高三数学函数专题复习策略

高三数学函数专题复习策略
高三数学函数专题复习策略

数学试卷中函数专题复习策略

一、《考试说明》对函数部分的要求

1.函数.理解函数的概念、定义域、值域、奇偶性,了解函数的单调性、周期性、最大值、最小值;

2.基本初等函数.了解幂函数的概念及图象,理解指数函数、对数函数的概念及图象和性质,理解指数及对数的运算.

3.函数与方程.了解函数的零点与方程根的联系,能够用二分法求相应方程的近似解.

4.函数模型及应用.理解常见的函数模型在实际问题中的应用.

5.理解导数的几何意义,会根据公式、四则运算法则、复合函数求导法则求函数的导数,能利用导数研究函数的单调性,会求函数的单调区间,函数的极大值、极小值,闭区间上函数的最大值、最小值. 二、函数部分命题特点

函数是数学的核心内容,是学习高等数学的基础,作为数学中最重要的知识模块,贯穿着数学的始终.综观近几年的高考情况,函数命题呈现如下特点:

1.知识点覆盖面全.近几年高考题中,函数的所有知识点基本都考过,特别是函数的图象性质、导数的几何意义与应用以及函数与不等式的综合基本上年年必考.

2.题型难度涉及面广.在每年高考题中,低档、中档、高档难度的函数题都有,且填空、解答题型都有.

3.综合性强.为了突出函数在数学中的主体地位,近几年来高考强化了函数对其他知识的渗透,例如,解析几何中经常涉及函数的值域的求法,三角、数列本质上也是函数问题. 三、函数复习中关注方面

(一)关注函数的定义域

定义域的求法实际上就是解不等式,考生必须能够做到以下两点:一是熟知定义域常见要求,如分式的分母不为零;偶次根号下非负;对数的真数大于零,底数大于零且不等于1;零次幂的底数不为零;三角函数中的正切、余切的定义域等等;二是熟练掌握常见不等式的解法,如二次不等式、分式不等式、根式不等式、三角不等式以及简单的指对数不等式.

例1.(江苏卷)函数x x f 6log 21)(-=的定义域为 . 【解析】根据二次根式和对数函数有意义的条件,得

1

2

66

00

1

12log0log6

2

0<

x>x>

x>

x

x x x

-≥≤≤

??

???

???

???

????

?

有关定义域问题最重要的是定义域优先原则,即研究函数的任何问题都要首先考虑其定义域. 例如研究函数的单调性和奇偶性,函数的最值等都需要首先确定定义域.另外,在进行换元时,应先确定“新元”的范围,然后再在其范围内讨论各种问题,这也是定义域优先的具体体现.

(二)拓展求函数值域最值的方法

求函数值域一直是函数的重要考查方向,它的丰富多样的求解方法和数学思想,将函数所有的性质融为一体,具有很强的综合性.常见两种题型,一种题型是具体函数求值域问题,另一种是将其他问题转化为求函数值域(或最值)问题,例如不等式恒成立求参数范围的问题,最后都是转化为函数的最值的问题.因此,考生一定要在复习当中重视不同结构的求值域问题.

例2.(上海春季高考)函数

2

2

4

log[2,4]

log

y x x

x

=+∈

,的最大值是 .

【解析】

2

[2,4]log[1,2]

x x

∈∴∈

,,设

2

log

t x

=,则

4

y t

t

=+,

求导可得函数在[1,2]

t∈时单调递减,故1

t=时,y取得最大值5.

例3.关于x的方程22240

x x

m

-+=在[0,1]内有解,求实数m的取值范围.

【解析】令2,[1,2]

x t t

=∈,原问题转化为240

t mt

-+=在[1,2]上有解,这属于二次方程根的分布问题,需要结合二次函数图象,利用分类讨论进行求解,但是计算繁琐.事实上,求参变量范围的问题.我们还可以考虑“分离参变量”,即

4

=()

m t g t

t

=+,所谓方程有解,即m在函数()

g t的值域内,注意到函数()

g t在[1,2]上递减,()[4,5],

g t

∴∈即[4,5]

m∈.

(三)灵活应用函数的性质

函数性质是函数的重点内容,包括函数的单调性、奇偶性、周期性和对称性。对于函数的各种性质的定义,考生必须完全知晓并深刻理解。除了能够判断函数的各种性质以外,还要能够灵活应用函数的性质,灵活应用的前提是能够识别函数的四大性质,并能自如应用,要有应用函数性质的意识。

例4.(江苏卷)设()

f x是定义在R上且周期为2的函数,在区间[11]

-,上,

1

11

()2

1

x

x

ax

f x bx

x

<

+-

?

?

=+

?

?+

?

≤≤

,,

,,

其中a b∈R

,.若

13

22

f f

????

=

? ?

????

则3

a b

+的值为.

【解析】∵()

f x是定义在R上且周期为2的函数,∴()()

11

f f

-=,即

2

1=

2

b

a

+

-+①.

又∵

311

=1

222

f f a

????

=--+

? ?

????

13

22

f f

????

=

? ?

????

14

1=

23

b

a

+

-+②。

联立①②,解得,=2. =4

a b-。∴3=10

a b

+-.

例5.(年江苏卷)设函数()()

x x

f x x e ae-

=+()

x R

∈是偶函数,则实数a=________

【解析】考查函数的奇偶性的知识.()x x

g x e ae

-=+为奇函数,由(0)0g =,得1a =-.

例6.(新课标卷)设函数22(1)sin ()1

x x

f x x ++=+的最大值为M ,最小值为m ,则

M m +=

【解析】222(1)sin 2sin ()111x x x x f x x x +++==+++,令2

2sin ()1

x x

g x x +=+,则()g x 为奇函数,对于奇函数来说其最大值与最小值之和为0,即max min ()()0,g x g x +=所以max min ()+()2f x f x =

(四)强化识图、画图能力以及用图意识

函数的图象是最直观反映函数性质的方式,要能够通过函数的性质以及图象变换画出函数的草图。此外,还要有应用图象的意识,养成函数问题画图的习惯。

例7.(高考辽宁理)设函数()()f x x R ∈满足()()f x f x -=()(2)f x f x =- ,且当

[0,1]x ∈时,3()f x x =.又函数()|cos()|g x x x π=,则函数()()()h x g x f x =-13

[,]22

-上

的零点个数为 . 【解析】

[0,1]x ∈时,3()f x x =,

∴当[1,2]x ∈,32)[0,1],()(2)(2)x f x f x x -∈=-=-( 当1[0,]2x ∈时,()cos(),g x x x π=当12

[,]23

x ∈时,注意到函数(),()f x g x 都是偶函数,

且13

(0)(0),(1)(1),()()022

f g f g g g ====,作出函数(),()f x g x 的大致图象,函数

()h x 除了0、1这两个零点之外,分别在区间1113

[,0]2222

-、[0,]、[,1]、[1,]上各有一

个零点,共有6个零点.

(五)熟练掌握二次、指数、对数、幂函数等基本函数的知识

在阶段,考生主要学习的具体函数有一次函数、二次函数、指数函数、对数函数、幂函数、三角函数以及它们之间进行的四则运算和复合,我们必须熟练掌握这些基本函数的各种性质、图象以及相互之间的关系。 例8.(新课标卷)设点P 在曲线12

x

y e =上,点Q 在曲线ln(2)y x =上,则||PQ 最小值为

【解析】函数12

x

y e =

与函数ln(2)y x =互为反函数,图象关于直线y x =对称,所以只需求点P 到直线y x =的最小距离即可,即1

2

x y e =的平行于直线y x =的切线与直线

y x =的距离,令1

=12

x y e '=,得ln 2,(ln 2,1),p x P =∴可求得点P 到直线y x =的距离

2

(1ln 2)2

-,所以PQ 的最小值为21ln 2)-(. 例9.已知图1是函数y =f (x )的图象,则图2中的图象对应的函数可能是________(填序号).

图1

图2

①y =f (|x |);②y =|f (x )|;③y =f (-|x |);④y =-f (-|x |).

【解析】由图象的变化知,原图保留了y 轴左边的部分,并把y 轴左边的部分关于y 轴对称到y 轴右边.①中,当x >0时,y =f (|x |)=f (x ),当x <0时,y =f (-x ),所以应是把y 轴右边部分对称到y 轴左边,故①错.

②中是把x 轴下边部分对称到x 轴上边,故②错. ③项中当x >0时,y =f (-|x |)=f (-x ),当x <0时,

y =f (-|x |)=f (x ),因此保留了y 轴左边部分,并作y 轴左边部分关于y 轴对称的图象,故③对.

例10.(湖南改编)已知两条直线l 1:y m =和l 2:y =8

2m +1

(m >0),l 1与函数y =|log 2x |的图

象从左至右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和

BD 在x 轴上的投影长度分别为a ,b .当m 变化时,b

a

的最小值为________.

【解析】由题意得1(),22m m A B x x ==,8

821

21

1,2

.2m m C D x x ++??

== ?

??

8821

21

11,22

.22B m

m m

m A C D a x x b x x ++????

∴=-=-=-=- ? ?

????

888

21

2121

8

21

222?22.22m

m m m m m m m b a

++++--+-∴===- ∵

82m +1+m =12(2m +1)+82m +1-12≥212(2m +1)×82m +1-12=7

2

, 当2m +12=82m +1,即m =3

2

时取等号.

b

a

的最小值为7

22=(六)稳健用好导数工具

导数最重要的价值,在于导数是一种方便研究函数性质的工具,比如求曲线的切线,求函数的单调区间,求函数的极值和最值,不等式恒成立问题等等。作为一个重要的工具,导数运算一定要准确,要对已知函数进行正确求导。同时,准确掌握导数与单数单调性以及极值之间的关系.

例11(福建卷文)3()sin ()2f x ax x a R =-

∈且在[1,]2π上的最大值为3.2

π- (1)求函数()f x 的解析式;

(2)判断函数()f x 在(0,)π内零点的个数,并加以证明.

【分析】当函数取最大(或最小)值时不等式都成立,可得该等式恒成立,从而把函数最值问题转化为恒成立问题,而利用导数求函数最值是解决恒成立问题的一种重要方法.零点个数的判定主要是依据零点存在定理.

【评析】给定含有参数的函数以及相关的函数性质,求解参数的值或范围,需要我们灵活运用导数这一工具,对问题实施正确的等价转化,列出关于参数的方程或不等式. 在此类含参问题的求解过程中,逆向思维的作用尤为重要.

例12(四川理)已知a 为正实数,n 为自然数,抛物线2

2

n

a y x =-+与x 轴

正半轴相交于点A ,设()f n 为该抛物线在点A 处的切线在y 轴上的截距. (Ⅰ)用a 和n 表示()f n

(Ⅱ)求对所有n 都有3

3()1()11

f n n f n n -≥++成立的a 的最小值

(Ⅲ)当01a <<时,比较

1

1

()(2)n

k f k f k =-∑与

27(1)()

4(0)(1)

f f n f f --的大小,并说明理由.

【分析】本题第(Ⅰ)问较基础常规,而第(Ⅲ)问貌似不等式问题,但其实质还是函数问题,我们可以借助函数的图象和性质,比较直观地从几何的角度来判断两者的大小问题.

【评析】本题属于高档题,难度较大,需要考生具备扎实的数学基础和解决数学问题的能力.主要考查了导数的应用、不等式、数列等基础知识;考查了思维能力、运算能力、分析问题与解决问题的能力和创新意识能力;且又深层次地考查了函数、转换与化归、特殊与一般等数学思维方法.

高考数学专题练习--函数图像

高考数学专题练习--函数图像 1. 【江苏苏州市高三期中调研考试】已知函数()2 21,0 ,0 x x f x x x x ->?=? +≤?,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是__________. 【答案】1 ,04 ?? - ??? 【解析】 2. 【江苏省苏州市高三暑假自主学习测试】已知函数31 1, ,()11,, x f x x x x ?>?=?-≤≤??若关于x 的方程 ()(1)f x k x =+有两个不同的实数根,则实数k 的取值范围是 ▲ . 【答案】1 (0,)2 【解析】 试题分析:作函数()y f x =及(1)y k x =+图像,(11), (1,0)A B -,,由图可知要使关于x 的方程()(1)f x k x =+有两个不同的实数根,须满足1 (0,)(0,).2 AB k k ∈=

3. 【江苏省南通市如东县、徐州市丰县高三10月联考】设幂函数()f x kx α=的图象经过点 ()4,2,则k α+= ▲ . 【答案】 32 【解析】 试题分析:由题意得11,422 k α α==?=∴32k α+= 4. 【泰州中学第一学期第一次质量检测文科】已知幂函数()y f x =的图象经过点1 (4,)2 ,则 1 ()4 f 的值为 . 【答案】2 【解析】 试题分析:设()y f x x α ==,则11422α α=?=-,因此1 211()()244 f -== 5. 【江苏省南通中学高三上学期期中考试】已知函数2 +1, 1, ()(), 1, a x x f x x a x ?-?=?->??≤ 函数 ()2()g x f x =-,若函数()()y f x g x =- 恰有4个零点,则实数的取值范围是 ▲ . 【答案】23a <≤ 【解析】

高考文科数学函数专题讲解及高考真题精选含答案

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是

近五年高考数学函数及其图像真题及其答案

1. 已知函数()f x =32 31ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 2. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 3. 设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是 A .()f x ()g x 是偶函数 B .|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数 D .|()f x ()g x |是奇函数 4. 函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是 A .()y g x = B .()y g x =- C .()y g x =- D .()y g x =-- 5. 已知函数f (x )=????? -x 2+2x x ≤0ln(x +1) x >0 ,若|f (x )|≥ax ,则a 的取值范围是 A .(-∞,0] B .(-∞,1] C .[-2,1] D .[-2,0] 6. 已知函数3 2 ()f x x ax bx c =+++,下列结论中错误的是

A .0x R ?∈,0()0f x = B .函数()y f x =的图象是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 D .若0x 是()f x 的极值点,则0'()0f x = 7. 设3log 6a =,5log 10b =,7log 14c =,则 A .c b a >> B .b c a >> C .a c b >>D .a b c >> 8. 若函数()2 11=,2f x x ax a x ?? ++ +∞ ??? 在是增函数,则的取值范围是 A .[]-1,0 B .[)+∞-,1 C .[]0,3 D .[)+∞,3 9. 函数()()21=log 10f x x x ??+> ? ?? 的反函数()1 =f x - A .()1021x x >- B .()1021 x x ≠-C .()21x x R -∈D .()210x x -> 10. 已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为 A .()1,1-B .11,2? ?-- ??? C .()-1,0 D .1,12?? ??? 11. 已知函数()()x x x f -+= 1ln 1 ,则y=f (x )的图像大致为 A . B .

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

(word完整版)高中数学函数图象高考题.doc

B 1 .函数 y = a | x | (a > 1)的图象是 ( y y o x o A B B ( ) y o 1 x -1 o 函数图象 ) y 1 1 x o x C y y x x o 1 y 1 o x D y -1 o x A B C B 3.当 a>1 时,函数 y=log a x 和 y=(1 - a)x 的图象只可能是( ) y A4.已知 y=f(x) 与 y=g(x) 的图象如图所示 yf ( x ) x O 则函数 F(x)=f(x) ·g(x) 的图象可以是 (A) y y y O x O x O x A xa x B C B 5.函数 y (a 1) 的图像大致形状是 ( ) | x | y y y O f ( x) 2x x O 1 O x ( D 6.已知函数 x x x 1 ,则 f x ( 1- x )的图象是 log 1 2 y y y A B C 2 。 。 1 。 - 1 D y y g( x) O x y O x D y O ) x y D 2

O x

A B C D D 7.函数 y x cosx 的部分图象是 ( ) A 8.若函数 f(x) =x 2 +bx+c 的图象的顶点在第四象限,则函数 f /(x)的图象是 ( ) y y y y o x o x o x o x A B C D A 9.一给定函数 y f ( x) 的图象在下列图中,并且对任意 a 1 (0,1) ,由关系式 a n 1 f (a n ) 得到的数列 { a n } 满足 a n 1 a n (n N * ) ,则该函数的图象是 ( ) A B C D C10.函数 y=kx+k 与 y= k 在同一坐标系是的大致图象是( ) x y y y y O x O x O x O x A 11.设函数 f ( x ) =1- 1 x 2 (- 1≤ x ≤0)的图像是( ) A B C D

高三数学-理科函数与导数-专题练习(含答案与解析)

(Ⅰ)当(0,1)x ∈时,求()f x 的单调性; (Ⅱ)若2()()()h x x x f x =-?,且方程()h x m =有两个不相等的实数根1x ,2x .求证:121x x +>.

联立212y x y x ax =-??'=-+-? 消去y 得:2(1)10x a x +-+=, 由题意得:2(1)40a -=-=△, 解得:3a =或1-; (Ⅱ)由(1)得:l 1(n )x f x =+', 1(0,)e x ∈时,)0(f x '<,()f x 递减, 1(,)e x ∈+∞时,)0(f x '>,()f x 递增, ①1104e t t <<+≤,即110e 4 t <≤-时, min 111)ln )444 ()()((f x f t t t ==+++, ②110e 4t t <<<+,即111e 4e t -<<时, min e ()1e )(1f x f -==; ③11e 4t t ≤<+,即1e t ≥时,()f x 在[1,4]t t +递增, min ())ln (f x f t t t ==; 综上,min 1111)ln ),044e 41111,e e 4e 1l (e (,()n f x t t t t t t t ++<≤--???-<<≥?=?????; 因此(0,)x ∈+∞时,min max 1()()e f x m x ≥-≥恒成立, 又两次最值不能同时取到, 故对任意(0,)x ∈+∞,都有2ln e e x x x x >-成立.

∴()0g x '>, ∴函数()g x 在定义域内为增函数, ∴(1)(0)g g >,即12 e (1)(0) f f >,亦即(1) f > 故选:A . 2.解析:∵()1cos 0f x x '=+≥, ∴()sin f x x x =+在实数R 上为增函数, 又∵()sin ()f x x x f x -=--=-, ∴()sin f x x x =+为奇函数, ∴2222222222(23)(41)0(23)(41) (23)(41)2341(2)(1)1f y y f x x f y y f x x f y y f x x y y x x x y -++-+≤?-+≤--+?-+≤-+-?-+≤-+-?-+-≤, 由22(2)(1)11x y y ?-+-≤?≥? 可知,该不等式组所表示的区域为以点(2,1)C 为圆心,1为半径的上半个圆,1 y x +表示的几何意义为点(,)P x y 与点(1,0)M -连接的斜率,作出半圆与点P 连线,数形结合可得1 y x +的取值范围为13,44?????? . 3.解析:依题意,可得右图:()2f x =

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高三数学函数图像与性质专题

2020高三数学培优专练1:函数的图像与性质 例1:对于函数()f x ,若a ?,b ,c ∈R ,都有()f a ,()f b ,()f c 为某一三角形的三条边,则称 ()f x 为“可构造三角形函数”,已知函数()1 x x e t f x e +=+(e 为自然对数的底数)是“可构造三角形函数”, 则实数t 的取值范围是( ) A .[0,)+∞ B .[0,2] C .[1,2] D .1,22 ?????? 【答案】D 【解析】由题意可得:()()()f a f b f c +>,对a ?,b ,c ∈R 恒成立, 1 ()111 x x x e t t f x e e +-==+++,当10t -=时,()1f x =,()()()1f a f b f c ===,满足条件, 当10t ->时,()f x 在R 上单调递减,∴1()11f a t t <<+-=, 同理:1()f b t <<,1()f c t <<, ∵()()()f a f b f c +>,所以2t ≥,∴12t <≤. 当10t -<时,()f x 在R 上单调递增,∴()1t f a <<, 同理:()1t f b <<,()1t f c <<,∴21t ≥,12t ≥ .∴1 12 t ≤<. 综上可得:实数t 的取值范围是1,22?????? . 培优一 函数的图象与性质 一、函数的单调性 二、函数的奇偶性和对称性

例2:设函数()f x 、()g x 分别是定义在R 上的奇函数和偶函数,且()()2x f x g x +=,若对[1,2]x ∈, 不等式()(2)0af x g x +≥恒成立,则实数a 的取值范围是( ) A .[ )1,-+∞ B .) 22,?-+∞? C .17,6?? - +∞???? D .257,60?? - +∞???? 【答案】C 【解析】∵()f x 为定义在R 上的奇函数,()g x 为定义在R 上的偶函数, ∴()()f x f x -=-,()()g x g x -=, 又∵由()()2x f x g x +=,结合()()()()2x f x g x f x g x --+-=-+=, ∴1()(22)2x x f x -= -,1 ()(22)2 x x g x -=+, 又由()(2)0af x g x +≥,可得 221 (22)(22)022 x x x x a ---++≥, ∵12x ≤≤,∴ 315 2224 x x -≤-≤, 令22x x t -=-,则0t >,将不等式整理即得:2a t t ? ?≥-+ ?? ? . ∵31524t ≤≤,∴172257660t t ≤+≤,∴176 a ≥-.故选C . 例3:定义在R 上的奇函数()f x 满足(2)(2)f x f x +=-,当[0,2)x ∈时,2()48f x x x =-+.若在 区间[,]a b 上,存在(3)m m ≥个不同的整数i x (1i =,2,L ,m ),满足1 11 ()()72m i i i f x f x -+=-≥∑ , 则b a -的最小值为( ) A .15 B .16 C .17 D .18 【答案】D 三、函数的周期性

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

高考数学函数及其性质练习题

函数及其性质 一、填空题 (2016·12)已知函数()() f x x∈R满足()2() f x f x -=-,若函数 1 x y x + =与() y f x =图像的交点为 11 (,) x y,22 (,) x y,…,(,) m m x y,则 1 () m i i i x y = += ∑() A.0 B.m C.2m D.4m (2015·5)设函数2 1 1log(2)(1) () 2(1) x x x f x x - +-< ? =? ≥ ? ,则 2 (2)(l og12) f f -+=()A.3 B.6 C.9 D.12 (2015·10)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x. 将动点P到A,B两点距离之和表示为x的函数f(x),则f(x)的图像大致为() A.B.C.D. (2013·8)设 3 log6 a=, 5 log10 b=, 7 log14 c=,则() A.c b a >>B.b c a >>C.a c b >>D.a b c >> (2013·10)已知函数32 () f x x ax bx c =+++,下列结论中错误的是() A. 00 ,()0 x f x ?∈= R B.函数() y f x =的图像是中心对称图形 C.若 x是() f x的极小值点,则() f x在区间 (,) x -∞单调递减 D.若 x是() f x的极值点,则 ()0 f x'= (2012·10)已知函数 x x x f - + = )1 ln( 1 ) (,则) (x f y=的图像大致为() A. B. C. D. (2011·2)下列函数中,既是偶函数又在+∞ (0,)单调递增的函数是() A.3 y x =B.||1 y x =+C.21 y x =-+D.|| 2x y- = (2011·12)函数 1 1 y x = - 的图像与函数2sin,(24) y x x π =-≤≤的图像所有交点的横坐标之和等于() 1 1 y x o 1 1 y x o 1 1 y x o 1 1 y x o

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

全国高考数学复习微专题:函数的图像

函数的图像 一、基础知识 1、做草图需要注意的信息点: 做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点 (1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线 特点:两点确定一条直线 信息点:与坐标轴的交点 (2)二次函数:()2 y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性 信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1 y x = ,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注: (1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。 (2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常

(word完整版)高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题) 一、选择题 1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ] 2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ? (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ? (a ,b ) 3、设点P 为曲线y =x 3-3 x +3 2 上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2 π]∪(65π,π) D 、[0,2 π ]∪[32π,π) 4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=1 3 2+-m m ,则m 的取 值范围为( ) A 、m < 32 B 、m <32且m ≠-1 C 、-1<m <32 D 、m >3 2 或m <-1 5、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( ) A 、f (-1)<f (3) B 、f (0)>f (3) C 、f (-1)=f (3) D 、f (0)=f (3) 6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定 7、函数y =log 2 1 (x 2+kx +2)的值域为R ,则k 的范围为( ) A 、[22 ,+∞] B 、(-∞,-22)∪[22,+∞]

2019高考数学《函数的图像》题型专题汇编

2019高考数学《函数的图像》题型专题汇编 题型一 作函数的图象 1、分别画出下列函数的图象: (1)y =|lg(x -1)|; (2)y =2x + 1-1; (3)y =x 2-|x |-2; (4)y =2x -1x -1 . 解 (1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分). (2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1 的图象,如图②所示. (3)y =x 2-|x |-2=???? ? x 2-x -2,x ≥0,x 2+x -2,x <0, 其图象如图③所示. (4)∵y =2+1x -1,故函数的图象可由y =1 x 的图象向右平移1个单位,再向上平移2个单位得到,如图④所 示. 题型二 函数图象的辨识 1、函数y =x 2ln|x | |x | 的图象大致是( ) 答案 D 解析 从题设解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x ,可知函数在区间????0,1e 上单调递减,在区间??? ?1 e ,+∞上单调递增.由此可知应选D.

2、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( ) A .y =f (|x |) B .y =-|f (x )| C .y =-f (-|x |) D .y =f (-|x |) 答案 C 解析 题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C. 3、函数f (x )=1+log 2x 与g (x )=????12x 在同一直角坐标系下的图象大致是( ) 答案 B 解析 因为函数g (x )=????12x 为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x 的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B. 4、函数f (x )=??? ?2 1+e x -1·sin x 的图象的大致形状为( ) 答案 A 解析 ∵f (x )=? ????21+e x -1·sin x ,∴f (-x )=? ????21+e -x -1· sin(-x ) =-? ????2e x 1+e x -1sin x =? ?? ?? 21+e x -1· sin x =f (x ),且f (x )的定义域为R , ∴函数f (x )为偶函数,故排除C ,D ;当x =2时,f (2)=? ?? ??21+e 2-1· sin 2<0,故排除B , 只有A 符合. 5、若函数f (x )=(ax 2+bx )e x 的图象如图所示,则实数a ,b 的值可能为( )

高考数学函数图像

函数图像与变换 一、 图像变换 1.平移变换: (1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单 位即可得到; (2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单 位即可得到. 2.对称变换:(1)函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; (2)函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; (3)函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; (4)函数1()y f x -=的图像可以将函数()y f x =的图像关于直线y x =对称得到. 3.翻折变换: (1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分, 并保留()y f x = 的x 轴上方部分即可得到; (2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留 ()y f x =在y 轴右边部 分即可得到. 4.伸缩变换: (1)函数()y af x = (0a >)的图像可以将函数()y f x =的图像的纵坐标伸长到原来的(0)k k >倍(横坐标不变) 得到。 (2)函数()y af x = (0a >)的图像可以将函数()y f x =的图像的横坐标伸长到原来的(0)k k >倍(纵坐标不变) 得到。 二、典型例题 1、 函数的图象变换 函数的图象变换这一节的知识点是高考考查的重要方面,一些复杂的函数是可以通过一些较为简单的函数由相应的变换得到,从而我们可以利用之研究函数的性质。 例1、(1)设()2,()x f x g x -=的图像与()f x 的图像关于直线y x =对称,() h x 的图像由()g x 的图像 右平移1个单位得到,则()h x 为__________ (2)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移3个单位而得到 (3)将函数()y f x =的图像上所有点的横坐标变为原来的13 (纵坐标不变),再将此图像沿x 轴方向向左平移2个单位,所得图像对应的函数为_____ 例2、已知f(x+199)=4x 2+4x+3(x ∈R),那么函数f(x)的最小值为____. 例3、设函数y=f(x)的定义域为R,则函数y=f(x-1)与y=(1-x)的图象关系为( ) A、直线y=0对称 B、直线x=0对称 C、直线y=1对称 D、直线x=1对称 2 、函数图象的画法 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段。用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换。

高三数学三角函数专题训练

高三数学三角函数专题训练 1.为得到函数πcos 23y x ?? =+ ?? ? 的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12 个长度单位 C .向左平移 5π6 个长度单位 D .向右平移 5π6 个长度单位 2.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则M N 的最大值为( ) A .1 B . 2 C . 3 D .2 3.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的1 2倍(纵坐标不变),得到的图 象所表示的函数是( ) A .sin(2)3 y x π =-,x R ∈ B.sin( ) 2 6 x y π =+ ,x R ∈ C.s in (2)3 y x π =+,x R ∈ D.sin(2) 3 2y x π=+ ,x R ∈ 4.设5sin 7 a π=,2cos 7 b π=,2tan 7 c π=,则( ) A.c b a << B.a c b << C.a c b << D.b a c << 5.将函数sin(2)3 y x π =+ 的图象按向量α 平移后所得的图象关于点(,0) 12 π - 中 心对称,则向量α的坐标可能为( ) A .(,0)12π - B .(,0)6 π - C .( ,0)12 π D .( ,0)6 π 6.函数2 ()sin 3sin cos f x x x x =+ 在区间 ,42ππ?? ???? 上的最大值是( ) A.1 B.13 2 + C. 3 2 D.1+ 3 7.若,5sin 2cos -=+a a 则a tan =( ) A.2 1 B. 2 C.2 1- D.2-

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

(完整版)高三数学函数专题复习策略

高三数学试卷中函数专题复习策略 一、《考试说明》对函数部分的要求 1.函数.理解函数的概念、定义域、值域、奇偶性,了解函数的单调性、周期性、最大值、最小值; 2.基本初等函数.了解幂函数的概念及图象,理解指数函数、对数函数的概念及图象和性质,理解指数及对数的运算. 3.函数与方程.了解函数的零点与方程根的联系,能够用二分法求相应方程的近似解. 4.函数模型及应用.理解常见的函数模型在实际问题中的应用. 5.理解导数的几何意义,会根据公式、四则运算法则、复合函数求导法则求函数的导数,能利用导数研究函数的单调性,会求函数的单调区间,函数的极大值、极小值,闭区间上函数的最大值、最小值. 二、函数部分命题特点 函数是高中数学的核心内容,是学习高等数学的基础,作为高中数学中最重要的知识模块,贯穿着中学数学的始终.综观近几年的高考情况,函数命题呈现如下特点: 1.知识点覆盖面全.近几年高考题中,函数的所有知识点基本都考过,特别是函数的图象性质、导数的几何意义与应用以及函数与不等式的综合基本上年年必考. 2.题型难度涉及面广.在每年高考题中,低档、中档、高档难度的函数题都有,且填空、解答题型都有. 3.综合性强.为了突出函数在中学数学中的主体地位,近几年来高考强化了函数对其他知识的渗透,例如,解析几何中经常涉及函数的值域的求法,三角、数列本质上也是函数问题. 三、函数复习中关注方面 (一)关注函数的定义域 定义域的求法实际上就是解不等式,考生必须能够做到以下两点:一是熟知定义域常见要求,如分式的分母不为零;偶次根号下非负;对数的真数大于零,底数大于零且不等于1;零次幂的底数不为零;三角函数中的正切、余切的定义域等等;二是熟练掌握常见不等式的解法,如二次不等式、分式不等式、根式不等式、三角不等式以及简单的指对数不等式. 例1.(2012年江苏卷)函数x x f 6log 21)(-=的定义域为 . 【解析】根据二次根式和对数函数有意义的条件,得

相关文档
最新文档