数学高二-选修2-2课时作业 3.1.3 函数的极值

数学高二-选修2-2课时作业 3.1.3 函数的极值
数学高二-选修2-2课时作业 3.1.3 函数的极值

选修2-2 第三章 §1 课时作业16

一、选择题

1.函数y =(x 2-1)3+1的极值点是( ) A .极大值点x =-1 B .极大值点x =0 C .极小值点x =0

D .极小值点x =1

解析:y ′=6x (x 2-1)2=0有三个根,x 1=-1,x 2=0,x 3=1,由解y ′>0得x >0;由解y ′<0得x <0,只有x =0是极小值点,故选C .

答案:C

2.已知函数y =x -ln(1+x 2),则函数y 的极值情况是( ) A .有极小值

B .有极大值

C .既有极大值又有极小值

D .无极值

解析:∵y ′=1-1

1+x 2(x 2+1)′=1-2x

x 2+1=(x -1)2

x 2+1,

令y ′=0得x =1,当x >1时,y ′>0, 当x <1时,y ′>0,∴函数无极值. 答案:D

3.函数f (x )=-1

3x 3+x 取极小值时,x 的值是( )

A .2

B .2,-1

C .-1

D .-3

解析:f ′(x )=-x 2+1=-(x -1)(x +1),f ′(x )的图像如右图. ∵在x =-1的附近左侧f ′(x )<0,右侧f ′(x )>0, ∴x =-1时取极小值. 答案:C

4.[2013·浙江高考]已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( )

A .当k =1时,f (x )在x =1处取到极小值

B .当k =1时,f (x )在x =1处取到极大值

C.当k=2时,f(x)在x=1处取到极小值

D.当k=2时,f(x)在x=1处取到极大值

解析:当k=1时,f(x)=(e x-1)(x-1),f′(x)=x e x-1,f′(1)≠0,故A、B错;当k =2时,f(x)=(e x-1)(x-1)2,f′(x)=(x2-1)e x-2x+2=(x-1)[(x+1)e x-2],故f′(x)=0有一根为x1=1,另一根x2∈(0,1).当x∈(x2,1)时,f′(x)<0,f(x)递减,当x∈(1,+∞)时,f′(x)>0,f(x)递增,∴f(x)在x=1处取得极小值.故选C.

答案:C

二、填空题

5.若函数y=-x3+6x2+m的极大值等于13,则实数m等于__________.

解析:y′=-3x2+12x,由y′=0,得x=0或x=4,容易得出当x=4时函数取得极大值,所以-43+6×42+m=13,解得m=-19.

答案:-19

6.已知实数a,b,c,d成等比数列,且曲线y=3x-x3的极大值点坐标为(b,c),则ad=__________.

解析:∵y′=3-3x2,令y′=0得x=±1,

且当x>1时,y′<0,

当-1≤x≤1时,y′≥0,

当x<-1时,y′<0,

故x=1为y=3x-x3的极大值点,即b=1.

又c=3b-b3=3×1-1=2,

∴bc=2.

又∵a,b,c,d成等比数列,

∴ad=bc=2.

答案:2

7.已知函数y=xf′(x)的图像如右图所示(其中f′(x)是函数f(x)的导函数),给出以下说法:

①函数f(x)在区间(1,+∞)上是增函数;

②函数f(x)在区间(-1,1)上单调递增;

③函数f (x )在x =-1

2处取得极大值;

④函数f (x )在x =1处取得极小值. 其中正确的说法是__________. 解析:

三、解答题

8.[2013·重庆高考]设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).

(1)确定a 的值;

(2)求函数f (x )的单调区间与极值. 解:(1)因f (x )=a (x -5)2+6ln x , 故f ′(x )=2a (x -5)+6x

.

令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1),由点(0,6)在切线上可得6-16a =8a -6,故a =1

2

.

(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)

x .

令f ′(x )=0,解得x 1=2,x 2=3.

当03时,f ′(x )>0,故f (x )在(0,2),(3,+∞)上为增函数;当2

由此可知f (x )在x =2处取得极大值f (2)=9

2

+6ln2,在x =3处取得极小值f (3)=2+6ln3.

9.设函数f (x )=a

3x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两个根分别为1,4.

(1)当a =3且曲线y =f (x )过原点时,求f (x )的解析式; (2)若f (x )在(-∞,+∞)内无极值点,求a 的取值范围. 解:由f (x )=a

3x 3+bx 2+cx +d ,

得f ′(x )=ax 2+2bx +c .

因为f ′(x )-9x =ax 2+2bx +c -9x =0的两个根分别为1,4,

所以?

????

a +2

b +

c -9=0,16a +8b +c -36=0.(*)

(1)当a =3时,由(*)式得?

????

2b +c -6=0,8b +c +12=0.

解得b =-3,c =12.

又因为曲线y =f (x )过原点,所以d =0. 故f (x )=x 3-3x 2+12x .

(2)由于a >0,所以“f (x )=a

3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点”等价于“f ′(x )

=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立”.

由(*)式得2b =9-5a ,c =4a . 又Δ=(2b )2-4ac =9(a -1)(a -9).

解?

????

a >0,Δ=9(a -1)(a -9)≤0得a ∈[1,9]. 即a 的取值范围是[1,9].

近五年高考数学函数及其图像真题及其答案

1. 已知函数()f x =32 31ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 2. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4. 函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是 A .()y g x = B .()y g x =- C .()y g x =- D .()y g x =-- 5. 已知函数f (x )=????? -x 2+2x x ≤0ln(x +1) x >0 ,若|f (x )|≥ax ,则a 的取值范围是 A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0] 6. 已知函数3 2 ()f x x ax bx c =+++,下列结论中错误的是

A .0x R ?∈,0()0f x = B .函数()y f x =的图象是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 D .若0x 是()f x 的极值点,则0'()0f x = 7. 设3log 6a =,5log 10b =,7log 14c =,则 A .c b a >> B .b c a >> C .a c b >>D .a b c >> 8. 若函数()2 11=,2f x x ax a x ?? ++ +∞ ??? 在是增函数,则的取值范围是 A .[]-1,0 B .[)+∞-,1 C .[]0,3 D .[)+∞,3 9. 函数()()21=log 10f x x x ??+> ? ?? 的反函数()1 =f x - A .()1021x x >- B .()1021 x x ≠-C .()21x x R -∈D .()210x x -> 10. 已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为 A .()1,1-B .11,2? ?-- ??? C .()-1,0 D .1,12?? ??? 11. 已知函数()()x x x f -+= 1ln 1 ,则y=f (x )的图像大致为 A . B .

人教版数学高二-新课标 《函数的概念》 教学设计

1.2.1 函数的概念(第一课时) 课 型:新授课 教学目标: (1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解构成函数的三要素; (3)能够正确使用“区间”的符号表示某些集合。 教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数。 教学难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。 教学过程: 一、问题链接: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、合作探究展示: 探究一:函数的概念: 思考1:(课本P 15)给出三个实例: A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米) 与时间t (秒)的变化规律是21305h t t =-。 B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空 臭氧层空洞面积的变化情况。(见课本P 15图) C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的 高低。“八五”计划以来我们城镇居民的恩格尔系数如下表。(见课本P 16表) 讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着 怎样的对应关系? 三个实例有什么共同点? 归纳:三个实例变量之间的关系都可以描述为:对于数集A 中的每一个x ,按照某种对 应关系f ,在数集B 中都与唯一确定的y 和它对应,记作: :f A B → 函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈ 其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 注意: ① “y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”; ②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x . 思考2:构成函数的三要素是什么? 答:定义域、对应关系和值域 小试牛刀.1下列四个图象中,不是函数图象的是( B ).

数学高二-选修2教案 函数的极值

第二课时 3.1.2函数的极值教学设计 教学目的 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤 教学重点 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点 对极大、极小值概念的理解及求可导函数的极值的步骤 授课类型 新授课 课时安排 1课时 教 具 多媒体、实物投影仪 内容分析 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号 教学过程 一、复习引入 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;;x x sin )'(cos -=; x x 1)'(ln = e x x a a log 1 )'(log = ;x x e e =)'(; a a a x x ln )'(= 2.法则1 )()()]()([' ' ' x v x u x v x u ±=± 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '= 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? 3.复合函数的导数: x u x u y y '''?= (理科) 4. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内/ y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/ y <0,那

高二数学三角函数知识点总结

高二数学三角函数知识点总结 锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα. 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα

cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 锐角三角函数公式 两角和与差的三角函数: sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB? cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+co sα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

高中数学选修2-2精品教案 3.2 函数的极值与导数

§1.3.2函数的极值与导数(1课时) 【学情分析】: 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。 【教学目标】: (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】: 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】: 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 教学 环节 教学活动设计意图 创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数() h t在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数() h t的图像,如图3.3-9.可以看出() h a ';在t a =,当t a <时,函数() h t单调递增,()0 h t'>;当t a >时,函数() h t单调递减,()0 h t'<;这就说明,在t a =附近,函数值先增(t a <,()0 h t'>)后减(t a >,()0 h t'<).这样,当t在a的附近从小到大经过a时,() h t'先正后负,且() h t'连续变化,于是有()0 h a '=. 对于一般的函数() y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号

(word完整版)高中数学函数图象高考题.doc

B 1 .函数 y = a | x | (a > 1)的图象是 ( y y o x o A B B ( ) y o 1 x -1 o 函数图象 ) y 1 1 x o x C y y x x o 1 y 1 o x D y -1 o x A B C B 3.当 a>1 时,函数 y=log a x 和 y=(1 - a)x 的图象只可能是( ) y A4.已知 y=f(x) 与 y=g(x) 的图象如图所示 yf ( x ) x O 则函数 F(x)=f(x) ·g(x) 的图象可以是 (A) y y y O x O x O x A xa x B C B 5.函数 y (a 1) 的图像大致形状是 ( ) | x | y y y O f ( x) 2x x O 1 O x ( D 6.已知函数 x x x 1 ,则 f x ( 1- x )的图象是 log 1 2 y y y A B C 2 。 。 1 。 - 1 D y y g( x) O x y O x D y O ) x y D 2

O x

A B C D D 7.函数 y x cosx 的部分图象是 ( ) A 8.若函数 f(x) =x 2 +bx+c 的图象的顶点在第四象限,则函数 f /(x)的图象是 ( ) y y y y o x o x o x o x A B C D A 9.一给定函数 y f ( x) 的图象在下列图中,并且对任意 a 1 (0,1) ,由关系式 a n 1 f (a n ) 得到的数列 { a n } 满足 a n 1 a n (n N * ) ,则该函数的图象是 ( ) A B C D C10.函数 y=kx+k 与 y= k 在同一坐标系是的大致图象是( ) x y y y y O x O x O x O x A 11.设函数 f ( x ) =1- 1 x 2 (- 1≤ x ≤0)的图像是( ) A B C D

高二-数学-选修2-2函数的导数与单调性、极值

导数与单调区间、极值 重点:会利用导数解决函数的单调性,利用导数求函数的极值,以及已知单调性、极值求参数 难点:导函数与原函数性质的区分、恒成立问题。 一、f’(x)>0(<0)与f(x) 单调性的关系 判断 判断函数f(x)=sinx-x的单调区间,如何进行?用图像法,定义法去试试 思考函数的单调性与变化率有何关系? 变化率又与导数有什么关系? ① 一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内 如果f’(x)>0,那么函数y=f(x)在(a,b)上单调递增; 如果f’(x)<0,那么函数y=f(x)在(a,b)上单调递减; : (1 (2 (3 (4 典型题一、 f’(x)的图像与f(x) 图像 例1.: A变式1已知函数y=f(x)的图象如图l所示,则其导函数y=f'(x)的图象可能是()

A.B.C.D. 考点:函数的单调性与导数的关系. 专题:导数的概念及应用. 分析:根据原函数图象的单调性及极值点的情况,得到导函数的零点个数及导函数的正负取值,由此即可得到导函数的图象的大致形状. 解答:解:由函数f(x)的图象看出,在y轴左侧,函数有两个极值点,且先增后减再增,在y轴右侧函数无极值点,且是减函数,根据函数的导函数的符号和原函数单调性间的关系可知,导函数在y轴右侧应有两个零点,且导函数值是先正后负再正,在y轴右侧无零点,且导函数值恒负,由此可以断定导函数的图象是A的形状. 故选A. A变式2.函数y=f(x)的图象如图所示,则y=f(x)的导函数y=f′(x)的图象可以是() A.B.C.D. 分析:排除法,由图象知x<0时,图象从左向右降低,是减函数,得y的导函数y,<0,排除A、B、C,即得. 解答:解:由图象知,当x<0时,y随x的增大而减小,是减函数,y=f(x)的导函数y,=f,(x)<0; 当x>0时,y也随x的增大而减小,是减函数,y=f(x)的导函数y,=f,(x)<0; 所以,y=f(x)的导函数y,=f,(x)的图象可以是满足条件的D答案. 故选:D.

高三数学函数图像与性质专题

2020高三数学培优专练1:函数的图像与性质 例1:对于函数()f x ,若a ?,b ,c ∈R ,都有()f a ,()f b ,()f c 为某一三角形的三条边,则称 ()f x 为“可构造三角形函数”,已知函数()1 x x e t f x e +=+(e 为自然对数的底数)是“可构造三角形函数”, 则实数t 的取值范围是( ) A .[0,)+∞ B .[0,2] C .[1,2] D .1,22 ?????? 【答案】D 【解析】由题意可得:()()()f a f b f c +>,对a ?,b ,c ∈R 恒成立, 1 ()111 x x x e t t f x e e +-==+++,当10t -=时,()1f x =,()()()1f a f b f c ===,满足条件, 当10t ->时,()f x 在R 上单调递减,∴1()11f a t t <<+-=, 同理:1()f b t <<,1()f c t <<, ∵()()()f a f b f c +>,所以2t ≥,∴12t <≤. 当10t -<时,()f x 在R 上单调递增,∴()1t f a <<, 同理:()1t f b <<,()1t f c <<,∴21t ≥,12t ≥ .∴1 12 t ≤<. 综上可得:实数t 的取值范围是1,22?????? . 培优一 函数的图象与性质 一、函数的单调性 二、函数的奇偶性和对称性

例2:设函数()f x 、()g x 分别是定义在R 上的奇函数和偶函数,且()()2x f x g x +=,若对[1,2]x ∈, 不等式()(2)0af x g x +≥恒成立,则实数a 的取值范围是( ) A .[ )1,-+∞ B .) 22,?-+∞? C .17,6?? - +∞???? D .257,60?? - +∞???? 【答案】C 【解析】∵()f x 为定义在R 上的奇函数,()g x 为定义在R 上的偶函数, ∴()()f x f x -=-,()()g x g x -=, 又∵由()()2x f x g x +=,结合()()()()2x f x g x f x g x --+-=-+=, ∴1()(22)2x x f x -= -,1 ()(22)2 x x g x -=+, 又由()(2)0af x g x +≥,可得 221 (22)(22)022 x x x x a ---++≥, ∵12x ≤≤,∴ 315 2224 x x -≤-≤, 令22x x t -=-,则0t >,将不等式整理即得:2a t t ? ?≥-+ ?? ? . ∵31524t ≤≤,∴172257660t t ≤+≤,∴176 a ≥-.故选C . 例3:定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[0,2)x ∈时,2()48f x x x =-+.若在 区间[,]a b 上,存在(3)m m ≥个不同的整数i x (1i =,2,L ,m ),满足1 11 ()()72m i i i f x f x -+=-≥∑ , 则b a -的最小值为( ) A .15 B .16 C .17 D .18 【答案】D 三、函数的周期性

高二数学三角函数公式总结

高二数学三角函数公式总结 三角函数内容在高二数学课程中占有重要的地位,下面是给大家带来的高二数学三角函数公式总结,希望对你有帮助。 高二数学三角函数公式锐角三角函数定义:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A 的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα. 平方关系: sin(α)+cos(α)=1 tan(α)+1=sec(α)

cot(α)+1=csc(α) 积的关系: sinα=tanα;cosα cosα=cotα;sinα tanα=sinα;secα cotα=cosα;cscα secα=tanα;cscα cscα=secα;cotα 倒数关系: tanα;cotα=1 sinα;cscα=1 cosα;secα=1 锐角三角函数公式 两角和与差的三角函数: sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB ? cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

高中数学 函数的最大最小值素材

x 函数的最大与最小值 教学目标:1、使学生掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,) 处的函数中的最大(或最小)值; 2、使学生掌握用导数求函数的极值及最值的方法 教学重点:掌握用导数求函数的极值及最值的方法 教学难点:提高“用导数求函数的极值及最值”的应用能力 一、复习: 1、() ___________/ =n x ;2、[]_____________) ()(/ =±?x g x f C 3、求y=x 3 —27x 的 极值。 二、新课 在某些问题中,往往关心的是函数在一个定义区间上,哪个值最大,哪个值最小 观察下面一个定义在区间[]b a ,上的函数)(x f y = 发现图中____________是极小值,_________间[]b a ,上的函数)(x f y = 的最大值是______,最小值是_______ 在区间 []b a ,上求函数 )(x f y =的最大值与最小值 的步骤: 1、函数 )(x f y =在),(b a 内有导数... ;. 2、求函数 )(x f y =在),(b a 内的极值 3、将.函数)(x f y =在),(b a 内的极值与)(),(b f a f 比较,其中最大的一个为最大值 ,最小的一个为最小值 三、例1、求函数522 4 +-=x x y 在区间[]2,2-上的最大值与最小值。 解:先求导数,得x x y 443 /-= 令/y =0即0443 =-x x 解得1,0,1321==-=x x x 导数/ y 的正负以及)2(-f ,)2(f 如下表 从上表知,当2±=x 时,函数有最大值13,当1±=x 时,函数有最小值4 在日常生活中,常常会遇到什么条件下可以使材料最省,时间最少,效率最

高二数学函数的极值

高二数学函数的极值 1.32课题:函数的极值(1) 教学目的: 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤 教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号 教学过程: 一、复习引入: 1. 常见函数的导数公式:

;;;;;;; 2.法则1 法则2 ,法则33.复合函数的导数: (理科) 4. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内0,那么函数 y=f(x) 在为这个区间内的减函数 5.用导数求函数单调区间的步骤:①求函数f(x)的导数 f′(x). ②令f′(x)>0解不等式,得x的范围就是递增区间.③令f′(x)<0解不等式,得x的范围,就是递减区间 二、讲解新课: 1.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点都有f(x)<f(x0),就说f(x0)是函数 f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点 2.极小值:一般地,设函数f(x)在x0附近有定义,如果对 x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数 f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点 3.极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: ()极值是一个局部概念由定义,极值只是某个点的函数值 与它附近点的函数值比较是最大或最小并不意味着它在函数

全国高考数学复习微专题:函数的图像

函数的图像 一、基础知识 1、做草图需要注意的信息点: 做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点 (1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线 特点:两点确定一条直线 信息点:与坐标轴的交点 (2)二次函数:()2 y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性 信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1 y x = ,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注: (1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。 (2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常

高考数学专题:函数的单调性

高考数学函数的单调性复习教案 考纲要求:了解函数单调性的概念,掌握判断一些简单函数的单调性的方法 。 函数单调性可以从三个方面理解 (1)图形刻画:对于给定区间上的函数()f x ,函数图象如从左向右连续上升,则称函数在该区间上单调递增,函数图象如从左向右连续下降,则称函数在该区间上单调递减。 (2)定性刻画:对于给定区间上的函数()f x ,如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减。 (3)定量刻画,即定义。 上述三方面是我们研究函数单调性的基本途径 判断增函数、减函数的方法: ①定义法:一般地,对于给定区间上的函数()f x ,如果对于属于这个区间的任意两个自变量的值1x 、2x ,当21x x <时,都有()()21x f x f <〔或都有()()21x f x f >〕,那么就说()f x 在这个区间上是增函数(或减函数)。 与之相等价的定义:⑴()()02121>--x x x f x f ,〔或都有()()02 121<--x x x f x f 〕则说()f x 在这个区间上是增函数(或减函数)。其几何意义为:增(减)函数图象上的任意两点()()()()2211,,,x f x x f x 连线的斜率都大于(或小于)0。 ⑵()()()[]02121>--x f x f x x ,〔或都有()()()[]02121<--x f x f x x 〕则说()f x 在这个区间上是增函数(或减函数)。 ②导数法:一般地,对于给定区间上的函数()f x ,如果()0`>x f 那么就说()f x 在这个区间上是增函数;如果()0`a 且0≤b 。 (年广东卷)下列函数中,在其定义域内既是奇函数又是减函数的是

2014届高三数学一轮复习 函数的图像提分训练题

函数的图像 一、选择题 1.已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2 ,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ). A .10个 B .9个 C .8个 D .1个 解析 (数形结合法)画出两个函数图象可看出交点有10个. 答案 A 【点评】 本题采用了数形结合法.数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观. 2.函数y =|x |与y =x 2 +1在同一坐标系上的图像为( ) 解析:因为|x |≤x 2 +1,所以函数y =|x |的图像在函数y =x 2 +1图像的下方,排除C 、D ,当x →+∞时,x 2+1→|x |,排除B ,故选A. 答案:A 3.函数y =11-x 的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于 ( ). A .2 B .4 C .6 D .8 解析 此题考查函数的图象、两个函数图象的交点及函数的对称性问题.两个函数都是中心对称图形.

如上图,两个函数图象都关于点(1,0)成中心对称,两个图象在[-2,4]上共8个公共点,每两个对应交点横坐标之和为2,故所有交点的横坐标之和为8. 答案 D 4.y =x +cos x 的大致图象是( ) 解析:当x =0时,y =1;当x =π2时,y =π2;当x =-π2时,y =-π 2,观察各选项可知B 正确. 答案:B 5.由方程x |x |+y |y |=1确定的函数y =f (x )在(-∞,+∞)上是( ). A .增函数 B .减函数 C .先增后减 D .先减后增 解析 ①当x ≥0且y ≥0时,x 2 +y 2 =1,②当x >0且y <0时,x 2-y 2 =1, ③当x <0且y >0时,y 2 -x 2 =1, ④当x <0且y <0时,无意义. 由以上讨论作图如上图,易知是减函数. 答案 B 6.在同一坐标系中画出函数y =l og a x ,y =a x ,y =x +a 的图象,可能正确的是( ). 解析 当a >1或0<a <1时,排除C ;当0<a <1时,再排除B ;当a >1时,排除A. 答案 D

高三数学集体备课记录(函数的单调性与导数)

高三数学集体备课记录(函数的单调性与导数)

高三数学集体备课记录 课题:函数的单调性与导数 时间、地点2016年9月26日 主持人赵纯金 参与者张泽成黄翼 备课设想教材分析 本节的教学内容属导数的应 用,是在学生学习了导数的 概念、计算、几何意义的基 础上学习的内容,学好它既 可加深对导数的理解,又可 为后面研究函数的极值和最 值打好基础。由于学生在高 一已经掌握了单调性的定 义,并能用定义判定在给定 区间上函数的单调性。通过 本节课的学习,应使学生体 验到,用导数判断单调性要 比用定义判断简捷得多,充 分展示了导数解决问题的优 越性。

学情分析对于这这个知识板块学习已有一些基础,学生存在一些兴趣,但却容易无从下手,所以本节课教师要注意引导学生数形结合再去发现规律,总结结论,熟练掌握。 教学目标 1.能探索并应用函数的单调性与导数的关系求单调区 间,能由导数信息绘制函数 大致图象。2.培养学生的观 察能力、归纳能力,增强数 形结合的思维意识。3.通过 在教学过程中让学生多动 手、多观察、勤思考、善总 结,引导学生养 重点难点重点:探索并应用函数单调性与导数的关系求单调区 间。 难点:利用导数信息绘制函

数的大致图象。 教学方法 探究式教学,分组讨论,讲练结合等 教学策略 1.先以具体问题引入,让学生意识到用定义法、图象法 在处理一些单调性问题时难 度较大,这样易激发学生的 学习兴趣。2.本节课宜适当 采用多媒体课件等辅助手段 以加大课堂容量,通过数形 结合,使抽象的知识直观化, 形象化,以促进学生的理解. 二.教学过程: (一)复习回顾,知识梳理 1. 常见函数的导数公式: ;;;. 2.法则1 . 法则2 , . 法则3 . 3.复合函数的导数:设函数u =(x )在点x 处有导数u ′x =′(x ),函数0'=C 1)'(-=n n nx x x x cos )'(sin =x x sin )'(cos -=)()()]()(['''x v x u x v x u ±=±[()()]'()()()'()u x v x u x v x u x v x '=+[()]'()Cu x Cu x '=' 2''(0)u u v uv v v v -??=≠ ?????

高二数学函数试题

高二数学函数试题 一.选择题(每小题5分,12个小题共60分) 1.函数1) 1ln(-+= x x y 的定义域是( ) A .{} 1->x x B .{} 1>x x C .{}1-≥x x D .{} 1≥x x 2.已知全集,U R = 集合{ {,.M x R y N y R y =∈==∈= 则 =?M C N U ( ) A .? B. {}01x x ≤< C.{}01x x ≤≤ D. {}11x x -≤< 3.若函数f(x) = x + 2x + log2x 的值域是 {3, 3 2 2 -1, 5 + 2 , 20}, 则其定义域是( ) A. {0,1,2,4} B. {1 2 ,1,2,4} C. {12 ,2,4} D. {1 2 ,1,2,4,8} 4.函数()312f x kx k =+-在(-1,1)上存在0x ,使0)(0=x f ,则k 的取值范围 是( ) A .1(1,)5- B .(,1)-∞- C .1(,1)(,)5-∞-+∞ D .1 (,) 5+∞ 5.已知数集 {}{},,,,0,A B m m αβγ==-,f 是从A 到B 的映射, 则满足()()()0f f f αβγ++=的映射共有 ( ) A.6个 B.7个 C.9个 D.27个 6.过曲线331x y = 上点) 38,2(的切线方程是 ( ) A .016312=--y x B .016312=+-y x C .016312=--x y D .016312=+-x y 7.已知函数)2()2()0(|1|log )(2x f x f a ax x f --=+-≠-=满足,则实数a 值是( ) A .1 B . 21- C .41 D .-1 8.设函数f(x)是定义域为R 且以3为周期的奇函数,若f(1)>1,f(2)=a ,则( ) A.a>2 B.a>-1 C.a>1 D.a<-1 9. 函数()cos 1,(5,5)f x x x x =+∈-的最大值为M ,最小值为m ,则M m +等于 A .0 B .1 C .2 D .4 10. 函数()f x 、(2)f x +均为偶函数,且当x ∈[0,2]时,()f x 是减函数,设 ), 21 (log 8f a =(7.5)b f =,(5)c f =-,则a 、b 、c 的大小是 A .a b c >> B .a c b >> C .b a c >> D .c a b >> 11.3a >,则方程32 10x ax -+=在(0,2)上恰好有 ( ) A . 0 个根 B . 1个根 C .2个根 D . 3个根 12. 已知函数)R x ()x (f ∈ 的图象如图所示, 则函数 ) 1x 1 x ( f )x ( g -+= 的单调递减区间是 ( ) A. ),1(],0,(∞+-∞ B. ),3[],0,(∞+-∞ C. ),1(,)1,(∞+-∞ D. )1,1[ - 二.填空题(每小题5分,4个小题共20分) 13.函数3ln y x x =+的单调递增区间为 14. 函数y =x a (a>0,且a≠1)在[1,3]上的最大值比最小值大a 2 ,则a 的值是________ 15.已知(31)4,1()log ,1a a x a x f x x x -+

函数极值最值的求法及其应用

函数极值最值的求法及其应用 学习目标:会用导数求函数的极值与最值并利用其解决相关的数学问题. 学习重点:利用导数求函数单调区间和极值最值,并能利用他们解决相恒成立问题、方程的根和函数的零点问题. 学习难点:含参函数的分类讨论和数形结合的思想方法. 学习方法:指导学习法. 课前五分钟展示:求函数)0()(>+=a x a Inx x f 在区间[]1,e 上的最小值. 基础知识回顾: 1、 单调区间: 在某个区间(a,b)内,如果()0f x '> ,那么函数()y f x =在这个区间内单调 如果()0f x '<,那么函数()y f x =在这个区间内单调 注意:求参数范围时,若函数单调递增,则'()0f x ≥;若函数单调递减,则 '()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解. 2、 函数的极值与最值: 极大值和极小值:一般地,设函数)(x f 在点0x 附近有定义,如果对0x 附近的所有的点都有)(x f <)(0x f 或)(x f >)(0x f ,就说)(0x f 是函数)(x f 的一个极大值或极小值,记作极大值y =)(0x f ,0x 是极大值点或记作极小值y =)(0x f ,0x 是极小值点.

在定义中,极大值与极小值统称为 取得极值的点称为 极值点是自变量的值,极值指的是 最大值和最小值:观察图中一个定义在闭区间[]b a ,上的 函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x .一般地,在闭区间[]b a ,上连续的函数)(x f 在 []b a ,上必有最大值与最小值. 请注意以下几点: (1; (2)函数的极值不是唯一的; (3)极大值与极小值之间无确定的大小关系 ; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点取得最大值.最小值的点可能在区间的内部,也可能在区间的端点. 思考探究: 在连续函数)(x f 中,0)('= x f 是函数)(x f 在 x x =处取到极值的什么条件( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件D 、既不充分也不必要条件 典型例题: 题型一:利用导数求函数的极值最值问题: 例1:求函数5224+-=x x y 在区间[]2,3-上的最大值与最小值.

高三数学 函数的单调性专题复习 教案

江苏省东台市三仓中学2015届高三数学 函数的单调性专题复习 教案 导学目标: ①理解函数的单调性、最大(小)值及其几何意义; ②理解函数单调性的定义,掌握函数单调性的判定与证明,能利用函数的单调性解决一些问题. 自主梳理 1.增函数和减函数 一般地,设函数()f x 的定义域为I : 如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x x <,那么就说函数()f x 在区间D 上是___________. 如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x x >,那么就说函数()f x 在区间D 上是___________. 2.单调性与单调区间 如果一个函数在某个区间M 上是_____________或是____________,就说这个函数在这个区间M 上具有_____________(区间M 称为____________)。 3.最大(小)值 (前面已复习过) 4.判断函数单调性的方法 (1)定义法:利用定义严格判断。 (2)导数法 ①若()f x 在某个区间内可导,当'()0f x >时,()f x 为______函数;当 '()0f x <时,()f x 为______函数。 ②若()f x 在某个区间内可导,当()f x 在该区间上递增时,则'()f x ______0,当()f x 在 该区间上递减时,则'()f x ______0。 (3)利用函数的运算性质:如若(),()f x g x 为增函数,则①()()f x g x +为增函数; ②1 ()f x 为减函数(()0f x >);③()f x 为增函数(()0f x ≥);④()()f x g x 为增 函数(()0,()0f x g x >>);⑤()f x -为减函数。

相关文档
最新文档