3 、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是

3 、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是
3 、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是

一、相敏检波的功用和原理

1、什么是相敏检波电路?

相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。

2、为什么要采用相敏检波?

包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。第二,包络检波电路本身不具有区分不同载波频率的信号的能力。对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。

3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么?

相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。有了参考信号就可以用它来鉴别输入信号的相位和频率。

4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别?

将调制信号Ux乘以幅值为1的载波信号就可以得到双边带调幅信号Us,将双边带调幅信号Us再乘以载波信号,经低通滤波后就可以得到调制信号Ux。这就是相敏检波电路在结构上与调制电路相似的原因。

二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。这使它们的输入、输出耦合回路与滤波器的结构和参数不同。

二、相敏检波电路的选频与鉴相特性

1、相敏检波电路的选频特性

什么是相敏检波电路的选频特性?

相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。

以参考信号为基波,所有偶次谐波在载波信号的一个周期内平均输出为零,即它有抑制偶次谐波的功能。对于n=1,3,5等各奇次谐波,输出信号的幅值相应衰减为基波的1/ n,即信号的传递系数随谐波次数增高而衰减,对高次谐波有一定抑制作用。

2、相敏检波电路的鉴相特性

什么是相敏检波电路的鉴相特性?

如果输入信号us为与参考信号uc(或Uc)同频信号,但有一定相位差,这时输出电压Uo=Usm/2cos∮,即输出信号随相位差∮的余弦而变化。

由于在输入信号与参考信号同频但有一定相位差时,输出信号的大小与相位差有确定的函数关系,可以根据输出信号的大小确定相位差的值,相敏检波电路的这一特性称为鉴相特性.

流电路图和工作原理,相敏检波电路图...)

关键词语:差动变压器式传感器工作原理,螺线管式差动变压器结构图,差动变压器等效电路图,差动变压器基本特性,差动变压器式传感器测量电路,差动整流工作原理,差动整流电路,相敏检波电路图,差动变压器式加速度传感器原理图,差动变压式传感器的应用 差动变压器式传感器 把被测的非电量变化转换为线圈互感量变化的传感器称为互感式传感器。这种传感器是根据变压器的基本原理制成的, 并且次级绕组都用差动形式连接, 故称差动变压器式传感器。 差动变压器结构形式较多, 有变隙式、变面积式和螺线管式等, 但其工作原理基本一样。非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm范围内的机械位移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点。 差动变压器结构形式较多, 有变隙式、变面积式和螺线管式等, 但其工作原理基本一样。非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm范围内的机械位移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点。 一、工作原理 螺线管式差动变压器结构如图 4 -10 所示, 它由初级线圈#, 两个次级线圈和插入线圈中央的圆柱形铁芯等组成。 螺线管式差动变压器按线圈绕组排列的方式不同可分为一节、二节、三节、四节和五节式等类型, 如图 4 - 11 所示。一节式灵敏度高, 三节式零点残余电压较小, 通常采用的是二节式和三节式两类。 图4-11 螺线管式差动变压器结构图

差动变压器式传感器中两个次级线圈反向串联, 并且在忽略铁损、 导磁体磁阻和线圈分布电容的理想条件下, 其等效电路如图 4 - 12所示。当初级绕组w1加以激励电压1? U 时, 根据变压器的工作原理, 在两个次级绕组w2a 和w2b 中便会产生感应电势a E 2?和b E 2?。 如果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平衡位置时, 必然会使两互感系数M1=M2。根据电磁感应原理, 将有??=b a E E 22。 由于变压器两次级绕组反向串联, 因而0222=-=???b a E E U , 即差动变压器输出电压为零。 图4-12 差动变压器等压电路 活动衔铁向上移动时,由于磁阻的影响, w2a 中磁通将大于w2b, 使M1>M2, 因而a E 2?增加, 而b E 2?减小。 反之, b E 2?增加, a E 2?减小。因为? ??-=b a E E U 222, 所以当a E 2?、b E 2?随着衔铁位移x 变化时, 2?U 也必将随x 变化。 图 4 - 13 给出了变

检波器设计(完整版)概要

职业技术学院学生课程设计报告 课程名称:高频电路课程设计 专业班级:信工102 姓名: 学号:20110311202 学期:大三第一学期

目录 1课程设计题目……………………………………………2课程设计目的…………………………………………3课程设计题目描述和要求……………………………4课程设计报告内容……………………………………… 4.1二极管包络检波电路的设计……………………… 4.2同步检波器的设计……………………………5结论……………………………………………………6结束语………………………………………………………7参考书目……………………………………………………8附录………………………………………………………

摘要 振幅调制信号的解调过程称为检波。有载波振幅调制信号的包络直接 反映调制信号的变化规律,可以用二极管包络检波的方法进行检波。而抑 制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变 换规律,无法用包络检波进行解调,所以要采用同步检波方法。 同步检波器主要是用于对DSB和SSB信号进行解调(当然也可以用于AM)。它的特点是必须加一个与载波同频同相的恢复载波信号。外加载波信 号电压加入同步检波器的方法有两种。利用模拟乘法器的相乘原理,实现 (t),和输入的同步 同步检波是很简单的,利用抑制载波的双边带信号V s (t),经过乘法器相乘,可得输出信号,实现了双 信号(即载波信号)V c 边带信号解调 课程设计作为高频电子线路课程的重要组成部分,目的是一方面使我们能够进一步理解课程内容,基本掌握数字系统设计和调试的方法,增加集成电路应用知识,培养我们的实际动手能力以及分析、解决问题的能力。 另一方面也可使我们更好地巩固和加深对基础知识的理解,学会设计中小型高频电子线路的方法,独立完成调试过程,增强我们理论联系实际的能力,提高电路分析和设计能力。通过实践引导我们在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 通过设计,一方面可以加深我们的理论知识,另一方面也可以提高我们考虑问题的全面性,将理论知识上升到一个实践的阶段。

包络检波器的设计与实现

2013~2014学年第一学期 《高频电子线路》 课程设计报告 题目:包络检波器的设计与实现 专业:电子信息工程 班级:11电信1班 姓名: 指导教师:冯锁 电气工程学院 2013年12月12日

任务书

摘要 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。检波广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 为了生动直观的分析检波电路,利用了最新电子仿真软件Multisim11.0进行二极管包络检波虚拟实验,Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。

目录 第1章设计目的及原理 (4) 1.1设计目的和要求 (4) 1.1设计原理 (4) 第2章指标参数的计算 (8) 2.1电压传输系数的计算 (8) 2.2参数的选择设置 (8) 第3章 Multisim的仿真结果及分析 (11) 总结 (16) 参考文献 (17) 答辩记录及评分表 (18)

包络检波器的设计与实现

目录 前言 (1) 1 设计目的及原理 (2) 1.1设计目的和要求 (2) 1.1设计原理 (2) 2包络检波器指标参数的计算 (6) 2.1电压传输系数的计算 (6) 2.2参数的选择设置 (6) 3 包络检波器电路的仿真 (9) 3.1 Multisim的简单介绍 (10) 3.2 包络检波电路的仿真原理图及实现 (10) 4总结 (13) 5参考文献 (14)

前言 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,对普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 为了生动直观的分析检波电路,利用最新电子仿真软件Multisim11.0进行二极管包络检波虚拟实验。Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。

峰值包络检波器检波原理及失真分析

峰值包络检波器检波原理及失真分析 【摘要】峰值包络检波器是由二极管,电阻,电容组成,电路结构十分简单。检波原理是信号源通过二级管向负载电容C充电和负载电容C对负载电阻R放电 按高频周期作锯齿状波动,其平均值的过程,当C的充放电达到动态平衡后,V 是稳定的,且变化规律与输入调幅信号的包络变化规律相同,从而实现了AM信号的解调。峰值包络检波会带来失真,包括惰性失真和负峰切割失真。现在应用不多,但对调幅解调的了解有很大的帮助。 【关键词】 包络检波锯齿状原理失真惰性负峰切割

前言 随着科技的发展,无线电通信在如今应用非常广泛 ,正如现在广泛使用的对讲机一样,即时沟通、经济实用、运营成本低、使用方便 , 同时还具有组呼通播、系统呼叫、机密呼叫等功能。在处理紧急突发事件中,在进行调度指挥中其作用是其他通信工具所不能比拟的。因此,为了更好的理解在高频电子线路中所学的知识和为以后的工作实践打好基础,我们三人借课程设计之际设计了一款峰值包络检波器。 一、实验电路 实验电路图: 图1 峰值包络检波器原理图 二、工作原理 (1)实验波形如图: 图2 峰值包络检波波型图

RC 电路有两个作用:一是作为检波器的负载;在两端产生解调输出的原调制信号电压;二是滤除检波电流中的高频分量。为此,RC 网络必须满足 R C c <<ω1 且 R C >>Ω1 。式中,c ω为载波角频率,Ω为调制角频率。 1.v s 正半周的部分时间(φ<90o ) 二极管导通,对C 充电,τ充 =R D C 。因为 R D 很小,所以τ充很小,v o ≈v s 2.v s 的其余时间(φ>90o ) 二极管截止,C 经R 放电,τ放=RC 。因为 R 很大,所以τ放很大,C 上电压下 降不多,仍有:v o ≈v s 1 ,2过程循环往复,C 上获得与包络(调制信号)相一致的电压波形,有很小的起伏。故称包络检波。 检波过程实质上是信号源通过二级管向负载电容C 充电和负载电容C 对负载电阻R 放电的过程,充电时间常数为R d C ,R d 为二极管正向导通电阻。 放电时间常数为RC ,通常R>R d ,因此对C 而言充电快、放电慢。经过若干个周期后,检波器的输出电压V 0在充放电过程中逐步建立起来,该电压对二极管VD 形成一个大的负电压,从而使二极管在输入电压的峰值附近才导通,导通时间很短,电流导通角很小。当C 的充放电达到动态平衡后,V 0按高频周期作锯齿状波动,其平均值是稳定的,且变化规律与输入调幅信号的包络变化规律相同,从而实现了AM 信号的解调。 (2)指标分析 因v s 幅度较大,用折线法分析。 1. v s 为等幅波 包络检波器波形:

包络检波电路分析

四、振幅调制的解调 基本特性及实现模型 振幅检波电路 (一)、振幅调制的解调电路的基本特性及实现模型 ?定义:振幅调制波的解调电路称振幅检波电路,简称检波电路。检波是从振幅调制波中不失真的检出调制信号的过程。(它是振幅调制的逆过程)?功能:在频域上,该作用就是将已调幅波的调制信号频谱不失真地搬到零频率附近。检波乃是实现频谱线性搬移。 ?类型:同步检波,包络检波。 1、同步检波(主要解调DSB,SSB波,也可解调AM波) ①乘积型 A)实现模型 同步检波的关键在于取参考信号U r必须与输入原载波信号严格同步(同频,同相),因而实现电路较复杂些。 B)原理:振幅检波电路也是一种频谱搬移电路,可以用乘法器来实现。 以双边带调制信号的解调为例: (按此仿真) U S=V m cosΩt cosωC t为已调波 U r=V rm cosωC t为本地引入参考电压,称同步电压,要求与输入载波信号同频同相。

第一项与cosΩt成正比,是反应调制信号变化规律的有用分量,后两项为2ωC的双边 带调制信号,为无用的寄生分量,通过低通滤波将高频分量滤除,即可实现检波。 若任意多频信号可画出下列频谱示意图: 采用同样的工作原理,以上模型也可实现AM波和SSB波的解调。 ②叠加型(按此仿真) A)实现模型 B)原理 a) 若U s=U DSB=V m cosΩt cosωC t ,U r=V rm cosωC t

当V rm≥V sm 时, 合成信号为不失真的普通(标准)调幅波,可通过包络检波器检出所需要的调制信号。 b) 若U s=U SSB=V m cos(ωC+Ω)t ,U r=V rm cosωC t ,V rm>>V sm U= (用矢量叠加法) 经包络检波后U AV=ηd V rm(1+D cosΩt) 再经隔直电容后得U av=ηd DV rm cosΩt实现了不失真的解调。 2、包络检波 因U AM经由非线性器件后输出电流中含有能线性反映输入信号包络变化规律的音频信号分量(即反映调制信号变化规律)。所以包络检波仅适用于标准调制波的解调。此电路不需要加同步信号,电路显得较简单。

3 、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是

一、相敏检波的功用和原理 1、什么是相敏检波电路? 相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。 2、为什么要采用相敏检波? 包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。第二,包络检波电路本身不具有区分不同载波频率的信号的能力。对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。 3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么? 相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。有了参考信号就可以用它来鉴别输入信号的相位和频率。 4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别? 将调制信号Ux乘以幅值为1的载波信号就可以得到双边带调幅信号Us,将双边带调幅信号Us再乘以载波信号,经低通滤波后就可以得到调制信号Ux。这就是相敏检波电路在结构上与调制电路相似的原因。 二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。这使它们的输入、输出耦合回路与滤波器的结构和参数不同。 二、相敏检波电路的选频与鉴相特性 1、相敏检波电路的选频特性 什么是相敏检波电路的选频特性? 相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。

包络检波及同步检波实验

实验十二包络检波及同步检波实验 学院:光电与信息工程学院专业:电子信息工程姓名:学号: 一、实验目的 1.进一步了解调幅波的原理,掌握调幅波的解调方法。 2.掌握二极管峰值包络检波的原理。 3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。 4. 掌握用集成电路实现同步检波的方法。 二、实验内容 1.完成普通调幅波的解调。 2.观察抑制载波的双边带调幅波的解调。 3.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。 三、实验仪器

1.高频实验箱 1台 2.双踪示波器 1台 3.频率特性测试仪(可选)1台 四、实验原理及实验电路说明 检波过程是一个解调过程,它与调制过程正好相反。检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。 假如输入信号是高频等幅信号,则输出就是直流电压。这是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就是采用这种检波原理。 若输入信号是调幅波,则输出就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。 从频谱来看,检波就是将调幅信号频谱由高频搬移到低频,如图12-1 所示(此图为单音频Ω调制的情况)。检波过程也是应用非线性器

件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波和同步检波两种。有载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。 图12-1 检波器检波前后的频谱

包络检波器的设计与实现

包络检波器的设计与实 现 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

目录 前言 (1) 4总结 5参考文献

前言 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,对普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 为了生动直观的分析检波电路,利用最新电子仿真软件进行二极管包络检波虚拟实验。Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。 1设计目的及原理 设计目的和要求 通过课程设计,使学生加强对高频电子技术电路的理解,学会查寻资料﹑方案比较,以及设计计算等环节。进一步提高分析解决实际问题的能力,创造一个动脑动手﹑独立开展电路实验的机会,锻炼分析﹑解决高频电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,加深对基本原理的了解,增强学生的实践能力。 要求:掌握串、并联谐振回路及耦合回路、高频小信号调谐放大器、高频功率放大器、混频器、幅度调制与解调、角度调制与解调的基本原理,实际电路设计及仿真。 设计要求及主要指标:用检波二极管设计一AM信号包络检波器,并且能够实现以下指标。 输入AM信号:载波频率200kHz正弦波。

相敏检波

相敏检波 (一)相敏检波的功用和原理 1、什么是相敏检波电路? 相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。 2、为什么要采用相敏检波? 包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。第二,包络检波电路本身不具有区分不同载波频率的信号的能力。对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。 3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么? 相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。有了参考信号就可以用它来鉴别输入信号的相位和频率。 4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别? 将调制信号ux乘以幅值为1的载波信号就可以得到双边带调幅信号us,将双边带调幅信号us再乘以载波信号,经低通滤波后就可以得到调制信号ux。这就是相敏检波电路在结构上与调制电路相似的原因。 二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。这使它们的输入、输出耦合回路与滤波器的结构和参数不同。 (二)相敏检波电路的选频与鉴相特性 1、相敏检波电路的选频特性 什么是相敏检波电路的选频特性? 相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。以参考信号为基波,所有偶次谐波在载波信号的一个周期内平均输出为零,即它有抑制偶次谐波的功能。对于n=1,3,5等各奇次谐波,输出信号的幅值相应衰减为基波的1/ n,即信号的传递系数随谐波次数增高而衰减,对高次谐波有一定抑制作用。

包络检波器的设计与实现

包络检波器的设计与实现 The Standardization Office was revised on the afternoon of December 13, 2020

目录 前言 (1) 1 设计目的及原理 (2) 设计目的和要求 (2) 设计原理 (2) 2包络检波器指标参数的计算 (6) 电压传输系数的计算 (6) 参数的选择设置 (6) 3 包络检波器电路的仿真 (9) Multisim的简单介绍 (10) 包络检波电路的仿真原理图及实现 (10) 4总结 (13) 5参考文献 (14)

前言 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,对普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 为了生动直观的分析检波电路,利用最新电子仿真软件进行二极管包络检波虚拟实验。Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。

相敏检波器

1 2 3 4 2 4 1 4 实验二十 相敏检波器实验 一、 实验目的 说明由施密特开关电路及运放组成的相敏检波电路的原理。 二、 实验原理 相敏检波电路如图所示: 图为输入信号端 ,为交流参考电压输入端 ,为输 出端 。 为直流参考电压输入端。 当、 端 输入控制电压信号时,通过差动放大器的作用使 D 和 J 处于开关状态, 从而把端 输入的正弦信号转换成半波整流信号。 三、 实验所需部件 相敏检波器、移相器、音频振荡器、直流稳压电源、低通滤波器、电压表、示波器 四、 1. 实验步骤 将音频振荡器频率幅度旋钮居中,输出信号信号(0°或 180°均可),接相敏 检波器输入端。 2. 3. 将直流稳压电压 2V 档输出电压(正负均可)接相敏检 波器端。 示波器两通道分别接相敏输入、输出端,观察输入、输出波形的相位关系和幅

4 2 5 6 值关系。 4. 改 变端参考电压的极性,观察输入、输出波形的相位和幅值关系。由此可以 得出结论:当参考电压为正时,输入与输出同相,当参考电压为负时,输入与输出反相。 5. 将音频振荡器 0°端输出信号送入移相器输入端,移相器的输出端与相敏检波 器的参考输入 端连接,相敏检波器的信号输入端接音频 0°输出。 6. 用示波器两通道观察附加观察 插口 、 的波形。 可以看出,相敏检波器中整形电路的作用是将输入的正弦波转换成方波,使相 敏检波器中的电子开关能正常工作。 7. 20V 。 8. 9. 将相敏检波器的输出端与低通滤波器的输入端连接,低通输出端接数字电压表 示波器两通道分别接相敏检波器输入输出端。 适当调节音频振荡器幅值旋钮和移相器“移相”旋钮,观察示波器中波形变化 和电压表电压值变化,然后将相敏检波器的输入端改接至音频振荡器 180°输出端口, 观察示波器和电压表的变化。 由此可以看出,当相敏检波器的输入信号和开关信号反相时,输出为正极性的 全波整流信号,电压表只是正极性方向最大值,反之,则输出负极性的全波整流波形, 电压表指示负极性的最大值。 10. 调节移相器“移相”旋钮,利用示波器和电压表,测出相敏检波器的输入 V P-P 值与输出直流电压的关系。 11. 使输入信号与参考信号的相位改变 180°,测出上述关系。 五、 注意事项 相敏检波器最大输入电压 V P-P 值为 20V 。

相敏检波电路

二极管相敏检波电路 电路如图 4 - 15 所示。VD1、VD2、VD3、 VD4 为四个性能相同的二极管, 以同一方向串联成一个闭合回路, 形成环形电桥。 输入信号u2(差动变压器式传感器输出的调幅波电压)通过变压器T1加到环形电桥的一个对角线。 参考信号u0通过变压器T2加入环形电桥的另一个对角线。 输出信号uL 从变压器T1与T2的中心抽头引出。平衡电阻R 起限流作用, 避免二极管导通时变压器T2的次级电流过大。RL 为负载电阻。u0的幅值要远大于输入信号u2的幅值, 以便有效控制四个二极管的导通状态, 且u0和差动变压器式传感器激磁电压u1由同一振荡器供电, 保证二者同频、同相(或反相)。 由图 4 -16(a )、(c )、(d)可知, 当位移?x > 0时, u2与u0同频同相, 当位移?x< 0时, u2与u0 同频反相。  ?x> 0时, u2与u0为同频同相, 当u2与u0均为正半周时, 见图 4 - 15(a ), 环形电桥中二极管VD1、VD4截止, VD2、VD3导通, 则可得图 4 - 15(b )的等效电路。 2 002012n u u u == 1222212n u u u = = 根据变压器的工作原理, 考虑到O 、M 分别为变压器T1、 T2的中心抽头, 则有 u01= u02=2 02n u (4 - 29) u21= u22=122n u ? (4 - 30) 式中 n1#, n2为变压器T1、T2的变比。采用电路分析的基本方法, 可求得图 4 - 15(b )所示电路的输出

电压uL 的表达式: ) 2(112L L L R R n u R u += 同理当u2与u0均为负半周时, 二极管VD2、VD3截止, VD1、 VD4导通。 其等效电路如图 4 - 15(c )所示, 输出电压uL 表达式与式(4 -31)相同, 说明只要位移Δx>0, 不论u2与u0是正半周还是负半周,负载RL 两端得到的电压uL 始终为正。 所以上述相敏检波电路输出电压uL 的变化规律充分反映了被测位移量的变化规律, 即uL 的值反映位移?x 的大小, 而uL 的极性则反映了位移?x 的方向。

包络检波原理

由非线性器件和低通滤波器两部分组成。(图9-17 p244) 要求: R>>R 以保证: i充>>i放,即:τ充<<τ放 D , 一、工作原理(图9-18 p244)

v s为已调信号,v o为包络检波信号 1.v s正半周的部分时间(φ<90o) 二极管导通,对C充电,τ充=R D C ∵R D很小

∴τ充很小,v o≈v s 2.v s的其余时间(φ>90o) 二极管截止,C经R放电,τ放=RC ∵R很大 ∴τ放很大,C上电压下降不多,仍有:v o≈v s 1.2.过程循环往复,C上获得与包络(调制信号)相一致的电压波形,有很小的起伏。 故称:包络检波。 二、指标分析 因v s幅度较大,用折线法分析。 1. v s为等幅波 包络检波器波形(图9-19 p245)

2. v s为AM信号 v s=V s(1+m cosΩt)cosωo t 因为Ω<<ωo,所以包络变化缓慢,在ωo的几个周期内: V s'≈V s(1+m cosΩt)=常数(恒定值)

代入: v o=V s'cosφ≈V s(1+m cosΩt)cosφ =V s cosφ+m cosφcosΩt 式中: V s cosφ为与v o幅度成正比的AGC电压vΩ=m cosφcosΩt=VΩ'cosΩt (原调制信号) 实例:收音机中的检波电路(图9-25 p252) 3.包络检波器的指标 (1)电压传输系数

理想:R >>R D ,φ→0,K d =1 实际例: R =5.1kΩ, R D =100Ω时:φ≈33o ,K d ≈0.84 R =4.7kΩ,R D =470Ω时:φ≈55o ,K d ≈0.55 通常取:K d =0.5(-6dB)来估算检波器效率 (2)等效输入电阻 经推导:R i =R /(2K d ) 理想:K d =1时,R i =R /2 实际:K d <1 ,R i 更大(对前级有利)。 (3)非线性失真 原因: ①v s 较小时,工作于非线性区; ②R 较小时,R D 的非线性作用↑。 解决:R 足够大时,R D 的非线性作用↓,R 的直流电压负反馈作用↑。但R (RC )过大时,将产生: (a) 惰性失真(τ放 跟不上v s 的变化);

差动相敏检波电路

差动相敏检波电路应用 2008-11-20 10:55 差动变压器式电感传感器 互感型电感传感器是利用互感M的变化来反映被测量的变化。这种传感器实质上是一个输出电压可变的变压器。当变压器初级线圈输入稳定交流电压后,次级线圈便会有感应电压输出,该电压随被测量的变化而变化。 差动变压器式电感传感器是常用的互感型传感器,其结构形式有多种,以螺管形应用较为普遍,其结构及工作原理如下图所示。传感器主要由线圈、铁芯和活动衔铁三部分组成。线圈包括一个初级线圈和两个反接的次级线圈,当初级线圈输入交流激励电压时,次级线圈将产生感应电动势e1和e2。由于两个次级线圈极性反接,因此,传感器的输出电压为两者之差,即e y=e1-e2。活动衔铁能改变线圈之间的藕合程度。输出e y的大小随活动衔铁的位置而变。当活动衔铁的位置居中时,e1=e2,e y=0;当活动衔铁向上移时,e1>e2,e y>0;当活动衔铁向下移时,e1

下图所示为用于小位移的差动相敏检波电路的工作原理,当没有信号输入时,铁芯处于中间位置,调节电阻R,使零点残余电压减小;当有信号输入时,铁芯移上或移下,其输出电压经交流放大、相敏检波、滤波后得到直流输出。由表头指示输入位移量的大小和方向。 图4.3-2 差动变压器式传感器具有精度高(达0.lμm量级),线圈变化范围大(可扩大到±l00mm,视结构而定),结构简单,稳定性好等优点,被广泛应用于直线位移测量及其它压力、振动等参量的测量。

晶体管检波电路的设计讲解

高频电子线路课程设计说明书晶体管检波电路设计 学生姓名: 指导教师: 专业: 班级: 完成时间:

摘要 包络检波电路有很多种,无源的有二极管检波,有源的有三极管、运放等;还有单向检波、桥式检波、同步检波等等。最简单的,也是用得最多的就是二极管和三极管。若之前用三极管检波可以实现,那么还是用三极管的吧。要检查几个方面:1、输入信号的幅度是否足够大,电流回路是否完整;2、三极管的偏置应是微导通或略低于导通,保证单向性;3、输出信号需滤波,幅度应符合后级使用要求,否则应加以放大。用二极管检波也无不妥,要检查几个方面:1、输入信号的幅度是否足够大,要保证使二极管导通,并注意电流回路是否完整;2、给二极管加偏压,使之微导通,保证正向波形电压顺利通过、反向波形被截止,波形完整;3、检波后的信号需滤波,幅度应符合后级使用要求,否则应加以放大。 检波二极管是用于把迭加在高频载波上的低频信号检出来的器件,它具有较高的检波效率和良好的频率特性。 检波(也称解调)二极管的作用是利用其单向导电性将高频或中频无线电信号中的低频信号或音频信号取出来,广泛应用于半导体收音机、收录机、电视机及通信等设备的小信号电路中,其工作频率较高,处理信号幅度较弱。 常用的国产检波二极管有2AP系列锗玻璃封装二极管。常用的进口检波二极管有1N34/A、1N60等。 关键词:检波;二极管;频率特性;包络检波

目录 第一章系统分析 (3) 1.1设计课题任务和技术指标 (3) 1.2基本原理 (3) 第二章设计课题的仿真分析晶体管检波电路虚拟实现 (8) 2.1设计课题的参数选择 (8) 2.2晶体三极管混频器设计及课题的仿真结果 (9) 2.3 软件仿真中出现的问题及解决方法 (11) 第三章硬件电路组装调试 (12) 3.1 使用主要仪器和仪表 (12) 3.2 测试电路的方法和技巧 (12) 3.3 测试数据 (12) 3.4 调试中出现的故障 (12) 第四章电路总结 (12) 第五章元器件清单 (13) 第六章收获和体会 (15) 参考文献 (16)

实验四二极管大信号包络检波器资料

实验报告 成绩 班级电子112 学号1886110233 姓名张影课程名称 高频电子线路实验与课程设计实验日期2013\11\20 实验名称二极管大信号包络检波器 实验目的: 1、通过实验熟悉大信号检波的工作原理。 2、掌握用二极管大信号包络检波器实现普通调幅波(AM )解调的方法。 3、初步掌握包络检波器的工程估算方法和检波特性的测试方法。 4、了解电路参数对普通调幅波(AM )解调影响。 5、研究电路参数对检波特性的影响。 实验原理: 1、二极管大信号包络检波工作原理 u i t t u 2 u 2u i Ucm m a U cm U 0 U Ωm直流成分U 0 图(1)大信号检波电路图(2)大信号检波原理 图(1)是二极管大信号包络检波电路,图(2)表明了大信号检波的工作原理。输入信号)(t u i 为正并超过C 和L R 上的)(0t u 时,二极管导通,信号通过二极管向C 充电,此时)(0t u 随充电电压上升而升高。当)(t u i 下降且小于)(0t u 时,二极管反向截止,此时停止向C 充电并通过L R 放电,)(0t u 随放电而下降。充电时,二极管的正向电阻D r 较小,

充电较快,)(0t u 以接近)(t u i 上升的速率升高。放电时,因电阻 L R 比D r 大得多(通常k R L 10~5),放电慢,故)(0t u 的波动小,并保证基本上接近于)(t u i 的幅值。如果)(t u i 是高频等幅波,且L R 很大,则)(0t u 几乎是大小为0U 的直流电压,这正是带有滤波电容的半波整流电路。当输入信号)(t u i 的幅度增大或减少时,检波器输出电压)(0t u 也将 随之近似成比例地升高或降低。当输入信号为调幅波时,检波器输出电压)(0t u 就随着 调幅波的包络线而变化,从而获得调制信号,完成检波作用,由于输出电压 )(0t u 的大小与输入电压的峰值接近相等,故把这种检波器称为峰值包络检波器。 2、二极管大信号包络检波器检波失真 检波输出可能产生三种失真:第一种,由于检波二极管伏安特性弯曲引起的非线性失真;第二种是由于滤波电容放电慢引起的惰性失真;第三种是由于输出耦合电容上所充的直流电压引起的负峰切割失真。其中第一种失真主要存在于小信号检波器中,并且是小信号检波器中不可避免的失真,对于大信号检波器这种失真影响不大,主要是后两种失真。 (1) 惰性失真。如图(3)电路所示。 t u u i u 0 图(3)惰性失真原理图 避免惰性失真的条件是 2 )(11L a CR m 上式表明若L CR 放电慢,将促成发生惰性失真。 (2)割底失真。如图(4)所示。

开关式全波相敏检波电路

实验1 开关式全波相敏检波电路 一、实验目的 1.熟悉和掌握相敏检波器的工作原理。 2.验证相敏检波器的检幅特性和鉴相特性。 二、实验设备及参考电路图 1.实验台中部件:相敏检波器、音频振荡器、移相器、直流稳压电源、低通滤波器、电压表(毫伏表) 2.双踪示波器 3.实验参考电路图 三、实验步骤 将音频振荡器的输出信号(00 )接至相敏检波器的输入端(1)。 1.参考信号为直流电压 ⑴将直流稳压电源+2V接入相敏检波器参考信号输入端(4),用双踪示波器测试相敏检波器输入端(1)和输出端(3)的波形。 ⑵将直流稳压电源-2V接入相敏检波器参考信号输入端(4),用双踪示波器测试相敏检波器输入端(1)和输出端(3)的波形。 2.参考信号为交流电压 ⑴将音频信号00接入相敏检波器参考信号输入端(2),用双踪示波器观察(1) ~ (6)端波形。 ⑵将音频信号1800 接入相敏检波器参考信号输入端(2),用双踪示波器观察(1) ~ (6)端波形。 3.相敏检波器检幅特性 将相敏检波器的输出端(3)接低通滤波器的输入端,将低通滤波器的输出端接数字电压表。 ⑴相敏检波器的输入信号(接(1))和参考信号(接(2))同相,改变音频信号的输入幅值Vp-p,分别读出电压表显示的数值填入下表。

⑵相敏检波器的输入信号(接(1))与参考信号(接(2))反相时,改变音频信号的输入幅值Vp-p,分别读出电压表显示的数值填入下表。 4.相敏检波器的鉴相特性 将音频信号接移相器的输入端,移相器电路输出接相敏检波器参考输入端(2),旋转移相器的电位器旋钮,改变参考电压的相位,音频振荡器输出幅值不变,用示波器观察(1) ~ (6)波形,并读出对应的电压表值。 四、实验报告要求 1.画出该相敏检波器的电路图,并说明该电路的工作原理。 2.画出该实验第三步骤和第四步骤的原理框图。 3.分别画出参考电压与相敏检波器的输入信号同相、反相时(1) ~ (6)点的波形图及低通滤波器的输出波形。 4.画出参考电压通过移相器后(差900 时),相敏检波器(1) ~ (6)点及低通滤波器的输出波形。 5. 分别纪录当参考电压与输入信号同相时、反向时,相敏检波器经低通滤波器输出对应输入信号的电压值。 五、思考题 1. 什么是相敏检波? 为什么要采用相敏检波? 2. 什么是相敏检波器的鉴相特性?

包络检波器

《通信电子线路》课程设计说明书 包络检波器 学院电气与信息工程学院 学生姓名:罗春艳 指导教师:伍麟珺职称/学位 专业:通信工程 班级:通信1301 学号:1240340207 完成时间:2016年1月

湖南工学院通信电子线路课程设计课题任务书 学院:电气与信息工程学院专业:通信工程

摘要 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。检波广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 为了生动直观的分析检波电路,利用了最新电子仿真软件Multisim11.0进行二极管包络检波虚拟实验,Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。 关键词:调幅波;包络;检波电路

相敏检波电路工作原理及工作过程

相敏检波电路工作原理及工作过程 相敏检波器有两种:一种由变压器和二极管桥组成,这种电路体积大,稳定性差;另一种则由模拟乘法器构成,性能上得到了很大提高,但价格高,调试麻烦。为此,在研制大气电场仪的过程中,根据大气电场仪探头的结构特点和大气电场测试中对检波器的要求,利用光电开关、四通道模拟开关和运放组合设计一种结构简单,性能稳定的相敏检波器。同时,为了对电场信号的极性进行有效可靠的鉴别,根据相敏检波理论,将通过调整光电开关的设置位置,保证感应电压信号与同步脉冲信号同相,以获得最大整流输出,从而准确辨别被测电场极性。 1、什么是相敏检波电路?相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。 2、为什么要采用相敏检波?包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。第二,包络检波电路本身不具有区分不同载波频率的信号的能力。对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。 3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么?相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。有了参考信号就可以用它来鉴别输入信号的相位和频率。 4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别?将调制信号ux乘以幅值为1的载波信号就可以得到双边带调幅信号us,将双边带调幅信号us再乘以载波信号,经低通滤波后就可以得到调制信号ux。这就是相敏检波电路在结构上与调制电路相似的原因。 二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。这使

相关文档
最新文档