机械机床毕业设计55JCS-018立时加工中心主轴箱及进给系统设计

机械机床毕业设计55JCS-018立时加工中心主轴箱及进给系统设计
机械机床毕业设计55JCS-018立时加工中心主轴箱及进给系统设计

前言

加工中心集计算机技术、电子技术、自动化控制、传感测量、机械制造、网络通信技术于一体,是典型的机电一体化产品,它的发展和运用,开创了制造业的新时代,改变了制造业的生产方式、产业结构、管理方式,使世界制造业的格局发生了巨大变化。现在的CAD/CAM、FMS、CIMS,都是建立在数控技术之上。目前数控技术已经广泛运用于制造业,数控技术水平的高低已成为衡量一个国家制造业现代化程度的核心标志。而加工中心的发展最为重要。

随着科学技术的高速发展,市场上对数控的要求也有很大的改变,正要求数控系统朝着高速、高精度、高可靠性发展,为追求加工效率及更通用化迫使数控机床结构模块化、智能化、柔性化、用户界面图形化,科学计算可视化,内置高性能PLC,多媒体技术应用等方面发展。

加工中心的优点有:1)提高加工质量;2)缩短加工准备时间;3)减少在制品;4)减少刀具费;5)最少的直接劳务费;6)最少的间接劳务费;7)设备利用率高。总的来说,加工中心的发展动向是高速、进一步提高精度和愈发完善的机能。

本设计说明书以大量图例来说明加工中心的主轴箱设计及横向进给机构的设计的思路。设计中得到颜竟成教授的悉心指导,在此向他表示诚挚的的感谢。由于编者的水平和经验有限,加之设计时间较短、资料收集较困难,说明书中难免有缺点和错误,在此恳请读者谅解,并衷心希望广大读者提出批评意见,使本设计说明书能有所改进。

1、机床总体方案设计

1.1机床总体尺寸参数的选定

根据设计要求并参考实际情况,初步选定机床主要参数如下:

工作台宽度×长度 400×1600mm×mm

工作台最大纵向行程 650mm

工作台最大横向行程 450mm

工作台最大垂直行程 500mm

X、Y轴步进电机 a12/3000i

Z步进电机 a12/3000i

主轴最大输出扭矩 70公斤力×米

主轴转速范围 45~2000r/min

主电动机的功率 4kw

主轴电动机转速 1500r/min

机床外行尺寸(长×宽×高) 2488×1200×2710mm×mm×mm

机床净重 500kg

1.2机床主要部件及其运动方式的选定

1、主运动的实现

因所设计的卧式加工中心要求能进行车、铣和镗,横向方向的行程比较大,因而采用工作台不动,而主轴箱各轴向摆放为卧式的机构布局;采用交流无级调速电动机实现无级调速,并且串联有级变速箱来扩大变速范围。为了使主轴箱在数控的计算机控制上齿轮的传动更准确、更平稳、工作更可靠,主轴箱主要采用离合器交换齿轮的有级变速。

2、给运动的实现

本次所设计的机床进给运动均由单片机进行数字控制,因此在X、Y、Z三个方向上,进给运动均采用滚珠丝杠螺母副,其动力由步进电机通过调隙齿轮传递。

3、数字控制的实现

采用单片机控制,各个控制按钮均安装在控制台上,而控制台摆放在易操作的位置,这一点须根据实际情况而定。

4、机床其他零部件的选择

考虑到生产效率以及生产的经济性,机床附件如油管、行程开关等,以及标准件如滚珠丝杠、轴承等均选择外购形式。

1.3 机床总体布局的确定

(一)确定主轴箱传动系统方案:

主传动系统是用来实现机床主运动的传动系统,它应具有一定的转速(速度)和一定的变速范围,以便采用不同材料的刀具,加工不同材料、不同尺寸、不同要求的工件,并能方便地实现运动的开停、变速、换向和制动等。

加工中心主传动系统主要包括电动机、传动系统和主轴部件,它与普通机床的主传动系统相比在结构上比较简单,这是因为变速功能全部或大部分由主轴电动机的无级调速来承担。

机床上常用的变速电动机有直流电动机和交流变频电动机,在额定的转速上为恒功率变速,通常变速范围仅为2-3;额定转速以下为恒转矩变速,调整范围很大,变速范围可大30甚至更大。上述功率和转矩特性一般不能满足机床的使用要求。为了扩大恒功率调速范围,在变速电动机和主轴之间串联一个有级变速箱。

本机床采用交流调速电机变速,为了在变速范围内,满足一定恒功率和恒转矩的要求,为了进一步扩大变速范围,在后面串联机械有级变速装置。

(二)确定主轴箱有级变速级数:

取变速箱的公比为f

?等于电动机的恒功率变速范围dp R ,即d p f

R ?=,功

率特性图是连续的,无缺口和无重合。如变速箱级数为Z ,则主轴的恒功率变速范围NP R 等于

1z z

NP

dp

f

f

R

R

?

?-==

变速箱的变速级数可得出:

lg lg np f

Z R ?

=

主轴要求的恒功率变速范围 2000/4544.4NP R == 电动机的恒功率变速范围 2000/1500 1.34dp R == 取变速箱的公比 1.41dp f

R ?==

故变速箱的变速级数 lg lg 44.5

11.15lg1.41

lg np f

Z R ?

=

=

=

故通过圆整取 Z=12。

(三)确定各齿轮的齿数:

在确定齿轮齿数时应注意:齿轮的齿数和不应过大,以免加大两轴之间的中心距,使机床的结构庞大,而且增大齿数和还会提高齿轮的线速度而增大躁声,所以在设计时要把齿数和控制在100120z S ≤~;为了控制每组啮合齿轮不产生根切现象,使最小齿数1820min Z ≥~,因而齿轮的齿数和不应过小。

受结构限制的个齿轮(尤其是最少齿轮),应能可靠地装到轴上或进行套装;齿轮的齿槽到孔壁或键槽2a m ≥(m 为模数),以保证有足够强的强度,避免出现变形或断裂现象。应保证:

min

1

22

T m D -≥ 标准直齿圆柱齿轮,其最少齿根直径min min ( 2.5)m D z =-,代入上式可得: 26.5min T m

Z ≥+

式中:min Z ——齿轮的最少齿数; m ——齿轮模数;

T ——齿轮键槽顶面至轴心线的距离。

由于此传动在同一变数组为同模数传动,各对齿轮的齿数的齿数之比,必须满足传动比;当各对齿轮的模数相同,且不采用变位齿轮时,则各对齿轮的齿数和必然相等,可列出:

1

21

2

j j

j j j z

z u z

s

z z =

+=

式中:12.j j z z ——分别为J 齿轮副的主动与从动齿轮的齿数; j u ——J 齿轮副的传动比; z s ——齿轮副的齿数和。 由上述公式可得:

1

2

11

1j j z

j

j z

j

u s

z

u s z

u =?+=

?+

因此,选定了齿数和z s ,便可以计算出各齿轮的齿数,或者由上式确定出齿轮副的任一齿轮后,用上式算出另一齿轮的齿数。

查表选择齿轮的齿数:

3

1

21

2

1

2

1

1

2

3

21

2

34

27

21

..47556037

30

.53

60

80

24

.96

40

a a a

b b b b b

c c c c

d d z z z z z z

z z z z z

z z

z

=======

其中a 代表二轴,b 代表三轴,c 代表四轴,d 代表主轴。

(四)拟定主运动转速图

由上述计算得,12级转速各传动组中传动数的确定方案有: 12=4×3 ,12=3×4 ,12=3×2×2, 12=2×3×2, 12=2×2×3

按照“前多后少”的原则,确定各传动组的传动副数为12=3×2×2。根据

“前密后疏”的原则,确定基本组在前,后面依次扩大,因此得结构式为

36

1

31222

=??,

第二扩大组的两个传动比连线之间,相距格数应为326n b Z Z ?=?=,变速范围是6

6

81.41?=≈,在允许的范围内,所选定的结构式共有三个传动组。

因此变速机构需要四轴,再加上电动机轴共五轴,故转速图有五条竖线。由

于齿轮传动比受到1

24

U ≤≤的限制,现在传动组C 的变速范围为68?=。可知这个传动组中两个传动副的传动比必然是极限值,即

1

2

2411

,24c c u u ??

=

===

该传动组的升降速度传动比都达到了极限值,就确定了轴Ⅲ的六级转速只有一种可能,即为180~1000r/min 。

轴Ⅱ-Ⅲ之间,两条传动比连线间应相距3格,取

1

2

211

, 1.412b b u

u ??

=

===,因此,确定轴Ⅱ的转速为355~710 r/min 。

对于轴Ⅰ,取

1

23

32111111,,2.82

4 1.41a a a u u u ??=

=====

于是决定了轴Ⅰ的转速为1000 r/min ,电动机轴与轴Ⅰ之间为齿轮传动,传动比为1000:1440。

综合上述,主轴的调速范围:45,63,90,125,180,250,355,500,710,1000,1400,2000。转速图如下:

2000

14001000710500355250180125906345

100

:1

44

30:

42

24:

4819:53

42

:3024:4

860

30

18:72

电ⅠⅡⅢⅣ

1440

图1.1 加工中心转速图

2、 主运动的设计计算

2.1 电动机的选择

2.1.1电动机的功率的计算

查《机床主轴/变速箱设计指导》:

端铣:硬质合金端铣刀,铣刀材料是45号钢; 1) 主切削力

0.75

0.85

0.73

1.00.13

118c e

p

z

f a d

a n F z

-=

公式中

背吃刀量34,4,a mm ≈=取a

()0.4

0.80.8160e d d mm a ==侧吃刀量取,

每齿进给量

()()0.10.2/,0.2/z

z

mm z mm z f

f ≈=取,

刀具直径200d mm =, 铣刀齿数z=4,选100/c m s v =, 铣刀转速

Z n a d f a F p

z e c ??????=-13.00.173.075.085.0118 416042002.0160

11813.075.075.085

.0??????=-

N 3.1706=

所以主切削力

0.75

0.85

0.73

1.00.13

0.85

0.75

0.75

0.13

118118441706.31600.2200160c e

p

z

N

f a d a n F z

--==??????=

2)切削功率 铣削过程中消耗的功率c

p

主要按圆周切削力c F 和铣削速度c v 进行计算

1706.3100

2.84100060

60

c

c

c

kw kw v

F p

π?=

=

=??

进给运动也消耗一些功率

f

p

,一般情况下

0.15f

c

p

p ≤,所以总的切削力

功率

1.15m

f

c

c

p

p p p =

≤+ ,由此可估算铣床主电动机的功率;

()

m

E

p

p

ηη≥

-式中铣床传动效率,取()η=0.85,

1.15 1.15

2.84

3.840.85

E P kw kw P η

?∴≥

=

=

2.1.2 电动机参数的选择

在选择电动机时,必须使得P P ≥额定总,根据这个原则,查《机械设计手册》选取Y112M-4型电动机,功率为4kw 。其基本参数如下(单位为mm):

满载转速为min /1440max r n =

2.2 齿轮传动的设计计算

由于直齿圆柱齿轮具有加工和安装方便、生产成本低等优点,而且直齿圆柱齿轮也能满足传动设计要求,所以本次设计选用渐开线直齿圆柱齿轮传动;主轴箱中的齿轮用于传递动力和运动,它的精度直接与工作的平稳性、接触误差及噪声有关。为了控制噪声,机床上主传动齿轮都选用较高的精度,但考虑到制造成本,本次设计都选用7-6-6的精度。具体设计步骤如下:

2.2.1 模数的估算

按接触疲劳和弯曲疲劳计算齿轮模数比较复杂,而且有些系数只有在齿轮各参数都已知道后方可确定,所以只在草图画后校核用。在绘草图之前,先估算,再 标准齿轮模数。

齿轮弯曲疲劳的估算公式:

3

32(N w j

N

mm Z m n ≥式中即为齿轮所传递的功率) 齿面点蚀的估算公式:

3

32(N j

N

A mm n

≥式中即为齿轮所传递的功率)

其中j n 为大齿轮的计算转速,A 为齿轮中心距。

由中心距A 及齿数1Z 、2Z 求出模数:

12

2j A

mm m Z Z =

+ 根据估算所得w m 和j m 中较大的值,选取相近的标准模数。 前面已求得各轴所传递的功率,各轴上齿轮模数估算如下:

第一对齿轮副

33

3

312

1440/min

4

3232 1.39341440

4

3232 4.49144022 4.490.113447j

w j j

j r N mm mm mm Z N

A mm mm mm

A mm mm mm n

m n n m Z Z =∴≥=≈?≥=≈?=

=≈++

所以,第一对齿轮副传动的齿轮模数应为 1.39w mm m m ≥≥

第二对齿轮

33

3312

1000/min

4

3232 1.69271000

4

3232 5.02100022 5.020.132753j

w j j

j r N mm mm mm Z N

A mm mm mm

A mm mm mm n

m n n m Z Z =∴≥=≈?≥=≈?=

=≈++

所以,第二对齿轮副传动的齿轮模数应为 1.69w mm m m ≥≥

第三对齿轮副

33

3312

355/min

2.4

3232 1.8237355

2.4

3232 6.0535522 6.050.1343753j

w j j

j r N mm mm mm Z N

A mm mm mm

A mm mm mm

n

m n n m Z Z =∴≥=≈?≥=≈?=

=≈++

所以,第三对齿轮副传动的齿轮模数应为 1.82w mm m m ≥≥

第四对齿轮副

33

3312

125/min

2.43232 2.4540125

2.4

32328.56125228.560.144080j

w j j

j r N mm mm mm Z N

A mm mm mm

A mm mm mm

n

m n n m Z Z =∴≥=≈?≥=≈?=

=≈++

所以,第三对齿轮副传动的齿轮模数应为 2.45w mm m m ≥≥

综合上述,为了降低成本,机床中各齿轮模数值应尽可能取相同,但因为V 轴的转速比较小,扭矩比较大,为了增加其强度和在主轴上能起到飞轮的作用,需增加V 轴齿轮的几何尺寸。所以,本次设计中在Ⅰ→Ⅱ对齿轮模数均为

1

2.5mm m =,在Ⅱ→Ⅳ对齿轮上就取2

3mm m

=。

2.2.2齿轮分度圆直径的计算

根据渐开线标准直齿圆柱齿轮分度圆直径计算公式可得各个传动副中齿轮的分度圆直径为:单位(mm )

1

19 2.547.5a mm d =?= 1

53 2.5132.5

a mm d =?='

2

24 2.560a mm d =?= 2

48 2.5120a mm d =?=' 330 2.575a mm d =?= 3

60 2.5

150a mm d =?='

1

24372b mm d =?= 1

48374b mm d =?=' 2

423126b mm d =?= 2

90390b mm d =?='

118354c mm d =?= 1

723216c mm d =?='

2603180c mm d

=?=

2

30390c mm d =?='

2.2.3 齿轮宽度B 的确定

齿轮影响齿的强度,但如果太宽,由于齿轮制造误差和轴的变形,可能接触不均匀,反而容易引起振动和噪音。一般取B=(6~10)m 。本次设计中,取主动轮宽度B=9m=18mm(最后一对齿轮也取B=79m=18mm)。

2.2.4 齿轮其他参数的计算

根据《机械原理》中关于渐开线圆柱齿轮参数的计算公式及相关参数的规定,齿轮的其他参数都可以由以上计算所得的参数计算出来,本次设计中,这些参数在此不在一一计算。

2.2.5齿轮结构的设计

不同精度等级的齿轮,要采用不同的加工方法,对结构的要求也不同,七级精度的齿轮,用较高精度的滚齿机或插齿机可以达到。但淬火后,由于变形,精度将下降。因此,需要淬火的7级齿轮一般滚或插后要剃齿,使精度高于7级,或者淬火后再珩齿。6级精度的齿轮,用精密滚齿机可以达到。淬火齿轮,必须达到6级。机床主轴箱中的齿轮齿部一般都需要淬火。

2.2.6齿轮的校核(接触疲劳强度)

计算齿轮强度用的载荷系数K ,包括使用系数A K ,动载荷系数V K ,齿间载荷分配系数αK 及齿向载荷分布系数βK ,即:

()2

11.25 1.07 1.1 1.12 1.65

0.88 2.5189.8211100A

V

H E H E

H

H

K u b u

mpa

K K K K K d αβ

εεπσ

σ

=???====+==查表得:将数据代入得;,Z ,Z Z Z Z Z

齿轮接触疲劳强度满足,因此接触的应力小于许用的接触应力。其他齿轮也符合要求,故其余齿轮不需验算,在此略去。

2.3 轴的设计计算

2.3.1 各传动轴轴径的估算

滚动轴承的型号是根据轴端直径确定的,而且轴的设计是在初步计算轴径的基础上进行的,因此先要初算轴径。轴的直径可按扭转强度法用下列公式进行估算。

3

P

d mm n

A

≥ 对于空心轴,则 (

)

04

3

1P

d m m n A

β

-

式中,P ——轴传递的功率,KW ; n ——轴的计算转速,r/min; 0A ——其经验值见表 取β的值为1.5。

(1)计算各传动轴传递的功率P

根据电动机的计算选择可知,本次设计所用的电动机额定功率4d kw N =,各传动轴传递的功率可按下式计算:

d

p N

η?=

η--电机到传动轴之间传动效率;

由传动系统图可以看出,本次设计中采用了联轴器和齿轮传动,及轴承。则各轴传递的功率为:

12340.94,0.94,0.93,0.91ηηηη====

所以,各传动轴传递的功率分别为: 1

40.94 3.761kw p p η

?=?==

2

1

3.760.94 3.532kw p p η

?=?==

32

3.530.94 3.293kw p p

η?=?==

4

3

3.290.91 2.964kw p p η

?=?==

(2) 估算各轴的最小直径

3

1115p n

d ≥? 本次设计中,考虑到主轴的强度与刚度以及制造成本的经济性,初步选择主轴的材料为40Cr ,其他各轴的材料均选择45钢,取A0值为115,各轴的计算转速可推算出为:

12341440/min,1000/min,355/min,125/min r r r r n n n n ==== 所以各轴的最小直径为:

314115 6.061440mm d ≥?= 32 3.76

11517.891000mm d ≥?= 3

3 3.5311524.73355mm d ≥?= 3

4 2.96

11533.02125

mm d ≥?= 在以上各轴中,因有些轴上开有平键或花键,所以为了使键槽不影响轴的强度,应将轴的最小直径增大到5%,将增大后的直径圆整后分别取各轴的最小直径为:

2min 3min 4min 20,25,30mm mm mm d d d === 对于主轴应该应用公式; ()

304

1P

A n d β≥?- 故主轴为()

3

4

4

11537.412510.5mm d ≥?=- 考虑到轴上有花键,所以应将轴的最少直径增大5%,将增大的直径在圆整后取 460mm d =

2.3.2各轴段长度值的确定

各轴段的长度值,应根据主轴箱的具体结构而定,且必须满足以下的原则;应满足轴承及齿轮的定位要求。

2.3.3 轴的刚度与强度校核

1)、轴的受力分析及受力简图

由主轴箱的展开图可知,该轴的动力源由电动机通过弹性联轴器传递过来,而后通过齿轮将动力传递到下一根轴。其两端通过一对角接触轴承将力转移到箱体上去。由于传递的齿轮采用的是直齿圆柱齿轮,因此其轴向力可以忽略不计。所以,只要校核其在XZ平面和YZ平面的受力。轴所受载荷是从轴上零件传来的,计算时常将轴上的分布载荷简化为集中力,其作用点取为载荷分布段的中点。作用在轴上的扭矩,一般从传动件轮毂宽度的中点算起。通常把轴当作铰链支座上的粮,支反力的作用点与轴承的类型和布置方式有关。其受力简图如下:在XZ平面内:

图2.1 XZ平面受力分析

在YZ平面内:

图2.2 YZ平面受力分析

2)作出轴的弯矩图

根据上述简图,分别按XZ平面及YZ平面计算各力产生的弯矩,并按计算结果分别作出两个平面的上的弯矩图。

则该轴在XZ平面内的弯矩图为:

图2.3 XZ平面内的弯矩

同理可得在YZ 平面内的弯矩图为:

图2.4 YZ 平面内的弯矩

3)作出轴的扭矩图

由受力分析及受力简图可知, 则扭矩图为:

图2.5 扭矩图

4)、作出总的弯矩图

由以上求得的在XZ 、YZ 平面的弯矩图,根据2

2

XZ

YZ M M

M =+可得总的弯矩图为:

图2.6 合成弯矩图

5)、作出计算弯矩图

根据已作出的总弯矩图和扭矩图,则可由公式()2

2

ca T M M

α=

+求出

计算弯矩,其中α是考虑扭矩和弯矩的加载情况及产生应力的循环特性差异的系数,因通常由弯矩产生的弯曲应力是对称循环的边应力,而扭矩所产生的扭转切应力则常常不是对称循环的变应力,故在求计算弯矩时,必须计及这种循环特性差异的影响。既当扭转切应力为静应力时,取a=0.3;扭转切应力为脉动循环变应力时,取a=0.6;若扭矩切应力也为对称循环变应力时,则取a=1。应本次设计中扭转切应力为静应力,所以取a=0.3,则计算弯矩图为:

图2.7 计算弯矩图

6) 校核轴的强度

选择轴的材料为45钢,并经过调质处理。由机械设计手册查得其许用弯曲应力为60MP ,由计算弯矩图可知,该轴的危险截面在B 的作用点上,由于该作用点上开有花键,由机械设计可查得其截面的惯性矩:

()()2

4/32W d D d D d zd D π??=+-+??

其中Z 为花键的数目,在本次设计中,6,23,28,6====b d D z ,所以其截面的惯性矩为W=2984.23mm 。

根据标准直齿圆柱齿轮受力计算公式可得圆周力与径向力: 11

2t T F d

= r t tg F F α=?

其中:1T 为小齿轮传递的扭转,mm N ?; α为啮合角,对标准齿轮,取020α=;

而t F 与r F 分别对应与XZ 平面及平面YZ 的力。各段轴的长度可从2号A0图中得出,则根据前面的公式可得出该轴危险截面的计算弯矩为:

m N M ca ?=22.20014

则该轴危险截面所受的弯曲应力为:

MP MP ca 6017.4848.41522

.200144

2322.200142

≤==?=

πδ 所以该轴的强度满足要求。其余各轴的校核步骤跟Ⅲ轴一样,在此就不在校其余各轴。

2.3.4 主轴的确定

主轴的构造和形状主要决定与主轴上所安装的刀具、夹具、传动件、轴承等零件的类型、数量、位置和安装定位方法等。应能保证定位准确、安装可靠、连接牢固、装卸方便,并能传递足够的转矩。

1) 主轴材料的选择

考虑到主轴的刚度及强度,选择主轴的材料为40Cr ,并经过调质处理。 2) 主轴结构的确定 ①主轴直径的选择

根据机床主电动机功率来确定1D

∵P=2.96KW ,属于中等以上转速,中等以下载荷的机床 ∴可取1D =50~70mm ; ②主轴内孔直径

()4

4

4

40

4

/6411/64

d K

I

D d

D

K

I

D π

ξπ-??

=

=

=-=- ?

??

其中 0K ,0I ---空心主轴的刚度和截面惯性矩 K ,I ---实心主轴的刚度和截面惯性矩 当0.7ξ≥则主轴的刚度急剧下降,故取7.0<ξ

主轴的结构应根据主轴上应安装的组件以及在主轴箱里的具体布置来确定,主轴的具体结构已在三维图上表达清楚。

③提高主轴的性能措施 a 、提高旋转精度

提高主轴组件的旋转精度,首先是要保证主轴和轴承具有一定的精度,此外还可以采取一些工艺措施。如选配法、装配后精加工。

b 、改善动态特性

主轴应有较高的动刚度和较大的阻尼,使得主轴组件在一定副值的周期性激振力作用下,受迫振动的振幅较小。通常,主轴组件的固有频率是而后内高的,远远高于主轴的最高转速,故不必考虑共振问题,按静态处理。

c.控制主轴组件温升

主轴运转时滚动轴承的滚动体在滚道中磨擦、搅油,滑动轴承乘载油膜受到剪切内磨擦,均会产生热量,使轴承温度上升。故控制主轴组件温升和热变形,提高其热稳定性是十分必要的。主要有两项措施。

(1)减少支承发热量。

卧式单面多轴钻孔组合机床液压系统设计_毕业设计

毕业设计指导书 设计课题:卧式单面多轴钻孔组合机床液压系统设计适用:机械设计制造及其自动化专业

前言 液压传动技术是机械设备中发展最快的技术之一,特别是近年来与微电子、计算机技术结合,使液压技术进入了一个新的发展阶段,机、电、液、气一体是当今机械设备的发展方向。在数控加工的机械设备中已经广泛引用液压技术。作为数控技术应用专业的学生初步学会液压系统的设计,熟悉分析液压系统的工作原理的方法,掌握液压元件的作用与选型及液压系统的维护与修理将是十分必要的。 液压传动在国民经济的各个部门都得到了广泛的应用,但是各部门采用液压传动的处发点不尽相同:例如,工程机械、压力机械采用液压传动的主要原因是取其结构简单、输出力大;航空工业采用液压传动的主要原因是取其重量轻、体积小;机床上采用液压传动的主要原因则是取其在工作过程中能无级变速,易于实现自动化,能实现换向频繁的往复运动等优点。为此,液压传动常在机床的如下一些装置中使用: 1.进给运动传动装置 这项应用在机床上最为广泛,磨床的砂轮架,车床、自动车床的刀架或转塔刀架,磨床、钻床、铣床、刨床的工作台或主轴箱,组合机床的动力头或滑台等,都可采用液压传动。 2.往复主体运动传动装置 龙门刨床的工作台、牛头刨床或插床的滑枕,都可以采用液压传动来实现其所需的高速往复运动,前者的速度可达60~90m/min,后者的速度可达30~50m/min。这些情况下采用液压传动,在减少换向冲击、降低能量消耗,缩短换向时间等方面都很有利。 3.回转主体运动传动装置 车床主轴可以采用液压传动来实现无级变速的回转主体运动,但是这一应用目前还不普遍。 4.仿形装置 车床、铣床、刨床上的仿形加工可以采用液压伺服系统来实现,其精度最高可达0.01~0.02mm。此外,磨床上的成型砂轮修正装置和标准四缸校正装置亦

车床主轴箱课程设计12级转速

目录 一、机床总体设计---------------------------------------------------------------------2 1、机床布局--------------------------------------------------------------------------------------------2 2、绘制转速图-----------------------------------------------------------------------------------------4 3、防止各种碰撞和干涉-----------------------------------------------------------------------------5 4、确定带轮直径--------------------------------------------------------------------------------------5 5、验算主轴转速误差--------------------------------------------------------------------------------5 6、绘制传动系统图-----------------------------------------------------------------------------------6 二、估算传动件参数确定其结构尺寸-------------------------------------------7 1、确定传动见件计算转速--------------------------------------------------------------------------7 2、确定主轴支承轴颈尺寸--------------------------------------------------------------------------7 3、估算传动轴直径-----------------------------------------------------------------------------------7 4、估算传动齿轮模数--------------------------------------------------------------------------------8 5、普通V带的选择和计算-------------------------------------------------------------------------8 三、机构设计--------------------------------------------------------------------------10 1、带轮设计-------------------------------------------------------------------------------------------10 2、齿轮块设计----------------------------------------------------------------------------------------10 3、轴承的选择----------------------------------------------------------------------------------------10 4、主轴主件-------------------------------------------------------------------------------------------10 5、操纵机构-------------------------------------------------------------------------------------------10 6、滑系统设计----------------------------------------------------------------------------------------10 7、封装置设计----------------------------------------------------------------------------------------10 8、主轴箱体设计-------------------------------------------------------------------------------------11 9、主轴换向与制动结构设计----------------------------------------------------------------------11 四、传动件验算-----------------------------------------------------------------------11 1、齿轮的验算----------------------------------------------------------------------------------------11 2、传动轴的验算-------------------------------------------------------------------------------------13 五、设计感想--------------------------------------------------------------------------15 六、参考文献--------------------------------------------------------------------------16

组合机床毕业设计开题报告

组合机床毕业设计开题报告 毕业设计(论文)开题报告 理工类 题目: 载重汽车主传动轴万向节叉端面钻孔组合 机床设计学院: 机械工程学院 专业班级: 机械设计制造及其自动化机械000 学生姓名: 000 学号: 0000 指导教师: 000,教授, 2012年 04 月 1日 淮海工学院毕业设计,论文,开题报告 1.课题研究的意义,国内外研究现状、水平和发展趋势 随着社会的不断进步~机械加工技术的不断发展~传统的机床已不能完全适应新形势的要求。传统的机床只能对一种零件进行单刀~单工位~单轴~单面加工~生产效率低且加工精度不稳定~为了克服传统机床的弊端~工程技术人员相应地设计出了专用机床。但由于专用机床是根据某一工艺要求专门设计制造的~且它的组成部件均是专门设计制造的~因此相对于传统机床而言~专用机床的造价过于昂贵~设计制造周期长。为了解决传统机床与专用机床之间的矛盾组合机床便应运而生了~组合机床兼有低成本和高效率的优点~在大批、大量生产中得到广泛应用~在组合机床上可以完成钻孔、扩孔、铣削、磨削等工序~生产效率高~加工精度稳定~引起了越来越多工程人员的关注。本课题针对载重汽车主传动轴万向节叉端面钻孔组合机床设计~有利于提高大批量生产的生产效率~提高加工精度稳定性~节约各方面的资源。

最早的组合机床于1911年在美国制成~用于加工汽车零件之后便广泛应用于大批量生产的机械工业中~并且随着机械工业的发展而逐步完善。我国的组合机床的发展已有28年的历史~其科研和生产都具有相当的基础~应用也深入到很多行业~它是提高生产效率和实现高速发展必不可少的设备之一。组合机床及其自动线是集机电于一体的综合自动化程度较高的制造技术和成套工艺装备。它的特征是高效、高质、经济实用~因而被广泛应用于工程机械、交通、能源、军工、轻工、家电等行业。我国传统的组合机床及组合机床自动线主要采用机、电、气、液压控制~它的加工对象主要是生产批量比较大的大中型箱体类和轴类零件,近年研制的组合机床加工连杆、板件等也占一定份额,~完成钻孔、扩孔、铰孔~加工各种螺纹、镗孔、车端面和凸台~在孔内镗各种形状槽~以及铣削平面和成形面等。随着技术的不断进步~一种新型的组合机床——柔性组合机床越来越受到人们的青睐~它应用多位主轴箱、可换主轴箱、编码随行夹具和刀具的自动 淮海工学院毕业设计,论文,开题报告更换~配以可编程序控制器,PLC,、数字控制,NC,等~能任意改变工作循环控制和驱动系统~并能灵活适应多品种加工的可调可变的组合机床。另外~近年来组合机床加工中心、数控组合机床、机床辅机,清洗机、装配机、综合测量机、试验机、输送线,等在组合机床行业中所占份额也越来越大。 我国组合机床及其组合机床自动线总体技术水平比发达国家要相对落后~国内所需的一些高水平组合机床几乎都从国外进口。第21届日本国际机床博览会上来自世界10多个国家和地区的500多家机床制造商和团体展示的最先进的机床设备中~超高速和超高精度加工技术装备与复合、多功能、多轴化控制设备等深受欢迎。该届博览会上展出的加工中心中~主轴转速10000-20000r/min~最高进给速度可达20-60m/min,复合、多功能、多轴化控制装备的前景亦被看好。在零部件一体化程度不断提高、数量减少的同时~加工的形状却日益复杂。在工程机械快速发

机床主轴箱设计说明书

机床主轴箱设计说明书 一、机床的型号及用途 1、规格 选用型号 CA6140、规格 Φ320×1000 2、用途 CA6140型卧式车床万能性大,适用于加工各种轴类、套筒类、轮盘类零件上的回转表面。可车削外圆柱面、车削端面、切槽和切断、钻中心孔、钻孔、镗孔、铰孔、车削各种螺纹、车削外圆锥面、车削特型面、滚花和盘绕弹簧等。加工围广、结构复杂、自动化程度不高,所以一般用于单件、小批生产。 二、 机床的主参数和其他主要技术要求 1、主参数和基本参数 1) 主参数 机床主参数系列通常是等比数列。普通车床和升降台铣床的主参数均采用公比为1.41的数列,该系列符合国际ISO 标准中的优先系列。 普通车床的主参数D 的系列是:250、320、400、500、630、800、1000、1250mm 。 2) 基本参数 除主参数外,机床的基本是指与被加工工件主要尺寸有关的及与工、夹、量具标准有关的一些参数,这些主参数列入机床的参数标准,作为设计时依据。 3)普通车床的基本参数 普通车床的基本参数应符合《普通车床参数国家标准》见参考文献 【一】中表2的规定,有下列几项数; 刀架上最大工件回转直径1D (mm ) 由于刀架组件刚性一般较弱,为了提高生产效率,国外车床刀架溜板厚度有所增加,在不增加中心高时,1D 值减少的趋势。我国作为参数标准的1D 值,基本上取12D D >/,这样给设计留一定的余地,设计时,在刀架刚度允许的条件下能保证使用要求,可以取较大的1D 值。所以查参考文献【一】(表2)得1D =160mm 。 主轴通孔直径d ﹙mm ﹚

普通车床主轴通孔径主要用于棒料加工。在机床结构允许的条件下,通孔直径尽量取大些。参数标准规定了通孔直径d的最小值。所以由参考文献 【一】(表二)d=36mm。 主轴头号 普通车床采用短锥法兰式主轴头,这种形式的主轴头精度高,装卸方便。 主轴端部及其结构合面得型式和基本尺寸要符合《法兰式车床主轴端部尺寸部标注》的规定。根据机床主参数值大小采用不同号数的主轴头(4~15号),号值数等于法兰直径的1/25.4而取其整数值。所以由参考文献【一】(表2)可知主轴头号取4.5 装刀基面至主轴中心距离h(mm) 为了使用户,提高刀具的标准化程度,根据机械工业部工具研究所的刀 具杆标准,规定了h=22mm。 最大工件长度L (mm) 最大工件长度L是指尾座在床身处于最后位置,尾座顶尖套退入尾座孔时容纳的工件长度。为了有利组织生产,采用分段等差的长度数列。所以由参考文献【一】(表2)得L=1000mm。 2、主传动的设计 1)主轴极限的确定 由课程设计任务书中给出的条件可知: Z=40 r/min min Z=1800 r/min max 2)公比的确定 主轴极限转速的确定后,根据机床的使用性能和结构要求,选择主轴转速数列的公比值,因为中型通用机床,常用的公比为1.26或是1.41,再根据极限转速,按参考文献【一】中表2—1选出标准转速数列公比 =1.41。 3)主轴转速级数的确定 按任务书要求Z=12 按标准转速数列为40、56、80、115、160、225、315、445、625、880、1250、1800r/min 4)主传动电动机功率的确定 电动机的额定功率为: N =4kW 额

《金属切削机床》课程设计--C616型车床主轴箱设计(全套图纸)

目录 全套图纸加174320523 各专业都有 1.概述和机床参数确定 (1) 1.1机床运动参数的确定 (1) 1.2机床动力参数的确定 (1) 1.3机床布局 (1) 2.主传动系统运动设计 (2) 2.1确定变速组传动副数目 (2) 2.2确定变速组的扩大顺序 (2) 2.3绘制转速图 (3) 2.4确定齿轮齿数 (3) 2.5确定带轮直径 (3) 2.6验算主轴转速误差 (4) 2.7绘制传动系统图 (4) 3.估算传动件参数确定其结构尺寸 (5) 3.1确定传动转速 (5) 3.2确定主轴支承轴颈尺寸 (6) 3.3估算传动轴直径 (6) 3.4估算传动齿轮模数 (6) 3.5普通V带的选择和计算 (7) 4.结构设计 (8) 4.1带轮设计 (8) 4.2齿轮块设计 (8) 4.3轴承的选择 (9) 4.4主轴组件 (9) 4.5操纵机构、滑系统设计、封装置设计 (9) 4.6主轴箱体设计 (9)

4.7主轴换向与制动结构设计 (9) 5.传动件验算 (10) 5.1齿轮的验算 (10) 5.2传动轴的刚度验算 (12) 5.3花键键侧压溃应力验算 (16) 5.4滚动轴承的验算 (16) 5.5主轴组件验算 (17) 6. 主轴位置及传动示意图 (20) 7.总结 (20) 8.参考文献 (21) 1.概述 1机床课程设计的目的 机床课程设计,是在金属切削机床课程之后进行的实践性教学环节。其目的在于通过机床运动机械变速传动系统的结构设计,使学生在拟定传动和变速的结构的结构方案过程中,得到设计构思,方案分析,结构工艺性,机械制图,零件计算,编写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌握基本的设计方法,并培养学生具有初步的结构分析,结构设计和计算能力。轻型车床是根据机械加工业发展需要而设计的一种适应性强,工艺范围广,结构简单,制造成本低的万能型车床。它被广泛地应用在各种机械加工车间,维修车间。它能完成多种加工工序;车削内圆柱面,圆锥面,成形回转面,环形槽,端面及内外螺纹,它可以用来钻孔,扩孔,铰孔等加工。 1.1 机床运动参数的确定 (1)确定公比φ及Rn 已知最低转速n min =45rpm,最高转速n max =1980rpm,变速级数Z=12,则公比: φ= (n max /n min )1/(Z-1) =(1980rpm/45rpm)1/(12-1)≈1.41 转速 调整范围: Rn=n max /n min =44 (2)求出转速系列 根据最低转速45r/min,最高转速max n=1980r/min,公比φ=1.41,按《金属切屑机床》(戴曙编)表7-1选出标准转速数列: 2000 1400 1000 710 500 355 250 180 125 90 63 45 1.2机床动力参数的确定 已知电动机功率为N=4kw,根据《金属切削机床简明手册》(范云涨、陈兆年编)表11-32选择主电动机为Y112M-4,其主要技术数据见下表1: 表1 Y90L-4技术参数

机械机床毕业设计38半精镗及精镗气缸盖导管孔组合机床设计(镗削头设计)

1前言 在机械制造中,对单件或小批量生产的工件,许多工厂采用通用机床加工。由于通用机床要适应被加工零件形状和尺寸的要求,故机床结构一般比较复杂。不仅如此,在实际加工中,由于只能单人单机操作,一道一道工序地完成,所以工人的劳动强度大、生产率低,工件的加工质量也不稳定。 针对以上的问题,组合机床便出现并逐步发展起来。组合机床是根据加工需要,以大量通用部件为基础,配以少量专用部件组成一种高效组合机床。组合机床一般采用多轴、多刀、多工序、多面或多工位同时加工的方法,生产效率比通用机床高几倍至几十倍。 组合机床一般用于加工箱体类或特殊形式的零件。加工时,工件一般不旋转,有刀具的旋转运动和刀具与工件的相对进给运动来实现各种加工。组合机床的设计,目前基本上有两种方式:第一,是根据具体加工对象的特征进行专门设计,这是当前最普遍也是最实用的做法。第二,随着组合机床在我国机械行业的广泛使用,广大工人和技术人员总结出生产和使用组合机床的经验,发现组合机床不仅在其组成部件方面有共性,可设计成通用部件,而且一些行业在完成一定工艺范围内的组合机床是极其相似的,有可能设计成通用部件,这种机床称为“专用组合机床”。这种组合机床不需要每次按具体对象进行专门设计和生产,而是设计成通用品种,组织成批量生产,然后按被加工零件的具体需要,配以简单的夹具和刀具,即可组成加工一定对象的高效率设备。 为了使组合机床能在中小批量生产中得到应用,往往需要应用成组技术,把结构和工艺相似的零件集中在一台组合机床上加工,以提高机床的利用率。 该课题是数控气缸盖导管孔组合机床的主轴箱设计。该课题来源于高精公司。这次设计任务是组合机床主轴箱部分的设计。主轴箱设计是该次设计中一个重要的传动部分的设计。首先,在同组同学完成对组合机床的总体设计并绘制出“三图一卡”的基础上,绘制主轴箱设计的原始依据图;接着确定主轴结构;然后根据被加工孔的位置,拟定传动系统。这里应注意轴与轴的最小间距应符合规定要求,避免产生干涉,这一步是主轴箱设计的核心部分;第四步,计算并校核主轴是否符强度要求,其中包括对主轴配套轴承的校核;第五步,设计计算同步带传动装置;最后,绘制出相应的主轴箱图和同步带图以及它们的一些零件图。 整个毕业设计,需要查阅大量的资料作为参考,在设计过程中必须考虑各个方面的问题,要从机床的合理性、经济性、工艺性、实用性以及被加工零件的具体要求出发,确立合理的设计方案。要不断地检查目标的完成情况,这样才能发现自己存在的不足,遇到的问题也要及时请教指导老师,研究坚决的方法,得到进步。最终在老师的耐心和认真负责的指导下,顺利完成了这个毕业设计。

车床主轴箱设计---参考.

中北大学 信息商务学院 课程设计说明书 学生姓名:学号: 系:机械自动化系 专业:机械设计制造及其自动化 题目:机床课程设计 ——车床主轴箱设计 指导教师:马维金职称: 教授 黄晓斌职称: 副教授 2013年12月28日

目录 一、传动设计 1.1电机的选择 1.2运动参数 1.3拟定结构式 1.3.1 确定变速组传动副数目 1.3.2确定变速组扩大顺序 1.4拟定转速图验算传动组变速范围 1.5确定齿轮齿数 1.6确定带轮直径 1.6.1确定计算功率Pca 1 .6.2选择V带类型 1.6.3确定带轮直径基准并验算带速V 1.7验算主轴转速误差 1.8绘制传动系统图 二、估算主要传动件,确定其结构尺寸 2.1确定传动件计算转速 2.1.1主轴计算转速 2.1.2各传动轴计算转速 2.1.3各齿轮计算转速 2.2初估轴直径 2.2.1确定主轴支承轴颈直径 2.2.2初估传动轴直径 2.3估算传动齿轮模数 2.4片式摩擦离合器的选择及计算 d 2.4.1决定外摩擦片的内径 2.4.2选择摩擦片尺寸 2.4.3计算摩擦面对数Z 2.4.4计算摩擦片片数 2.4.5计算轴向压力Q 2.5V带的选择及计算 a 2.5.1初定中心距 L 2.5.2确定V带计算长度L及内周长 N

2.5.3验算V带的挠曲次数 2.5.4确定中心距a 2.5.5验算小带轮包角 α 1 2.5.6计算单根V带的额定功率 P r 2.5.7计算V带的根数 三、结构设计 3.1带轮的设计 3.2主轴换向机构的设计 3.3制动机构的设计 3.4齿轮块的设计 3.5轴承的选择 3.6主轴组件的设计 3.6.1各部分尺寸的选择 3.6.1.1主轴通孔直径 3.6.1.2轴颈直径 3.6.1.3前锥孔尺寸 3.6.1.4头部尺寸的选择 3.6.1.5支承跨距及悬伸长度 3.6.2主轴轴承的选择 3.7润滑系统的设计 3.8密封装置的设计 四、传动件的验算 4.1传动轴的验算 4.2键的验算 4.2.1花键的验算 4.2.2平键的验算 4.3齿轮模数的验算 4.4轴承寿命的验算 五、设计小结 六、参考文献

普通车床主轴箱课程设计

课程设计 课程名称:金属切削机床 学院:机械工程学院 专业:机械设计制造及其自动化姓名:学号: 年级:任课教师: 2011年 1月15 日 贵州大学机械工程学院

目录 目录 (2) 一、绪论 (4) 二、设计计算 (5) 1机床课程设计的目的 (5) 2机床主参数和基本参数 (5) 3操作性能要求 (5) 三、主动参数的拟定 (6) 1确定传动公比 (6) 2主电动机的选择 (6) 四、变速结构的设计 (6) 1主变速方案拟定 (6) 2变速结构式、结构网的选择 (7) 1. 确定变速组及各变速组中变速副的数目 (7) 2. 变速式的拟定 (7) 3. 结构式的拟定 (7) 4. 结构网的拟定 (8) 5. 结构式的拟定 (8) 6. 结构式的拟定 (9) 7. 确定各变速组变速副齿数 (10) 8. 绘制变速系统图 (11) 五、结构设计 (12) 1.结构设计的内容、技术要求和方案 (12) 2.展开图及其布置 (12) 3.I轴(输入轴)的设计 (12) 4.传动轴的设计 (13) 5.主轴组件设计 (14) 1. 内孔直径d (14) 2. 轴径直径 (15) 3. 前锥孔直径 (15) 4. 主轴悬伸量a和跨距 (15) 5. 主轴轴承 (15) 6. 主轴和齿轮的联接 (16) 7. 润滑和密封 (16) 8. 其它问题 (16) 六、传动件的设计 (17) 1带轮的设计 (17)

2传动轴直径的估算 (20) 1 确定各轴计算转速 (20) 2传动轴直径的估算 (21) 3各变速组齿轮模数的确定 (22) 4片式摩擦离合器的选择和计算 (25) 七、本文工作总结 (27) 参考文献 (28) 致谢 (29)

组合机床毕业设计开题报告

科学技术学院 毕业设计(论文)开题报告 题目:卧式双面24轴组合钻床总体设计及左主轴箱设计(双级圆锥-圆柱齿轮减速器箱体底座) 学科部:理工学科部 专业:机械设计制造及其自动化 班级:机制103班 学号:7011210138 姓名:徐伟龙 指导教师:永平 填表日期:2013 年12 月20 日

一、选题的依据及意义: 组合机床(如图1所示)是根据工件加工需要,以大量通用部件为基础,配之以少量的专用部件和按工件形状和加工工艺设计的专用部件和夹具,组成的半自动或自动的专用机床。组合钻床一般用于加工箱体类或特殊形状等零件。加工时,工件一般不旋转,由刀具的旋转运动和刀具与工件的相对进给运动,来实现钻孔、扩孔、锪孔、铰孔、镗孔等加工。 图1 组合机床具有如下的优点:(1)主要用于棱体零件和杂件等的孔面加工。(2)生产率高。因为工序集中,可以多面、多工位、多轴、多刀同时进行加工。(3)加工精度稳定。因为工序固定,可选用成熟的通用部件、精密夹具和自动工作循环来确保加工精度的一致。(4)研制周期短,便于设计、制造和使用维护,成本较低。因为通用化、系列化、标准化程度高,通用件可组织批量生产进行预先制造或外购。(5)自动化程度高,劳动强度较低。(6)配置灵活。因结构是横块化、组合化。可按照工件或工序要求,用大量通用部件和少量专用部件灵活组成各种

类型的组合机床和自动线;机床便于改装:产品或工艺发生变化时,通用部件一般还可以重复使用。 作为机械设计制造专业的学生,通过《金属切削机床》这门课程对组合钻床的了解,结合《机械设计》、《机械原理》等专业课程的学习,对组合钻床有了一定的感性和理性认知,特别是对多面、多工位、多轴、多刀同时加工产生的浓厚的兴趣,组合钻床的设计对我们机械专业学生对本人也是比较大的挑战,所以我才选择组合钻床的设计作业我的毕业设计,这是对我大学四年所学知识的综合运用,也是对我大学四年来的综合考验和考量。 二、国外研究现状及发展趋势(含文献综述): 1、国组合机床现状 在我国,组合机床发展已有28年的历史,其科研和生产都具有一定的基础,应用也已深入到许多行业,是当前机械行业实现产品更新,进行技术改造,提高生产效率和高速发展必不可少的设备。组合机床及其自动线是集机电于一体的综合自动化程度比较高的制造技术和成套工艺装备。它的特征是高效率、高质量、经济实用,因而被广泛应用于工程机械、交通、能源、军工、家电等行业。特别是在中国加入WTO以后,制造业所面临的并存机遇与挑战、组合机床行业企业适时调整战略,采取了积极向上的应对策略,出现了生产、销售两旺的良好势头,截至2005年,组合机床行业企业仅组合机床一项,据统计产量已达1000余台,产值达3.9个亿以上,较2004年同比增长了10%,另外组合机床行业增加值、产品销售率、出口交费值等经济指标均有不同程度的增长,新产品、新技术较去年都有较大幅度提高,可见行业企业运营状况良好。 近些年来,由于国家加大了基础设施的投入,工程机械需求呈现了增长势头,生产厂家呈现出一年翻一番的良好发展形势,虽然国家因出现局部经济过热而采取对钢材、建材等行业进行调控,但许多重点工程都陆续开工,工程机械可能不

CA6140机床主轴箱的设计

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 目录 第一章引言 第二章机床的规格和用途 第三章机床主要参数的确定 第四章传动放案和传动系统图的拟定 第五章主要设计零件的计算和验算 第六章结论 第七章参考资料编目

第一章引言 普通车床是车床中应用最广泛的一种,约占车床类总数的65%,因其主轴以水平方式放置故称为卧式车床。 CA6140型普通车床的主要组成部件有:主轴箱、进给箱、溜板箱、刀架、尾架、光杠、丝杠和床身。 主轴箱:又称床头箱,它的主要任务是将主电机传来的旋转运动经过一系列的变速机构使主轴得到所需的正反两种转向的不同转速,同时主轴箱分出部分动力将运动传给进给箱。主轴箱中等主轴是车床的关键零件。主轴在轴承上运转的平稳性直接影响工件的加工质量,一旦主轴的旋转精度降低,则机床的使用价值就会降低。 进给箱:又称走刀箱,进给箱中装有进给运动的变速机构,调整其变速机构,可得到所需的进给量或螺距,通过光杠或丝杠将运动传至刀架以进行切削。 丝杠与光杠:用以联接进给箱与溜板箱,并把进给箱的运动和动力传给溜板箱,使溜板箱获得纵向直线运动。丝杠是专门用来车削各种螺纹而设置的,在进行工件的其他表面车削时,只用光杠,不用丝杠。同学们要结合溜板箱的内容区分光杠与丝杠的区别。 溜板箱:是车床进给运动的操纵箱,内装有将光杠和丝杠的旋转运动变成刀架直线运动的机构,通过光杠传动实现刀架的纵向进给运动、横向进给运动和快速移动,通过丝杠带动刀架作纵向直线运动,以便车削螺纹。 第二章机床的规格和用途 CA6140机床可进行各种车削工作,并可加工公制、英制、模数和径节螺纹。 主轴三支撑均采用滚动轴承;进给系统用双轴滑移共用齿轮机构;纵向与横向进给由十字手柄操纵,并附有快速电机。该机床刚性好、功率大、操作方便。 第三章主要技术参数 工件最大回转直径: 在床面上………………………………………………………-----……………400毫米在床鞍上…………………………………………………………-----…………210毫米工件最大长度(四种规格)……………………………----…750、1000、1500、2000毫米主轴孔径…………………………………………………-----……………………… 48毫米主轴前端孔锥度…………………………………………-----…………………… 400毫米主轴转速范围: 正传(24级)…………………………………………----…………… 10~1400转/分反传(12级)……………………………………---…-……………… 14~1580转/分加工螺纹范围:

X6132型万能升降台铣床主轴箱设计(课程设计)

X6132型万能升降台铣床主轴箱设计 说明书

一、概述 (3) 1.1 金属切削机床在国民经济中的地位 (3) 1.2机床课程设计的目的 (3) 1.3车床的规格系列和用处 (3) 1.4 操作性能要求 (4) 二、传动设计 (4) 2.1 主传动方案拟定 (4) 2.2 传动结构式、结构网的选择 (5) 2.2.1 确定传动组及各传动组中传动副的数目 (5) 2.2.2确定传动顺序 (5) 2.2.3确定扩大顺序 (5) 2.2.4确定变速组中的极限传动比及变速范围 (6) 2.2.5确定最小传动比 (6) 三、传动件的估算 (8) 3.1 带轮设计 (8) 3.2 齿轮齿数以及计算转速的确定 (10) 3.2.1齿轮齿数的确定 (10) 3.3轴及传动轴的计算转速 (14) 3.4齿数模数的确定 (14) 3.5传动轴直径的计算 (15) 4.1齿轮模数验算 (16) 4.2传动轴刚度验算(轴) (17) 4.3、轴承寿命的验算 (18) 五、结构设计及说明 (20) 5.1 结构设计的内容、技术要求和方案 (20) 六、总结 (20) 七、参考文献 (21)

一、概述 1.1 金属切削机床在国民经济中的地位 金属切削机床是用切削的方法将金属毛坯加工成机器零件的机器,它是制造机器的机器,又称为“工作母机”或“工具机”。 在现代机械制造工业中,金属切学机床是加工机器零件的主要设备,它所担负的工作量,约占机器总制造工作量的40%~60%。机床的技术水平直接影响机械制造工业的产品质量和劳动生产率。 1.2机床课程设计的目的 专业课程设计是在学生学完相应课程及先行课程之后进行的实习性教学环节,是大学生的必修环节,其目的在于通过机床运动机械变速传动系统的结构设计,使学生在拟定传动和变速的结构的结构方案过程中,得到设计构思,方案分析,结构工艺性,机械制图,零件计算,编写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌握基本的设计方法,并培养学生具有初步的结构分析,结构设计和计算能力。 1.3车床的规格系列和用处 规格系列: 表1 X6132万能升降台铣床的主参数(规格尺寸)和基本参数 最低转速 Nmin 最低转速 Nmax 主电机转 速 主电机 功率 N(kw) 公比 转速级 数Z

数控机床主轴箱设计

第一章概述 1.1设计目的 (2) 1.2主轴箱的概述 (2) 第2章主传动的设计 (2) 2.1驱动源的选择 (2) 2.2转速图的拟定 (2) 2.3传动轴的估算 (4) 2.4齿轮模数的估算 (3) 2.5V带的选择 (4) 第3章主轴箱展开图的设计 (7) 3.1各零件结构尺寸的设计 (7) 3.1.1 设计内容和步骤 (7) 3.1.2有关零件结构和尺寸的设计 (7) 3.1.3各轴结构的设计 (9) 3.1.4主轴组件的刚度和刚度损失的计算 (10) 3.1.5轴承的校核 (13) 3.2装配图的设计的概述 (13) 总结 (19) 参考文献 (20)

第一章概述 1-1设计目的 数控机床的课程设计,是在数控机床设计课程之后进行的实践性教学环节。其目的在于通过数控机床伺服进给系统的结构设计,使我们在拟定进给传动及变速等的结构方案过程中得到设计构思、方案分析、结构工艺性、CAD制图、设计计算、编写技术文件、查阅技术资料等方面的综合训练,建立正确的设计思想,掌握基本的设计方法,培养我们初步的结构设计和计算能力。 1-2 主轴箱的概述 主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。 第二章2主传动设计 2-1驱动源的选择 机床上常用的无级变速机构是直流或交流调速电动机,直流电动机从额定转速nd向上至最高转速nmax是调节磁场电流的方法来调速的,属于恒功率,从额定转速nd向下至最低转速nmin时调节电枢电压的方法来调速的属于恒转矩;交流调速电动机是靠调节供电频率的方法调速。由于交流调速电动机的体积小,转动惯量小,动态响应快,没有电刷,能达到的最高转速比同功率的直流调速电动机高,磨损和故障也少,所以在中小功率领域,交流调速电动机占有较大的优势,鉴于此,本设计选用交流调速电动机。 根据主轴要求的最高转速4000r/min,最大切削功率5kw,选择北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。 2-2 转速图的拟定 根据交流主轴电动机的最高转速和基本转速可以求得交流主轴电动机的恒功率转速范围Rdp=nmax/nd=3 而主轴要求的恒功率转速范围Rnp=3,远大于交流主轴电动机所能提供的恒功率

车床主轴箱设计说明书

中北大学 课程设计任务书 15/16 学年第一学期 学院:机械工程与自动化学院 专业:机械设计制造及其自动化学生姓名:王前学号:1202014233 课程设计题目:《金属切削机床》课程设计 (车床主轴箱设计) 起迄日期:12 月21 日~12 月27 日课程设计地点:机械工程与自动化学院 指导教师:马维金讲师 系主任:王彪 下达任务书日期: 2012年12月21日

课程设计任务书 课程设计任务书

目录 1.机床总体设计 (5)

2. 主传动系统运动设计 (5) 2.1拟定结构式 (5) 2.2结构网或结构式各种方案的选择 (6) 2.2.1 传动副的极限传动比和传动组的极限变速范围 (6) 2.2.2 基本组和扩大组的排列顺序 (6) 2.3绘制转速图 (7) 2.4确定齿轮齿数 (7) 2.5确定带轮直径 (8) 2.6验算主轴转速误差 (8) 2.7 绘制传动系统图 (8) 3.估算传动件参数确定其结构尺寸 (10) 3.1确定传动见件计算转速 (10) 3.2确定主轴支承轴颈尺寸 (10) 3.3估算传动轴直径 (10) 3.4估算传动齿轮模数 (10) 3.5普通V带的选择和计算 (11) 4.结构设计 (12) 4.1带轮设计 (12) 4.2齿轮块设计 (12) 4.3轴承的选择 (13) 4.4主轴主件 (13) 4.5操纵机构、滑系统设计、封装置设计 (13) 4.6主轴箱体设计 (13) 4.7主轴换向与制动结构设计 (13) 5.传动件验算 (14) 5.1齿轮的验算 (14) 5.2传动轴的验算 (16) 5.3花键键侧压溃应力验算 (19) 5.4滚动轴承的验算 (20) 5.5主轴组件验算 (20) 5.6主轴组件验算 (13) 6.参考文献 (14) 1.机床总体设计 轻型车床是根据机械加工业发展需要而设计的一种适应性强,工艺范围广,结构简单,

#C6136机床主轴箱设计说明书14896

C6136型机床主轴箱课程设计说明书系别:交通和机械工程学院 专业:机械设计制造及其自动化 班级:机械10-4班 姓名:富连宇 学号:1008470434 吗 指导老师:赵民 目录 一、设计目的 (1) 二、机床主要技术要求 (1) 三、确定结构方案 (1) 四、运动设计 (1) 4.1确定极限转速 (1) 4.2拟订结构式 (1) 4.3绘制转速图 (2) 4.4 确定齿轮齿数 (2) 4.5 验算主轴转速误差: (3) 4.6 绘制传动系统图 (3) 五、动力设计 (3) 5.1 V带的传动计算 (3) 5.2各传动轴的估算 (4) 5.3齿轮模数确定和结构设计: (5) 5.4摩擦离合器的选择和计算: (6) 5.5结构设计 (7) 六、齿轮强度校核 (8) 6.1、各齿轮的计算转速 (8) 6.2、齿轮校核 (9) 七、主轴刚度校核 (9) 八、主轴最佳跨度确定 (10) 8.1计算最佳跨度 (10) 8.2校核主轴挠度 (10) 8.2主轴图:(略)见附图2 (10) 九、各传动轴支持处轴承选用 (10) 十、键的选择和校核 (10) 1)、轴IV的传递最大转矩 (10) 十一、润滑和密封 (11) 十二、总结 (11) 十三、参考文献 (11) 十四、附 (12)

一、设计目的 通过机床主运动机械变速传动系统得结构设计,在拟定传动和变速的结构方案过程中,得到设计构思、方案分析、结构工艺性、机械制图、零件计算、编写技术文件和查阅技术资料等方面的综合训练,树立正确的设计思想,掌握基本的设计方法,并具有初步的结构分析、结构设计和计算能力。可使我们学会理论联系实际的工作方法,培养独立工作的能力;学会基本的设计的方法;熟悉手册、标准、资料的运用;加强机械制图、零件计算、编写技术文件的能力,学会设计说明书的编写。为接下去的毕业设计、毕业论文积累经验。 二、机床主要技术要求 [1]车床类型为C6136型车床主轴变速箱(采用机械传动结构)。 [2]加工工件最大直径:360mm [3]加工工件最大长度:1500mm [4] 主轴通孔直径:40-50mm [5]主轴前锥孔:莫式5号 [6]主轴采用三相异步电机 [7]主电动机功率为n电额:4kw [8]转速nmin:33.5r/min mmax:1700 r/min n额:1000r/min [9]主轴变速系统实现正传12级变速,反转6级变速(采用摩擦离合器) 三、确定结构方案 [1] 主轴传动系统采用V带、齿轮传动; [2]传动形式采用集中式传动; [3]主轴换向制动采用双向片式摩擦离合器和带式制动器; [4]变速系统采用多联滑移齿轮变速。 四、传动方案 4.1确定极限转速 转速n min:33.5r/min n max:1700 r/min n额:1000r/min 4.2拟订结构式 1)确定变速组传动副数目: 传动副中由于结构的限制以2或3为合适,即变速级数Z应为2和3的因子,为实现12级主轴转速变化的传动系统可以以下多种传动副组合: ①12=3x2x2 ②12=2x2x3 ③12=2ⅹ3ⅹ2等 18级转速传动系统的传动组,选择传动组安排方式时,考虑到机床主轴箱的具体结构、装置性能,主轴上的传动副数主轴对加工精度、表面粗糙度的影响很大,因此主轴上的齿轮少些为好。按照1 符合变速级数、级比规律 2 传动件前多后少3 结构网前密后疏4 第二扩大组变速范围r=8满足变速范围要求

组合机床毕业设计外文翻译

The Aggregate Machine-tool The Aggregate Machine-tool is based on the workpiece needs, based on a large number of common components, combined with a semi-automatic or automatic machine with a small number of dedicated special components and process according to the workpiece shape and design of special parts and fixtures, composed. Combination machine is generally a combination of the base, slide, fixture, power boxes, multi-axle, tools, etc. From. Combination machine has the following advantages: (1) is mainly used for prism parts and other miscellaneous pieces of perforated surface processing. (2) high productivity. Because the process of concentration, can be multi-faceted, multi-site, multi-axis, multi-tool simultaneous machining. (3) precision and stability. Because the process is fixed, the choice of a mature generic parts, precision fixtures and automatic working cycle to ensure consistent processing accuracy. (4) the development cycle is short, easy to design, manufacture and maintenance, and low cost. Because GM, serialization, high degree of standardization, common parts can be pre-manufactured or mass organizations outsourcing. (5) a high degree of automation, low labor intensity. (6) flexible configuration. Because the structure is a cross-piece, combination. In accordance with the workpiece or process requirements, with plenty of common parts and a few special components consisting of various types of flexible combination of machine tools and automatic lines; tools to facilitate modification: the product or process changes, the general also common components can be reused. Combination of box-type drilling generally used for processing or special shape parts. During machining, the workpiece is generally not rotate, the rotational motion of the tool relative to the workpiece and tool feed movement to achieve drilling, reaming, countersinking, reaming, boring and other processing. Some combination of turning head clamp the workpiece using the machine to make the rotation, the tool for the feed motion, but also on some of the rotating parts (such as the flywheel, the automobile axle shaft, etc.) of cylindrical and face processing. Generally use a combination of multi-axis machine tools, multi-tool, multi-process, multi-faceted or multi-station machining methods simultaneously, productivity increased many times more than generic tools. Since the common components have been standardized and serialized, so can be flexibly configured according to need, you can shorten the design and manufacturing cycle. Multi-axle combination is the core components of general machine tools. It is the choice of generic parts, is designed according to special requirements, in combination machine design process, is one component of a larger workload. It is based on the number and location of the machining process diagram and schematic design combination machine workpiece determined by the hole, cutting the amount of power transmission components and the design of each spindle spindle type movement. Multi-axle power from a common power box, together with the power box installed on the feed slide, to be completed by drilling, reaming and other machining processes. The parts to be processed according to the size of multi-axle box combination machine tool design, based on an original drawing multi-axle diagram, determine the range of design data,

相关文档
最新文档