stm32的定时器输入捕获与输出比较讲解

stm32的定时器输入捕获与输出比较讲解
stm32的定时器输入捕获与输出比较讲解

stm32的定时器输入捕获与输出比较

(2015-09-28 09:26:24)

转载▼

分类:stm32

标签:

it

明确一点对比AD的构造,stm32有3个AD,每个AD有很多通道,使用哪个通道就配置成哪个通道,这里定时器也如此,有很多定时器TIMx,每个定时器有很多CHx(通道),可以配置为输入捕捉-------测量频率用,也可以配置为输出比较--------输出PWM使用

输入捕捉:可以用来捕获外部事件,并为其赋予时间标记以说明此事件的发生时刻。

外部事件发生的触发信号由单片机中对应的引脚输入(具体可以参考单片机的datasheet),也可以通过模拟比较器单元来实现。

时间标记可用来计算频率,占空比及信号的其他特征,以及为事件创建日志,主要是用来测量外部信号的频率。

输出比较:定时器中计数寄存器在初始化完后会自动的计数。从bottom计数到top。并且有不同的工作模式。

另外还有个比较寄存器。一旦计数寄存器在从bottom到top计数过程中与比较寄存器匹配则会产生比较中断(比较中断使能的情况下)。

然后根据不同的工作模式计数寄存器将清零或者计数到top值。

1、朋友,可以解释一下输入捕获的工作原理不?

计数寄存器的初值,是自己写进去的吗?

我如果捕获上升沿,两个值相减,代表的时两个上升沿中间那段电平的时间。对不?

timer1有五个通道(对应五个IO引脚),在同一时刻,只能捕获一个引脚的值,对不?

那输出比较的原理你可以帮我介绍一下不?

比较单元的值是人为设进去的吧?

上面这个总看不懂,好像不不止你说的那几种情况:“匹配了是io电平取反、变低、还是变高,就会产生不同的波形了”

设置输出就是置1,清除输出就是置0,切换输出就是将原来的电平取反,对不?

011:计数器向上计数达到最大值时将引脚置1,达到0时,引脚电平置0,,对不?

定时器1的输出比较模式怎么用。利用这个功能输出一个1KHZ,占空比为10%的程序怎么写啊?求高人指点

调试STM32的定时器好几天了,也算是对STM32的定时器有了点清楚的认识了。我需要测量4路信号的频率然后通过DMA将信号的频率传输到存储器区域,手册说的很明白每个定时器有4个独立通道。然后我就想能不能将这4路信号都连接到一个定时器的4个通道上去。理论上应该是行的通的。刚开始俺使用的是TIM2的123通道,TIM4的2通道来进行频率的测量。由于没有频率发生器,所以我用tim3作为信号源,用TIM2,TIM4来进行测量就ok了(刚好4个通道了)。

请看一开始的程序,以TIM2的1,3通道为例子(2通道设置方法一样):

TIM_ICInitStructure.TIM_ICMode =TIM_ICMode_ICAP; //配置为输入捕获模式

TIM_ICInitStructure.TIM_Channel =TIM_Channel_1; //选择通道1

TIM_ICInitStructure.TIM_ICPolarity =TIM_ICPolarity_Rising; //输入上升沿捕获

TIM_ICInitStructure.TIM_ICSelection =TIM_ICSelection_DirectTI; //通道方向选择

TIM_ICInitStructure.TIM_ICPrescaler =TIM_ICPSC_DIV1; //每次检测到捕获输入就触发一次捕获

TIM_ICInitStructure.TIM_ICFilter =0x0; //滤波

TIM_ICInit(TIM2, &TIM_ICInitStructure); //TIM2通道1配置完毕

TIM_ICInitStructure.TIM_ICMode = TIM_ICMode_ICAP; //配置为输入捕获模式

TIM_ICInitStructure.TIM_Channel =TIM_Channel_3; //选择通道3

TIM_ICInitStructure.TIM_ICPolarity =TIM_ICPolarity_Rising; //输入上升沿捕获

TIM_ICInitStructure.TIM_ICSelection =TIM_ICSelection_DirectTI; //

TIM_ICInitStructure.TIM_ICPrescaler =TIM_ICPSC_DIV1; //每次检测到捕获输入就触发一次捕获

TIM_ICInitStructure.TIM_ICFilter = 0x0; //滤波

TIM_ICInit(TIM2, &TIM_ICInitStructure); //TIM2通道3配置完毕

以上是输入捕获配置

还需要做的工作就是(参考stm32参考手册的TIM的结构框图):

TIM_SelectInputTrigger(TIM2,TIM_TS_TI1FP1); //参考TIM结构图选择滤波后的TI1输入作为触发源,触发下面程序的复位

TIM_SelectSlaveMode(TIM2,TIM_SlaveMode_Reset); //复位模式-选中的触发输入(TRGI)的上升沿初始化计数器,并且产生一个更新线号

TIM_SelectMasterSlaveMode(TIM2,TIM_MasterSlaveMode_Enable);

//主从模式选择

这样我们就可以很轻松的就得到了连接在TIM2的通道1上的信号的频率,但是3通道的频率的值永远都是跳动的不准,测试了半天也没有找到根本原因,请看TIM的结构框图的一部分

红色箭头所指,这才找到原因,触发的信号源只有这四种,而通道3上的计数器的值不可能在接受到信号的上升沿时候,有复位这个动作,找到原因了。这就是3 通道上的数据不停跳动的原因,要想得到信号的频率也是有办法的,可以取连续两次捕捉的值之差,这个值就是信号的周期,自己根据实际情况去算频率吧。

有以上可以得到:

stm32的TIM2的四个通道可以同时配置成输入捕捉模式,但是计算CH3,CH4信号的频率步骤有点繁琐(取前后捕捉的差值),但是他的CH1,和CH2可以轻松得到:通道1

TIM_SelectInputTrigger(TIM2,TIM_TS_TI1FP1); //参考TIM结构图选择滤波后的TI1输入作为触发源,触发下面程序的复位

TIM_SelectSlaveMode(TIM2,TIM_SlaveMode_Reset); //复位模式-选中的触发输入(TRGI)的上升沿初始化计数器,并且产生一个更新线号

TIMx->CRR1的值即为信号的周期

通道2:

TIM_SelectInputTrigger(TIM2,TIM_TS_TI2FP2); //参考TIM结构图选择滤波后的TI1输入作为触发源,触发下面程序的复位

TIM_SelectSlaveMode(TIM2,TIM_SlaveMode_Reset); //复位模式-选中的触发输入(TRGI)的上升沿初始化计数器,并且产生一个更新线号

TIMx->CRR2的值即为信号的周期

STM32的定时器外设功能强大得超出了想像力,STM32一共有8个都为16位的定时器。其中TIM6、TIM7是基本定时器;TIM2、TIM3、TIM4、TIM5是通用定时器;TIM1和TIM8是高级定时器。这些定时器使STM32具有定时、信号的频率测量、信号的PWM测量、PWM输出、三相6步电机控制及编码器接口等功能,都是专门为工控领域量身订做的。

基本定时器:具备最基本的定时功能,下面是它的结构:

我们来看看它的启动代码:

void TIM2_Configuration(void)

{ 基本定时器TIM2的定时配置的结构体(包含定时器配置的所有元素例如:TIM_Period= 计数值)

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

设置TIM2_CLK为72MHZ(即TIM2外设挂在APB1上,把它的时钟打开。)

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 ,ENABLE);

设置计数值位1000

TIM_TimeBaseStructure.TIM_Period=1000;

将TIM2_CLK为72MHZ除以72 = 1MHZ为定时器的计数频率

TIM_TimeBaseStructure.TIM_Prescaler= 71;

这个TIM_ClockDivision是设置时钟分割,这里不分割还是1MHZ的计数频率

TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;

设置为向上计数模式;(计数模式有向上,向下,中央对齐1,中央对齐2,中央对齐3) TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up;

将配置好的设置放进stm32f10x-tim.c的库文件中

TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure);

清除标志位

TIM_ClearFlag(TIM2,TIM_FLAG_Update);

使能TIM2中断

TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);

使能TIM2外设

TIM_Cmd(TIM2,ENABLE);

}

通用定时器:就比基本定时器复杂得多了。除了基本的定时,它主要用在测量输入脉冲的频率、脉冲宽与输出PWM脉冲的场合,还具有编码器的接口。

我们来详细讲解:如何生成PWM脉冲

通用定时器可以利用GPIO引脚进行脉冲输出,在配置为比较输出、PWM输出功能时,捕获/比较寄存器TIMx_CCR被用作比较功能,下面把它简称为比较寄存器。

这里直接举例说明定时器的PWM输出工作过程:若配置脉冲计数器TIMx_CNT 为向上计数,而重载寄存器TIMx_ARR(相当于库函数写法的TIM_Period的值N)被配置为N,即TIMx_CNT的当前计数值数值X在TIMxCLK时钟源的驱动下不断累加,当TIMx_CNT的数值X大于N时,会重置TIMx_CNT数值为0重新计数。

而在TIMxCNT计数的同时,TIMxCNT的计数值X会与比较寄存器TIMx_CCR

预先存储了的数值A进行比较,当脉冲计数器TIMx_CNT的数值X小于比较寄存器TIMx_CCR的值A时,输出高电平(或低电平),相反地,当脉冲计数器的数值X大于或等于比较寄存器的值A时,输出低电平(或高电平)。

如此循环,得到的输出脉冲周期就为重载寄存器TIMx_ARR存储的数值(N+1)乘以触发脉冲的时钟周期,其脉冲宽度则为比较寄存器TIMx_CCR的值A乘以触发脉冲的时钟周期,即输出PWM的占空比为A/(N+1)。

如果不想看的可以直接看我标注的红色字体,就大体可以理解。

下面我们来编写具体代码和讲解:

void TIM3_GPIO_Config(void)

{配置TIM3复用输出PWM的IO

GPIO_InitTypeDefGPIO_InitStructure;

打开TIM3的时钟

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);

打开GPIOA和GPIOB的时钟

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA| RCC_APB2Periph_GPIOB, ENABLE);

配置PA6.PA7的工作模式

GPIO_InitStructure.GPIO_Pin= GPIO_Pin_6 |GPIO_Pin_7;

GPIO_InitStructure.GPIO_Mode =GPIO_Mode_AF_PP;

GPIO_InitStructure.GPIO_Speed =GPIO_Speed_50MHz;

GPIO_Init(GPIOA,&GPIO_InitStructure);

配置PB0.PB1的工作模式

GPIO_InitStructure.GPIO_Pin= GPIO_Pin_0 |GPIO_Pin_1;

GPIO_Init(GPIOB,&GPIO_InitStructure);

}

void TIM3_Mode_Config(void)

{

TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;//初始化TIM3的时间基数单位

TIM_OCInitTypeDef TIM_OCInitStructure;//初始化TIM3的外设

u16 CCR1_Val= 500;

u16 CCR2_Val= 375;

u16 CCR3_Val= 250;

u16 CCR4_Val= 125;//PWM信号电平跳变值(即计数到这个数值以后都是低电平之前都是高电平)

TIM3的时间基数单位设置(如计数终止值:999,从0开始;计数方式:向上计数)

TIM_TimeBaseStructure.TIM_Period= 999;

TIM_TimeBaseStructure.TIM_Prescaler= 0;

TIM_TimeBaseStructure.TIM_ClockDivision= TIM_CKD_DIV1 ;

TIM_TimeBaseStructure.TIM_CounterMode= TIM_CounterMode_Up;

TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure);

TIM3的外设的设置

TIM_OCInitStructure.TIM_OCMode= TIM_OCMode_PWM1; //TIM脉冲宽度调制模式1

TIM_OCInitStructure.TIM_OutputState= TIM_OutputState_Enable;//这个暂时不知道,stm32固件库里没有搜到。应该是定时器输出声明使能的意思

TIM_OCInitStructure.TIM_Pulse =CCR1_Val;//设置了待装入捕获比较寄存器的脉冲

TIM_OCInitStructure.TIM_OCPolarity= TIM_OCPolarity_High; //TIM输出比较极性高 TIM_OC1Init(TIM3,&TIM_OCInitStructure);

TIM_OC1PreloadConfig(TIM3,TIM_OCPreload_Enable);//使能或者失能TIMx在CCR1上的预装载寄存器

下面3路PWM输出和上面的一样不再解说

TIM_OCInitStructure.TIM_OutputState= TIM_OutputState_Enable;

TIM_OCInitStructure.TIM_Pulse =CCR2_Val;

TIM_OC2Init(TIM3,&TIM_OCInitStructure);

TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Enable);

TIM_OCInitStructure.TIM_OutputState= TIM_OutputState_Enable;

TIM_OCInitStructure.TIM_Pulse =CCR3_Val;

TIM_OC3Init(TIM3,&TIM_OCInitStructure);

TIM_OC3PreloadConfig(TIM3,TIM_OCPreload_Enable);

TIM_OCInitStructure.TIM_OutputState= TIM_OutputState_Enable;

TIM_OCInitStructure.TIM_Pulse =CCR4_Val;

TIM_OC4Init(TIM3,&TIM_OCInitStructure);

TIM_OC4PreloadConfig(TIM3,TIM_OCPreload_Enable);

TIM_ARRPreloadConfig(TIM3,ENABLE); //使能TIM3重载寄存器ARR

TIM_Cmd(TIM3,ENABLE);//使能TIM3

}

太累了边看边写都这个点了2014年7月27日0:24:13在自己床上写的。下面是看看我们程序达到的4路PWM的效果:

可以看到明显占空比不同的4路pwm波。

这一节终于讲完,个人觉得敲一遍代码学起来还是蛮容易懂的。希望看到的人也能搞懂。最后补充一点pwm具体能干什么?特别是对广大电子DIY爱好者的应用:智能小车的电机控制:我们可以利用pwm来控制我们的智能小车的车速;机器人:给“机器人关节”舵机周期一定(我以前玩过具体多少毫秒忘记了)pwm波就可以控制舵机的转动角度了;

呼吸灯:输入不同的pwm波就可以达到明暗渐明渐暗的

05_STM32F4通用定时器详细讲解精编版

STM32F4系列共有14个定时器,功能很强大。14个定时器分别为: 2个高级定时器:Timer1和Timer8 10个通用定时器:Timer2~timer5 和 timer9~timer14 2个基本定时器: timer6和timer7 本篇欲以通用定时器timer3为例,详细介绍定时器的各个方面,并对其PWM 功能做彻底的探讨。 Timer3是一个16位的定时器,有四个独立通道,分别对应着PA6 PA7 PB0 PB1 主要功能是:1输入捕获——测量脉冲长度。 2 输出波形——PWM 输出和单脉冲输出。 Timer3有4个时钟源: 1:内部时钟(CK_INT ),来自RCC 的TIMxCLK 2:外部时钟模式1:外部输入TI1FP1与TI2FP2 3:外部时钟模式2:外部触发输入TIMx_ETR ,仅适用于TIM2、TIM3、TIM4,TIM3,对应 着PD2引脚 4:内部触发输入:一个定时器触发另一个定时器。 时钟源可以通过TIMx_SMCR 相关位进行设置。这里我们使用内部时钟。 定时器挂在高速外设时钟APB1或低速外设时钟APB2上,时钟不超过内部高速时钟HCLK ,故当APBx_Prescaler 不为1时,定时器时钟为其2倍,当为1时,为了不超过HCLK ,定时器时钟等于HCLK 。 例如:我们一般配置系统时钟SYSCLK 为168MHz ,内部高速时钟 AHB=168Mhz ,APB1欲分频为4,(因为APB1最高时钟为42Mhz ),那么挂在APB1总线上的timer3时钟为84Mhz 。 《STM32F4xx 中文参考手册》的424~443页列出与通用定时器相关的寄存器一共20个, 以下列出与Timer3相关的寄存器及重要寄存器的简单介绍。 1 TIM3 控制寄存器 1 (TIM3_CR1) SYSCLK(最高 AHB_Prescaler APBx_Prescaler

STM32高级定时器死区时间设置探究

STM32高级定时器死区时间设置探究 一、死区设置位置: 决定死区时间设置的位是‘刹车和死区寄存器TIM1->BDTR’中的DTG[7:0],设置范围是0x00~0xff。 二、死区时间设置公式如下: DT为死区持续时间,TDTS为系统时钟周期时长,Tdtg为系统时钟周期时长乘以倍数后的死区设置时间步进值。 在72M的定时器时钟下TDTS=1/72M=13.89ns. 所以以第一个公式,死区时间能以13.89ns的步进从0调整到127*13.89ns=1764ns 第二个公式则能(64+0)*2*13.89~(64+63)*2*13.89=1777.9ns~3528.88ns 换个角度看,就是(128~254)*13.89

同理,第三个公式就是3555.84ns~7000.56ns 换个角度看,就是(256~504)*13.89 第四个公式就是7111.68ns~14001.12ns 换个角度看,就是(512~1008)*13.89 综上: 死区时间就是不同的公式代表不同范围的死区时间设置,这个范围是互不重叠的。而但是在不同的死区时间范围内死区时间设置步进是不同的。 若某个系统时钟下的死区时间不够,可以通过改变定时器时钟来改变最大死区时间范围。 当根据硬件电路的特性定下死区时间后,可以根据目标死区时间范围来找到相应的公式,然后代入公式求解出相应的整数(有时候不一定是整数,那就选择最近的那个),拼接DTG[7:5]+DTG[4:0]即可。 例子:这样当我需要3us的死区持续时间时,则可这么计算: 3us在第二个公式决定的死区范围之内。所以选择第二个公式。 3000/(13.89*2)=108,所以DTG[5:0]=108-64=44,所以DTG=127+44=171=0Xab TIM1->BDTR|=0xab; 反过来验算//72Mhz,死区时间=13.89nsX108*2=3000us 经示波器验证,完全正确。 By zxx2013.07.18

推荐-stm32中定时器产生不同PWM的基本思路 精品

在stm32中利用定时器TIM调制PWM的几种方法: 说说我的学习经历:从开始接触到现在有好几个月了,但是学习还是比较的费劲,而且速度也比较的缓慢,当然相比之前还是有很大的进步,记得刚刚学习的时候,建工程都是大四学长手把手教的。废话不多说先来讲讲定时器的配置: STM32F10系列最少3个、做多有8个定时器,都是16位定时器,且相互之间是独立的,计数范围为0x0000-0xffff,最大计数值为65535.可以用于测量输入信号的脉冲长度或者产生输出波形(输出比较和PWM)分为通用定时器,高级定时器,以及看门狗定时器 下面主要讲通用定时器的配置问题: 以定时器TIM1为例:先进行函数的配置 void timer1_config() { TIM_TimeBaseInitTypDef TIM_TimeBaseStructure; //开定时器1外设时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM1,ENABLE); //计时50000次时间为50000/10M=500ms TIM_TimeBaseStructure.TIM_Period=50000 ; TIM_TimeBaseStructure.TIM_Prescaler = 720-1;//720分频 TIM_TimeBaseStructure.TIM_ClockDivision =0;//时钟分割为0; //计数模式向上计数 TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure)//初始化TIM1 TIM_ITConfig(TIM1,TIM_IT_Update,ENABLE);//开启定时器中断 TIM_Cmd(TIM1,ENABLE); //使能定时器 } 关于时间的计算问题: 外设系统时钟的频率为72M,进行720分频以后,频率f=72M/720=100khz. 如果要定时0.1s 则计数值为10000,计算公式为:时间(t)=计数值(n)/频率(f).注意计数值n介于0到65535之间 有定时器则一定会有中断发生,所以要配置中断优先级,对于中断优先 级函数配置如下: V oid nvic_config() { NVIC_InitTypDef NVIC_InitStructure; //抢占优先级为1位,从优先级为3位 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1) ; NVIC_InitStructure.NVIC_IRQChannel=TIM1_IRQn; //定义定时器1为请求通道 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0; //抢占式优先级为0 NVIC_InitStructure.NVIC_IRQChannelSubPriority=2; //从优先级为2 NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断优先级 NVIC_Init(&NVIC_InitStructure); //初始化中断 } 对于优先级中的抢占式和从优先级做如下解释: 抢占式优先级:是可以抢占的中断,比如正在执行的优先级为10的中断,突然来了一个优

STM32输入捕获简介

STM32输入捕获简介 输入捕获模式可以用来测量脉冲宽度或者测量频率。STM32的定时器,除了TIM6和TIM7,其他定时器都有输入捕获功能。STM32的输入捕获,简单的说就是通过检测TIMx_CHx上的边沿信号,在边沿信号发生跳变(比如上升沿/下降沿)的时候,将当前定时器的值(TIMx_CNT)存放到对应的通道的捕获/比较寄存(TIMx_CCRx)里面,完成一次捕获。同时还可以配置捕获时是否触发中断/DMA 等. 例如:我们用到TIM5_CH1来捕获高电平脉宽,也就是要先设置输入捕获为上升沿检测,记录发生上升沿的时候TIM5_CNT的值。然后配置捕获信号为下降沿捕获,当下降沿到来时,发生捕获,并记录此时的TIM5_CNT值。这样,前后两次TIM5_CNT之差,就是高电平的脉宽,同时TIM5的计数频率我们是知道的,从而可以计算出高电平脉宽的准确时间。 首先TIMx_ARR和TIMx_PSC,这两个寄存器用来设自动重装载值和TIMx的时钟分频。 再来看看捕获/比较模式寄存器1:TIMx_CCMR1,这个寄存器在输入捕获的时候,非常有用;TIMx_CCMR1明显是针对2个通道的配置,低八位[7:0]用于捕获/比较通道1的控制,而高八位[15:8]则用于捕获/比较通道2的控制,因为TIMx还有CCMR2这个寄存器,所以可以知道CCMR2是用来控制通道3和通道4(详见《STM32参考手册》290页,14.4.8节)。 这里用到TIM5的捕获/比较通道1,我们重点介绍TIMx_CMMR1的[7:0]位(其实高8位配置类似)。 再来看看捕获/比较使能寄存器:TIMx_CCER; 接下来我们再看看DMA/中断使能寄存器:TIMx_DIER,我们需要用到中断来处理捕获数据,所以必须开启通道1的捕获比较中断,即CC1IE设置为1。 控制寄存器:TIMx_CR1,我们只用到了它的最低位,也就是用来使能定时器的; 最后再来看看捕获/比较寄存器1:TIMx_CCR1,该寄存器用来存储捕获发生时,TIMx_CNT的值,我们从TIMx_CCR1就可以读出通道1捕获发生时刻的TIMx_CNT值,通过两次捕获(一次上升沿捕获,一次下降沿捕获)的差值,就可以计算出高电平脉冲的宽度。 使能捕获和更新中断(设置TIM5的DIER寄存器) 因为我们要捕获的是高电平信号的脉宽,所以,第一次捕获是上升沿,第二次捕获时下降沿,必须在捕获上升沿之后,设置捕获边沿为下降沿,同时,如果脉宽比较长,那么定时器就会溢出,对溢出必须做处理,否则结果就不准了。这两件事,我们都在中断里面做,所以必须开启捕获中断和更新中断。 1void init_tim2_cam(u16 psc, u16 arr, u8 way, u8 dir) 2 { 3 RCC->APB1ENR |= 1<<0; //使能定时器2时钟 4 RCC->APB2ENR |= 1<<2; //使能PortA 5 6switch (way) 7 { 8case1: 9 GPIOA->CRL &= 0xfffffff0; 10 GPIOA->CRL |= 0x00000008; 11break; 12case2:

stm32的定时器输入捕获与输出比较

stm32的定时器输入捕获与输出比较 (2015-09-28 09:26:24) 转载▼ 分类:stm32 标签: it 明确一点对比AD的构造,stm32有3个AD,每个AD有很多通道,使用哪个通道就配置成哪个通道,这里定时器也如此,有很多定时器TIMx,每个定时器有很多CHx(通道),可以配置为输入捕捉-------测量频率用,也可以配置为输出比较--------输出PWM使用 输入捕捉:可以用来捕获外部事件,并为其赋予时间标记以说明此事件的发生时刻。 外部事件发生的触发信号由单片机中对应的引脚输入(具体可以参考单片机的datasheet),也可以通过模拟比较器单元来实现。 时间标记可用来计算频率,占空比及信号的其他特征,以及为事件创建日志,主要是用来测量外部信号的频率。 输出比较:定时器中计数寄存器在初始化完后会自动的计数。从bottom计数到top。并且有不同的工作模式。 另外还有个比较寄存器。一旦计数寄存器在从bottom到top计数过程中与比较寄存器匹配则会产生比较中断(比较中断使能的情况下)。 然后根据不同的工作模式计数寄存器将清零或者计数到top值。

1、朋友,可以解释一下输入捕获的工作原理不? 计数寄存器的初值,是自己写进去的吗? 我如果捕获上升沿,两个值相减,代表的时两个上升沿中间那段电平的时间。对不? timer1有五个通道(对应五个IO引脚),在同一时刻,只能捕获一个引脚的值,对不? 那输出比较的原理你可以帮我介绍一下不?

比较单元的值是人为设进去的吧? 上面这个总看不懂,好像不不止你说的那几种情况:“匹配了是io电平取反、变低、还是变高,就会产生不同的波形了” 设置输出就是置1,清除输出就是置0,切换输出就是将原来的电平取反,对不? 011:计数器向上计数达到最大值时将引脚置1,达到0时,引脚电平置0,,对不?

STM32高级定时器日记之PWM

STM32高级定时器PWM实用程序 文章来源:本站原创作者:佚名 该文章讲述了STM32高级定时器PWM实用程序. 高级定时器与通用定时器比较类似,下面是一个TIM1 的PWM 程序,TIM1是STM32唯一的高级定时器。共有4个通道有死区有互补。 先是配置IO脚: GPIO_InitTypeDef GPIO_InitStructure; /* PA8设置为功能脚(PWM) */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); /*PB13 设置为PWM的反极性输出*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOB, &GPIO_InitStructure); /*开时钟PWM的与GPIO的*/ RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); /*配置TIM1*/ TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; void Tim1_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; TIM_DeInit(TIM1); //重设为缺省值 /*TIM1时钟配置*/ TIM_TimeBaseStructure.TIM_Prescaler = 4000; //预分频(时钟分 频)72M/4000=18K TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数TIM_TimeBaseStructure.TIM_Period = 144; //装载值18k/144=125hz 就是说向上加的144便满了 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置了时钟分割不

详解STM32定时器

1.STM32的Timer简介 STM32中一共有11个定时器,其中2个高级控制定时器,4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。其中系统嘀嗒定时器是前文中所描述的SysTick,看门狗定时器以后再详细研究。今天主要是研究剩下的8个定时器。 其中TIM1和TIM8是能够产生3对PWM互补输出的高级登时其,常用于三相电机的驱动,时钟由APB2的输出产生。TIM2-TIM5是普通定时器,TIM6和TIM7是基本定时器,其时钟由APB1输出产生。由于STM32的TIMER功能太复杂了,所以只能一点一点的学习。因此今天就从最简单的开始学习起,也就是TIM2-TIM5普通定时器的定时功能。 2.普通定时器TIM2-TIM5 2.1时钟来源 计数器时钟可以由下列时钟源提供: ·内部时钟(CK_INT) ·外部时钟模式1:外部输入脚(TIx) ·外部时钟模式2:外部触发输入(ETR) ·内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器,如可以配置一个定时器Timer1而作为另一个定时器Timer2的预分频器。 由于今天的学习是最基本的定时功能,所以采用内部时钟。TIM2-TIM5的时钟不是直接来自于APB1,而是来自于输入为APB1的一个倍频器。这个倍频器的作用是:当APB1的预分频系数为1时,这个倍频器不起作用,定时器的时钟频率等于APB1的频率;当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作用,定时器的时钟频率等于APB1的频率的2倍。APB1的分频在STM32_SYSTICK的学习笔记中有详细描述。通过倍频器给定时器时钟的好处是:APB1不但要给TIM2-TIM5提供时钟,还要为其他的外设提供时钟;设置这个倍频器可以保证在其他外设使用较低时钟频率时,TIM2-TIM5仍然可以得到较高的时钟频率。 2.2计数器模式

stm32高级定时器使用教程

STM32 高级定时器-PWM简单使用 2010-04-14 14:49:29| 分类:STM32 | 标签:|举报|字号大中小订阅高级定时器与通用定时器比较类似,下面是一个TIM1 的PWM 程序,TIM1是STM32唯一的高级定时器。共有4个通道有死区有互补。 先是配置IO脚: GPIO_InitTypeDef GPIO_InitStructure; /* PA8设置为功能脚(PWM) */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); /*PB13 设置为PWM的反极性输出*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); /*开时钟PWM的与GPIO的*/ RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); /*配置TIM1*/ TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure;

STM32通用定时器_15-1-6

通用定时器的相关配置 1、预装入(Preload) 预装入实际上是设置TIMx_ARR寄存器有没有缓冲,根据“The auto-reload register is preloaded。Writing to or reading from the auto-reload register accesses the preload register。”可知: 1)如果预装入允许,则对自动重装寄存器的读写是对预装入寄存器的存取,自动重装寄存器的值在更新事件后更新; 2)如果预装入不允许,则对自动重装寄存器的读写是直接修改其本身,自动重装寄存器的值立刻更新; 3)设置方式:TIMx_CR1 →ARPE(1) 2、更新事件(UEV) 1)产生条件:①定时器溢出 ②TIMx_CR1→ UDIS = 0 ③或者:软件产生,TIMx_EGR→ UG = 1 2)更新事件产生后,所有寄存器都被“清零”,注意预分频器计数 器也被清零(但是预分频系数不变)。若在中心对称模式下或DIR=0(向上计数)则计数器被清零;若DIR=1(向下计数)则计数器取TIMx_ARR的值。 3)注意URS(复位为0)位的选择,如下:

如果是软件产生更新,则URS→1,这样就不会产生更新请求 和DMA请求。 4)更新标志位(UIF)根据URS的选择置位。 5)可以通过软件来失能更新事件: 3、计数器(Counter) 计数器由预分频器的输出时钟(CK_CNT)驱动,TIMx_CR1→CEN = 1 使能,注意:真正的计数使能信号(CNT_EN)在 CEN 置位后一个周期开始有效。 4、预分频器(Prescaler) 预分频器用来对时钟进行分频,分频值由TIMx_PSC决定,计数器的时钟频率CK_CNT= fCK_PSC / (PSC[15:0] + 1)。 根据“It can be changed on the fly as this control register

STM32的PWM精讲

STM32的PWM精讲 通过对TM1定时器进行控制,使之各通道输出插入死区的互补PWM输出,各通道输出频率均为17.57KHz。其中,通道1输出的占空比为50%,通道2输出的占空比为25%,通道3输出的占空比为12.5%。各通道互补输出为反相输出。 TM1定时器的通道1到4的输出分别对应PA.08、PA.09、PA.10和PA.11 引脚,而通道1到3的互补输出分别对应PB.13、PB.14和PB.15引脚,中止输入引脚为PB.12。将这些引脚分别接入示波器,在示波器上观查相应通道占空比的方波[12]。 配置好各通道后,编译运行工程;点击MDK的Debug菜单,点击Start/Stop Debug Session;通过示波器察看 PA.08、PA.09、PA.10、PB.13、PB.14、PB.15 的输出波形,其中PA.08和PB.13为第一通道和互补通道,PB.09和PB.14为第二通道和其互补通道,PB.10和PB.15为第三通道和其互补通道;第一通道显示占空比为50%,第二通道占空比为25%,第三通道占空比为12.5%。 第2章STM32处理器概述 STM32F103xx增强型系列产品中内置了多达3个同步的标准定时器。每个定时器都有一个16位的自动加载递加/递减计数器、一个16位的预分频器和4个独立的通道,每个通道都可用于输入捕获、输出比较、PWM和单脉冲模式输出,在最大的封装配置中可提供最多12个输入捕获、输出比较或PWM通道。它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。 在调试模式下,计数器可以被冻结。任一个标准定时器都能用于产生PWM 输出。每个定时器都有独立的DMA请求机制。 2.4.2 高级控制定时器[22] 高级控制定时器(TM1)由一个16位的自动装载计数器组成,它由一个可编程预分频器驱动。它适合多种用途,包含测量输入信号的脉冲宽度(输入捕获),或者产生输出波形(输出比较,PWM,嵌入死区时间的互补PWM等)。 使用定时器预分频器和RCC时钟控制预分频器,可以实现脉冲宽度和波形周期从几个微秒至几个毫秒的调节。高级控制(TIM1)和通用(TMx)定时器是完全

stm32定时器的区别

STM32高级定时器、通用定时器(TIMx) 、基本定时器(TIM6和TIM7) 区别? 高级定时器TIM1和TIM8、通用定时器(TIM2,TIM3,TIM4,TIM5) 、基本定时器(TIM6和TIM7) 区别? TIM1和TIM8主要特性TIM1和TIM8定时器的功能包括: ● 16位向上、向下、向上/下自动装载计数器 ● 16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65535之间的任意数值 ● 多达4个独立通道:─ 输入捕获─ 输出比较─ PWM生成(边缘或中间对齐模式) ─ 单脉冲模式输出 ● 死区时间可编程的互补输出 ● 使用外部信号控制定时器和定时器互联的同步电路 ● 允许在指定数目的计数器周期之后更新定时器寄存器的重复计数器 ● 刹车输入信号可以将定时器输出信号置于复位状态或者一个已知状态 ● 如下事件发生时产生中断/DMA:─ 更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ─ 触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ─ 输入捕获─ 输出比较─ 刹车信号输入 ● 支持针对定位的增量(正交)编码器和霍尔传感器电路 ● 触发输入作为外部时钟或者按周期的电流管理 TIMx主要功能通用TIMx (TIM2、TIM3、TIM4和TIM5)定时器功能包括: ● 16位向上、向下、向上/向下自动装载计数器 ● 16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65536之间的任意数值 ● 4个独立通道:─ 输入捕获─ 输出比较─ PWM生成(边缘或中间对齐模式) ─ 单脉冲模式输出 ● 使用外部信号控制定时器和定时器互连的同步电路 ● 如下事件发生时产生中断/DMA:─ 更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ─ 触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ─ 输入捕获─ 输出比较 ● 支持针对定位的增量(正交)编码器和霍尔传感器电路 ● 触发输入作为外部时钟或者按周期的电流管理 TIM6和TIM7的主要特性TIM6和TIM7定时器的主要功能包括: ● 16位自动重装载累加计数器 ● 16位可编程(可实时修改)预分频器,用于对输入的时钟按系数为1~65536之间的任意数值分频 ● 触发DAC的同步电路注:此项是TIM6/7独有功能. ● 在更新事件(计数器溢出)时产生中断/DMA请求 强大,高级定时器应该是用于电机控制方面的吧

STM32通用定时器

STM32通用定时器 一、定时器的基础知识 三种STM32定时器区别 通用定时器功能特点描述: STM3 的通用 TIMx (TIM2、TIM3、TIM4 和 TIM5)定时器功能特点包括: 位于低速的APB1总线上(APB1) 16 位向上、向下、向上/向下(中心对齐)计数模式,自动装载计数器(TIMx_CNT)。 16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数 为 1~65535 之间的任意数值。 4 个独立通道(TIMx_CH1~4),这些通道可以用来作为: ①输入捕获 ②输出比较 ③ PWM 生成(边缘或中间对齐模式) ④单脉冲模式输出 可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用 1 个定时器控制另外一个定时器)的同步电路。 如下事件发生时产生中断/DMA(6个独立的IRQ/DMA请求生成器): ①更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ②触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ③输入捕获 ④输出比较 ⑤支持针对定位的增量(正交)编码器和霍尔传感器电路 ⑥触发输入作为外部时钟或者按周期的电流管理 STM32 的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和 PWM)等。 使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。 STM32 的每个通用定时器都是完全独立的,没有互相共享的任何资源。 定时器框图:

倍频得到),外部时钟引脚,可以通过查看数据手册。也可以是TIMx_CHn,此时主要是实现捕获功能; 框图中间的时基单元 框图下面左右两部分分别是捕获输入模式和比较输出模式的框图,两者用的是同一引脚,不能同时使用。

STM32学习笔记通用定时器PWM输出

STM32学习笔记(5):通用定时器PWM输出 2011年3月30日TIMER输出PWM 1.TIMER输出PWM基本概念 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。简单一点,就是对脉冲宽度的控制。一般用来控制步进电机的速度等等。 STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出。 1.1PWM输出模式 STM32的PWM输出有两种模式,模式1和模式2,由TIMx_CCMRx寄存器中的OCxM位确定的(“110”为模式1,“111”为模式2)。模式1和模式2的区别如下: 110:PWM模式1-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。 111:PWM模式2-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为有效电平,否则为无效电平。 由此看来,模式1和模式2正好互补,互为相反,所以在运用起来差别也并不太大。 而从计数模式上来看,PWM也和TIMx在作定时器时一样,也有向上计数模式、向下计数模式和中心对齐模式,关于3种模式的具体资料,可以查看《STM32参考手册》的“14.3.9 PWM模式”一节,在此就不详细赘述了。 1.2PWM输出管脚 PWM的输出管脚是确定好的,具体的引脚功能可以查看《STM32参考手册》的“8.3.7 定时器复用功能重映射”一节。在此需要强调的是,不同的TIMx有分配不同的引脚,但是考虑到管脚复用功能,STM32提出了一个重映像的概念,就是说通过设置某一些相关的寄存器,来使得在其他非原始指定的管脚上也能输出PWM。但是这些重映像的管脚也是由参考手册给出的。比如

STM32定时时间的计算

STM32 定时器定时时间的计算 假设系统时钟是72Mhz,TIM1 是由PCLK2 (72MHz)得到,TIM2-7是由 PCLK1 得到关键是设定时钟预分频数,自动重装载寄存器周期的值/*每1秒发生一次更新事件(进入中断服务程序)。RCC_Configuration()的SystemInit()的 RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2表明TIM3CLK为72MHz。因此,每次进入中断服务程序间隔时间为: ((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+7199)/72M)*(1+9999)=1秒。定时器的基本设置如下: 1、TIM_TimeBaseStructure.TIM_Prescaler = 7199;//时钟预分频数例如:时钟频率=72/(时钟预分频+1)。 2、TIM_TimeBaseStructure.TIM_Period = 9999; // 自动重装载寄存器周期的值(定时时间)累计 0xFFFF个频率后产生个更新或者中断(也是说定时时间到)。 3、TIM_TimeBaseStructure.TIM_CounterMode=TIM1_CounterMode_Up; //定时器模式向上计数。 4、 TIM_TimeBaseStructure.TIM_ClockDivision = 0x0; //时间分割值。 5、 TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);//初始化定时器2。 6、 TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); //打开中断溢出中断。 7、 TIM_Cmd(TIM2, ENABLE);//打开定时器或者: TIM_TimeBaseStructure.TIM_Prescaler = 35999;//分频35999,72M/ (35999+1)/2=1Hz 1秒中断溢出一次。 8、 TIM_TimeBaseStructure.TIM_Period = 2000; //计数值2000 ((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+35999)/72M)*(1+2000)=1秒。 9、注意使用不同定时器时,要注意对应的时钟频率。例如TIM2对应的是APB1,而TIM1对应的是APB2 通用定时器实现简单定时功能 以TIME3为例作为说明,简单定时器的配置如下: void TIM3_Config(void) { TIM_TimeBaseInitTypeDefTIM_TimeBaseStructure; TIM_DeInit(TIM3); //复位TIM2定时器 /* TIM2 clock enable [TIM2定时器允许]*/ RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); /* TIM2 configuration */ TIM_TimeBaseStructure.TIM_Period = 49; // 0.05s定时 TIM_TimeBaseStructure.TIM_Prescaler = 35999; // 分频36000 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 时钟分割TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数方向向上计数 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); /* Clear TIM2 update pending flag[清除TIM2溢出中断标志] */

STM32 高级定时器-PWM简单使用

STM32 高级定时器-PWM简 单使用 高级定时器与通用定时器比较类似,下面是一个TIM1 的PWM 程序,TIM1是STM32唯一的高级定时器。共有4个通道有死区有互补。 先是配置IO脚: GPIO_InitTypeDef GPIO_InitStructure; /* PA8设置为功能脚(PWM) */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); /*PB13 设置为PWM的反极性输出*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); /*开时钟PWM的与GPIO的*/ RCC_APB2PeriphClockCmd(RCC_A PB2Periph_TIM1,ENABLE); RCC_APB2PeriphClockCmd(RCC_A PB2Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_A PB2Periph_GPIOB, ENABLE); /*配置TIM1*/ TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; void Tim1_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; TIM_DeInit(TIM1); //重设为缺省值 /*TIM1时钟配置*/ TIM_TimeBaseStructure.TIM_Prescaler = 4000; //预分频(时钟分频)72M/4000=18K TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数 TIM_TimeBaseStructure.TIM_Period = 144; //装载值18k/144=125hz 就是说向上加的144便满了 TIM_TimeBaseStructure.TIM_ClockDivision =

STM32的捕获模式应用

STM32捕获模式应用。。。。。 1、stm32脉冲方波捕获 脉冲方波长度捕获 a)目的:基础PWM输入也叫捕获,以及中断配合应用。使用前一章的输出管脚P B1(19脚),直接使用跳线连接输入的PA3(13脚),配置为TIM2_CH4,进行实验。 b)对于简单的PWM输入应用,暂时无需考虑TIM1的高级功能之区别,按照目前我的应用目标其实只需要采集高电平宽度,而不必知道周期,所以并不采用PWM 输入模式,而是普通脉宽捕获模式。 c)初始化函数定义: void TIM_Configuration(void); //定义TIM初始化函数 d)初始化函数调用: TIM_Configuration(); //TIM初始化函数调用 e)初始化函数,不同于前面模块,TIM的CAP初始化分为三部分——计时器基本初始化、通道初始化和时钟启动初始化: void TIM_Configuration(void)//TIM2的CAP初始化函数 { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;//定时器初始化结构 TIM_ICInitTypeDef TIM_ICInitStructure; //通道输入初始化结构 //TIM2输出初始化 TIM_TimeBaseStructure.TIM_Period = 0xFFFF; //周期0~FFFF TIM_TimeBaseStructure.TIM_Prescaler = 5; //时钟分频 TIM_TimeBaseStructure.TIM_ClockDivision = 0; //时钟分割 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//模式

STM32F103ve定时器时间算法

S TM32 定时器定时时间的计算 2010-11-18 14:12:18| 分类:资料引用| 标签:|字号大中小订阅 引用 mxpopstar 的STM32 定时器定时时间的计算 假设系统时钟是72Mhz,TIM1 是由PCLK2 (72MHz)得到,TIM2-7是由PCLK1 得到 关键是设定时钟预分频数,自动重装载寄存器周期的值 /*每1秒发生一次更新事件(进入中断服务程序)。 RCC_Configuration()的SystemInit()的 RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2表明 TIM3CLK为72MHz。因此,每次进入中断服务程序间隔时间为((1+TIM_Prescaler )/72M)*(1+TIM_Period )=((1+7199)/72M)*(1 +9999)=1秒*/ 定时器的基本设置 1、TIM_TimeBaseStructure.TIM_Prescaler = 7199;//时钟预分频数例如:时钟频率=72/(时钟预分频+1)

2、TIM_TimeBaseStructure.TIM_Period = 9999; // 自动重装载寄存器周期的值(定时时间) 累计0xFFFF个频率后产生个更新或者中断(也是说定时时间到) 3、TIM_TimeBaseStructure.TIM_CounterMode = TIM1_CounterMode_Up; //定时器 模式向上计数 4、TIM_TimeBaseStructure.TIM_ClockDivision = 0x0; //时间分割值 5、TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);//初始化定时器2 6、TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); //打开中断溢出中断 7、TIM_Cmd(TIM2, ENABLE);//打开定时器 或者: TIM_TimeBaseStructure.TIM_Prescaler = 35999;//分频35999 72M/ (35999+1)/2=1Hz 1秒中断溢出一次

STM32-PWM输出总结讲课讲稿

学习后发现stm32的定时器功能确实很强大,小总结一下方便以后使用的时候做参考。Stm32定时器一共分为三种:tim1和tim8是高级定时器,6和7是基本定时器,2—5是通用定时器。从名字就可以看得出来主要功能上的差异。今天我主要是用定时器做pwm输出,所以总结也主要是针对pwm方面的。 先大致说下通用和高级定时器的区别。通用的可以输出四路pwm信号互不影响。高级定时器可以输出三对互补pwm信号外加ch4通道,也就是一共七路。 所以这样算下来stm32一共可以生成4*5+7*2=30路pwm信号。接下来还有功能上的区别:通用定时器的pwm信号比较简单,就是普通的调节占空比调节频率(别的不常用到的没去深究);高级定时器的还带有互补输出功能,同时互补信号可以插入死区,也可以使能刹车功能,从这些看来高级定时器的pwm天生就是用来控制电机的。 Pwm输出最基本的调节就是频率和占空比。频率当然又和时钟信号扯上了关系。高级定时器是挂接到APB2上,而通用定时器是挂接到APB1上的。APB1和APB2的区别就要在于时钟频率不同。APB2最高频率允许72MH,而APB1最高频率为36MHZ。这样是不是通用定时器只最高36MHZ频率呢,不是的;通用定时器时钟信号完整的路线应该是下面这样的:AHB(72mhz)→APB1分频器(默认2)→APB1时钟信号(36mhz)→倍频器(*2倍)→通用定时器时钟信号(72mhz)。 在APB1和定时器中间的倍频器起到了巨大的作用,假如红色字体的“APB1分频器”假如不为1(默认是2),倍频器会自动将APB1时钟频率扩大2倍后作为定时器信号源,这个它内部自动控制的不用配置。设置这个倍频器的目的很简单就是在APB1是36mhz的情况下通用定时器的频率同样能达到72mhz。我用的库函数直接调用函数SystemInit(); 这个函数之后时钟配置好了:通用定时器和高级定时器的时钟现在都是72mhz(你也可以自己再配置一下RCC让他的频率更低,但是不能再高了)。定时器接下来还有一个分频寄存器:TIMX_PSC 经过他的分频后,才是定时器计数的频率。所以真正的时钟频率应该是72mhz/(TIMX_PSC-1),我们设为tim_frepuency下面还会用到。 stm32的时钟频率弄得确实是很饶人的,所以关键就是先要把思路理清楚。时钟的频率弄好了下面终于可以开说重点PWM了。当然还少不了频率:pwm主要就是控制频率和占空比的:这两个因素分别通过两个寄存器控制:TIMX_ARR和TIMX_CCRX。ARR寄存器就是自动重装寄存器,也就是计数器记到这个数以后清零再开始计,这样pwm的频率就是tim_frequency/(TIMX_ARR-1)。在计数时会不停的和CCRX寄存器中的数据进行比较,如果小于的话是高电平或者低电平,计数值大于CCRX值的话电平极性反相。所以这也就控制了占空比。 下面是定时器1的配置代码: GPIO_InitTypeDef GPIO_InitStructure2; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; //第一步:配置时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA| RCC_APB2Periph_GPIOB|RCC_APB2Periph_TIM1 ,ENABLE); //第二步,配置goio口 /********TIM1_CH1 引脚配置*********/

相关文档
最新文档