泰勒公式及其应用论
泰勒公式在极限计算上的应用

泰勒公式在极限计算上的应用泰勒公式是数学中一种重要的近似计算工具,它被广泛应用于各种数学分析问题的解决中。
本文将从泰勒公式的原理、应用场景和具体例子等方面进行阐述,以展示泰勒公式在极限计算中的重要性。
一、泰勒公式的原理泰勒公式是以数学家布鲁诺·德·泰勒命名的,它描述了函数在其中一点附近用一系列多项式逼近的方法。
泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...+f^n(a)(x-a)^n/n!+R_n(x)其中,f(x)是要逼近的函数,a是逼近点,f'(x)、f''(x)等是函数f(x)的各阶导数,R_n(x)是余项。
二、泰勒公式的应用场景1.函数近似计算:在实际问题中,很多函数难以直接求解,但通过泰勒公式可以将其近似为多项式函数进行计算。
这在物理学、工程学以及经济学等领域中得到广泛应用。
2.极限计算:泰勒公式可以通过多项式函数逼近,将复杂的极限计算问题简化为多项式函数的极限计算。
这样可以减少计算的复杂性,并且提高计算的精确度。
三、泰勒公式在极限计算中的应用举例1.计算常函数的其中一点的极限:考虑函数f(x)=a,是一个常数函数。
要计算f(x)在x=a处的极限。
根据泰勒公式,可以将f(x)在a处进行多项式逼近:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+R_n(x)由于f(x)=a,所以f'(x)=0,f''(x)=0,...,f^n(x)=0。
将这些值代入泰勒公式,得到:f(x)=a+R_n(x)当x趋近于a时,余项R_n(x)趋近于0,所以f(x)的极限为a。
2.计算正弦函数的极限:考虑函数f(x) = sin(x)。
浅谈泰勒公式及其应用

浅谈泰勒公式及其应用摘要:大学泰勒公式在数学分析中是极其重要的公式,并且在经济领域中也占有一席之地。
泰勒公式是研究函数极限和估计误差等方面不可或缺的数学工具,在近似计算上有着独特的优势,在微积分的各个方面有着重要的应用。
本文主要对泰勒公式在求极限、估计误差、证明求解积分、经济学计算等几个方面的应用给予举例说明进行研究。
关键词:泰勒公式 求极限 不等式 行列式泰勒公式的应用1、利用泰勒公式求极限对于待定型的极限问题,一般可以采用洛比达法则来求,但是,对于一些求导比较繁琐,特别是要多次使用洛比达法则的情况,泰勒公式往往是比洛比达法则更为有效的求极限工具。
利用泰勒公式求极限,一般用麦克劳林公式形式,并采用佩亚诺型余项。
当极限式为分式时,一般要求分子分母展成同一阶的麦克劳林公式,通过比较求出极限。
例1 求2240cos limx x x e x -→-分析:此题分母为4x ,如果用洛比达法则,需连用4次,比较麻烦.而用带佩亚诺余项的泰勒公式解求较简单。
解: 因为2211()2!x e x x o x =+++ 将x 换成22x -有222222211()()(())22!22x x x x eo -=+-+-+-又244cos 1()2!4!x x x o x =-++所以 24442111cos ()()()2484x x ex o x o x --=-+-441()12x o x =-+ 故2442441()cos 112limlim 12x x x x o x x e x x -→∞→∞-+-==- 例2 求极限2240cos limsin x x x ex-→-解: 因为分母的次数为4,所以只要把cos x ,22x e -展开到x 的4次幂即可。
24411cos 1()2!4!x x x o x =-++ 22224211()()22!2x x x eo x -=-+-+故 2240cos limsin x x x e x-→-444011()()4!8lim x x o x x →-+=112=-带有佩亚诺型余项的泰勒公式是求函数极限的一个非常有力的工具 ,运用得当会使求函数的极限变得十分简单。
常用泰勒公式

常用泰勒公式泰勒公式是一种近似计算函数值的方法,它是通过函数在某一点的导数值来逼近该点附近的函数值。
在数学和物理学领域,泰勒公式被广泛应用于函数近似、函数求导和数值计算等方面。
下面将介绍泰勒公式的常用形式和应用。
泰勒公式的一般形式是:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! +f'''(a)(x-a)³/3! + ...其中,f(x) 是要求解的函数,在点 x 处的近似值;f(a) 是函数在点 a 处的值;f'(a) 是函数在点 a 处的导数值;f''(a) 是函数在点 a 处的二阶导数值;以此类推。
泰勒公式的原理是利用导数将函数表示为一系列单项式的和,然后根据需要的精度截断级数,得到函数的近似值。
当级数的项数增加时,近似值的精度也会提高。
泰勒公式的应用十分广泛。
例如,在计算机科学领域,泰勒公式被用于开发数值计算算法,例如计算机图形学中的曲线和曲面绘制,以及物理引擎中的碰撞检测和运动模拟等。
在物理学中,泰勒公式被用于近似解析解不存在的问题,例如非线性的运动方程。
此外,泰勒公式还可以用于求解微积分中的极限、导数和积分等问题。
泰勒公式有很多变种形式,例如麦克劳林级数、希尔伯特级数和泊松级数等,它们在不同的数学和物理学问题中具有不同的应用。
总结起来,泰勒公式是一种常用的近似计算函数值的方法。
它通过函数在某一点的导数值来逼近该点附近的函数值,具有广泛的应用领域和实际价值。
无论是在数学、物理还是计算机科学领域,我们都可以看到泰勒公式的身影。
泰勒公式及泰勒级数的应用

泰勒公式及泰勒级数的应用泰勒公式是数学中的一种方法,用来表示一个函数在一些点附近的近似值。
它是通过将函数表示为无穷级数的形式来实现的,这个无穷级数称为泰勒级数。
泰勒公式和泰勒级数在数学和物理的许多领域中都有广泛的应用。
下面将介绍一些常见的应用。
泰勒级数在计算机图形学中非常重要。
计算机图形学涉及到绘制和处理图像,而泰勒级数可以用来近似计算复杂的数学函数。
例如,在绘制曲线和曲面时,可以使用泰勒级数来获得光滑的曲线。
此外,泰勒级数在计算机动画和计算机游戏中也有广泛的应用。
在物理学中,泰勒级数广泛应用于描述物理过程。
许多物理现象和运动可以通过使用泰勒级数来近似描述。
例如,在经典力学中,可以使用泰勒级数来近似描述质点的运动轨迹。
在电磁学中,可以使用泰勒级数来描述电场和磁场的分布。
在量子力学中,泰勒级数也被用于描述粒子的波函数。
泰勒级数还经常用于数值计算和科学工程中。
在数值计算中,可以使用泰勒级数来近似计算复杂的数学函数,例如指数函数、三角函数等。
这对于一些没有简单解析表达式的函数非常有用。
在科学工程中,泰勒级数可以用来经验性地建立数学模型,并用于预测和分析实际问题。
例如,在天气预报中,可以使用泰勒级数来预测未来的天气变化。
泰勒级数还可以用于解决微分方程。
微分方程是数学中的一个重要分支,涉及到求解未知函数的变化规律。
有些微分方程没有解析解,而泰勒级数可以作为一种数值方法来近似求解。
通过将微分方程转化为泰勒级数的形式,可以通过迭代计算来获得函数的近似解。
在金融工程中,泰勒级数也有应用。
金融领域涉及到诸如期权定价、风险管理等复杂计算,而泰勒级数可以用来近似计算这些复杂的金融变量。
例如,可以使用泰勒级数来近似计算期权价格和波动率。
总之,泰勒公式及其对应的泰勒级数在数学和物理的许多领域中都有重要的应用。
它可以用来近似计算复杂的函数,描述物理现象和运动,解决微分方程,进行数值计算和科学工程,以及应用于金融工程等领域。
泰勒公式的意义和应用

泰勒公式的意义和应用
泰勒公式是一种在微积分中经常使用的重要工具。
它允许我们将一个复杂的函数表示为无限级数的形式,从而使我们能够更好地了解函数在某一点的性质。
泰勒公式的应用非常广泛。
它可以用于求解微积分和微分方程,以及在物理学和工程学等领域中的建模和分析。
在数值分析和计算机科学中,泰勒公式也是一个重要的工具,用于近似计算和优化算法的设计。
泰勒公式的意义在于,在某一点处对函数进行无限次微分,从而获得函数在这一点的局部性质。
通过泰勒公式,我们能够确定函数在这一点的值、导数、曲率和其他高阶导数,从而更好地理解函数的行为。
在实际应用中,泰勒公式通常被用于求解实际问题中的数值解,如计算机图形学中的渲染、金融学中的期权定价等。
通过利用泰勒公式的近似性质,我们能够将复杂的问题简化为一个简单的数学表达式,并且得到数值解以解决实际问题。
总之,泰勒公式在微积分和其它许多领域中都起着重要作用,它的应用和意义是非常深远的。
- 1 -。
泰勒公式及其应用

第一章 绪论近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-称为泰勒公式.众所周知,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面.关于泰勒公式的应用,已有许多专家学者对它产生了浓厚的兴趣,它们对某些具体的题目作出了具体的解法,如求极限,判断函数凹凸性和收敛性,求渐近线,界的估计和近似值的计算等等.虽然泰勒公式应用到各个数学领域很多,但也还有很多方面学者还很少提及,因此在这泰勒公式及其应用方面我们有研究的必要,并且有很大的空间.泰勒公式不仅在极限和不等式证明中能解决许多问题,同时也是研究分析数学的重要工具.其原理是很多函数都能用泰勒公式表示,又能借助于泰勒公式来研究函数近似值式和判断级数收敛性的问题.因此泰勒公式在数学实际应用中是一种重要的应用工具,我们必须掌握它,用泰勒公式这一知识解决更多的数学实际问题.第二章 泰勒公式1.1泰勒公式的意义泰勒公式的意义是,用一个n 次多项式来逼近函数f .而多项式具有形式简单,易于计算等优点.泰勒公式由()f x 的n 次泰勒多项式()n P x 和余项0()[()]n n R x o x x =-组成,我们来详细讨论它们. 当n =1时,有1000()()()()P x f x f x x x '=+-,是()y f x =的曲线在点00(,())x f x 处的切线(方程),称为曲线()y f x =在点00(,())x f x 的一次密切,显然,切线与曲线的差异是较大的,只是曲线的近似. 当n =2时,有2020000()()()()()()2!f x P x f x f x x x x x '''=+-+-, 是曲线()y f x =在点00(,())x f x 的“二次切线”,也称曲线()y f x =在点00(,())x f x 的二次密切.可以看出,二次切线与曲线的接近程度比切线要好.当次数越来越高时,接近程度越来越密切,近似程度也越来越高.1.2泰勒公式余项的类型泰勒公式的余项分为两类,一类是定性的,一类是定量的,它们的本质相同,但性质各异.定性的余项如佩亚诺型余项0(())n o x x -,仅表示余项是比0()n x x -(当0x x →时)高阶的无穷小.如33sin ()6x x x o x =-+,表示当0x →时,sin x 用36x x -近似,误差(余项)是比3x 高阶的无穷小.定量的余项如拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+(ξ也可以写成00()x x x θ+-)、柯西余项(如在某些函数的幂级数展开时用).定量的余项一般用于函数值的计算与函数形态的研究. 1.3泰勒公式的定义(1)带有佩亚诺(Peano )型余项的泰勒公式如果函数()f x 在点0x 的某邻域内具有n 阶导数, 则对此邻域内的点x ,有()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-当00x =时, 上式称为麦克劳林(Maclaurin )公式.即()(1)21(0)(0)(0)()(0)(0)(01)2!!(1)!n n n n f f f f x f f x x x x n n θθ++'''=+++++<<+(2)带有拉格朗日(Lagrange )型余项的泰勒公式如果函数()f x 在点0x 的某邻域内具有1n +阶导数, 则对此邻域内的点x , 有()(1)2100000000()()()()()()()()()()2!!(1)!n n n n f x f x f f x f x f x x x x x x x x x n n ξ++'''=+-+-++-+-+(ξ介于0x 与x 之间)第三章 泰勒公式的实际应用2.1利用泰勒公式求极限对于待定型的极限问题,一般可以采用洛比达法则来求,但是,对于一些求导比较繁琐,特别是要多次使用洛比达法则的情况,泰勒公式往往是比洛比达法则更为有效的求极限工具.利用泰勒公式求极限,一般用麦克劳林公式形式,并采用佩亚诺型余项.当极限式为分式时,一般要求分子分母展成同一阶的麦克劳林公式,通过比较求出极限. 例1 求224cos limx x x ex -→-分析:此题分母为4x ,如果用洛比达法则,需连用4次,比较麻烦.而用带佩亚诺余项的泰勒公式解求较简单. 解: 因为2211()2!x e x x o x =+++ 将x 换成22x -有222222211()()(())22!22x x x x eo -=+-+-+-又244cos 1()2!4!x x x o x =-++所以 24442111cos ()()()2484x x ex o x o x --=-+- 441()12x o x =-+ 故2442441()cos 112lim lim 12x x x x o x x e x x -→∞→∞-+-==- 例2 求极限2240cos limsin x x x e x-→-.解: 因为分母的次数为4,所以只要把cos x ,22x e -展开到x 的4次幂即可.24411cos 1()2!4!x x x o x =-++ 22224211()()22!2x x x eo x -=-+-+故 2240cos limsin x x x e x-→-444011()()4!8lim x x o x x→-+= 112=- 带有佩亚诺型余项的泰勒公式是求函数极限的一个非常有力的工具 ,运用得当会使求函数的极限变得十分简单. 2.2利用泰勒公式进行近似计算例1 用x e 的10次泰勒多项式求e 的近似值i ,并估计误差. 解:在x e 的泰勒公式中取1,10x n ==,则有111112!3!10!e ≈+++++2.718281801=由于e 的精确度值e 2.718281801=,可以看出这么算得的结果是比较准确的.关于计算的误差,则有如下的估计11813()6.81011!11!x e d x ξ==<≈⨯. 必须注意,泰勒公式只是一种局部性质,因此在用它进行近似计算时,x 不能远离0x ,否则效果会比较差,甚至产生完全错误的结果.如在ln(1)x +的泰勒多项式中令x =1,取它的前10项计算ln 2的近似值,得到111111111ln 212345678910≈-+-+-+-+-=0.645 634 92…而ln 2=0.693 147 28…,误差相当大,但如改用其他泰勒多项式,如1lnln(1)ln(1)1xx x x+=+--- 23223221()232232n n nx x x x x x x x o x n n ⎡⎤⎡⎤=-+--------+⎢⎥⎢⎥⎣⎦⎣⎦352122()3521n nx x x x o x n -⎡⎤=+++++⎢⎥-⎣⎦, 令1,3x =只取前两项便有3111ln 22()333⎡⎤≈+=⎢⎥⎣⎦0.69135…,取前四项则可达到3571111111ln 22()()()3335373⎡⎤≈+++⎢⎥⎣⎦=0.693 124 75…,效果比前面好得多.例2 当x 很小时,推出331111x x x x +-⎛⎫⎛⎫-- ⎪ ⎪-+⎝⎭⎝⎭的简单的近似公式. 解: 当x 很小时,111133331122111111x x x x x x x x +-⎛⎫⎛⎫⎛⎫⎛⎫-=+-- ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭⎝⎭2224[1][1]3(1)3(1)3(1)x x xx x x ≈+--=--- 43x≈2.3在不等式证明中的应用关于不等式的证明,我们已经在前面介绍了多种方法,如利用拉格朗日中值定理来证明不等式,利用函数的凸性来证明不等式,以及通过讨论导数的符号来得到函数的单调性,从而证明不等式的方法.下面我们举例说明,泰勒公式也是证明不等式的一个重要方法.例1 设()f x 在[0,1]二次可导,而且(0)(1)0f f ==,01lim ()1x f x ≤≤=-,试求存在(0,1)ξ∈,使()8f ξ''≥.证: 由于()f x 在[0,1]的最小值不等于在区间端点的值,故在[0,1]内存在1x ,使1()1f x =-,由费马定理知,1()0f x '=. 又21111()()()()()()2!f f x f x f x x x x x η'''=+-+- 21()1()2!f x x η''=-+-(η介于x 与1x 之间) 由于(0)(1)0f f ==,不令0x =和1x =,有211()0(0)1(0)2f f x ξ''==-+- 所以21112()2(1)(1)f x x ξξ-''=-<<当1112x <≤时,2128x -≥,而当1112x <<时,212(1)8x --≥,可见1()f ξ''与2()f ξ''中必有一个大于或等于8.2.4泰勒公式在外推上的应用外推是一种通过将精度较低的近似值进行适当组合,产生精度较高的近似值的方法,它的基础是泰勒公式,其原理可以简述如下. 若对于某个值a ,按参数h 算出的近似值1()a h 可以展开成231123()a h a c h c h c h =++++(*)(这里先不管i c 的具体形式),那么按参数2h 算出的近似值1()2h a 就是231123111()2248h a a c h c h c h =++++ (**)1()a h 和1()2ha 与准确值a 的误差都是()o h 阶的.现在,将后(**)式乘2减去(*)式,便得到11232232()()2()21ha a h a h a d h d h -==+++-也就是说,对两个()o h 阶的近似值化了少量几步四则运算进行组合之后,却得到了具有2()o h 阶的近似值2()a h .这样的过程就称为外推.若进行了一次外推之后精度仍未达到要求,则可以从2()a h 出发再次外推,22343344()()2()41ha a h a h a e h e h -==+++-,得到3()o h 阶的近似值3()a h .这样的过程可以进行1k -步,直到11112()()2()()21k k k k k k ha a h a h a o h -----==+-, 满足预先给定的精度.外推方法能以较小的待解获得高精度的结果,因此是一种非常重要的近似计算技术.例 1 单位圆的内接正n 边形的面积可以表示为1()sin(2)2S h h hπ=, 这里1h n=,按照泰勒公式351(2)(2)()223!5!h h S h h h πππ⎡⎤=-+-⎢⎥⎣⎦246123c h c h c h π=++++因此,其内接正2n 边形的面积可以表示为351()()()23!5!h h h S h h πππ⎡⎤=-+-⎢⎥⎣⎦24612314c h c h c h π=++++,用它们作为π的近似值,误差都是()o h 量级的.现在将这两个近似的程度不够理想的值按以下方式组合:4()()()()22()()4123h hS S h S S h h S h S --==+- 那么通过简单的计算就可以知道4623()S h d h d h π=+++2h 项被消掉了!也就是说,用()S h 近似表示π,其精度可以大大提高.2.5求曲线的渐近线方程若曲线()y f x =上的点(,())x f x 到直线y ax b =+的距离在x →+∞或x →-∞时趋于零,则称直线y ax b =+是曲线()y f x =的一条渐近线.当0a =时称为水平渐近线,否则称为斜渐近线.显然,直线y ax b =+是曲线()y f x =的渐近线的充分必要条件为lim [()()]0x f x ax b →+∞-+=或lim [()()]0x f x ax b →-∞-+=如果y ax b =+是曲线()y f x =的渐近线,则()()lim 0x f x ax b x →+∞-+=(或()()lim 0x f x ax b x→-∞-+=). 因此首先有()lim x f x a x →+∞=(或()lim x f x a x→-∞=). 其次,再由lim [()()]0x f x ax b →+∞-+=(或lim [()()]0x f x ax b →-∞-+=)可得 lim [()]x b f x ax →+∞=-(或lim [()]x b f x ax →-∞=-) 反之,如果由以上两式确定了a 和b ,那么y ax b =+是曲线()y f x =的一条渐近线.中至少有一个成立,则称直线y ax b =+是曲线()y f x =的一条渐近线,当0a =时,称为水平渐近线,否则称为斜渐近线.而如果()f x 在x 趋于某个定值a 时趋于+∞或-∞,即成立lim ()x f x →∞=±∞则称直线x a =是()f x 的一条垂直渐近线.注意,如果上面的极限对于x →∞成立,则说明直线y ax b =+关于曲线()y f x =在x →+∞和x →-∞两个方向上都是渐近线.除上述情况外,如果当x a +→或a -时,()f x 趋于+∞或-∞,即lim ()x a f x +→=±∞或lim ()x a f x -→=±∞,则称直线x a =是曲线()y f x =的一条垂直渐近线.例1 求 2(1)3(1)x y x -=+的渐近线方程. 解: 设 2(1)3(1)x y x -=+的渐近线方程为y ax b =+,则由定义 2(1)1lim lim 3(1)3x x y x a x x x →∞→∞-===+ 2(1)lim[]3(1)x x b ax x →∞-=-+ 2(1)1l i m []3(1)3x x x x →∞-=-+ =131lim 131x x x →∞-+=-+ 由此13x y =-为曲线y =2(1)3(1)x x -+的渐近线方程。
《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用泰勒公式是高等数学中一个非常重要的数学工具,它是数学中用来近似计算的一种方法。
泰勒公式的应用涉及到很多方面,下面将讨论一些常见的应用。
1. 函数的近似计算:泰勒公式可以用来对函数进行近似计算,在给定的点附近用一个多项式来近似表示函数的值。
我们可以用泰勒公式来近似计算三角函数、指数函数等复杂函数在某个点的值,从而在数值计算时得到较为准确的结果。
2. 极值问题:泰勒公式可以用来解决极值问题。
对于一个函数,在极值点附近,其函数值相对于极值点的位置是一个关键因素。
通过泰勒公式,我们可以计算函数在极值点附近的表现,从而判断函数在极值点附近的走势。
3. 曲线拟合:泰勒公式可以用来进行曲线拟合。
当我们有一些离散的数据点,想要找到一个函数曲线来拟合这些点时,可以利用泰勒公式来实现。
通过构建泰勒多项式,我们可以将一条曲线与离散数据点进行匹配,从而达到拟合的效果。
4. 数值逼近:泰勒公式可以用来进行数值逼近。
当一个函数在某个点的导数很难计算时,可以利用泰勒公式来逼近这个导数的值。
将泰勒公式展开到适当的阶数,可以得到一个近似值,用来代替实际值进行计算。
5. 工程应用:泰勒公式在工程中有很多实际应用。
在电子电路中,可以利用泰勒公式对电路中的信号进行近似计算,从而优化电路的设计。
在材料力学中,可以利用泰勒公式进行应力分析和变形分析,从而提高材料的性能和使用效果。
泰勒公式作为数学中的一种重要工具,广泛应用于各个领域。
通过泰勒公式,我们可以对复杂的函数进行近似计算,解决一些数值计算中的难题,同时还可以优化工程设计和提高产品性能。
了解和掌握泰勒公式的应用是非常有意义的。
泰勒公式的推导和应用

泰勒公式的推导和应用
什么是泰勒公式?
要学习泰勒公式我们先要知道泰勒是一个数学家的名字,“布鲁克,泰勒”18世纪初英国有名的大数学家,泰勒公式就是以他的名字命名。
泰勒公式究竟要做的是什么?
细胞,分子,原子,中子,似乎这个世界只要你无限细分就能得到组成这个世界的统一的基本单位。
而泰勒公式要做的就是将所有的可导函数统一的形式表达出来。
要如何做到?显然有表达式F(x)=f(x)
泰勒公式在x=a处展开为
f(x)=f(a)+f'(a)(x-a)+(1/2!)f''(a)(x-a)^2+……
+(1/n!)f(n)(a)(x-a)^n+……
设幂级数为f(x)=a0+a1(x-a)+a2(x-a)^2+……①
令x=a则a0=f(a)
将①式两边求一阶导数,得
f'(x)=a1+2a2(x-a)+3a3(x-a)^2+……②
令x=a,得a1=f'(a)
对②两边求导,得
f"(x)=2!a2+a3(x-a)+……
令x=a,得a2=f''(a)/2!
继续下去可得an=f(n)(a)/n!
所以f(x)在x=a处的泰勒公式为:
f(x)=f(a)+f'(a)(x-a)+[f''(a)/2!](x-a)^2+……
+[f(n)(a)/n!](a)(x-a)^n+……
应用:用泰勒公式可把f(x)展开成幂级数,从而可以进行近似计算,也可以计算极限值,等等。
另外,一阶泰勒公式就是拉格朗日微分中值定理
f(b)=f(a)+f(ε)(b-a),ε介于a与b之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业论文(设计) 论文题目:泰勒公式及其应用学生姓名:学号:专业:数学与应用数学班级:指导教师:完成日期:2012年 5月20日泰勒公式及其应用内容摘要本文介绍泰勒公式及其应用,分为两大部分:第一部分介绍了泰勒公式的相关基础知识,包括带Lagrange余项、带Peano余项两类不同泰勒公式;第二部分通过详细的例题介绍了泰勒公式在八个方面的应用.通过本文的阅读,可以提高对泰勒公式及其应用的认识,明确其在解题中的作用,为我们以后更好的应用它解决实际问题打好坚实的基础.关键词:泰勒公式 Lagrange余项 Peano余项应用The Taylor Formula and The Application Of Taylor FormulaAbstractThis paper focuses on Taylor formula and the application of Taylor formula. It has two parts. The first part of this paper introduces the basic knowledge of the Taylor formula,Including Taylor formula with Lagrange residual term and with Peano residual term. With the detailed examples,The second part introduces eight applications of Taylor formula.By reading this paper,you can build a preliminary understanding of Taylor formula,define the function in problem solving ,in the later application that can be a good reference.Key Words:Taylor formula Lagrange residual term Peano residual term application目录一、泰勒公式 (1)(一)带Lagrange余项的泰勒公式 (1)(二)带Peano余项的泰勒公式 (2)二、公式的应用 (3)(一)、泰勒公式在近似运算上的应用 (3)(二)、泰勒公式在求极限中的应用 (5)(三)、泰勒公式在方程中的应用 (6)(四)、泰勒公式在中值公式证明中的应用 (8)(五)、泰勒公式在有关于界的估计中的应用 (9)(六)、泰勒公式在证明不等式中的应用 (10)(七)、泰勒公式在级数中的应用 (11)(八)、泰勒公式在求高阶导数值中的应用 (13)三、结论 (14)参考文献 (15)序 言泰勒公式是数学分析中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数.这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.[]1因为泰勒公式在解决一些数学问题时的确有着不可替代的作用,故有关它的理论在教材中一般都有比较详细的介绍,而关于它的应用则介绍甚少或不全面.本文比较详细地介绍了泰勒公式在近似计算、求极值、方程、证明中值公式、关于界的估计、证明不等式、级数、高阶导数值等方面的应用.作者在阅读了大量参考文献的基础上,通过例题给出了泰勒公式的许多应用,使我们能更直接的看到泰勒公式在各方面的运用.一、泰勒公式对于函数f ,设它在点0x 存在直到n 阶的导数.由这些导数构造一个n 次多项式()20000000'()''()()()()()()...()1!2!!n n f x f x f x Tn x f x x x x x x x n =+-+-++-,称为函数f 在点0x 处的泰勒多项式.[2]泰勒公式根据所带的余项的不同有不同的定义.泰勒公式的余项分为两类,一类是定量的,一类是定性的,它们的本质相同,但性质各异.下面我们来介绍一下:(一)带Lagrange 余项的泰勒公式对于这种泰勒公式,Lagrange 余项是一种定量形式. 定理1[]3 若函数f 在[,]a b 上存在直到n 阶的连续导函数,在),(b a 内存在直到+1n 阶导函数,则对任意给定的0[,]x x a b ∈、,至少存在一点(,)a b ξ∈,使得()(1)2100000000''()()()()()'()()()...()()2!!(1)!n n nn f x f x f f x f x f x x x x x x x x x n n ξ++=+-+-++-+-+,该式称为(带有Lagrange 余项的)泰勒公式.证明 作辅助函数])(!)())(()([)()()('n n t x n t f t x t f t f x f t F -++---= ,1)()(+-=n t x t G ,所以要证明的式子即为)!1()()()()()!1()()()1(000)1(0+=+=++n f x G x F x G n f x F n n ζζ或. 不妨设x x <0,则)(t F 与)(t G 在],[0x x 上连续,在),(0x x 内可导,且 0))(1()()(!)()(')1('≠-+-=--=+n nn t x n t G t x n t f t F , 又因0)()(==x G x F ,所以由柯西中值定理证得)!1()()()()()()()()()()1(''0000+==--=+n f G F x G x G x F x F x G x F n ζζζ, 其中),(),(0b a x x ⊂∈ζ. 所以定理1成立.(二)带Peano 余项的泰勒公式对于这种泰勒公式,Peano 余项是一种定性形式. 定理2[]3 若函数f 在点0x 存在直到n 阶导数,则有0()()(())nf x Tn x o x x =+-,即()200000000''()()()()'()()()...()(())2!!n n n f x f x f x f x f x x x x x x x o x x n =+-+-++-+-,称为函数f 在点0x 处的(带有Peano 余项的)泰勒公式,该公式定性的说明当x 趋于0x 时,逼近误差是较0()nx x -高阶的无穷小量.证明 设)()()(x T x f x R n n -=,n n x x x Q )()(0-=,现在只需证0)()(lim0=-x Q x R nn x x .由n k x T x f k n k ,,2,1,0)()(0)(0)( ==,可知,0)()()(0)(0'0====x R x R x R n n n n .并易知!)(,0)()()(0)(0)1(0'0n x Q x Q x Q x Q n n n n n n =====- ,因为)(0)(x f n 存在,所以在点0x 的某邻域)(0x U 内)(x f 存在1-n 阶导函数)(x f .于是,当o0x U x ∈()且0x x →时,允许接连使用洛必达(L'Hospital )法则1-n 次,得到)]()()([lim !1)(2)1())(()()(lim )()(lim )()(lim )()(lim 0)(00)1()1(000)(0)1()1()1()1(''00000=---=-----====--→--→--→→→x f x x x f x f n x x n n x x x f x f x f x Q x R x Q x R x Q x R n n n x x n n n x x n nn n x x n n x x n n x x 所以定理2成立.当00x =时,得到泰勒公式)10(,)!1()(!)0(...!2)0('')0(')0()(1)1()(2<<++++++=++θθn n n n x n x f x n f x f x f f x f ,该式称为(带有Lagrange 余项的)麦克劳林公式. 当上式中00x =时有()2''(0)(0)()(0)'(0)...()2!!n nn f f f x f f x x x o x n =+++++,它称为(带有Peano 余项的)麦克劳林公式.二、公式的应用(一)、泰勒公式在近似运算上的应用利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用)(x f 麦克劳林展开得到函数的近似计算式为'''2(0)(0)()(0)(0)2!!n n f f f x f f x x xn ≈++++[]4,其误差是余项()n R x . 例1[]5:计算e 的值,使其误差不超过610-.解 应用泰勒公式有11111...2!3!!(1)!e e n n θ=+++++++,(01)θ<<,估3(1)!(1)!n e R n n θ=<++,当=9n 时,便有6331010!3628800n R -<=<, 从而略去9R 而求得e 的近似值为718285.2!91...!31!2111≈+++++≈e . 例2[]5: 求21x edx -⎰的近似值,精确到510-.解 因为21x e dx -⎰中的被积函数是不可积的(即不能用初级函数表达),现用泰勒公式的方法求21x e dx -⎰的近似值.在xe 的展开式中以2x -代替x 得24221(1)2!!nx nx x e x n -=-+++-+,逐项积分,得2421111121(1)2!!nx nx x edx dx x dx dx dx n -=-+-+-+⎰⎰⎰⎰⎰111111(1)32!5!2n 1n n =-+-+-++11111111310422161329936075600=-+-+-+-+,上式右端为一个收敛的交错级数,由其余项()n R x 的估计式知71||0.00001575600R ≤<,所以2111111110.7468363104221613299360x e dx -≈-+-+-+≈⎰.由于泰勒公式可以将一些复杂函数近似地表示为简单的多项式函数,所以当选定函数中的自变量时,就可以进行近似计算.在这个应用中主要注意选择适当的函数,然后运用麦克劳林展开式,带入数值.(二)、泰勒公式在求极限中的应用为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简洁的求出.接下来我们用两个例子来说明: 例3[]6:求极限2240cos limx x x ex -→-.解 考虑到极限式的分母为4x ,我们用麦克劳林公式表示极限的分子(取=4n )245cos 1()224x x x o x =-++ ,)(82154222x o x x ex ++-=-,)(12cos 5422x o x ex x +-=--,因而求得,245244001()cos 112limlim 12x x x x o x x e x x -→→-+-==-. 例4[]7: 求极限 )3(211ln 3)76(sin 6lim 2202x x xx x x x e x x +--+---→.解 )(!51!31sin 653x o x x x x ++-=, )(402767sin e 5532x o x x x x x ++-=-)(51413121)1ln(55432x o x x x x x x ++-+-=+ )(51413121)1ln(55432x o x x x x x x +-----=-)(52322)1ln()1ln(11ln 553x o x x x x x x x +++=+-+=-+,原式=5505527()40lim 6()5x x o x x o x →++=169.由上边两个例子可见,因为通常情况下对于函数多项式和有理分式的极限问题的计算是十分简单的,所以对于一些复杂的函数可以根据泰勒公式将原来的复杂的问题转化为类似多项式和有理分式的极限问题.综上所述,在式子满足下列情况时可以考虑用泰勒公式来求极限:(1)用洛必达法则时,次数比较多、求导过程和化简过程比较复杂的情况. (2)分子或分母中有无穷小的差, 且此差不容易转化为等价无穷小替代形式. (3)函数可以很容易的展开成泰勒公式.(三)、泰勒公式在方程中的应用泰勒公式在函数方程中应用比较广泛,题型也比较多,主要有判断根,方程次数等等一些证明类问题,做此类题,要注意观察题目中导数阶数,以便用泰勒公式展开到相应阶数.我们用三个例子来说明: 例5[]8: 设()f x 在[,)a +∞上二阶可导,且()0f a >,'()0f a <,对(,)x a ∈+∞,''0f ≤证明 ()0f x =在(,)a +∞内存在唯一实根.分析: 这里()f x 是抽象函数,直接讨论()0f x =的根有困难,由题设()f x 在[,)a +∞上二阶可导且()0f a >,'()0f a <,可考虑将()f x 在a 点展开一阶泰勒公式,然后设法应用介值定理证明.证明 因为''()0f x ≤,所以'()f x 单调减少,又'()0f a <,因此>x a 时,''()()0f x f a <<, 故()f x 在(,)a +∞上严格单调减少.在a 点展开一阶泰勒公式有''2()()()()()()()2f f x f a f a x a x a a x ξξ=+-+-<<.由题设'()0f a <,'()0f ξ≤,于是有lim ()x f x →∞=-∞,从而必存在b a >,使得()0f b <,又因为()0f a >,在[,]a b 上应用连续函数的介值定理,存在0(,)x a b ∈,使0()0f x =,由()f x 的严格单调性知0x 唯一,因此方程()0f x =在(,)a +∞内存在唯一实根. 例6[]8: 设()f x 在(,)-∞+∞内有连续三阶导数,且满足方程,()()'(),01f x h f x hf x h θθ+=++<<. (1)试证:()f x 是一次或二次函数.证明 问题在于证明:''()0f x ≡或'''()0f x ≡.为此将(1)式对h 求导,注意θ与h 无 关.我们有'()'()''()f x h f x h hf x h θθθ+=+++, (2) 从而'()'()'()'()''()f x h f x f x f x h f x h hθθθ+-+-+=+.令0→h 取极限,得''()''()''()f x f x f x θθ-=,''()2''()f x f x θ=. 若21≠θ,由此知)(,0)(''x f x f ≡为一次函数;若21=θ,(2)式给出 111'()'()''()222f x h f x h hf x h +=+++,此式两端同时对h 求导,减去''()f x ,除以h ,然后令0→h 取极限,即得'''()0f x ≡,()f x 为 二次函数. 例7[]9: 已知函数)(x f 在区间(-1,1)内有二阶导数,且(0)'(0)0f f ==,''()()'()f x f x f x ≤+试证:0δ∃>,使得δδ-(,)内()0f x ≡. 证明 为了证明)(x f 在0=x 处的邻域内恒为零.我们将(3)式右端的)(x f ,)('x f 在0=x 处按公式展开.注意到(0)'(0)0f f ==.我们有22''()1()(0)'(0)''()22f f x f f x x f x ξξ=++=, '()'(0)''()''()f x f f x f x ηη=+=.从而21()|'()|''()''()2f x f x f x f x ξη+=+, 今限制11[,]44x ∈-,则()'()f x f x +在11[,]44-上连续有界,011[,]44x ∃∈-,使得 001144()'()max ()'().x f x f x f x f x M -≤≤+=+≡我们只要证明0M =即可.事实上20000001()'()''()''()2M f x f x f x f x ξη=+=+, ))('')(''(4100ηξf f +≤, ))()(')()('(410000ηηξξf f f f +++≤, 11242M M ≤⋅=. 即102M M ≤≤.所以0M =,在11[]44-,上()0f x ≡.由以上例题可见,在函数方程方面,泰勒公式对于求二阶或二阶以上的连续导数的问题来说十分的好用,主要是通过作辅助函数,对有用的点进行泰勒公式展开并对余项作合适的处理.(四)、泰勒公式在中值公式证明中的应用由于泰勒公式将函数和它的高阶导数结合了起来,所以遇到这类有高阶导数的证明时,首先应考虑用泰勒公式来求解.接下来我们用一个例子来说明: 例8[]9: 设)(x f 在],[b a 上三次可导,试证:(,)c a b ∃∈,使得31()()'()()'''()()224a b f b f a f b a f c b a +=+-+-. 证明 设k 为使下式成立的实数:31()()'()()()0224a b f b f a f b a k b a +-----=,这时,我们的问题归为证明:(,)c a b ∃∈,使得'''()k f c =.令31()()()'()()()0224a x g x f x f a f x a k x a +=-----=. 则0)()(==b g a g ,根据Rolle 定理,(,)a b ξ∃∈,使得,0)('=ξg 即:1'()'()''()()202228a a a f f f k a ξξξξξ++-----=. 这是关于k 的方程,注意到)('ξf 在点2ξ+a 处的泰勒公式: 21'()'()''()'''()()022222a a a a f f f f c ξξξξξ++--=++=. (五)、泰勒公式在有关于界的估计中的应用我们知道有些函数是有界的,有的有上界,而有的有下界,结合泰勒公式的知识与泰勒公式的广泛应用,这里我们将探讨泰勒公式关于界的估计,下面通过例题来分析. 例9[]9: 设)(x f 在[0,1]上有二阶导数,10≤≤x 时|()|1f x ≤,''()2f x <.试证:当10≤≤x时,|'()|3f x ≤.证明 21(1)()'()(1)''()(1)2f f x f x x f x ξ=+-+-, 21(0)()'()()''()()2f f x f x x f x η=+-+-, 所以2211(1)(0)'()''()(1)''()22f f f x f x f x ξη-=+--, 22)1(|)(''|21)(''21|)0(||)1(||)('|x f x f f f x f -+++≤ξη, 222(1)213x x ≤+-+≤+=.例10[]10: 设)(x f 二次可微,(0)(1)0f f ==,01max ()2x f x ≤≤=,试证01max ''()16x f x ≤≤≤-.证明 因)(x f 在[0,1]上连续,有最大、最小值.又因01max ()2x f x ≤≤=,(0)(1)0f f ==,最大值在(0,1)内部达到.所以)1,0(0∈∃x 使得001()max ()x f x f x ≤≤=.于是)(0x f 为最大值.由Fermat 定理,有0'()0f x =,在0x x =处按泰勒公式展开,)1,0(,∈∃ηξ使得:22000110(0)()''()(0)2''()22f f x f x f x ξξ==+-=+, 22000110(1)()''()(1)2''()(1)22f f x f x f x ηη==+-=+-.因此22010044max ''()min{''(),''()}min{,}(1)x f x f f x x ξη≤≤≤=---. 而 01[,1]2x ∈时,222000444min{,}16(1)1x x x --=-≤---(), 01[0,]2x ∈时,222000444min{,}16(1)x x x --=-≤--, 所以 01max ''()16x f x ≤≤≤-.由上边例题可以总结出一些经验,比如当遇到求有关于界的问题,且涉及高阶导数时,通常考虑用泰勒公式来解题.在解题时可以应用这个经验尝试解题.(六)、泰勒公式在证明不等式中的应用当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.[]7例11[]11: 设)(x f 在],[b a 上二次可微,''()0f x <.试证:12...0,n i a x x x b k ∀≤<<<≤≥,11nii k==∑,有)()(11i ni i i ni i x f k x k f ∑∑==>.证明 取01ni ii x k x==∑,将)(i x f 在0x x =处按泰勒公式展开有:20000))((''21))((')()(x x f x x x f x f x f i i i i -+-+=ξ,))((')(000x x x f x f i -+<, (1,2,3...,)i n = 以i k 乘此式两端,然后n 个不等式相加,注意11nii k==∑,11()0nniii ii i k x x k x x==-=-=∑∑,得)()()(101∑∑===<ni i i i ni ix k f x f x f k.例12[]11: 当0x ≥时,证明31sin 6x x x ≥-. 证明 取31()sin 6f x x x x =-+,00x =,则 '''''''''(0)0(0)0(0)0()1cos (0)0f f f f x x f ====-≥,,,,.带入泰勒公式,其中=3n ,得31cos ()0003!x f x x θ-=+++,其中10<<θ. 故当0x ≥时,31sin 6x x x ≥-. 由此可见,关于不等式的证明,有多种方法,如利用拉格朗日中值定理来证明不等式,利用函数的凸性来证明不等式,以及通过讨论导数的符号来得到函数的单调性,从而证明不等式的方法.但归结起来都可以看做是泰勒公式的特殊情形,所以证明不等式时,注意应用泰勒公式这个重要方法.(七)、泰勒公式在级数中的应用在级数敛散性的理论中,要判断一个正项级数∑=nn na1是否收敛,通常找一个简单的函数,)0(111>=∑∑==p n b nn p nn n ,在用比较判定法来判定,但是在实际应用中比较困难的问题是如何选取适当的∑=nn pn11(0>p 中的p 值).如 当2=p ,此时∑∞=121n n收敛,但是+∞=∞→21lim n a n n , 当1=p 时,此时∑∞=11n n发散,但是01lim =∞→na n n . 在这种情况下我们就无法判定∑=nn n a 1的敛散性,为了更好的选取∑=nn pn11中p 的值,使得lim 1n n p a t n→∞=且0t <<+∞,在用比较判别法,我们就可以判定∑=nn n a 1的敛散性. 例13[]11:讨论级数1n ∞=∑的敛散性.分析:直接根据通项去判断该级数是正向级数还是非正项级数比较困难,因而也就无法恰当选择判敛方法,注意到11lnln(1)n n n +=+,若将其泰勒展开为1n 的幂的形式,相呼应,会使判敛容易进行.解 因为2341111111lnln(1)234n n n nn n nn+=+=-+-+<, 所以<从而0n u=>,故该级数是正项级数.又因为3212n =>==-, 所以332211)22nun n=-<-=.因为31212n n∞=∑收敛,所以由正项级数比较判别法知原级数收敛.利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.例14[]12:求211x x++的幂级数展开式.解利用泰勒公式231111xx x x-=++-36934679103467910(1)(1)1()222222222(1)[sin]3nnx x x x x x x x x x xx x x x x x xnxπ∞=-++++=-+-+-+-+=-+-+-+-++=由例题可见,当级数的通项表达式是由不同类型函数式构成的繁难形式时,往往利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.(八)、泰勒公式在求高阶导数值中的应用如果()f x泰勒公式已知,其通项中的加项nxx)(-的系数正是)(!1)(xfnn,从而可反过来求高阶导数数值,而不必再依次求导.例15[]12: 求函数x exxf2)(=在1x=处的高阶导数(100)(1)f.解设=+1x u,则eeueuugxf uu⋅+=+==+2)1(2)1()1()()(,)0()1()()(nn gf=,ue在=0u的泰勒公式为)(!100!99!9811001009998uouuuue u++++++= ,从而))(!100!99!981)(12()(10010099982uouuuuuueug+++++++= ,而()g u 中的泰勒展开式中含100u的项应为100100!100)0(u g ,从()g u 的展开式知100u 的项为100)!1001!992!981(u e ++,因此 100(0)121()100!98!99!100!g e =++,100(0)10101g e =⋅,e gf 10101)0()1(100100==.通过泰勒公式求高阶导数,这是泰勒公式比较简单的一种应用,重点就在于掌握,其通项中的加项nx x )(0-的系数正是)(!10)(x f n n .在求导数时只需在系数上乘以!n 即可. 三、结 论泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具.它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用.本文介绍了泰勒公式以及它在八个方面应用,使我们对泰勒公式有了更深一层的理解,对怎样应用泰勒公式解答具体问题有了更深一层的认识,只要在解题过程中注意分析,研究题设条件及其形式特点,并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧.参考文献[1]华东师范大学数学系,《数学分析》(上),高等数学出版社,2008,134-141[2]裴礼文,《数学分析中的典型问题及方法》,高等教育出版社,2009,150-157[3]同济大学数学教研室主编,《高等数学》,人民教育出版社,2007,139-145[4]刘玉琏,《数学分析讲义》,人民教育出版社,2000,120-138[5]张利凯,《高等数学学习辅导》,科学技术文献出版社,2002,138-156[6]M.克莱因,《古今数学思想》,上海科学技术出版社,1988,165-168[7]W.盖勒特、H.奎斯特纳等,《简明数学全书Ⅱ.高等数学与现代数学》,上海科学技术出版社,1985,295-297[8]H.J.巴茨,《数学公式书册》,科学出版社,1987,439-440[9]闵祥伟,《高等数学学习指导与例题分析》,北京邮电大学出版社,2004,520-521,539-540[10]吴炯圻,陈跃辉等,《高等数学及其思想方法与实验》(上),厦门大学出版社,2008,122-127[11]上海财经大学应用数学系,《高等数学》,上海财经大学出版社,2004,66-71[12]蔡子华,《新编高等数学导学》,科学出版社,2002,336-337,369-376。