人教版高中物理必修二”平抛运动”计算相关题型(基本规律,斜面,圆轨道,圆周运动、实验)

人教版高中物理必修二”平抛运动”计算相关题型(基本规律,斜面,圆轨道,圆周运动、实验)
人教版高中物理必修二”平抛运动”计算相关题型(基本规律,斜面,圆轨道,圆周运动、实验)

平抛运动计算基本题型

一、基本概念

1平抛运动定义:将物体以一定的初速度沿水平方向抛出,物体只受重力的作用下所做的运动,叫做平抛运动.

2平抛运动条件:

(1)具有水平初速度,且只具有水平初速度

(2)物体只受重力

3平抛运动性质:匀变速曲线运动

4平抛运动的两个分运动: ①水平:匀速直线运动②竖直:自由落体运动

考点一、平抛运动的基本规律及应用

1.飞行时间:由t=√2?

g

知,时间取决于下落高度h,与初速度Vo无关.

2.水平射程:x=V o t=v0√2?

g

,即水平射程由初速度V O和下落高度h共同决定,与其他因素无关.

3.落地速度Vt=√v x2+v y2=√v02 +2g?.以θ表示落地速度与x轴正方向的夹角,有

tan θ=v y

v x =√2g?

v0

所以速度也只与初速度Vo和下落高度h有关,

4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔△t内的速度改变量△v=g△t相同,方向恒为竖直向下,如图甲所示.

5.两个重要推论

(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A点和B点所示.

(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tanα =2tanθ

甲乙

练习1

[例1]. (单选)如图所示,从某高度水平抛出一小球,经过时间t到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g.下列说法正确的是()

A.小球水平抛出时的初速度大小为gttanθ

B.小球在t时间内的位移方向与水平方向的夹角为θ

2

C.若小球初速度增大,则平抛运动的时间变长

D.若小球初速度增大,则θ减小

[例2]一个物体做平抛运动,在连续相等的时间内速度的变化为ΔV,则关于ΔV的说法中,正确的是( )

A) ΔV随着时间的推移而增长.

B) ΔV随着时间的推移而减小.

C) ΔV的大小相等,方向相同.

D) ΔV的大小相等,方向不同.

[例3] (多选)如图所示,高为h=1.25 m的平台上,覆盖一层薄冰,现有一质量为60 kg的滑冰爱好者,以一定的初速度向平台边缘滑去.着地时的速度方向与水平地面间的夹角为45*(取重力加速度g= 10 m/s').由此可知正确的是()

A.滑冰者离开平台边缘时的速度大小是6.0 m/s

B.滑冰者着地点到平台边缘的水平距离是2.5 m

C.滑冰者在空中运动的时间为1.0 s

D.滑冰者着地时的速度大小为5√2m/s

[例4] (2018. 西城期末)在水平地面附近某一高度处,将个小球以初速度Vo水平抛出,小球经时间t落地,落地时的速度大小为v,落地点与抛出点的水平距离为X,不计空气阻力.若将小球从相同位置以2v0的速度水平抛出,则小球( )

A.落地的时间将变为2t

B.落地时的速度大小将变为2V

C,落地的时间仍为t

D,落地点与抛出点的水平距离仍为x。

[例5].(2019.东城期末)飞镖比赛是一项极具观赏性的体育比赛项目IDF(国际飞镖联合会)飞镖世界杯赛上,某一选手在距地面高h、离靶面的水平距离L处,将质最为m的飞镖以速度U。水平投出,结果飞镖落在靶心正上方.从理论分析只改变h、L、m、V四个量中的一个,可使飞镖投中靶心的是(不计空气阻力)

A.适当减小飞镖投出时的水平速度V。

B.适当提高飞镖投出时的离地高度h

C.适当减小飞镖的质量m

D.适当减小飞镖离靶面的水平距离L

考点二、与斜面相关的平抛运动

斜面上的平抛问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系。从而使问题得到顺利解决.常见的模型如下:

斜面

练习2

例1.(多选)跳台滑雪是奥运比赛项目之一,利用自然山形建成的跳台进行,某运动员从弧形雪坡上沿水平方向飞t出后,又落回到斜面雪坡上,如.图所示若斜面雪坡的倾角为θ,飞出时的速度大小为V0,不计空气阻力,运动员飞出后; 在空中的姿势保持不变,重力加速度为g,则( ) A.如果Vo不同该运动员落到雪坡时的位置不同,速度方

向也不同

B.如果V0不同,该运动员落到雪坡时的位置不同,但速

度方向相同

C.运动员在空中经历的时间是2V0tanθ/g

D.运动员落到雪坡时的速度大小是V0/cosθ

例2.(单选)如图所示,在斜面项端的A点以速度为v平抛一小球,经t1时间落到斜面上B点处,若在A点将此小球以速度0. 5v水平地出,经t2时间落到斜面上的C点处,以下判断正确的

A. AB : AC=2:1

B. AB : AC=4:1

C .t1 : t2=4 :1

D .t1 : t2=V2:1

例3.一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如

图中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为( )

A.1/tanθ

B.1/2tanθ

C.tanθ

D.2tanθ

例4.如图所示,一名跳台滑雪运动员经过一段时间的加速滑行后从O点水平飞出。经过3s 落到斜坡A点上。已知O是斜坡的起点,斜坡与水平面的夹角θ=37" =0.8.取运动员质量

m=50 kg.不计空气阻力(sin 37°=0.6.C0s370=0.8 g=10 m/s2).求:

(1)A点与O点的距离L;

(2)运动员离开O点时的速度大小;

(3)运动员从O点飞出开始到斜坡距离最远所用时间。

考点三、圆周运动的综合问题

圆周运动常与平抛(类平抛)运动、匀变速直线运动等组合而成为多过程问题,除应用各自的运动规律外,还要结合功能关系进行求解.解答时应从下列两点人手:

1.分析转变点:分析哪些物理量突变,哪些物理量不,特别是转变点前后的速度关系,

2.分析每个运动过程的受力情况和运动性质,明确遵守的规律.

例1.如图,一不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0 kg的小球.现将小球拉到A点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点.地面上的D点与OB在同一竖直线上,已知绳长L=1.0m,B点离地高度H=1.0 m,

A、B两点的高度差h=0.5m,重力加速度g取10 m/s2 ,不计空气影响,求:

(1)地面上DC两点间的距离s;

(2)轻绳所受的最大拉力大小.

例2.如图所示,半径为R、内径很小的光滑半圆管竖直放置,两个质量均为m的小球A、B以不同的速度进入管内. A通过最高点C时,对管壁上部压力为3mg.B通过最高点C时,对管下壁压力为0 2 A.B两球落地点间的距离.

[总结提升]。平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系,若先做圆周运动后做平抛运动,则闻周运动的末速等宇平地运动的水平初速;若物体平抛后进入圆轨道,圆周运动的初速等于平抛末速在圆切线方向的分速度

考点四、与圆轨道关联的平抛运动

在竖直半圆内进行平抛时,圆的半径和半圆轨道对平抛运动形成制约.画出落点相对圆心的位置,利用几何关系和平抛运动规律求解.

【例1】.如图,水平地面上有一坑,其整直截面为半圆. ab为沿水平方向的直径。若在a点以初速度沿ab方向抛出一小球,小球会击中坑壁上的C点。已知C点水平地面的距离为圆半径的一半,求圆的半径______________。

【例2】.(多选)如图,从半径为R=1米的半圆AB上的A点水平抛出一个可视为质点的小球,经t=0.4 s小球落到半圆上,已知当地的重力加速度10m/s2则小球的初速度V0可能为()

A.1m/s

B.2m/s

C.3m/s

D.4m/s

【例3】如图所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球视为指质点),飞行过程中恰好与半圆轨道相切与B点。O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为600,重力加速度g,则小球抛出时的初速度为()

A.√3gR

2

B.√3gR√3

2

C.√gR√3

2D.√gR√3

3

图丙

考点五、实验

例1.(2019年西城一模)甲同学得到部分运动轨迹如图3所示。图中水平方向与竖直方向每小格的长度均为L, P 、P2和P3是轨迹图线上的三个点,P1和P2、P2和P3之间的水平距离相等。那么,小球从P1运动到P2所用的时间为____________小球抛出后的水平速度为______________

例2.(2018平谷一模)(1)如图乙所示是在实验中记录的一段轨迹。已知小球是从原点O 水平抛出的,经测量A 点的坐标为(40cm ,20cm ),g 取10m/s 2

,则小球平抛的初速度v 0=_________m/s ,若B 点的横坐标为x B =60cm ,则B 点纵坐标

为y B =_________m 。

(2)一同学在实验中采用了如下方法:如图丙所示,斜槽末端的正下方为O 点.用一块平木板附上复写纸和白纸,竖直立于正对槽口前的O 1处,使小球从斜槽上某一位置由静止滚下,小球撞在木板上留下痕迹A .将木板向后平移至O 2处,再使小球从斜槽上同一位置由静止滚下,小球撞在木板上留下痕迹B .O 、O 1间的距离为x 1,O 、O 2间的距离为x 2,A 、B 间的高度差为y .则小球抛出时的初速度v 0为________

O 1O 2

O x 1x 2

y

A

B

A

o

x /cm

y /cm

A

B

40y B

60

20

A .y g

x x 2)(2122- B .y g x x 2)(2122+ C .y g

x x 22

1

2+ D .y

g

x x 2212-

例3.(2017昌平二模)(1)甲同学按正确的操作完成实验并描绘出平抛运动的轨迹,以平抛运动的初始位置O 为坐标原点建立xOy 坐标系,如图10所示。从运动轨迹上选取多个点,根据其坐标值可以验证轨迹是符合y=ax 2的抛物线。若坐标纸中每小方格的边长为L ,根据图中M 点的坐标值,可以求出a=____,小球平抛运动的初速度v 0=____。(重力加速度为g )

(2)乙同学不小心将记录实验的坐标纸弄破损,导致平抛运动的初始位置缺失。他选取轨迹中任意一点O 为坐标原点,建立xOy 坐标系(x 轴沿水平方向、y 轴沿竖直方向),如图11所示。在轨迹中选取A 、B 两点,坐标纸中每小方格的边长仍为L ,重力加速度为g 。由此可知:小球从O 点运动到A 点所用时间t 1与从A 点运动到B 点所用时间t 2的大小关系为:t 1 t 2(选填 “>”、“<”或“=”);小球平抛运动的初速度v 0= ,小球平抛运动的初始位置坐标为( , )。

习题答案

(一)例1.D 例2.BD 例3.C 例4.A

(二)例1.BC 例2.B 例3. B 例4.(1)45m (2)20m/s (3)1.5s

(三) 例1.1.414 例2.20N 例3.B

(四)例1. R=4V02/(7+4√3)g 例2.AD

(五)例1.T=√2l

g V0=3√gl

2

例2. (1)2.0m/s,0.45m (2).A

例3.(1)a=1

5L , V0=√5gl

2

(2)”=” 2√2gL(—4L,—L)

高一物理圆周运动专题练习(word版

一、第六章 圆周运动易错题培优(难) 1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( ) A .a 、b 所受的摩擦力始终相等 B .b 比a 先达到最大静摩擦力 C .当2kg L ω=a 刚要开始滑动 D .当23kg L ω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】 AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即 kmg +F =mω2?2L ① 而a 受力为 f′-F =2mω2L ② 联立①②得 f′=4mω2L -kmg 综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有 2kmg+kmg =2mω2L +mω2?2L 解得 34kg L ω=

高中物理平抛运动试题整理

平抛运动 ⑴平抛定义:抛出的物体只受力作用下的运动。 ⑵平抛运动性质:是加速度恒为的曲线运动。 ⑶平抛运动公式: 水平方向运动V x= X= t= 竖直方向运动V y= y= t= V合= S合= 1.决定一个平抛运动的总时间的因素() A 抛出时的初速度 B 抛出时的竖直高度 C 抛出时的竖直高度和初速度 D 与做平抛运动物体的质量有关 2、一个物体以初速度V0水平抛出,经时间t,其竖直方向速度大小与V0大小相等,那么t 为() A V0/g B 2V0/g C V0/2g D 2V0/g 3、关于平抛运动,下列说法正确的是() A 是匀变速运动 B 是变加速运动 C 任意两段时间的速度变化量的方向相同 D 任意相等时间内的速度变化量相等 4、物体以初速度V0水平抛出,当抛出后竖直位移是水平位移的2倍时,则物体抛出的时间是( ) A 1∶1 B 2 ∶1 C 3∶1D4∶1 5、做平抛运动的物体:() A、速度保持不变 B、加速度保持不变 C、水平方向的速度逐渐增大 D、竖直方向的速度保持不变 6、关于物体的运动,下列说法中正确的是() A、当加速度恒定不变时,物体做直线运动 B、当初速度为零时,物体一定做直线运动 C、当初速度和加速度不在同一直线上时,物体一定做曲线运动 D、当加速度的方向与初速度方向垂直时,物体一定做圆周运动 7、下面说法中正确的是() A、曲线运动一定是变速运动 B、平抛运动是匀速运动 C、匀速圆周运动是匀速运动 D、只有变力才能使物体做曲线运动 8、做平抛运动的物体,在水平方向通过的最大距离取决于() A、物体的高度和所受重力 B、物体的高度和初速度 C、物体所受的重力和初速度 D、物体所受的重力、高度和初速度 1.关于平抛运动,下列说法中正确的是 A.平抛运动是匀变速运动 B.做平抛运动的物体在任何相等时间内的速度的变化量都相等 C.可以分解为水平方向上的匀速直线运动和竖直方向的自由落体运动 D.落地的时间和速度只与抛出点的高度有关 2.飞机以150m/s的水平速度匀速飞行,某时刻让A球落下,相隔1s又让B球落下,不计空气阻力,在以后的运动中,关于A球与B 球的相对位置关系,正确的是 A.A 球在B球的前下方,两球间的距离保持不变 B.A 球在B球的后下方,两球间的距离逐渐增大 C.A 球在B球的正下方,两球间的距离保持不变 D.A 球在B球的正下方,两球间的距离逐渐增大

高中物理圆周运动专题讲解

圆周运动的向心力及其应用 【要点梳理】 要点一、物体做匀速圆周运动的条件 要点诠释: 物体做匀速圆周运动的条件:具有一定速度的物体,在大小不变且方向总是与速度方向垂直的合外力的作用下做匀速圆周运动。 要点二、关于向心力及其来源 1、向心力 要点诠释 (1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力. (2)向心力的作用:是改变线速度的方向产生向心加速度的原因。 (3)向心力的大小: 2 2 v F ma m mr r ω=== 向向 向心力的大小等于物体的质量和向心加速度的乘积; 对于确定的物体,在半径一定的情况下,向心力的大小正比于线速度的平方,也正比于角速度的平方; 线速度一定时,向心力反比于圆周运动的半径;角速度一定时,向心力正比于圆周运动的半径。 如果是匀速圆周运动则有: 22 222 2 4 4 v F ma m mr mr mr f r T π ωπ===== 向向 (4)向心力的方向:与速度方向垂直,沿半径指向圆心。 (5)关于向心力的说明: ①向心力是按效果命名的,它不是某种性质的力; ②匀速圆周运动中的向心力始终垂直于物体运动的速度方向,所以它只能改变物体的速度方向,不能改变速度的大小; ③无论是匀速圆周运动还是变速圆周运动,向心力总是变力,但是在匀速圆周运动中向心力的大小是不变的,仅方向不断变化。 2、向心力的来源 要点诠释 (1)向心力不是一种特殊的力。重力(万有引力)、弹力、摩擦力等每一种力以及这些力的合力或分力都可以作为向心力。 (2)匀速圆周运动的实例及对应的向心力的来源 (如表所示):

要点三、匀速圆周运动与变速圆周运动的区别 1、从向心力看匀速圆周运动和变速圆周运动 要点诠释: (1)匀速圆周运动的向心力大小不变,由物体所受到的合外力完全提供,换言之也就是说物体受到的合外力完全充当向心力的角色。 例如月球围绕地球做匀速圆周运动,它受到的地球对它的引力就是合外力,这个合外力正好沿着半径指向地心,完全用来提供月球围绕地球做匀速圆周运动的向心力。 (2)在变速圆周运动中,向心力只是物体受到的合外力的沿着半径方向的一个

(完整)高中物理平抛运动经典例题

1. 利用平抛运动的推论求解 推论1:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 证明:设平抛运动的初速度为,经时间后的水平位移为,如图10所示,D为末速度反向延长线与水平分位移的交点。根据平抛运动规律有 水平方向位移 竖直方向和 由图可知,与相似,则 联立以上各式可得 该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 图10 [例1] 如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。 图11 解析:当质点做平抛运动的末速度方向平行于斜面时,质点距斜面的距离最远,此时末速度的方向与初速度方向成角。如图12所示,图中A为末速度的反向延长线与水平位移的交点,AB即为所求的最远距离。根据平抛运动规律有 ,和 由上述推论3知 据图9中几何关系得 由以上各式解得 即质点距斜面的最远距离为

图12 推论2:平抛运动的物体经时间后,其速度与水平方向的夹角为,位移与水平方向的夹角为,则有 证明:如图13,设平抛运动的初速度为,经时间后到达A点的水平位移为、速度为,如图所示,根据平抛运动规律和几何关系: 在速度三角形中 在位移三角形中 由上面两式可得 图13 [例2] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。

高一物理匀速圆周运动知识点及习题教学文稿

高一物理匀速圆周运动知识点及习题

高一物理匀速圆周运动知识介绍 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,匀速圆周运动,这种运动就叫做“匀速圆周运动”,匀速圆周运动是圆周运动中,最常见和最简单的运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

天体的匀速圆周运动 定义 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,亦称“匀速率圆周运动”。因为物体作圆周运动时速率不变,但速度方向随时发生变化。所以匀速圆周运动的线速度是无时不刻不在变化的。

匀速圆周运动 运动条件 物体作匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动。又由于作匀速圆周运动时,它的向心加速度的大小不变,但方向时刻改变,故匀速圆周运动是变加速运动。“匀速圆周运动”一词中的“匀速”仅是速率不变的意思。做匀速圆周运动的物体仍然具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动轨迹是圆,所以匀速圆周运动是变加速曲线运动。匀速圆周运动加速度方向始终指向圆心。做变速圆周运动的物体总能分解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。 公式解析 计算公式 1、v(线速度)=ΔS/Δt=2πr/T=ωr=2πrf (S代表弧长,t代表时间,r代表半径,f代表频率) 2、ω(角速度)=Δθ/Δt=2π/T=2πn (θ表示角度或者弧度) 3、T(周期)=2πr/v=2π/ω 4、n(转速)=1/T=v/2πr=ω/2π 5、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2 6、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2 7、vmax=√gr (过最高点时的条件) 8、fmin (过最高点时的对杆的压力)=mg-√gr (有杆支撑)

高中物理平抛运动试题

高中物理平抛运动试题集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

平抛运动 ⑴平抛定义:抛出的物体只受力作用下的运动。 ⑵平抛运动性质:是加速度恒为的曲线运动。 ⑶平抛运动公式: 水平方向运动 V x = X= t= 竖直方向运动 V y = y= t= V 合= S 合 = 1.决定一个平抛运动的总时间的因素() A 抛出时的初速度 B 抛出时的竖直高度 C 抛出时的竖直高度和初速度 D 与做平抛运动物体的质量有关 2、一个物体以初速度V 0水平抛出,经时间t,其竖直方向速度大小与V 大小相等,那么t 为() A V 0/g B 2V /g C V /2g D 2 V0/g 3、关于平抛运动,下列说法正确的是() A 是匀变速运动 B 是变加速运动 C 任意两段时间的速度变化量的方向相同 D 任意相等时间内的速度变化量相等 4、物体以初速度V 水平抛出,当抛出后竖直位移是水平位移的2倍时,则物体抛出的时间是 ( ) A 1∶1 B 2 ∶1 C 3∶1 D4∶1

5、做平抛运动的物体:() A、速度保持不变 B、加速度保持不变 C、水平方向的速度逐渐增大 D、竖直方向的速度保持不变 6、关于物体的运动,下列说法中正确的是() A、当加速度恒定不变时,物体做直线运动 B、当初速度为零时,物体一定做直线运动 C、当初速度和加速度不在同一直线上时,物体一定做曲线运动 D、当加速度的方向与初速度方向垂直时,物体一定做圆周运动 7、下面说法中正确的是() A、曲线运动一定是变速运动 B、平抛运动是匀速运动 C、匀速圆周运动是匀速运动 D、只有变力才能使物体做曲线运动 8、做平抛运动的物体,在水平方向通过的最大距离取决于() A、物体的高度和所受重力 B、物体的高度和初速度 C、物体所受的重力和初速度 D、物体所受的重力、高度和初速度 1.关于平抛运动,下列说法中正确的是 A.平抛运动是匀变速运动 B.做平抛运动的物体在任何相等时间内的速度的变化量都相等 C.可以分解为水平方向上的匀速直线运动和竖直方向的自由落体运动D.落地的时间和速度只与抛出点的高度有关 2.飞机以150m/s的水平速度匀速飞行,某时刻让A球落下,相隔1s 又让B球落下,不计空气阻力,在以后的运动中,关于A球与B 球的相对位置关系,正确的是 A.A 球在B球的前下方,两球间的距离保持不变 B.A 球在B球的后下方,两球间的距离逐渐增大 C.A 球在B球的正下方,两球间的距离保持不变 D.A 球在B球的正下方,两球间的距离逐渐增大

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高一物理平抛运动经典练习 题

高一物理平抛运动经典练习题 1、如图所示,在第一象限内有垂直纸面向里的 匀强磁场,一对正、负电子分别以相同速度沿与x轴 成30°角从原点射入磁场,则正、负电子在磁场中运 动时间之比为。 2、如图所示为实验用磁流体发电机原理图,两板间距d=20cm,磁场的磁感应强度B=5T,若接入额定功率P=100W的灯,正好正常发光,且

灯泡正常发光时电阻R=100,不计发电机内阻,求: (1)等离子体的流速是多大? (2)若等离子体均为一价离子,每秒钟有多少个 什么性质的离子打在下极板上? 3、如图所示为质谱仪的示意图。速度选择器部分的匀强电场场强 E=1.2×105V/m,匀强磁场的磁感强度为B1=0.6T。偏转分离器的磁感强度为B2=0.8T。求:

(1)能通过速度选择器的粒子速度多大? (2)质子和氘核进入偏转分离器后打在照相底片上的条纹之间的距离d 为多少? 4、用一根长L=0.8m的轻绳,吊一质量为m=1.0g的带电小球,放在磁感应强度B=0.1T,方向如图所示的匀强磁场中,把小球拉到悬点的右端,轻绳刚好水平拉直,将小球由静止释放,小球便在垂直于磁场的竖直平面内摆动,当小球第一次摆到低点时,悬线的拉力恰好为零(重力加速度g取10m/s2).试问:

(1)小球带何种电荷?电量为多少? (2)当小球第二次经过最低点时,悬线对小球拉力多大? 58、M、N两极板相距为d,板长均为5d,两板未带电,板间有垂直纸面的匀强磁场,如图所示,一大群电子沿平行于板的方向从各处位置以速度v射入板间,为了使电子都不从板间穿出,求磁感应强度B的范围。

6、如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xOy平面并指向纸面外,磁感应强度为B。一带正电的粒子以速度v0从O点射入磁场,入射方向在xOy平面内,与x轴正向的夹角为。若粒子射出磁场的位置与O点的距离为l,求该粒子的电荷量和质量之比。 x y O θ ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· B 7.如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xy平面(纸面)向外.一电荷量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率 为v0,方向沿x轴正方向;然后经过x轴上x=2h处的P2点进入磁场,并经过y轴上y=-2h处的P3点.不计重力,求:

高一物理圆周运动专题练习(解析版)

一、第六章圆周运动易错题培优(难) 1.如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T,取g=10m/s2。则下列说法正确的是() A.当ω=2rad/s时,T3+1)N B.当ω=2rad/s时,T=4N C.当ω=4rad/s时,T=16N D.当ω=4rad/s时,细绳与竖直方向间夹角大于45° 【答案】ACD 【解析】 【分析】 【详解】 当小球对圆锥面恰好没有压力时,设角速度为,则有 解得 AB.当,小球紧贴圆锥面,则 代入数据整理得 A正确,B错误; CD.当,小球离开锥面,设绳子与竖直方向夹角为,则 解得 , CD正确。 故选ACD。

2.如图,质量为m的物块,沿着半径为R的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是() A.滑块对轨道的压力为B.受到的摩擦力为 C.受到的摩擦力为μmg D.受到的合力方向斜向左上方 【答案】AD 【解析】 【分析】 【详解】 A.根据牛顿第二定律 根据牛顿第三定律可知对轨道的压力大小 A正确; BC.物块受到的摩擦力 BC错误; D.水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D正确。 故选AD。 3.如图甲所示,半径为R、内壁光滑的圆形细管竖直放置,一可看成质点的小球在圆管内做圆周运动,当其运动到最高点A时,小球受到的弹力F与其过A点速度平方(即v2)的关系如图乙所示。设细管内径略大于小球直径,则下列说法正确的是() A.当地的重力加速度大小为R b B.该小球的质量为a b R C.当v2=2b时,小球在圆管的最高点受到的弹力大小为a D.当0≤v2<b时,小球在A点对圆管的弹力方向竖直向上【答案】BC 【解析】 【分析】 【详解】 AB.在最高点,根据牛顿第二定律 2 mv mg F R -=

高中物理平抛运动经典大题

1如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 2 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角 为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 3 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q 点,证明落在Q点物体速度。 4 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 5 某一平抛的部分轨迹如图4所示,已知,,,求。

6从高为H的A点平抛一物体,其水平射程为,在A点正上方高为2H的B点,向同一方向平抛另一物体,其水平射程为。两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度。(提示:从平抛运动的轨迹入手求解问题) 图5 7 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?(提示:灵活分解求解平抛运动的最值问题) 图6 8 从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为和,初速度方向相反,求经过多长时间两小球速度之间的夹角为?(提示:利用平抛运动的推论求解分速度和合速度构成一个直角矢量三角形) 图7 9宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小球,经过时间,小球落到星球表面,测得抛出点与落地点之间的距离为,若抛出时初速度增大到两倍,则抛出点与落地点之间的距离为。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量M。(提示:利用推论,分位移和合位移构成直角矢量三角形)10如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。(提示:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。)

高中物理圆周运动知识点总结 高中物理圆周运动公式

高中物理圆周运动知识点总结高中物理圆周运动公式高中物理教学中,圆周运动问题既是一个重点,又是一个难点。下面给大家带来高中物理圆周运动知识点,希望对你有帮助。 1.圆周运动:质点的运动轨迹是圆周的运动。 2.匀速圆周运动:质点的轨迹是圆周,在相等的时间内,通过的弧长相等,质点所作的运动是匀速率圆周运动。 3.描述匀速圆周运动的物理量 (1)周期(T):质点完成一次圆周运动所用的时间为周期。 频率(f):1s钟完成圆周运动的次数。f= (2)线速度(v):线速度就是瞬间速度。做匀速圆周运动的质点,其线速度的大小不变,方向却时刻改变,匀速圆周运动是一个变速运动。 由瞬时速度的定义式v=,当Δt趋近于0时,Δs与所对应的弧长(Δl)基本重合,所以v=,在匀速圆周运动中,由于相等的时间内通过的弧长相等,那么很小一段的弧长与通过这段弧长所用时间的比

值是相等的,所以,其线速度大小v=(其中R是运动物体的轨道半径,T为周期) (3)角速度(ω):作匀速圆周运动的质点与圆心的连线所扫过的角度与所用时间的比值。ω==,由此式可知匀速圆周运动是角速度不变的运动。 4.竖直面内的圆周运动(非匀速圆周运动) (1)轻绳的一端固定,另一端连着一个小球(活小物块),小球在竖直面内作圆周运动,或者是一个竖直的圆形轨迹,一个小球(或小物块)在其内壁上作竖直面的圆周运动,然后进行计算分析,结论如下: ①小球若在圆周上,且速度为零,只能是在水平直径两个端点以下部分的各点,小球要到达竖直圆周水平直径以上各点,则其速度至少要满足重力指向圆心的分量提供向心力 ②小球在竖直圆周的最低点沿圆周向上运动的过程中,速度不断减小(重力沿运动方向的分量与速度方向是相反的,使小球的速度减小),而小球要到达最高点,则必须在最低点具有足够大的速度才

高中物理实验:圆周运动

高中物理实验:圆周运动 实验仪器:自行车 教师操作:让学生观察自行车后轮、齿轮、脚踏板转动现象。 实验结论:皮带、齿轮传动——线速度相同;同轴转动——角速度相同。 向心力 实验仪器:向心力实验器(J2131)、弹簧测力计、停表、游标卡尺 向心力实验器: 指针较长,圆柱体的少量位移经过杠杆的放大,使显示更为明显。但指针有质量,同时,转动时会做离心运动,所以制造时加了指针配量,使指针系统成静平衡。再通过适当选择摆杆的质量维持指针系统的动平衡。因而实验时无需考虑指针的质量和它可能做离心运动的影响。 转动轴由立柱上的钢珠支撑,转动轴下部有定位锥套。实验前调整配重的位置时应将定位锥套退下,调整后将套重新推向上。 构造 游标卡尺是工业上常用的测量长度的仪器,它由尺身及能在尺身上滑动的游标组成。若从背面看,游标是一个整体。游标与尺身之间有一弹簧片(图中未能画出),利用弹簧片的弹力使游标与尺身靠紧。游标上部有一紧固螺钉,可将游标固定在尺身上的任意位置。尺

身和游标都有量爪,利用内测量爪可以测量槽的宽度和管的内径,利用外测量爪可以测量零件的厚度和管的外径。 深度尺与游标尺连在一起,可以测槽和筒的深度。 尺身和游标尺上面都有刻度。以准确到0.1毫米的游标卡尺为例,尺身上的最小分度是1毫米,游标尺上有10个小的等分刻度,总长9毫米,每一分度为0.9毫米,比主尺上的最小分度相差0.1毫米。量爪并拢时尺身和游标的零刻度线对齐,它们的第一条刻度线相差0.1毫米,第二条刻度线相差0.2毫米,……,第10条刻度线相差1毫米,即游标的第10条刻度线恰好与主尺的9毫米刻度线对齐。 使用 用软布将量爪擦干净,使其并拢,查看游标和主尺身的零刻度线是否对齐。如果对齐就可以进行测量:如没有对齐则要记取零误差:游标的零刻度线在尺身零刻度线右侧的叫正零误差,在尺身零刻度线左侧的叫负零误差(这件规定方法与数轴的规定一致,原点以右为正,原点以左为负)。 测量时,右手拿住尺身,大拇指移动游标,左手拿待测外径(或内径)的物体,使待测物位于外测量爪之间,当与量爪紧紧相贴时,即可读数 读数 读数时首先以游标零刻度线为准在尺身上读取毫米整数,即以毫米为单位的整数部分。然后看游标上第几条刻度线与尺身的刻度线对齐,如第6条刻度线与尺身刻度线对齐,则小数部分即为0.6毫米

高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量; (3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为 。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。

3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。 基本规律:径向合外力提供向心力

(三)常见问题及处理要点 1. 皮带传动问题 例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则() A. a点与b点的线速度大小相等 B. a点与b点的角速度大小相等 C. a点与c点的线速度大小相等 D. a点与d点的向心加速度大小相等 图1 解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向 心加速度,由,,所以,故,D 正确。本题正确答案C、D。 点评:处理皮带问题的要点为:皮带(链条)上各点以及两轮边缘上各点的线速度大小相等,同一轮上各点的角速度相同。

高中物理圆周运动总结

图圆周运动的实例分析 (1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动 b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。 c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。 【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T2恰为零,设此时角速度为ω1,AC 绳上拉力设为T1,对小球有: mg T =?30cos 1 ① 30sin L ωm =30sin T AB 2 11②代入数据得:s rad /4.21=ω, 要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T1恰为零,设此时角速度为ω2,BC 绳拉力为 T2,则有mg T =?45cos 2 ③ T2sin45°=m 22ωLACsin30°④代入数据得:ω2=3.16rad/s 。要使 AC 绳有拉力,必须ω<ω2,依题意ω=4rad/s>ω2,故AC 绳已无拉力,AC 绳是松驰状态,BC 绳与杆的夹角θ>45°,对小球有: mg T =θcos 2,T2cos θ =m ω2LBCsin θ ⑤而LACsin30°=LBCsin45°,LBC= 2m ⑥由⑤、⑥可解得 N T 3.22=;01=T 【总结】当物体做匀速圆周运动时,所受合外力一定指向圆心,在圆周的切线方向上和垂直圆周平面的方向上 的合外力必然为零。 (2)同轴装置与皮带传动装置 在考查皮带转动现象的问题中,要注意以下两点:a 、同一转动轴上的各点角速度相等;b 、和同一皮带接触的各点线速度大小相等。 例2:如图3-2所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则 A .a 点与b 点线速度大小相等 B .a 点与c 点角速度大小相等 C .a 点与d 点向心加速度大小相等 D .a 、b 、c 、d 四点,加速度最小的是b 点 【审题】 分析本题的关键有两点:其一是同一轮轴上的各点角速度相同;其二是皮带不打滑时,与 皮带接触的各点线速度大小相同。这两点抓住了,然后再根据描述圆周运动的各物理量之间的关系就不难得出正确的结论。 【解析】由图3-2可知,a 点和c 点是与皮带接触的两个点,所以在传动过程中二者的线速度大小相等,即va =vc ,又v =ωR , 所以 ωar =ωc·2r ,即ωa =2ωc .而b 、c 、d 三点在同一轮轴上,它们的角速度相等,则ωb =ωc =ωd =21 ωa ,所以选项B错.又vb =ωb·r = 21 ωar =2 v a ,所以选项A 也错.向心加速度:aa =ωa2r ;ab =ωb2·r =(2 ωa )2r =41ωa2r =41aa ;ac =ωc2·2r =(2 1ωa )2·2r = 21ωa2r =21aa ;ad =ωd2·4r =(21 ωa )2·4r =ωa2r =aa .所以选项C 、D 均正确。 【总结】 a .向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,切记在物体的作用力(重力、弹力、摩擦力等)以外不要再 添加一个向心力。 图 图

高中物理平抛运动实验.docx

平抛运动实验【实验目的】 (1)用实验的方法描出平抛运动的轨迹. (2)根据平抛运动的轨迹求初速度. 【实验原理】 (1)用描迹法画出小球平抛运动的轨迹. (2)建立坐标系,测出轨迹上某点的坐标x、 y,根据 = 0= 1 2得初速度 v 0= x g x v t、 y2gt2y . 【实验器材】 斜槽、小球、方木板、铁架台、白纸、图钉、铅垂线、三角板、铅笔及刻度尺 【实验步骤】 (1)安装器材与调平:将斜槽放在水平桌面上,其末端伸出桌面外,调节末端使其切线水平后固定. 检查斜槽末端是否水平的方法:将小球放在斜槽末端水平轨道的任意位置,小球都不滚动,则可认为 斜槽末端水平.精细的检查方法是用水平仪调整. (2)用图钉把坐标纸钉在木板上,让木板竖直固定,其左上方靠近槽口,用铅垂线检查坐标纸上的竖线是否 竖直,整个实验装置如图所示.用铅垂线把木板校准到竖直方向,使小球平抛的轨道平面与板面平行,保证在重复实验的过程中,木板与斜槽的相对位置保持不变. (3)建立直角坐标系xOy:以小球做平抛运动的起点O 为坐标原点,从坐标原点 O 画出竖直向下的y 轴 和水平向右的x 轴.确定坐标原点O 的方法是:把小球放在槽口末端处,用铅笔记下这时小球的球心在坐标纸上的水平投影点O,即为坐标原点 (不是槽口端点 ). (4)确定小球位置:让小球由斜槽的某一固定位置自由滚下,从O 点开始做平抛运动.先用眼睛粗略估计 小球在某一 x 值处 (如 x= 1 cm 或 2 cm 等 )的 y 值,然后用铅笔尖指着这个位置,让小球从原释放处开始滚下,看是否与铅笔尖相碰,如此重复数次,较准确地确定小球通过的这个位置,并在坐标纸上 记下这一点. (5)依次改变 x 值,用与 (4)同样的方法确定小球通过其他各点的位置. (6)描点画轨迹:取下坐标纸,将(4)(5) 中所描出的各点用平滑曲线连接起来,这就画出了小球做平抛运动 的轨迹曲线 (所画曲线可不通过个别偏差较大的点,但必须保持曲线平滑,不允许出现凹陷处).【注意事项】 (1)固定斜槽时,必须注意使通过斜槽末端点的切线保持水平,以使小球离开斜槽后做平抛运动. (2)木板必须处在竖直平面内,与小球运动轨迹所在的竖直平面平行,使小球的运动靠近图纸但不接触. (3) 在斜槽上设定位卡板,使小球每次都从定位卡板所确定的同一位置由静止开始滚下,以保证重复实验时,

高中物理生活中的圆周运动专题训练答案及解析

高中物理生活中的圆周运动专题训练答案及解析 一、高中物理精讲专题测试生活中的圆周运动 1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求: (1)盘的转速ω0多大时,物体A开始滑动? (2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少? 【答案】(1) g l μ (2) 3 4 mgl kl mg μ μ - 【解析】 【分析】 (1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0. (2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x. 【详解】 若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力. (1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有: μmg=mlω02, 解得:ω0= g l μ 即当ω0= g l μ A开始滑动. (2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12, r=l+△x 解得: 3 4 mgl x kl mg μ μ - V= 【点睛】 当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.

高中物理最新-高一物理平抛运动练习题 精品

3.3平抛运动 【学业达标训练】 1.从水平匀速飞行的直升飞机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止 B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动 D.从地面上看,物体做自由落体运动 【解析】选 C.从飞机上看,物体做自由落体运动,从地面上看,因物体释放时已具有与飞机相同的水平速度,所以做平抛运动,即C 正确. 2.平抛物体的运动规律可概括为两条:第一条,水平方向做匀速直线运动;第二条,竖直方向做自由落体运动.为了研究平抛物体的运动,可做下面的实验,如图3-3-8所示,用小锤打击弹性金属片,A球水平飞出,同时B球被松开.两球同时落到地面,则这个实验() A.只能说明上述规律中的第一条 B.只能说明上述规律中的第二条 C.不能说明上述规律中的任何一条 D.能同时说明上述两条规律

【解析】选B.实验中A球做平抛运动,B球做自由落体运动,两球同时落地说明A球平抛运动的竖直分运动和B球相同,而不能说明A球的水平分运动是匀速直线运动,所以B项正确,A、C、D三项都不对. 3.甲、乙两物体做平抛运动的初速度之比为2∶1,若它们的水平射程相等,则它们抛出点离地面的高度之比为() A.1∶2 B.1∶ C.1∶4 D.4∶1 4.抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L,网高h,如图3-3-9乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力(设重力加速度为g),将球水平发出,则可以求出() A.发球时的水平初速度 B.发球时的竖直高度 C.球落到球台上时的速度 D.从球被发出到被接住所用的时间

高一物理圆周运动专题训练(附解析)

高一物理圆周运动专题训练(附解析) 高中物理是高中理科(自然科学)基础科目之一,小编准备了高一物理圆周运动专题训练,具体请看以下内容。 一、选择题 1.下列有关洗衣机中脱水筒的脱水原理的说法正确的是() A.水滴受离心力作用而背离圆心方向甩出 B.水滴受到向心力,由于惯性沿切线方向甩出 C.水滴受到的离心力大于它受到的向心力,而沿切线方向甩出 D.水滴与衣服间的附着力小于它所需要的向心力,于是水滴沿切线方向甩出 2.关于铁道转弯处内外铁轨间的高度关系,下列说法中正确的是() A.内、外轨一样高,以防列车倾倒造成翻车事故 B.因为列车在转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车翻倒 C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨的挤压 D.以上说法均不正确 3.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是() A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘造

成的 B.是由于赛车行驶到弯道时,没有及时加速造成的 C.是由于赛车行驶到弯道时,没有及时减速造成 D.是由于在弯道处汽车受到的摩擦力比在直道上小造成的 4.在光滑的轨道上,小球滑下经过圆弧部分的最高点A时,恰好不脱离轨道,此时小球受到的作用力是() A.重力、弹力和向心力 B.重力和弹力 C.重力和向心力 D.重力 5.用长为L的细绳拴着质量为m的小球在竖直平面内做圆周运动,正确的说法是() A.小球在圆周最高点时所受的向心力一定为重力 B.小球在最高点时绳子的拉力有可能为零 C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为0 D.小球过最低点时绳子的拉力一定大于小球的重力 6.在高速公路的拐弯处,路面建造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为,设拐弯路段是半径为R的圆弧,要使车速为v 时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,应等于()

高中物理平抛运动经典例题及解析.

[例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。 [例2] 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以 ;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。再根据平抛运动的分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。则

所以 根据平抛运动竖直方向是自由落体运动可以写出 所以 所以答案为C。 3. 从分解位移的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”) [例3] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落 在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 则, 所以Q点的速度 [例4] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到

相关文档
最新文档