢化物发生原理: BH4- + H++ 2As3+ +3H2O →2AsH3↑+H2↑+ BO33-生成的AsH3蒸汽在载气的带动下,经过火焰原子化,As原子接受由低压砷灯发出激发光照射,基态砷原子被激发到高能态,当返回到基态时辐射出共振荧光,此荧光经聚光镜聚焦于光电倍增管,实现光电转换,最后得到信号。 在原子荧光光谱分析中测量条件选择得是否正确,直接影响到分析方法的检出限、精密度和准确度。本实验通过砷的原子荧光光谱分析测量条件的选择,如灯电流、载气流量等,确定这些测量条件的最佳值。 三、仪器设备与试剂材料 1.PF6型原子荧光光谱仪(北京普析通用),砷高强度空心阴极灯。 2.试剂: (1)砷标准贮备液(1000u g?mL-1):国家标准。 (2)砷实验工作溶液(1u g?mL-1):由砷标准贮备液1000u g?mL-1逐级稀释得到。 (3)硫脲溶液(100g?L-1):称取硫脲10g,加入80mL蒸馏水,水浴加热溶解,蒸馏水稀至100mL,摇匀。 (4)硼氢化钠-氢氧化钠溶液(15g?L-1):称取5g氢氧化钠溶于200mL蒸馏水,加入15g硼氢化钠并使其溶解,用蒸馏水稀至1000mL,摇匀。 (5)2% 盐酸溶液(v/v):移取20ml HCl(GR),用蒸馏水稀释至1000mL,摇匀。 (6)(1+1)盐酸溶液(v/v)。 四、测量条件的选择 1.10ng?mL-1标准溶液的配制

HZ HJ SZ 水质 汞的测定 冷原子荧光法

HZHJSZ00104 水质汞的测定冷原子荧光法 HZ-HJ-SZ-0104 水质冷原子荧光法 1 范围 本方法检出极限为1.5ng/L适用于地面水 激发态汞原子与无关质点CO2?ì3éó?1aa§?e ±?·?·¨2éó???′??2??oíμa??×÷???? 2éó?á??ü·aD??1?-?????ù??ê? D?3é1ˉ???? μ±?¤·¢ì?1ˉ?-×óè¥?¤·¢ê±±?·?é?3??àí?2¨3¤μ?ó?1a ó?1a???èó?1ˉμ??¨?è3é?y±è μ±ìì??áó l.84g/mL 3.3 硝酸(?20优级纯) 3.4 盐酸(?20优级纯) ??2g优级纯的高锰酸钾溶解于950mL水中 3.6 固定溶液加入50mL硝酸 50g/L2¢ó?????êí?á1000mL 100g/L2¢??êí?á100mL 3.9 氯化亚锡溶液将l0g分析纯的氯化亚锡 微微加热助溶或者将此溶液用经洗涤溶液洗涤的空气以2.51L/min流速暴气约1h除汞  3.10 汞标准贮备溶液用固定溶液溶解 再用固定液稀释至刻度此溶液每毫升含100ìg汞 吸取汞标准贮备溶液适当体积摇匀 吸取汞的中间溶液 均应用洗涤溶液浸泡煮沸1h D?3?èèè?3?2£á§?÷?ó 4 仪器 4.1 数字荧光测汞仪 4.3 远红外辐射干燥箱(烘箱)êêó?óúo?1ˉ???ùμ????ˉ 4.5 高纯氩气 5.2 水样消化 取10mL新采水样于10mL具塞比色管中 0.1mL5 1

表3 工作条件 元素光电管负压 (V) 载气Ar流量 mL/min 屏蔽Ar流量 mL/min 仪器测量 (档) 记录仪 (mV) 进样量 (mL) Hg 550 120 500 ò??ü±£3????ù3ê×?oìé??a×?)???eê??üé??ú±èé?1üé??óò???′é?ì??óú105取出冷却 盐酸羟胺溶液(做一细长塑料管经摇动使高锰酸钾刚好褪色 按表3工作条件调好仪器将控制阀(简称阀)转至准备档 按动氯化亚锡揿钮氯化亚锡溶液 反复测定直到水空白值为5个数字左右汞标准曲线系列溶液和水样进行测定计算水样中汞的含量 取6支10mL具塞比色管用10ì1微量注射器分别加入10ìg从汞标准使用溶液048摇匀l 滴高锰酸钾再用盐酸羟胺溶液1滴还原后测定 于7支10mL具塞比色管其余6支分别加入10mL含汞量低的水样26摇匀 6 精密度和准确度 对汞浓度为10~100 ng/L的地面水和地下水样品进行11次测定 最终浓度为20~100 ng/L ~110 注意事项 1要求实验用的水和试剂的纯度较高以降低空白值2高锰酸钾的紫红色若褪至褐红色 滴加盐酸羟胺溶液时因过量的盐酸羟胺会还原汞离子 实验室环境及通风橱和消化水样的烘箱应无汞污染 5以防环境污染 6要及时用稀酸清洗 水和废水监测分析方法指南中国环境科学出版社1997 2

实验40 微波消解-原子荧光光谱法分析测定电池中汞

原子荧光分析法测定电池中的汞 实验目的 (1).了解原子荧光光谱法测定汞的基本原理和实验方法 (2).掌握原子荧光光度计的基本构造和操作 实验原理 在酸性介质中,用强还原剂硼氢化纳将试样中的汞离子还原为汞原子,其反应方程式为Hg(NO3)2+3NaBH4+HNO3+6H2O → Hg+3HBO2+3NaNO3+11H2 由于汞的挥发性,用氩气将汞蒸气带入原子化器进行测定. 汞空心阴极灯发射出特征光束,照射在汞蒸气上,使汞原子激发而发射荧光.在合理条件下,荧光强度与汞原子浓度呈线性关系. 仪器试剂 仪器 AF2-2202a行双道原子荧光光度计(北京)25mL比色管 试剂 (1).汞标准储备液(1.0mg/mL) (2).中间液(含Hg2+10μg/mL):吸取0.50mL储备液于50mL容量瓶中,用5%HNO3稀释至刻度,摇匀. (3).使用液(含Hg2+ 0.01 μg/mL):吸取中间液0.25mL 于25容量瓶中,用5%HNO3稀释至刻度,摇匀.然后吸取此溶液2.5 mL于25mL容量瓶中,用5%HNO3稀释至刻度,摇匀.(4).1%NaBH4 (5). 5%HNO3 仪器工作条件 AF2-2202a行双道原子荧光光度计仪器测量参数

仪器条件 元素光电倍增 管负高压 /V 原子化器 温度/℃ 原子化器 高度/mm 灯电流/mA 载气流量 /ml.min-1 屏蔽气流 量ml.min-1 Hg 300 200 8 30 400 1000 测量条件 读数时间/s 10 标准校正点 1 延迟时间/s 0.5 标准频率 0 注入量/mL 0.5 测量方式 Std.Cure 重复次数 1 读数方式 Peak area 空白判别值 10 分析液单位 mg.L-1 (μg.mL-1) 断流程序 步骤时间/s 泵转速/rpm 读数 1 6 0 No 2 10 100 No 3 6 0 No 4 16 130 Yes 实验步骤 (1).分析校准曲线制作:分别吸取1.0mL、 1.5mL、 2.0mL、 2.5mL汞标准使用液于4个25mL的比色管中,用5%HNO3稀释至刻度,摇匀.按前表中的参数进行测量,以荧光强度对浓度作图制作分析校准曲线. (2).样品测定:在与分析校准曲线相同条件下分别测定试剂空白和样品的荧光强度.

实验4火焰原子吸收光谱法测定铁(标准曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。 5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入,,,,,铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min:分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2 4.测定标准系列溶液及试样镕液的吸光度。

原子荧光法和冷原子吸收光谱法测汞

1.引言 汞是唯一在常温常压下为液态的金属元素。它有三种基本的形态:以液态或气态形式存在的金属汞、无机汞化合物(包括氯化亚汞、氯化高汞、乙酸汞和硫化汞)以及有机汞化合物(如苯基汞、烷基汞)。地壳中约含80 μg ·kg-1 汞[ 1], 空气中汞主要来源于岩石的风化、火山爆发及水中汞的蒸发等;水中的汞来自大气及工农业生产的污染, 如氯碱工业用汞作阴极电解食盐, 除汞蒸气的挥发外, 大量的汞和氯化汞从废水中排出;食物中的汞, 通常以甲基汞的形式存在, 甲基汞能积聚在水生生物中, 参加食物链, 使汞在鱼体内富集浓缩, 达到极高浓度。此外,医学上采用汞齐合金作牙科材料, 其中汞量可达45 %~50 %(质量分数, 下同)。毒理试验指出, 摄入过量的汞可引起慢性汞中毒或急性汞中毒, 慢性汞中毒能使汞被血液吸收并送到大脑, 严重损害了中枢神经系统。急性汞中毒会危害呼吸系统、消化系统和泌尿系统。无机汞的中毒是可逆的, 一定时间后可以通过各种途径从体内排出, 危害较轻。有机汞对人类健康危害极大, 其中以烷基汞毒性最大(如甲基汞、乙基汞), 这类化合物易溶入细胞膜和脑组织的类脂中, 一旦进入脑细胞则很难排出, 从而损伤中枢神经系统。因此汞的检测具有现实意义。 汞的测定方法主要有分光光度法、气相色谱法、液相色谱法、原子光谱法及电化学分析法、原子荧光光谱法等。本文主要介绍原子荧光法和冷原子吸收法测汞的原理和其应用。

2.原子荧光法测汞 2.1原子荧光法的原理 是利用汞离子与硼氢化钾在酸性介质中反应生成原子态汞蒸气,被氩气载入原子化器中,在汞空心阴极灯照射下,基态汞原子被激发至高能态,再由高能态回到基态时,它会发射出特征波长的荧光,而荧光强度在一定范围内与汞的浓度成正比。 原子荧光测汞仪仪器装置主要包括激发光源,聚光系统,原子化器,单色片(滤光片)和检测器等部分。 光源: 原子荧光侧汞法要求光源强度高而稳定, 一般的汞空心阴极灯不适用, 因荧光强度很弱. 常用的有笔型汞灯、低压汞灯、汞无极放电灯和汞蒸汽放电灯,这几种光源中以前二种最好。因为主要辐射线为254nm同时,灯温低, 自吸少, 稳定性较好, 供电方式简单. 聚光系统: 为了将激发光聚焦于原子蒸气和将荧光聚焦于单色仪狭缝或检出器(非色散型), 常采用石英凸透镜( F-60毫米)或表面镀铝的大孔径凹面镜(F-100毫米)。根据需要可采用各种聚光系统。 原子化方法可分为三种类型, 即火焰(液体试样) , 无火焰电加热法(液体

原子吸收光谱法的优缺点

主要有以下优点: 1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。 而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。 2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100l。固体直接进样石墨炉原子吸收法仅需~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10l即可。 3 分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。 在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。 4、抗干扰能力强。第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。 5、精密度高。火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为<1%。无火焰原子吸收法较火焰法的精密度低,目前一般可控制在15%之内。

原子荧光法测定水中的汞方法证实

原子荧光法测定水中的汞方法证实 发表时间:2019-07-12T14:39:33.580Z 来源:《建筑学研究前沿》2019年6期作者:莫杰君[导读] 为了保证能够顺利应用原子荧光测定水中的汞分析的有效性和应用性,在方法投入使用之前,需要对方法进行相关的证实实验。 佛山市南海区环境保护监测站广东省佛山市 528200 摘要:应用原子荧光法测定水中的汞的浓度,方法依据是《水质汞、砷、硒、铋和锑的测定原子荧光法》(HJ 694-2014)。现通过标准曲线、最低检出限、精密度、准确度(盲样测试和加标回收试验)等指标对应用以上方法测定水中汞进行相关证实实验。关键词:原子荧光;汞;方法证实汞污染,是指由汞或含汞化合物所引起的环境污染。现在人类活动越来越频繁,活动中会造成水体汞污染,这些污染主要来自氯碱、塑料、电池、电子等工业排放的废水以及废旧医疗器械[1]。我国作为全球汞使用量和排放量最大的国家,而且汞的毒性强,产生中毒的剂 量小,因此对水中汞的含量分析和评价是水污染环境分析管控的重要指标[2]。本方法中应用《水质汞、砷、硒、铋和锑的测定原子荧光法》(HJ 694-2014)测定水中汞的浓度,为了保证能够顺利应用原子荧光测定水中的汞分析的有效性和应用性,在方法投入使用之前,需要对方法进行相关的证实实验。 1 实验部分 1.1 方法原理 吸取经消解后的试液进入原子荧光仪,在酸性的硼氢化钾还原作用下,生成汞原子,氢化物在氩氢火焰中形成基态原子,其基态原子和汞原子受元素灯发射光的激发产生原子荧光,原子荧光值与试液中待测元素的含量在一定范围内呈正比关系[3]。 1.2 试样的制备 1.2.2 准确量取5.0mL混匀后的样品于10mL比色管中,加入1mL盐酸-硝酸溶液(VHCl:VHNO3=3:1),加塞混匀,置于沸水浴中恒温加热消解1h,期间摇动1~2次并开盖放气。1h后取出冷却,用纯水定容至标线并且混匀后待测。 1.2.3 空白试验 以纯水代替样品,按照1.2.2的步骤制备空白试样。 2 结果与讨论 2.1标准曲线的配制与绘制2.1.1 汞标准系列的配制:准确吸取30.00mL汞标准使用液(ρ(Hg)=10.0 μg/L)于100mL容量瓶中,加入10.0mL盐酸-硝酸溶液(VHCl:VHNO3=3:1),用水稀释至标线,混匀;仪器自动稀释到浓度为0.00、0.50、1.00、1.50、2.00、2.50、 3.00μg/L的标准系列。 2.1.2 绘制:换上汞金属的荧光灯,开机,开氩气,设置仪器测量条件至最佳测量条件,点火预热,预热完成后,以盐酸溶液(5%HCl)为载流,硼氢化钾溶液为还原剂,浓度由低到高依次测定汞标准系列的原子荧光值,以原子荧光值为纵坐标,汞质量浓度为横坐标,绘制标准曲线,计算回归方程,结果见表1。标准曲线满足相关系数r≥0.995的要求,线性良好。表1 汞标准曲线测试

第3章_原子吸收光谱法(练习题)-2008级

第三章原子吸收光谱法 单选题: 1.原子吸收光谱是由下列哪种粒子产生的? (1)固体物质中原子的外层电子;(2)气态物质中基态原子的外层电子;(3)气态物质中激发态原子的外层电子;(4)气态物质中基态原子的内层电子。 2. 原子吸收光谱线的多普勒变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 3. 原子吸收光谱线的洛仑兹变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 4. 用原子吸收光度法测定钙时,加入EDTA是为了消除下述哪种物质的干扰?(1)磷酸;(2)硫酸;(3)钠;(4)镁。 5. 为了提高石墨炉原子吸收光谱法的灵敏度,原子化阶段测量信号时,保护气体的流速应: (1)减小;(2)增大;(3)不变;(4)为零。 6. 原子吸收光谱测定食品中微量砷,最好采用下列哪种原子化方法? (1)冷原子吸收;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 7. 原子吸收光谱测定污水中微量汞,最好采用下列哪种原子化方法? (1)化学还原冷原子化法;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 8. 与原子吸收光谱法相比,原子荧光光谱法: (1)要求光源发射强度高;(2)要求光源发射线窄;(3)要求单色仪分辨能力更强;(4)更适宜测高浓度样品。 9. 消除原子吸收光谱分析中的物理干扰一般用: (1)背景校正;(2)光源调制;(3)标准加入法;(4)加入缓冲剂。 10. 石墨炉法原子吸收分析,应该在下列哪一步记录吸光度信号: (1)干燥;(2)灰化;(3)原子化;(4)除残。 11. 作为原子吸收光谱分析的消电离剂,最有效的是: (1)Na;(2)K;(3)Rb;(4)Cs。 12. 空心阴极灯中对发射谱线宽度影响最大的因素是: (1)阴极材料;(2)填充气体;(3)灯电流;(4)阳极材料。 13. 原子吸收分析中,吸光度最佳的测量范围是:

(完整word版)原子吸收光谱定量分析方法

原子吸收定量分析方法 一、定量分析方法(P145) (1)标准曲线法: 配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。 (2) 标准加入法 当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。 取若干份体积相同的试液(cX),依次按比例加入 不同量的待测物的标准溶液(cO): 浓度依次为:cX ,cX+cO ,cX+2cO ,cX+3cO ,cX+4cO … 分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 … 直线外推法:以A对浓度c做图得一直线,图中c X点即待测溶液浓度。 (3)稀释法: (4)内标法: 在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。 内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量 二、灵敏度和检出限 (1)灵敏度 1、定义: 在一定浓度时,测定值(吸光度)的增量(ΔA)与相应的待测元素浓度(或质量)的增量(Δc 或Δm)的比值(即分析校正曲线的斜率) PS:习惯上用特征浓度和特征质量表征灵敏度 2、特征浓度 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度 3、特征质量 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。 (2)检出限 定义: 适当置信度下,能检测出的待测元素的最低浓度或最低质量。用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。

原子荧光光谱仪操作步骤及原理分析2012

氢化物(蒸气)发生 -原子荧光 原子荧光的发展史 ●原子荧光谱法(AFS)是原子光谱法中的一个重要分支。从其发光机理看属于一种原子发 射光谱(AES),而基态原子的受激过程又与原子吸收(AAS)相同。因此可以认为AFS是AES和AAS两项技术的综合和发展,它兼具AES和AAS的优点。 ●1859年Kirchhoof研究太阳光谱时就开始了原子荧光理论的研究,1902年Wood等首 先观测到了钠的原子荧光,到20世纪20年代,研究原子荧光的人日益增多,发现了许多元素的原子荧光。用锂火焰来激发锂原子的荧光由BOGROS作过介绍,1912年WOOD 年用汞弧灯辐照汞蒸气观测汞的原子荧光。Nichols和Howes用火焰原子化器测到了钠、锂、锶、钡和钙的微弱原子荧光信号,Terenin研究了镉、铊、铅、铋、砷的原子荧光。 1934年Mitchll和Zemansky对早期原子荧光研究进行了概括性总结。1962年在第10次国际光谱学会议上,阿克玛德(Alkemade)介绍了原子荧光量子效率的测量方法,并予言这一方法可能用于元素分析。1964年威博尼尔明确提出火焰原子荧光光谱法可以作为一种化学分析方法,并且导出了原子荧光的基本方程式,进行了汞、锌和镉的原子荧光分析。 ●美国佛罗里达州立大学Winefodner教授研究组和英国伦敦帝国学院West教授研究 小组致力于原子荧光光谱理论和实验研究,完成了许多重要工作。 ● 20世纪70年代,我国一批专家学者致力于原子荧光的理论和应用研究。西北大学杜 文虎、上海冶金研究所、西北有色地质研究院郭小等均作出了贡献。尤其郭小伟致力于氢化物发生(HG)与原子荧光(AFS)的联用技术研究,取得了杰出成就,成为我国原子荧光商品仪器的奠基人,为原子荧光光谱法首先在我国的普及和推广打下了基础。 幻灯片3 国外AFS仪器发展史 *1971年Larkins用空心阴极灯作光源,火焰原子化器,采用泸光片分光,光电倍增管检测。测定了A u、B i、Co、H g、M g、N i 等20多种元素; *1976年Technicon公司推出了世界上第一台原子荧光光谱仪AFS-6。该仪器采用空心阴极灯作光源,同时测定6个元素,短脉冲供电,计算机作控制和数据处理。由于仪器造价高,灯寿命短,且多数被测元素的灵敏度不如AAS和ICP-AES,该仪器未能成批投产,被称之为短命的AFS-6。 *20世纪80年代初,美国Baird公司推出了AFS-2000型ICP-AFS仪器。该仪器采用脉冲空心阴极灯作光源,电感耦合等离子体(ICP)作原子化器,光电倍增管检测,12道同时测量,计算机控制和数据处理。该产品由于没有突出的特点,多道同时测定的折衷条件根本无法满足,性能/价格比差,在激烈的市场竞争中遭到无情的淘汰。 *20世纪90年代,英国PSA公司开始生产HG-AFS。

原子荧光法测定生活饮用水中汞

原子荧光法测定生活饮用水中汞 发表时间:2014-05-15T09:33:28.750Z 来源:《医药前沿》2014年第3期供稿作者:李小燕张硕陆冠诚梁培锋 [导读] 采用AFS-930型原子荧光光度计测定生活饮用水的汞,选择了适宜的仪器条件,进行了检出限、线性范围、精密度和回收率的研究。李小燕张硕陆冠诚梁培锋 (广东省罗定市疾病预防控制中心 527200) 【摘要】目的探讨原子荧光法测定生活饮用水的汞。方法将水中汞在酸性介质中消解,以0.2%硝酸为载流,被20g/L硼氢化钠还原成为原子态,用氩气为载气将汞引入原子化器,经汞空心阴极灯光源激发跃迁到较高能级上,并在回到较低的能级时辐射出荧光,荧光的强度与水中汞浓度呈正比。结果方法的检出限为0.0013ug /L,线性范围为0.1—10.0ug/L,相对标准偏差为1.5%~3.1%,回收率为95.6%~104.2%。结论应用原子荧光测定生活饮用水中汞具有操作简便、毒性小、灵敏度高、精密度好,回收率高,适用于生活饮用水中汞的常规测定。 【中图分类号】R123 【文献标识码】B 【文章编号】2095-1752(2014)03-0346-02 水中含汞主要来自化工厂、氯碱厂、农药厂、造纸厂等排出的“三废”所污染[1]。我国生活饮用水标准汞限值为0.001mg/L[2]。列入《生活饮用水标准检验方法》测汞的方法有4种,即原子荧光法、冷原子吸收法、二硫腙分光光度法和电感耦合等离子体质谱法。冷原子吸收法存在影响汞蒸汽发生的因素较多,仪器响应值不易稳定。双硫腙比色法操作繁琐、毒性大、灵敏度低。电感耦合等离子体质谱法仪器成本高。原子荧光法作为一种较有效、经济、简便的检测手段得到了较大的应用。本文探讨了原子荧光法测定生活饮用水中汞的几点体会。 1 材料与方法 1.1仪器 AFS-930型全自动双道原子荧光仪(北京吉天仪器公司);AS-90自动进样器(北京吉天仪器公司);汞空心阴极灯(北京有色金属研究院)。 1.2试剂 盐酸:优级纯;(2.784g/L)溴酸钾-(10g/L)溴化钾溶液;(100 g/L)盐酸羟胺溶液;(20 g/L)硼氢化钠溶液;(0.2%)硝酸溶液;(0.5g/L)重铬酸钾-(1+19)硝酸溶液;汞标准溶液:编号:GBW08617含汞1000 ug/ml,由中国计量科学研究院提供,临用时用(0.5g/L)重铬酸钾-(1+19)硝酸溶液配成浓度为10 ug /L的标准使用液; 1.3方法 (1)标准系列的配制:本法选择仪器自动配制(只需配制最高点浓度的标准溶液,工作曲线由顺序注射系统自动配制)。设定的标准各点浓度为0.1、0.5、1.00、2.00、4.00、8.00、10.00ug /L。 (2)分别取10.0 ml水样和10ml标准溶液(10 ug /L)于25 ml比色管中,在样品溶液和标准管中分别加入1ml浓盐酸和0.5ml溴酸钾-溴化钾溶液,摇匀放置20min。再加入几滴盐酸羟胺溶液使黄色褪色。摇匀。按已设定好仪器最佳条件,输入有关参数测定。 2 结果与讨论 2.1仪器条件选择 随负高压的增大,信号强度增大,但噪音也相应增大.试验表明负高压为265~325V时,信号强度值重现性好.负高压过高或过低(>335V或 <235V)时信号强度值不稳定,本实验选择的负高压为270V。随着灯电流的增加,荧光强度增大.灯电流较低时(<10mA)荧光强度值低且不稳定,但灯电流过高(>50mA)仪器信噪增高,空白响应值增高很快;另外高电流也影响灯的寿命,本实验选择的灯电流为25 mA。 2.2还原剂及载流 关于硼氢化钠浓度对测定结果的影响进行了实验,结果表明:当硼氢化钠浓度为5一25g/L 时荧光强度较高且基本恒定不变,当硼氢化钠浓度大于30g/L时,荧光强度有所下降,这是由于硼氢化钠与氢离子生成过量氢气,稀释了溶液浓度.本法选择用20 g/L的硼氢化钠。选择了盐酸、硫酸、硝酸、磷酸作载流进行实验。结果表明盐酸、硝酸作为测汞酸载流较好.经过筛选,发现体积分数3~5%的盐酸或体积分数0.2%硝酸作载流空白荧光值较底且较稳定.本法选择体积分数为5%的盐酸作载流。 2.3消解与还原 生活饮用水一般较洁净无需用强氧化剂消化.加入0.5mL溴酸钾一溴化钾溶液即可完全消化其中的无机汞和有机汞,但要注意保证足够的反应时间.水样消化完成应加入几滴盐酸羟胺,目的是为了还原过量的氧化剂,中止溴化反应,使黄色褪尽. 2.4玻璃器皿的影响 汞的灵敏度较高,故需注意来自各方面的污染,尤其是玻璃器皿污染,所用玻璃仪器均应经20%硝酸浸泡24小时后再洗涤[3]。测量过的玻璃器皿通常经酸浸泡过导致空白值编高,可能是残留的汞或易于产生荧光的其它残留物质的原因。有方法提出比色管在使用前用5%高锰酸钾+4%硫酸+4%硝酸混合装满器皿,于90℃水浴加热2h,倒出废液后用去离子水冲洗数次,另用少许10%盐酸羟胺除去高锰酸钾痕迹,新玻璃器皿通常需重复处理2-3次[4]。 2.5检出限 根据仪器设定的测定检出限程序,连续测定空白溶液 15次,用3倍空白样品荧光值的标准偏差除以标准曲线斜率即为所用仪器的最低检出限,汞为0.0013ug /L。 2.6线性范围 对0.0~8.0、0.0~10.0ug/L质量浓度的标准系列进行测定,结果发现当质量浓度0. 0~8.0 ug/L时有较好的曲线相关系数,r≥0.9996。当汞大于10.0ug/L时标准曲线出现弯曲,其标准曲线线性范围为0.0~10.0ug/L。 2.7精密度 批内精密度实验在空白水样中分别加入汞标准溶液,低质量浓度组1.0 ug /L、中质量浓度组4.0 ug /L、高质量浓度组8.0 ug /L,按本法处理测定,各平行测定6份,相对标准偏差(RSD)为1.5%~3.1%。

原子吸收光谱法的研究现状及展望

原子吸收光谱法的研究现状及展望 *** 天津科技大学化工与材料学院天津 300457 摘要:本文简要概述了原子吸收光谱法的发展历程,阐述了原子吸收光谱法的优缺点和基本原理,综述了原子吸收光谱法在现代分析检测技术中的最新进展并做了展望。 关键词:原子吸收;分析;现状 自美国Perkin-E1mer公司1961年推出了世界上第一台火焰原子吸收分光光度计到第一台商品石墨炉的推出,从横向交变磁场到纵向交变磁场塞曼背景校正,从纵向加热石墨炉到横向加热无温度梯度石墨炉,从光电倍增管到半导体固态检测器……原子吸收光谱仪的发展跨越了一个又一个的里程碑[1]。 近年来,随着科研水平的不断提升,对仪器分析的高效性、精密性和便捷性提出了更高的要求,仪器分析的水平也在不断提升。原子吸收光谱分析法凭借其诸多优势,已成为普及程度最高的仪器分析方法之一。 1.原子吸收光谱法的特点 原子吸收光谱法以其高效精密的分析方法,成为普及度最高的仪器分析方法之一,它具有以下诸多优点[2-3]: 1)高精密度。火焰原子吸收法的精密度可达1%-2%,石墨炉原子化法的灵敏度高达 10-12g。 2)高灵敏度。火焰原子吸收可测质量浓度mg/L~μg/L级的金属,是目前最灵敏的 分析方法之一。 3)测定元素广泛。采用空气-乙炔火焰可测定近70种元素。 4)谱线简单。干扰少,选择性好,多数情况下可不经分离除去共存成分而直接测定。 5)操作简便快捷。自动进样每小时可测数百个样品,即使手工操作每小时也可测数十 个样品。 原子吸收光谱也存在一定的缺陷。比如,它不能对多种元素同时分析,对难溶元素的测定灵敏度也不十分令人满意,对共振谱线处于真空紫外区的元素,如P、S等还无法测定。

冷原子荧光法测水中的汞

冷原子荧光法测水中的汞 一、实验目的 1.掌握用冷原子荧光法测定汞的原理和测定方法,分析干扰测定的因素和消除方法。 2.复习第二章第六节中测定汞的各种方法,比较其优、缺点。 二、方法原理 水样中的汞离了被还原剂还原为单质汞,再气化成汞蒸气。其基态汞原子受到波长253.7nm的紫外光激发,当激发态汞原子去激发时便辐射出相同波长的荧光。在给定的条件下和较低的浓度范以内,荧光强度与汞的浓度成正比。 三、仪器 (1)QM201荧光测汞仪。 (2)远红外辐射干燥箱(烘箱)。该烘箱体积小,适用于含汞水样的消化。 (3)2mL和1mL移液管 (4)高纯氮气。 四、试剂 (1)去离子水:测试中凡是涉及到水的地方均用去离子水。 (2)硫酸:ρ20=1.84g/mL,优级纯。 (3)硝酸:ρ20=1.42g/mL,优级纯。 (4)盐酸:ρ20=1.18g/mL,优级纯。 (5)洗涤溶液:将2g优级纯的高锰酸钾溶解于950mL水中,加入50mL硫酸。 (6)5%硝酸—0.05%重铬酸钾溶液(固定溶液):称取0.25克重铬酸钾,用水溶解,加入25毫升硝酸,用水稀释到500毫升。 (7)5%高锰酸钾溶液:将50g优级纯的高锰酸钾溶解于水中,并用水稀释至l000mL。 (8)10%盐酸羟胺溶液;称取10克盐酸羟胺(NH2OH·HCl),溶于水中并稀释至100毫升。以2.5升/分的流速通氮气或干净空气30分钟,以驱除微量汞。 (9)10%氯化亚锡溶液:将10g分析纯的氯化亚锡,在无汞污染的通风橱内加入20mL 盐酸,微微加热助济,溶后继续加热几分钟除汞。或者将此溶液用经洗涤溶液洗涤的空气以2.5L/min流速曝气约1h除汞,然后用水稀释至100mL。 (10)汞标淮贮备溶液:称取在硅胶干燥器中放置过夜的氯化汞0.1354g,用固定溶液溶解,移入1000mL容量瓶中,再用固定液稀释至刻度,摇匀。此溶液每毫升含100μg汞。 (11)汞的中间溶液:吸取汞标准贮备溶液适当体积,用固定溶液稀释至每毫升含10μg汞,摇匀。 (12)汞标准使用溶液,吸取汞的中间溶液,用固定溶液逐级稀释至每毫升含10ng汞。 (13)测汞所用的玻璃器皿,均应用洗涤溶液浸泡煮沸1h。为避免玻璃壁有可能出现褪色二氧化锰斑点,须趁热取出玻璃器皿,用水冲洗干净备用。 五、测定步骤 1.仪器工作条件 表1列出的仪器工作参数供参考。

原子荧光光谱法测定茶叶中的se含量

原子荧光光谱法测定茶叶中的se 含量 1 实验目的 ①握茶叶前处理的方法 ②进一步掌握原子荧光光度计的使用方法 2. 实验原理 3 实验仪器及试剂 AF-610A 原子荧光光度计一台Se 空芯阴极灯一个烘箱 浓HNO3 高氯酸20%HCl 铁氰化钾2%KBH4 (混酸为浓盐酸与高氯酸体积比为4:1) 100ml 容量瓶4 个烧杯若干表面皿一个25ml 比色管9 个(0-6 号标准系列,两个样品,测平行) 4 样品配置过程: 4.1 样品处理 前处理:取一定的茶叶,在60 C烘箱内烘干,用研钵研磨研碎,称取约 0.5 克的粉末,两份,分别放入两个小烧杯中,分别加入8ml 浓硝酸和2ml 高氯酸,另外设置一个空白样,即不加茶叶,只加8ml 浓硝酸和2ml 高氯酸,放置,过夜。 样品的消解:将放置过夜的三个小烧杯放在加热板上加热消解,直到冒出高氯酸的白烟,在加入少量硝酸和双氧水将残渣溶解,在加热沸腾,直到没有气泡。将三个小烧杯的溶液进行过滤,除掉不溶的残渣,将过滤后的溶液分别转移至25ml 容量瓶中标号为样品1 、样品2 和样品空白。 移取10ml 的样品1 放入25ml 的比色管中,定容,移取两份,作为对照。样品2 也是移取两份10ml 于两个25ml 的比色管中,样品空白移取一份。 4.2 标准样系列已经配置好。

4. 3测定标准系列按从小到大的浓度顺序进行测定,然后记录荧光信号值, 在测定样品空白,记录信号值,在分别测定样品,记录荧光信号。 5数据处理及分析. 实验数据如下表 样品信号记录表

结论:实验所用茶叶硒元素含量很低为ng 级,因此可忽略不计,故认为该茶叶中不含硒元素。 总结:此次实验过程我们小组设计的标准系列有点大,应该缩小系列间的浓度梯度,这样可能得出的结果更准确。但是不可否认,这次我们的标准系列做得还是比较好的,这点可以从曲线上看出来。

原子吸收光谱法测定铝合金中的铜

广州大学学生实验报告 开课学院及实验室:化学化工学院生化楼四楼年月日 学院 化学化工学院 年级、专业、班 姓名 学号 实验课程名称 分析化学实验 成绩 实验项目名称 原子吸收光谱法测定铝合金中的铜 指导老师 一、实验目的 1.巩固加深理解原子吸收光谱分析的基本原理。 2.掌握原子吸收光谱分析中标准加入法进行定量分析,以消除基体效应及某些干扰对测定结果的影响。 3.学会铝合金样品的制备技术。 二、实验原理 铜是原子吸收光谱分析中经常和容易测定的元素,在贫燃的空气~火焰干扰很少。为了消除铝基的影响,在绘制工作曲线时,标准溶液浓度系列可加入与被测试样溶液相近的铝量或采用标准加入法定量测定。 标准加入法是将已知浓度不同体积的标准溶液加到几个相同量的待测试样溶液中,然后一起

测定,并绘制标准曲线,将直线外推延长至与横轴相交,其交点与原点的距离所相应的浓度,即为待测试样溶液的浓度。这种方法是针对试样组成复杂,待测元素含量低,样品数量少的情况下可采用的一种定量分析测定方法。 三、仪器与试剂 1.仪器 TAS-990型原子吸收分光光度计,铜空心阴极灯,100mL容量瓶6个。 2.试剂 ⑴1000mg·L-1铜标准储备溶液⑵100mg·L-1铜标准工作液⑶20g·L-1铝标准⑷HCl(AR)1:1。⑸试样。 四、实验步骤 1.工作条件 铜空心阴极灯工作电流 3.0mA 波长324.8nm 光谱带宽0.4mm 燃烧器高度 6.0mm 燃气流量 2.0L/min 2.标准加入法 分别取试样溶液10.0mL四份于4个100mL容量瓶中,分别加入100 mg·、L-1铜标准溶液0.0、0.5、1.0、2.0mL,10滴1:1HCl,(针对模拟样, 每份加20g·L-1铝标准10mL)用水稀释至刻度,摇匀。按以上条件测量各自吸光度。 五、数据处理 绘制标准曲线,将直线外推与横轴相交,其交点与原点的距离所对应的浓度,即为试液的浓度,从而可计算出试样中铜的百分含量。 六、注意事项 1.对不易溶解于硝酸的试样可先用高氯酸和硝酸的混合酸10~15mL分解处理,蒸发至冒高氯酸白烟,并保持1min左右,余下步骤与试样处理过程相同。 2.本法适用于铝合金中0.005~1.00%铜的测定。 七、思考题 工作曲线法与标准加入法定量分析各有什么优点?在什么情况下采用这些方法? 答:工作曲线法适用于标准曲线的基体和样品的基体大致相同的情况,优点是速度快,缺点是当样品基体复杂时不正确。标准加入法可以有效克服上面所说的缺点,因为他是把样品和标准混在一起同时测定的,但他也有缺点就是速度很慢

冷原子荧光法和热原子荧光法测定汞的比较

363 二 ○一二年第三十期 华章 Magnificent Writing 楚臻君,河南省平顶山市环境监测中心站。 作者简介:冷原子荧光法和热原子荧光法测定汞的比较 楚臻君 (河南省平顶山市环境监测中心站,河南平顶山467000) [摘要]测汞的方法很多,有双硫腙分光光度法,冷原子吸收法和原子荧光法。目前,原子荧光法因为干扰因素 少,灵敏度高,成为分析水中痕量汞的特效方法。 [关键词]冷原子;热原子;荧光法原子荧光法在水中汞的测定时,又有冷原子荧光法和热原 子荧光法两种,它们的区别在于氢化物发生法产生的氢与氩气是否燃烧形成氩氢火焰,下面就两法测试水中汞进行比较。 1、实验部分 1.1原理。在一定酸度下,溴酸钾与溴化钾反应生成溴,可将试样消解使水中所含汞全部转化为二价汞,用盐酸羟胺还原过剩的氧化剂,再用硼氢化钾将二价汞还原为原子态汞,用氩气作载气将其带入原子化器,在特制汞空心阴极灯的照射下,基态汞原子被光辐射激发,产生共振荧光,在低浓度范围内,荧光强度与汞的含量成正比。 1.2仪器。AFS-930型双道原子荧光光度计(北京吉天仪器公司)。 汞编码空心阴极灯。1.3试剂及材料;纯水:蒸馏去离子水;盐酸(优级纯);硝酸(优级纯);氢氧化钾(优级纯);硼氢化钾(分析纯);硼氢化钾溶液:称取一定量的氢氧化钾,溶于纯水中,配成5g/L 的氢氧化钾溶液。然后分别称取一定量的硼氢化钾,溶于上述氢氧化钾溶液中,分别配成10g/L (热法)、0.1g/L (冷法)的硼氢化钾溶液,注意配置前后顺序,临用现配。 溴酸钾——溴化钾溶液:称取2.784g 无水溴酸钾和10g 溴化钾,溶于纯水中并定容至1000mL ,置棕色瓶中冰箱保存。 盐酸羟胺溶液:称取10g 盐酸羟胺,溶于纯水稀释至100mL 。汞标准固定液:将0.5g 重铬酸钾(优级纯)溶于950mL 纯水中,再加50mL 硝酸。 汞标准使用液:准确吸取一定量的汞标准储备液 [g/mL 。载流:5%(v/v )盐酸。载气:高纯氩气,浓度大于99.99%。1.4分析步骤。 1.4.1标准系列的配置:分别吸取汞标准使用液0.00、1.00、 2.00、4.00、8.00、10.00ml 于100mL 容量瓶中,加纯水至50mL ,然后向标准系列加入5mL 盐酸,摇匀,加5mL 溴化剂,摇匀,放置20min ,用盐酸羟胺溶液逐滴滴至黄色褪尽为止,加水至100mL 。各相应浓度为0.00、0.10、0.20、0.40、0.80、 1.00 g/L 的标准溶液连续 测定11次的结果进行相对标准偏差计算。 由表3可见,低浓度时相对标准偏差较大,稳定性不好;高浓度时相对标准偏差较小,稳定性较好。冷法和热法相对标准偏差差别不大,都在5%以内,说明测量样品时稳定性、重复性较好,但是冷法的荧光强度更高,灵敏度更好。 2.5准确度的比较。取地表水样品加入一定量的标准物质汞,按操作步骤测定样品的加标回收率。 由表4可见,高浓度的硼氢化钾回收率范围较大,因为氢气的产生量较大,使水样中可形成氢化物的元素如As 、Sb 、Bi 、Se 、Te 等还原出来,继而在原子化时形成气相干扰。而冷法测定时,硼氢化钾浓度低,只能使汞元素还原出来,气相干扰很少。据资料,在复杂水样中,硼氢化钾浓度越大越容易引起液相干扰,因此应尽可能采用较低的硼氢化钾浓度。 通过试验数据得出结论:冷原子荧光法比热原子荧光法测汞,灵敏度更高,检出限更低,干扰因素更少,更适合于测定水中痕量汞。 【参考文献】 [1]国家环保总局编委会.水和废水监测分析方法(第4版)[M ].北京:中国环境出版社. [2]原子荧光应用手册.北京吉天仪器有限公司.[3]谢勇坚.华南预防医学,2002.6.

相关文档
最新文档