中考总复习:二次函数--巩固练习(提高)

合集下载

中考数学总复习《二次函数与圆综合压轴题》专项提升练习题(附答案)

中考数学总复习《二次函数与圆综合压轴题》专项提升练习题(附答案)

中考数学总复习《二次函数与圆综合压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,已知抛物线()20y ax bx c a =++≠过点()0,4C -,顶点为253,4M ⎛⎫- ⎪⎝⎭,与x 轴交于A 、B 两点. 以AB 为直径作圆,记作D .(1)求抛物线表达式及点D 的坐标;(2)试判定直线CM 与D 的位置关系,并说明理由;(3)抛物线对称轴上是否存在点P ,连接CP ,将线段CP 绕点P 旋转90︒,点C 的对应点为点C ',是否存在点C '恰好落在抛物线上?若能,请直接写出点P 的坐标;若不能,请说明理由.2.如图,抛物线2y x bx c =++与x 轴交于()1,0A ,B 两点,与y 轴交于点()0,3C .(1)求该抛物线的解析式;(2)如图(1),点P 是线段BC 上的一动点,过点P 作PQ y ∥轴交抛物线于点Q ,连接CQ ,若CQ 平分OCB ∠,求点P 的坐标;(3)如图(2),过A ,B ,C 三点作I ,直线()3y t t =>交I 于点M ,N ,交抛物线于点E ,F . 若EM FN MN +=,求t 的值3.如图,在平面直角坐标系中,M 交x 轴于点()()1,04,0A B -、,交y 轴负半轴于点C AB ,为M 的直径.(1)求图象经过点A 、B 、C 的二次函数的解析式;(2)设点D 为(1)中二次函数图象的顶点,求直线CD 的函数解析式; (3)判断直线CD 与M 的位置关系,并说明理由.4.如图1,平面直角坐标系xOy 中,抛物线()()1222y x x m =+-与x 轴交于()2,0A -、B (点A 在点B 左侧),与y 轴交于点C .(1)连接BC ,则OCB ∠=______︒;(2)如图2,若P 经过A 、B 、C 三点,连接PA 、PC ,若OBC △与PAC △的周长之比为3:5,求该抛物线的函数表达式;(3)如图3,在(2)的条件下,连接OP ,抛物线对称轴上是否存在一点Q ,使得以O 、P 、Q 为顶点的三角形与OAP △相似?若存在,求出点Q 的坐标;若不存在,说明理由.5.已知二次函数22y x ax c =+-的图象与y 轴交于点A ,与x 轴交于点B 、C .(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,求点D 的坐标;(3)如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与C 有怎样的位置关系,并给出证明.8.如图,已知抛物线()20y ax bx c a =++≠过点()0,4C -.顶点为253,4M ⎛⎫- ⎪⎝⎭,与x 轴交于A 、B 两点.以AB为直径作圆,记作D .(1)求抛物线解析式及点D 的坐标;(2)猜测直线CM 与D 的位置关系,并证明你的猜想;(3)抛物线对称轴上是否存在点P ,若将线段CP 绕点P 逆时针旋转90︒,使点C 的对应点C '恰好落在抛物线上?若能,求点P 的坐标;若不能,说明理由.为半径作圆,请判断P是不是二次函数轴于点C,则该二次函数的坐标圆的圆心为求POA周长最小值..如图,抛物线作C的切线切点为点11.如图,在平面直角坐标系中,已知抛物线212y x bx c =++与x 轴交于A B 、两点,与y 轴交于C 点,且4OB OC ==.(1)求抛物线的解析式;(2)在抛物线上是否存在点M ,使ABC BCM ∠=∠,如果存在,求M 点的坐标,如果不存在,说明理由; (3)若D 是抛物线第二象限上一动点,过点D 作DF x ⊥轴于点F ,过点A 、B 、D 的圆与DF 交于E 点,求ABE 的面积.12.如图,二次函数()20y x bx c a =-++≠的图像经过点()1,0A -和()3,0B ,交y 轴于点C ,点E 为该二次函数图象上第一象限内一动点.(1)b =__________,c =__________;PBEPACSS-的值最大时,求点交直线BC 于点F ,为直径的M 与BC 当EFR 周(1)如图1,若1OH =,求该抛物线的解析式; (2)如图1,若点P 是线段HD 上一点,当113AH AD AP+=时,求点P 的坐标(用含b 的代数式表示); (3)如图2,在(1)的条件下,设抛物线交y 轴于点C ,过A ,B ,C 三点作Q ,经过点Q 的直线y hx q =+交Q 于点F ,I ,交抛物线于点E ,G .当EI GI FI =+时,求22h 的值.15.二次函数2225y x mx m m =-++-.(1)当1m =时,函数图象与x 轴交于点A 、B ,与y 轴交于点C . ①写出函数的一个性质;①如图1,点P 是第四象限内函数图象上一动点,求出点P 坐标,使得BCP 的面积最大;①如图2,点Q 为第一象限内函数图象上一动点,过点Q 作QF x ⊥.轴,垂足为F ,ABQ 的外接圆与QF 交于点D ,求DF 的长度;(2)点()11,M x y 、()22,N x y 为函数图象上任意两点,且12x x <.若对于123x x +>时,都有12y y <,求m 的取值范围.参考答案是D 的切线152738t +=(3)直线CD 与M 相切()24-, 0a =;BN 32S ⎧-⎪⎪=⎨与D 相切(3))3-或45⎛- ⎝4)-(3)ABE S △的坐标315,⎛⎫与C 相切第 11 页 共 11 页 15.【答案】(1)①函数图象的顶点坐标为()1,4-;①278;①1DF =(2)32m <。

2024年中考数学总复习:二次函数(附答案解析)

2024年中考数学总复习:二次函数(附答案解析)

2024年中考数学总复习:二次函数一.选择题(共25小题)1.抛物线y=(x+1)2﹣1的对称轴是()A.直线x=0B.直线x=1C.直线x=﹣1D.直线y=12.将抛物线y=﹣x2+2向左平移2个单位,再向下平移3个单位,得到抛物线解析式为()A.y=﹣(x+2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=﹣(x+2)2+5D.y=﹣(x﹣2)2+53.已知二次函数y=kx2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<1且k≠0B.k≤1C.k≥1D.k≤1且k≠0 4.把抛物线y=x2+bx+2的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣4x+7,则b=()A.2B.4C.6D.85.已知点(﹣3,y1),(2,y2),(−12,y3)都在函数y=x2﹣1的图象上,则()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1 6.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①当x>﹣1时,y的值随x值的增大而增大;②a﹣b+c>0;③4a+b=0;④9a+c>3b;其中正确的结论是()A.①B.②C.③D.④7.已知二次函数y=3(x﹣1)2+k的图像上有三点A(√2,y1),B(3,y2),A(0,y3),则y1,y2,y3为的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y2>y3>y18.A(−12,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣1)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1第1页(共17页)。

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。

中考数学(二次函数提高练习题)压轴题训练含详细答案(1)

中考数学(二次函数提高练习题)压轴题训练含详细答案(1)

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC .①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.【答案】(1)二次函数的表达式y=x 2﹣2x ﹣3;(2)①PM 最大=94;②P (2,﹣3)或(22﹣2). 【解析】 【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案. 【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3; (2)设BC 的解析式为y=kx+b , 将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣32)2+94,当n=32时,PM最大=94;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=2,n2﹣2n﹣3=-3,P(2,-3);当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=3+2(不符合题意,舍),n3=3-2,n2﹣2n﹣3=2-42,P(3-2,2-42);综上所述:P(2,﹣3)或(3-2,2﹣42).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.2.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P 在第三象限.①当线段PQ=34AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.【答案】(1)抛物线的函数表达式为y=x2-2x-3.(2)直线BC的函数表达式为y=x-3.(3)①23.①P1(122),P2(16,74).【解析】 【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式. 【详解】(1)∵抛物线的对称轴为直线x=1,∴− 221b ba -⨯==1 ∴b=-2∵抛物线与y 轴交于点C (0,-3), ∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3; (2)∵抛物线与x 轴交于A 、B 两点, 当y=0时,x 2-2x-3=0. ∴x 1=-1,x 2=3. ∵A 点在B 点左侧, ∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y=kx+m ,则033k m m ==+⎧⎨-⎩,∴13k m ⎧⎨-⎩==∴直线BC 的函数表达式为y=x-3; (3)①∵AB=4,PQ=34AB , ∴PQ=3 ∵PQ ⊥y 轴 ∴PQ ∥x 轴,则由抛物线的对称性可得PM=32, ∵对称轴是直线x=1, ∴P 到y 轴的距离是12, ∴点P 的横坐标为−12, ∴P (−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(1-62-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:2或2∵点P在第三象限.∴P1(2-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-62,或1+62,∵点P在第三象限.∴P2(1-6,-52).综上所述:满足条件为P1(1-2,-2),P2(1-62,-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.3.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【详解】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得30 4233 a ba b--=⎧⎨+-=-⎩解得12 ab=⎧⎨=-⎩∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入23k b k b -+=⎧⎨+=-⎩ 解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1 ∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2) ∴P 点纵坐标为﹣2, ∴x 2﹣2x ﹣3=﹣2解得:x =1±2,∵x >0∴x =1+2. ∴P (1+2,﹣2) 【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3. 【解析】【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得1266x x =+=-12x x -=答:两排灯的水平距离最小是考点:二次函数的实际应用.5.对于二次函数 y=ax 2+(b+1)x+(b ﹣1),若存在实数 x 0,使得当 x=x 0,函数 y=x 0,则称x 0 为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b ,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A 、B 两点的横坐标是该函数的“不变值”,且 A 、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值. 【答案】(1)-1,3;(2)0<a<1;(3)-98【解析】 【分析】(1)先确定二次函数解析式为y=x 2-x-3,根据x o 是函数y 的一个不动点的定义,把(x o ,x o )代入得x 02-x 0-3=x o ,然后解此一元二次方程即可;(2)根据x o 是函数y 的一个不动点的定义得到ax o 2+(b+1)x o +(b-1)=x o ,整理得ax 02+bx o +(b-1)=0,则根据判别式的意义得到△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,把b 2-4ab+4a 看作b 的二次函数,由于对任意实数b ,b 2-4ab+4a>0成立,则(4a )2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a ,b 之间的关系式,整理后在利用基本不等式求解可得. 【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x 2-x-3,把(x o ,x o )代入得x 02-x 0-3=x o ,解得x o =-1或x o =3,所以函数y 的不动点为-1和3;(2)因为y=x o ,所以ax o 2+(b+1)x o +(b-1)=x o ,即ax 02+bx o +(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a=- A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b ba a-- ) A 、B 两点关于直线y=kx-2a+3对称, 又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上.∴b a -=ba-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.6.如图,已知抛物线的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5)。

初中数学中考复习:16二次函数(含答案)

初中数学中考复习:16二次函数(含答案)

中考总复习:二次函数—巩固练习(提高)【巩固练习】一、选择题1. 如图,两条抛物线、与分别经过点,且平行于轴的两条平行线围成的阴影部分的面积为()A.4 B.6 C.8 D.10 2.反比例函数图象上有三个点,,,其中,则,,的大小关系是()A.B. C. D.3.函数与在同一坐标系中的大致图象是( )4.二次函数的图,象如图所示,那么、、、这四个代数式中,值为正的有()A.4个B.3个C.2个D.1个21世纪教育网5.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连结DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是( )在函数A. C. D.P,P,P…P.P=xC最多.已知抛物线与抛物线的形状相同,顶点在直线上,且顶点到轴的距离为.已知二次函数,(为常数),当取不同的值时,其图象构成一个.下图分别是当,,,时二次函数的图象这条直线的解析式是.2-6x+1(m是常数).如图,直线交轴于点,交轴于两点的抛物线交轴于另一点=x第15题图X 1X 2X 3y 1y 2y 3(1)求点E 、F 的坐标(用含m 的式子表示);(2)连接OA ,若△OAF 是等腰三角形,求m 的值;(3)如图(2),设抛物线y=a(x -m -6)2+h 经过A 、E 两点,其顶点为M ,连接AM ,若∠OAM=90°,求a 、h 、m 的值. 【答案与解析】一、选择题1.【答案】C ;2.【答案】B ;【解析】利用图象法解,如图所示,y 3最大,由反比例函数的性质,在同一象限,k>0时,y 随着x的增大而减小,易得.3.【答案】C ;【解析】两个解析式的比例系数都是k ,那么分两种情况讨论一:k >0时y =图像经过一、三象限,y =kx -k 中,-k <0故图像经过一、三、四象限,符合条件的只有C ,k <0时y =的图像分布在二、四象限,y =kx -k 中-k >0故图像经过一、二、四象限,此时A ,B ,D 选项都不符合条件.4.【答案】A ;【解析】由抛物线开口方向判定的符号,由对称轴的位置判定的符号,由抛物线与轴交点位置判定的符号.由抛物线与轴的交点个数判定的符号,∵,a >0,∴>0.若轴标出了1和-1,则结合函数值可判定、、的符号.5.【答案】C ;【解析】这是一个动点问题.很容易由△ADE∽△DPC得到,从而得出表达式;也可连结PA,由得到表达式,排除(A)、(B).因为点P在BC边上运动,当点P与点C重合时,DP与边DC重合,此时DP最短,x=3;当点P与点B重合时,DP与对角线BD重合,此时DP最长,x=5,即x的临界值是3和5.又因为当x取3和5时,线段AE的长可具体求出,因此x的取值范围是3≤x≤5.正确答案选(C).6.【答案】A;【解析】正方形OABC,点B在函数上(x>0)∴设B(x,y),z则x=y,由=x解得,x=1∴正方形OABC边长为1.E点在曲线上,设,由正方形ADEF可知,AD= DE即m-1=,解得 (负根已舍)∴AD=m-1= ,即正方形ADEF的边长为点E坐标为,故选A.二、填空题7.【答案】(4025,);【解析】8.【答案】4;【解析】C1(3,0)、C2(2,0)、C3(-8,0)、C4(,0).9.【答案】x1=﹣1,x2=3;【解析】依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1,x2=3.10.【答案】-2;【解析】由题意得A(0,c),C ,把C 的坐标代入y=ax2+c得ac=-2.11.【答案】或或或;【解析】,顶点(1,5)或(1,-5).因此或或或.12.【答案】;【解析】可以取,时,分别求出抛物线的两个顶点,然后带入y=kx+b,求出解析式.三、解答题13.【答案与解析】解:⑴当x=0时,.所以不论为何值,函数的图象经过轴上的一个定点(0,1).⑵①当时,函数的图象与轴只有一个交点;②当时,若函数的图象与轴只有一个交点,则方程有两个相等的实数根,所以,.综上,若函数的图象与轴只有一个交点,则的值为0或9.14.【答案与解析】解:(1)设抛物线的解析式为:y=ax2+bx+c。

中考数学总复习《实际问题与二次函数》专项提升练习题(附带答案)

中考数学总复习《实际问题与二次函数》专项提升练习题(附带答案)

中考数学总复习《实际问题与二次函数》专项提升练习题(附带答案)学校:___________班级:___________姓名:___________考号:___________1.有一块形状如图的四边形余料ABCD ,4AB BC CD ===测得∠B=90°,60C ∠=︒要在这块余料中截取一块矩形材料,其中一边在AB 上,并使截得的面积尽可能大.(1)若所截矩形材料的一个顶点恰好为D ,求该矩形材料的面积.(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,请说明理由.2.如图,利用一面墙(墙EF 最长可利用24米),围成一个矩形苗圃园ABCD ,与围墙平行的一边BC 上要预留3米宽的入口(如图MN 所示,不用砌墙),用45米长的墙的材料做围墙,设这个苗圃园垂直于墙的一边的长为x 米.(1)求y关于x的函数表达式;(2)根据攀枝花市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于7.80m,此项考试得分为满分15分.该女生在此项考试中是否得满分,请说明理由.5.如图是某新建住宅小区修建的一个横断面为抛物线的拱形大门,点Q为顶点,其高为6米,宽OP为12米.以点O为原点,OP所在直线为x轴建立平面直角坐标系.(1)求该抛物线的函数解析式;(不需写自变量的取值范围)(2)如图2,小区物业计划在拱形大门处安装一个矩形“光带”ABCD,使点A,D在抛物线上,点B,C在OP,,的长度之和的最大值.上,求所需的三根“光带”AB AD DC、分别在x轴、y轴的正6.如图1,以边长为16的正方形OABC的顶点O为原点建立直角坐标系,OA OC方向上.(1)求以y 轴为对称轴,且经过点A C 、的抛物线的函数解析式;(2)平移正方形OABC ,但保持抛物线与对应边O A ''交于点D 、与对应边B C ''交于点E ,且点D 不与点O A ''、重合,点E 不与点B C ''、重合,如图2,设点C '的坐标为(),C a b '且0a >.①当OE AE =时,求出点D E 、的坐标;①在①的条件下,直接写出a 的取值范围;①当7b =时,是否存在实数a 使得点E 为边B C ''的中点?若存在,求出a 的值;若不存在,说明理由.7.如图,在Rt ABC △中1ABC S =△,点P 是BC 边上任意一点(点P 与点B ,C 不重合),矩形AFPE 的顶点F ,E 分别在AB ,AC 上.(1)若BP :PC=2:3求BPF S ;(2)已知2BC =,设BP x =,矩形AFPE 的面积为y ,求y 与x 的函数关系式,y 在x 为多少时取得最大值,并求出最大值是多少.8.为了进一步保护好人们的眼睛,某公司投资生产了一种护眼台灯.这种台灯的成本为每盏20元,公司派一名销售员进行市场销售,第一个月以每盏22元的售价出售了280盏.第二个月进行了市场调查,每盏台灯提高0.5元就少销售5盏台灯,设第二个月月销售量为y (盏)与销售单价x (元),在销售过程中,销售单价不低于第一个月售价,且每盏台灯的利润不高于成本价的60%.(1)请求出销售量y (盏)与销售单价x (元)之间的函数关系式,并直接写出自变量x 的取值范围.(2)设第二个月的利润为w (元),求出第二个月的利润w (元)与销售单价x (元)之间的函数关系式.当销售单价定为多少元时,第二个月的销售利润最大,最大利润为多少元.(3)如果公司想要第二个月获得的利润不低于2000元,那么公司第二个月的成本最少需要多少元?9.跳绳是校园中常见的一项体育运动,集体跳绳时,需要两人同频甩动绳子,当绳子甩到最高处时,其形状可近似看作抛物线.下图是小明和小亮甩绳子到最高处时的示意图,已知两人拿绳子的手离地面的高度都为1m ,并且相距4m .现在以两人的站立点所在的直线为x 轴,过小明拿绳子的手作x 轴的垂线为y 轴,建立如图所示的平面直角坐标系,且绳子所对应的抛物线的解析式为216y x bx c =-++.(1)求出绳子所对应的抛物线的解析式.(2)身高为1.72m的乐乐站在绳子的正下方,绳子能否过他的头顶?并说明理由.(3)身高为1.64m的小颖,站在绳子的下方,设她距离小明拿绳子的手为dm,为保证绳子甩到最高处时过她的头顶,请直接写出的取值范围.10.某水果店出售一种水果,该水果的进价为8元/千克,经过往年销售经验可知:以12元/千克出售,每天可售出60千克;若每千克涨价0.5元,每天要少卖2千克;若每千克降价0.5元,每天要多卖2千克,但x≥),每天售出水果的总重量为y千克.售价不低于进价.设该水果的销售单价为x元/千克(8(1)求y与x的函数关系式;x x≥的函数关系式,并求出当x为何值时,利润W最(2)设水果店每天的销售利润为w元,试求出w与(8)大,最大利润是多少?11.小李在一次高尔夫球的练习中,在某处击球,球飞行路线满足抛物线21855y x x =-+(如图所示),其中()m y 是球的飞行高度,()m x 是球飞出的水平距离,结果球离球洞的水平距离还有2m .(1)请写出抛物线的开口方向、对称轴方程、顶点坐标;(2)请求出球洞距离击球点的水平距离;(3)若小李再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行的路线应满足怎样的抛物线?求其表达式.12.要在一个圆形广场中央修建一个音乐喷泉,在广场中央竖直安装一根水管.在水管的顶点安一个喷水头,使喷出的抛物线水柱在与广场中央的水平距离为1m 处达到最高,且最高为3m ,水柱落地处离广场中央3m ,建立如图所示的直角坐标系.(1)求抛物线的解析式;(2)求水管的长度;(3)当音乐喷泉开始喷水时,在广场中央有一身高为1.5m 的男孩未及时跑到喷泉外,问该男孩离广场中央的距离m的范围为多少时,才不会淋湿衣裳?13.根据心理学研究表明,学生上课对概念的接受能力y与讲授概念的时间x之间的关系是二次函数,如图OC .是y与x的函数图象,点A是该抛物线的顶点,且43(1)求y与x的函数关系式;(2)研究表明,当学生的接受能力在55及以上时,视为学生接受能力的黄金期.①在学生接受能力的黄金期讲授重点内容,学习效果会更好.请问,张老师在哪个时间段内讲授重点内容合适?①若讲授某个概念的重点内容需要用时12分钟,请你判断其能否在学生接受能力的黄金期内讲完?说明理由.14.如图,某长为800m 的隧道的横截面顶部为拋物线形,隧道的左侧是高为4m 的墙OA ,右侧是高为5m 的墙BC ,拱壁上某处离地面的高度()m y 与其离墙OA 的水平距离()m x 之间的关系满足216y x bx c =-++.现测得,OA BC 两墙体之间的水平距离为12m .(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OC 的距离.(2)从隧道头到隧道尾,在拋物线形拱壁上安装若干排吊灯,每排吊灯与地面的距离都不低于203m 32,每相邻两排吊灯之间的水平距离为2m ,每排内相邻两盏吊灯之间的距离为10m .求共需要多少盏吊灯?(3)如果隧道内设双向行车道,每条车道的宽为5m ,两条车道之间是宽为1m 的绿化带,一辆货车载一个长方体集装箱后高为5m 、宽为4m ,那么这辆货车无论从哪条车道都能安全通过吗?请说明理由.15.在杭州举办的亚运会令世界瞩目,吉祥物“琮琮”、“莲莲”、“宸宸”家喻户晓,其相关产品成为热销产品.某商店购进了一批吉祥物毛绒玩具,进价为每个30元.若毛绒玩具每个的售价是40元时,每天可售出80个;若每个售价提高1元,则每天少卖2个.(1)设该吉祥物毛绒玩具每个售价定为()>40x x 元,求该商品销售量y 与x 之间的函数关系式;(2)如果每天的利润要达到1200元,并且尽可能让利于顾客,每个毛绒玩具售价应定为多少元?(3)若获利不得高于进价的80%,每个毛绒玩具售价定为多少元时,每天销售玩具所获利润最大,最大利润是多少元?参考答案答案第11页,共11页 最大利润为2160元(3)公司想要第二个月获得的利润不低于2000元,公司第二个月的成本最少为3600元9.【答案】(1)212163y x x (2)绳子不能过他的头顶(3)1.6 2.4d << 10.【答案】(1)4108y x =-+(8x ≥)(2)当352x =时,利润最大,最大利润为361元 11.【答案】(1)开口向下,顶点为16(4,)5,对称轴为4x =(2)球洞离击球点的距离为10m (3)21616(5)1255y x =--+ 12.【答案】(1)()23134y x =--+(2)2.25米(3)012m ≤<+ 13.【答案】(1)20.1(13)59.9y x =--+(2)①张老师在上课6~20内讲授重点内容合适;①能在学生接受能力的黄金期内讲完14.【答案】(1)212510096496y x ⎛⎫=--+ ⎪⎝⎭ 1009m 96(2)486盏 (3)货车无论从哪条车道都能安全通过15.【答案】(1)2160y x =-+(2)50(3)定为54元时,每天销售毛绒玩具所获利润W 最大,最大利润是1248元。

中考复习:二次函数综合能力提升——各种题型逐一突破

中考复习:二次函数综合能力提升——各种题型逐一突破

二次函数综合能力提升 ——各类题型逐一突破一、【二次函数的定义】二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数具备三个条件,缺一不可:(1)是整式;(2)是一个自变量的二次式;(3)二次项系数不为0(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 例1、下列函数中,是二次函数的是 . ①y=x 2-2x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ;⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =(4,x) ;⑧y=-∏x 。

2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。

3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

4、若函数y=(m -2)x m2 -2+5x+1是关于x 的二次函数,则m 的值为 。

5、k 为何值时,y=(k +2)x 622--k k 是关于x 的二次函数?训练题:1.已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数. 2.当m 时,y=(m -2)x22-m 是二次函数.3.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系.4.在物理学内容中,如果某一物体质量为m ,它运动时的能量E 与它的运动速度v 之间的关系是E=21mv 2(m 为定值).v 1 2 3 4 5 6 7 8E(2)若物体的运动速度变为原来的2倍,则它运动时的能量E 扩大为原来的多少倍? 5、请你分别给a ,b ,c 一个值,让c bx ax y ++=2为二次函数,且让一次函数y=ax+b 的图像经过一、二、三象限6.下列不是二次函数的是( )A .y=3x 2+4 B .y=-31x 2C .y=52-xD .y=(x +1)(x -2)7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏.(1)求梯形的面积y 与高x 的表达式;(2)求x 的取值范围.9.如图,在矩形ABCD 中,AB=6cm ,BC=12cm .点P 从点A 开始沿AB 方向向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向C 以2cm/s 的速度移动.如果P 、Q 两点分别到达B 、C 两点停止移动,设运动开始后第t 秒钟时,五边形APQCD 的面积为Scm 2,写出S 与t 的函数表达式,并指出自变量t 的取值范围.10.已知:如图,在Rt △ABC 中,∠C=90°,BC=4,AC=8.点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF .设DE=x ,DF=y .(1)AE 用含y 的代数式表示为:AE= ; (2)求y 与x 之间的函数表达式,并求出x 的 取值范围;(3)设四边形DECF 的面积为S ,求S 与x 之间的函数表达式.二、【二次函数y=ax 2+bx+c 的图象特征与a 、b 、c 的关系】* a 决定开口方向,a > 0,开口向上;a < 0,开口向下。

中考数学复习考点知识讲解与练习23 二次函数图象与性质(提升篇)

中考数学复习考点知识讲解与练习23 二次函数图象与性质(提升篇)

中考数学复习考点知识讲解与练习 专题23 二次函数图象与性质(提升篇)纵观各省市中考题,二次函数为必考点,大题以压轴题形式出现,而压轴题往往分为两到三个小问题,第一问多以求二次函数解析式,二三小题多以图形变换相结合,另外考点以填空或选择题的形式出现,重在对学生二次函数的图象与性质作为考查点,鉴于此,二次函数为中考重中之中的复习内容,无论对中等生还是优秀学生都为巩固学习之内容,本中考数学复习考点知识讲解与练习 专题从基础到综合,分为基础训练篇,巩固提升篇,以数形结合为主线,汇编一系列中考数学复习考点知识讲解与练习 专题对学生补弱提优。

本专缉为老师提供有代表性的常考题,帮助学生为中考冲刺,力争学生能得以全面提升。

一、单选题1.将函数()24+1y x =-+的图象向右平移2个单位.再向下平移4个单位.所得图象的对称轴是() A .2x =-B .2x =C .4x =-D .3x =-2.若数a 使二次函数()2312y a x x a =-+++的图像与y 轴的交点坐标为正数,且使关于x 的不等式组521132x a x x x +≤-⎧⎪+-⎨>⎪⎩有且只有4个整数解,则符合条件的所有整数a 的取值的和是() A .-1B .0C .1D .23.已知二次函数222y x x k =-+-与x 轴两个交点坐标分别为1(0)x ,,2(0)x ,,若()22112424x x x k ---=,则k 的值是() A .2B .-1C .1D .-1或24.已知二次函数21y ax bx =++(a <0)的图象过点(1,0)和(x 1,0),且﹣2<x 1<﹣1,下列4个判断中:①a +b =-1;②a >b ﹣1;③b ﹣a <0;④﹣1<a <﹣12,正确的是( ) A .①②③B .①②④C .①③④D .②③④5.将拋物线C :y=2310x x +-平移到'C ,若两条拋物线C ,'C 关于直线x = 1对称,则下列平移方法中正确的是() A .将抛物线C 向右平移1个单位 B .将抛物线C 向右平移3个单位 C .将抛物线C 向右平移5个单位D .将抛物线C 向右平移6个单位6.已知()13,y -,()22,y -,()31,y 是抛物线24y x =上的点,则() A .123y y y << B .312y y y << C .321y y y <<D .231y y y <<7.在二次函数y=a 2x +bx+c 中,x 与y 的部分对应值如表:则下列说法:①该二次函数的图象经过原点;②该二次函数的图象开口向下;②该二次函数的图象经过点(−1,3);④当x>0时,y 随着x 的增大而增大; ⑤方程a 2x +bx+c=0有两个不相等的实数根.其中正确的个数有( ) A .2个B .3个C .4个D .5个8.函数23y ax bx =++.当1x =与2018x =时,函数值相等,则当2019x =时,函数值等于( ) A .-3B .32-C .32D .39.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则() A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y <D .当5x >时,12y y >10.如图是抛物线()210y ax bx c a =++≠图象的一部分,抛物线的顶点坐标是()1,3A ,与x 轴的一个交点()4,0B ,直线()20y mx n m =+≠与抛物线交于A ,B 两点,下列结论:①20a b +=;②0abc >;③方程23ax bx c ++=有两个相等的实数根;④抛物线与x 轴的另一个交点是1,0;⑤当14x <<时,有12y y >;⑥()a b m am b +>+.(m 为任意实数)其中正确的是()A .①③⑥B .①④⑤C .①③⑤D .②④⑥11.若二次函数2322y x x m =+-的图象与x 轴有两个交点,则关于x 的一元二次方程2322x x m +=的根的情况是() A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定12.在同一平面直角坐标系中,函数y =ax 2﹣bx 与y =bx +a 的图象可能是()A .B .C .D .13.已知二次函数242y x x =--+,关于该函数在31x -≤≤的取值范围内,下列说法正确的是().A .有最大值6,有最小值-3B .有最大值5,有最小值-3C .有最大值6,有最小值5D .有最大值6,有最小值-114.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为()A .0.5米B .2米 C . 3米D .0.85米15.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称; ②函数既有最大值,也有最小值; ③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根.其中正确的结论个数是() A .3B .2C .1D .0二、填空题16.一个函数有下列性质:①它的图象不经过第四象限;②图象经过点(1,2);③当x>1时,函数值y 随自变量x 的增大而增大.满足上述三条性质的二次函数解析式可以是_________(只要求写出一个).17.如图,一段抛物线()()202y x x x =--≤≤,记为1C 与x 轴交于两点O ,1A ;将1C 绕点1A 旋转180°得2C ,与x 轴交于点2A ,将2C 绕点2A 旋转180°得3C ,与x 轴交于点3A ……,按此规律继续作下去,直至得到6C ,若点23,2P m ⎛⎫⎪⎝⎭在6C 上,则m =______.18.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.19.抛物线的部分图象如图所示,则当y <0时,x 的取值范围是_____.20.已知抛物线y =(x ﹣m )2+n 与x 轴交于点(1,0),(4,0),则关于x 的一元二次方程(x ﹣m ﹣3)2+n =0的解是_____.21.如图,在△ABC 中,点P 从点A 出发向点C 运动,在运动过程中,设x 表示线段AP 的长,y 表示线段BP 的长,y 与x 之间的函数关系如图②所示,其中,M 为曲线部分的最低点,则△ABC 的面积为________22.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 的坐标分别为(0,2),(1,0),顶点C 在函数22y x bx =+-的图象上,将正方形沿x 轴正方向平移后得到正方形A B C D '''',当点D 的对应点D '落在抛物线上时,则DD '的长为____________.23.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.24.如图,一段抛物线:(2)(02)y x x x =--≤≤记为1C ,它与x 轴交于点1,O A ;将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ⋯如此进行下去,则2020C 的顶点坐标是_______.25.如图,在平面直角坐标系中,点A ,B 是一次函数y x =图像上两点,它们的横坐标分别为1,4,点E 是抛物线248y x x =-+图像上的一点,则ABE △的面积最小值是______. 本号资料@皆来*源于微信公众号:数学第#六感26.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.27.点A 为y 轴正半轴上一点,A ,B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x =于P ,Q 两点.若点A 的坐标为(0,1),且60PBQ ∠=,则所有满足条件的直线PQ 的函数解析式为:_______.28.如图,抛物线223y x x =--+与x 轴交于A ,B 两点,与y 轴交于点C .若E 为射线CA 上一点,(,)F m n 为抛物线上一点,E 、A 是位于直线BF 同侧的不同两点,若2||EFBSn =,连接AF ,FAE AEB ∠=∠,则点E 的坐标为__________.29.如图,已知点B (3,3)、C (0,6)是抛物线24y ax x c =-+ (0a ≠)上两点,A 是抛物线的顶点,P 点是x 轴上一动点,当PA+PB 最小时,P 点的坐标是_____.30.如图,点A 1、A 2、A 3、…、A n 在抛物线y =x 2图象上,点B 1、B 2、B 3、…、B n 在y 轴上,若△A 1B 0B 1、△A 2B 1B 2、…、△A n B n ﹣1B n 都为等腰直角三角形(点B 0是坐标原点),则△A 2022B 2022B 2022的腰长=_____.三、解答题31.新冠肺炎期间,某超市将购进一批口罩进行销售,已知购进4盒甲口罩和6盒乙口罩需260元,购进5盒甲口罩和4盒乙口罩需220元.两种口罩以相同的售价销售,甲口罩的销售量1y (盒)与售价x (元)之间的关系为14008y x =-;当售价为40元时,乙口罩可销售100盒,售价每提高1元,少销售5盒.(1)求甲、乙两种口罩每盒的进价分别为多少元?(2)当乙口罩的售价为多少元时,乙口罩的销售总利润最大?此时甲乙两种口罩的销售利润总和为多少?(3)当甲口罩的销售量不低于乙口罩的销售量的1415,若使两种口罩的总利润最高,求此时的定价为多少?32.如图,抛物线26y ax x c =++交x 轴于A ,B 两点,交y 轴于点C .直线5y x =-经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM BC ⊥时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标;②连接AC ,当直线AM 与直线BC 的夹角等于ACB ∠的2倍时,请直接写出点M 的坐标.33.如图,在平面直角坐标系中,直线210y x =-+与x 轴,y 轴相交于A ,B 两点.点C 的坐标是()8,4,连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断ABC 的形状;(2)抛物线上是否存在着一点P ,使PAB △的面积为25?若存在,求出P 的坐标,若不存在,请说明理由;(3)在抛物线上,是否存在着一点M ,使ABM 为以AB 为斜边的直角三角形?若存在,请直接写出M 的坐标;若不存在,请说明理由.34.如图,在平面直角坐标系中,已知抛物线2y ax bx c =++与x 轴交于点A ,点B ,与y 轴交于点C ,其中()4,0A -,()2,0B ,()0,4C -.(1)求该抛物线的函数表达式:(2)若点D 是y 轴上的点,且以A ,C ,D 为顶点的三角形与ABC 相似,求点D 的坐标.(3)点P 是抛物线2y ax bx c =++的对称轴上的一点,点S 是坐标平面内一点,若以A ,C ,P ,S 为顶点的四边形是菱形,请直接写出所有符合条件的点P 的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 1)求点 E、 F 的坐标(用含 m的式子表示) ; ( 2)连接 OA,若△ OAF是等腰三角形,求 m的值; ( 3)如图( 2),设抛物线 y=a(x -m- 6) 2+h 经过 A、 E 两点,其顶点为 M,连接 AM,若∠ OAM=9°0 ,
求 a、 h、m的值 .
【答案与解析】 一、选择题 1. 【答案】 C; 2. 【答案】 C;
> 0;④当 y< 0 时, x<﹣ 1 或 x> 2,⑤对任意实数 m,m( am+b)≤ a+b.其中正确的结论是 序号).
(填
9 .已知二次函数 y= ﹣ x 2+2x+m 的部分图象如图所示,则关于


x 的一元二次方程﹣ x2 +2x+m=0 的解
10.如图,在平面直角坐标系中,二次函数 则 ac 的值是 ________.
2
二、填空题
7.如图,将边长为 2的等边三角形沿 x轴正方向连续翻折 2010 次,依次得到点 P1 ,P 2 ,P 3 …P2013 .则点 P2013
的坐标是

Y
P1
P2
P3
X O
2
8.(2015?乐至县一模)如图,二次函数 y=ax +bx+c(a≠0)的图象与 x 轴交于 A、 B 两点,与 y 轴交于 C 点,且对称轴为直线 x=1,点 B 坐标为(﹣ 1, 0).则下面的四个结论:① 2a+b=0;② 8a+c< 0;③ abc
(A)
(B)
(C)
(D)
6.如图,正方形 OABC, ADEF的顶点 A, D,C 在坐标轴上,点 的图象上,则点 E 的坐标是 ( )
F 在 AB上,点 B, E在函数 y
1
(x>0)
x
A. (
5
1 ,
5
1 )
B.
3 (
53 ,
5 )
C. (
5
1 ,
5
1
2
2
D.
3 (
53 ,
5 )
2
中考总复习:二次函数—巩固练习(提高)
【巩固练习】
一、选择题
1. 如图,两条抛物线 y1
1 x2 2
条平行线围成的阴影部分的面积为(
A .4 B .6 C .8
1 、 y2
) D . 10
1 x2 2
1 与分别经过点
2,0 , 2,0 且平行于 y 轴的两
2.(2014?淮阴区校级模拟)某民俗旅游村为接待游客住宿需要,开设了有
y=ax 2+c(a ≠ 0) 的图象过正方形 ABOC的三个顶点 A,B, C,
11.已知抛物线 y ax 2 bx c 与抛物线 y 到 x 轴的距离为 5,则此抛物线的解析式为
x2 3x 7 的形状相同,顶点在直线 x 1 上,且顶点
.
2
12.已知二次函数 y x 2a
a 1 ,( a 为常数),当 a 取不同的值时,其图象构成一个“抛物线
【解析】两个解析式的比例系数都是
k,那么分两种情况讨论一: k> 0 时 y= k 图像经过一、三象限, x
y= kx- k 中,- k< 0 故图像经过一、三、四象限,符合条件的只有
k
C,k< 0 时 y= 的图像分
x
布在二、四象限, y= kx- k 中- k> 0 故图像经过一、二、四象限,此时 条件.
【解析】设每张床位提高 x 个 2 元,每天收入为 y 元. 则有 y=(10+2x )(100﹣ 10x) =﹣ 20x2+100x+1000.
当 x=﹣ =2.5 时,可使 y 有最大值.
又 x 为整数,则 x=2 时, y=1120;
x=3 时, y=1120;
则为使租出的床位少且租金高,每张床收费 =10+3×2=16(元) .故选 C. 3. 【答案】 C ;
系”.下图分别是当 a 这条直线的解析式是 y
1 , a 0 , a 1 , a 2 时二次函数的图象 . 它们的顶点在一条直线上,
.
三、解答题 13.已知函数 y=mx2- 6x+ 1( m是常数). ⑴求证:不论 m为何值,该函数的图象都经过 y 轴上的一个定点; ⑵若该函数的图象与 x 轴只有一个交点,求 m的值. 14. (2015?上海)已知在平面直角坐标系 xOy 中(如图),抛物线 y=ax2﹣ 4 与 x 轴的负半轴( XRS)相交 于点 A,与 y 轴相交于点 B,AB=2 ,点 P 在抛物线上,线段 AP与 y 轴的正半轴交于点 C,线段 BP 与 x 轴相交于点 D,设点 P 的横坐标为 m. ( 1)求这条抛物线的解析式; ( 2)用含 m的代数式表示线段 CO的长; ( 3)当 ta n∠ODC= 时,求∠ PAD 的正弦值.

x
4.二次函数 y ax 2 bx c 的图 , 象如图所示,那么 abc、 b2 4ac 、 2a b 、 4a 2b c 这四个
代数式中,值为正的有( A.4 个 B.3 个 C.2
) 个 D.1
个 21 世纪教育网
5.如图,在矩形 ABCD中, AB=3, BC=4,点 P 在 BC边上运动,连结 DP,过点 A 作 AE⊥ DP,垂足为 E, 设 DP=x, AE=y,则能反映 y 与 x 之间函数关系的大致图象是 ( )
15.如图,抛物线 y= 1 x2+bx- 2 与 x 轴交于 A、 B 两点,与 y 轴交于 C点,且 A(一 1, 0). 2
⑴求抛物线的解析式及顶点 D的坐标; ⑵判断△ ABC的形状,证明你的结论; ⑶点 M( m,0) 是 x轴上的一个动点,当 CM+DM的值最小时,求 m的值.
第 15 题图 16. 如图( 1),矩形 ABCD的一边 BC在直角坐标系中 x 轴上,折叠边 AD,使点 D落在 x 轴上点 F 处,折 痕为 AE,已知 AB=8, AD=10,并设点 B 坐标为( m,0),其中 m> 0.
A, B, D 选项都不符合
4. 【答案】 A;
【解析】由抛物线开口方向判定 a 的符号,由对称轴的位置判定 b 的符号,由抛物线与 y 轴交点位置
100 张床位的旅馆,当每张
床位每天收费 10 元时,床位可全部租出.若每张床位每天收费提高
2 元,则相应的减少了 10 张床位租
出.如果每张床位每天以 2 元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适
的收费是(

A. 14 元
B. 15 元
C. 16 元
D. 18 元
3.函数 y kx k 与 y k (k 0) 在同一坐标系中的大致图象是(
相关文档
最新文档