单克隆抗体的制备及其应用研究进展

单克隆抗体的制备及其应用研究进展
单克隆抗体的制备及其应用研究进展

单克隆抗体的制备及其应用研究进展

燕珊珊

摘要:单克隆抗体技术的突破为医学和生物学的基础研究开创了新纪元。基因工程抗体技术的发展更为疾病治疗、临床试验和科研方面做出巨大贡献。此外,抗体还可能执行除目前所具有之外的更多功能。本文将就单克隆抗体的制备及其应用研究进展进行论述。

关键词:单克隆抗体;基因工程;小鼠骨髓瘤细胞;细胞杂交瘤技术;噬菌体;临床应用

抗体是机体免疫系统的重要效应分子,从第一代多克隆抗体(polyclonalantibody,PcAb)到第二代单克隆抗体的成功制备,人们投入了大量的临床应用研究,对医学和生物学的发展发挥了巨大的作用。

单克隆抗体(monoclonal antibodies,mAbs)技术的突破为医学和生物学的基础研究开创了新纪元。基因工程抗体技术的发展更为疾病治疗、临床试验和科研方面做出巨大贡献。目前,制备mAbs 的方法中比较成熟的主要有以下几种:1. 抗原特异性的B 淋巴细胞杂交瘤技术;2. 人-鼠嵌合抗体制备技术; 3.噬菌体展示技术获得的抗原特异性人源性抗体;4. 转基因小鼠制备的人mAbs;5.核糖体展示技术。

通过这些方法,我们利用相应抗原靶向构建治疗性抗体,从而达到预防、治疗疾病的目的,促进生物制药学的发展。以下主要是对抗体制备技术的发展及其应用研究进展进行综述。

1 鼠源性抗体

1975 年,Kohler 和Milstein[1] 将小鼠骨髓瘤细胞和经绵阳红细胞免疫的小鼠脾细胞融合,形成了可产生单克隆抗体的杂交瘤细胞,该细胞既能产生抗体,又可无限增殖,从而创立了单克隆抗体杂交瘤技术。由免疫B细胞-浆细胞、瘤细胞融合形成的杂交瘤细胞系可分泌单一、特异性、纯化的抗体,且能在选择培养基中生长、无限增值、分裂,同时在选择培养基作用下,利用代谢缺陷补救机理筛选出同时具有两种细胞特征的细胞克隆。这种经过反复克隆而挑选出来的融合细胞所产生的抗体称为单克隆抗体(McAb)。它在分子结构、氨基酸序列以及特异性等方面都是一致的。淋巴细胞杂交瘤技术的主要步骤包括:动物免疫、细胞融合、杂交瘤细胞的筛选与单抗检测、杂交瘤细胞的克隆化、冻存、单抗的鉴定等。至今,科学家们已经建立众多鼠源性mAbs 来诊断和治疗多种人类疾病。然而作为在人体内的应用,鼠源单抗尚存在一些问题。鼠源性抗体作为异种蛋白应用于人体可引起免疫反应,产生人抗鼠抗体(human anti-mouse antibody,HAMA)[2],很大程度上限制了mAbs 的临床应用。此外,鼠源性mAbs 不能与人类抗体FcRn 结合[3]。为了克服以上这些问题,近年,随着分子生物学的发展,人们已有可能通过抗体工程技术制备人-鼠嵌合抗体、人源化抗体或全人抗体。

嵌合抗体指的是鼠mAbs 的恒定区基因被人Abs 的恒定区基因通过基因重组技术所替换而编码产生的单克隆抗体[4-5]。这样既能保持鼠单抗的特性,又使获得的单抗降低了在人体内的免疫反应。Jones[6]等在20 世纪80 年代中期首次成功构建了小鼠抗半抗原-4-羟基-3-硝基苯乙酰基己酸(NP)的免疫球蛋白VH 基因,并最终获得可特异结合NP的人源化嵌合抗体,再通过定点突变法进行单纯的CDR 移植构建,形成第一代人源化抗体。随后还相继研发了阿昔单抗(抗GPIIb-IIIa鼠-人嵌合抗体)、美罗华(Rit-uximab)、Cetuximab(C225,Erbitux)、Zevalin 和Bexxa 等嵌合抗体,现均已被广泛应用于科学研究与疾病诊断之中。

CDR 移植抗体,又称改型抗体,它是在嵌合抗体的基础上,利用基因工程技术,进一步用人的FR 代替鼠FR,形成的只剩3 个鼠源CDR 的、更为完全的人源化抗体。由于具有支持作用的FR 不仅为CDR 的构想提供了环境,还参与抗体结合位点正确构像的形成和抗原的结合,常常使得CDR 移植抗体的亲和力和特异性大大降低,有的甚至还丧失了抗原结合能力[7]。通过大量研究,我们发现选用与鼠源单抗具有高度同源性的人源抗体,但保留鼠源单抗中的一些关键氨基酸残基,并在此基础上,对鼠CDR 和FR 的一些表面氨基酸残基进行修饰或重塑,对关键氨基酸残基进行一定的改变,能在保留CDR 移植抗体的亲和力和特异性下,大大降低其免疫原性。因此,相对于嵌合抗体,第二代人源化抗体-CDR 移植抗体的人源化程度能达到70%以上,有利于其在临床试验中的应用与研究。

为了能使单克隆抗体大量的应用于疾病治疗、临床试验和科研中,我们不仅要降低其免疫原性,还要对其亲和力质量、治疗能力强弱等方面提更高的要求。目前,研究人员已建立多种方法生产完全人源性抗体,主要有噬菌体展示技术和转基因小鼠技术。

3.1 噬菌体展示技术

1985 年,Smith G P[8]将外源基因通过基因工程技术插入丝状噬菌体基因组中,从而在噬菌体表面以融合蛋白的形式展示,这一技术即为噬菌体展示技术。该技术把基因表达产物与亲和筛选结合起来,可以利用适当的靶蛋白将目的蛋白或多肽挑选出来,从而得到全套的噬菌体库。近年来该技术在众多基础和应用研究领域如免疫学、细胞生物学、药物开发中产生的影响已日渐明显。噬菌体展示首先是通过大肠杆菌特异性的噬菌体发展起来。迄今为止,已建立的噬菌体展示系统,如:丝状噬菌体、l 噬菌体、T4噬菌体、T7 噬菌体和真核病毒系统等。此外多肽还被展示在细菌及酵母的表面。虽然这些不同展示系统的优点在特殊应用中得到了证明,但都是基于丝状噬菌体M13 和噬菌粒相互作用之上。噬菌体展示的基本原理是将抗体重链可变区(VH)和轻链可变区(VL)基因通过基因工程技术随机插入噬菌体的外壳蛋白基因,继而感染大肠杆菌,经增殖并以抗体片段Fab 或ScFv[9]外壳蛋白融合蛋白的形式展示在噬菌体表面;利用靶分子,经过“亲和-洗脱-扩增-亲和”循环过程筛选,除去杂蛋白并富集特异性抗体[10]。在噬菌体表面所展示的是随机肽段

或蛋白质的抗体库称为全套抗体库,从中筛选到的抗体称为噬菌体抗体,它的最大特点是实现了直接将基因型和表型完美的结合在一起,可以快速而高效地从大量克隆筛选出表达特异性的抗体。其中美国Scripps 研究所Lerner 实验室在1989年首次应用噬菌体表面展示技术构建了噬菌体抗体库[11]。至今,由这一技术产生的抗体至少有14 个已用于临床试验中[5,12]。然而,它还存在着如未经免疫获得的抗体亲和力相对较弱,抗体库的库容无法涵盖一些动物的抗体多样性等缺点,因此,大容量抗体库的亲和力和抗体多样性问题将是我们今后研究抗体库技术所必须考虑的关键。

3.2 转基因小鼠技术

自1994 年Lonberg 等[13]建立了表达人免疫球蛋白(Ig)的转基因小鼠以来,人源性抗体便可由动物制备。该技术是将人抗体基因微位点转入小鼠体内,产生能分泌人抗体的转基因小鼠[14]。到1998 年,Green 等[15]将人抗体轻重链基因构建成酵母人工染色体(yeastartificial chromosome,YAC),通过基因打靶技术将其转入自身抗体基因位点已被灭活的小鼠基因组中,通过繁殖筛选,建立分泌高亲和力人抗体的小鼠品系,Mendez 等[16]采用细胞融合法,将YAC 的酵母细胞与鼠胚干细胞(ES)融合,将整合有目的基因的ES 细胞导入小鼠囊胚,形成嵌合体小鼠,通过反复筛选,最后获得分泌完全人抗体的转基因小鼠。再用传统的杂交瘤技术,将产生人抗体转基因鼠的B 细胞与骨髓瘤细胞融合,获得杂交瘤细胞系,产生高亲和力的人源抗体。

由转基因小鼠产生的单克隆抗体,是由多个同源V 基因片段编码而成的,因此在很大的程度上,此抗体的活性能够大大的增强。至目前为止,大约有33 个是由转基因小鼠制备而来的抗体已投于临床实验中[17]。虽然如此,但是该技术至今还未发展完全,其转基因片段较小,且相邻基因片段高度同源,重组过程复杂,在面对抗原多样性时,无法完全产生相应的抗体。随着免疫学技术和分子生物学等的发展,将会有越来越多的人源性抗体用于临床试验之中,从而促进靶向药物治疗的发展。

3.3 核糖体展示技术

核糖体展示是一种完全在体外合成并筛选蛋白质的有力工具。Mattheakis 等人在1994 年建立了体外核糖体展示随机肽系统,利用“蛋白质-核糖体-mRNA”三元复合物在体外将基因型和表型联系起来。随后Hanes和Plukthun 等[18]在此基础上对该技术加以完善和改良,正式建立了这种体外筛选技术。该技术的基本原理是利用PCR 扩增含目的基因的cDNA 文库,再加上启动子、核糖体结合位点及茎环结构,在转录/翻译偶联系统作用下,形成“蛋白质-核糖体-mRNA”三元复合物,用相应抗原对反复筛选复合物,分离mRNA,通过RT-PCR 富集目的基因,并将目的基因导入表达载体,从而获得库容量大、特异性强、亲和力高的人源基因工程抗体库。

核糖体展示技术与噬菌体展示技术和转基因技术相比,由于其完全属于体外操作系统,无需依赖细胞技术和毒性蛋白对宿主生长的影响,不受体内环境的限制,扩大了展示文库的库容量和分子多样性。此外,核糖体展示技术无需进行体内外系

统转化,全程只需通过PCR 技术复制、扩增,使得其建库时间缩短,筛选简便。PCR 技术还可引入突变,增加分子多样性,从而获得高亲和力抗体。目前还有多研究表明,核糖体展示技术还能提高小分子抗体的稳定性,如三结构域抗体(VH/K)可以明显改进ScFv 的稳定性[19]。而核糖体展示技术的最大缺点就是mRNA 易降解。目前已有研究表明,氧钒核糖核苷复合物(VRC)作为过渡阶段的类似物发生作用,可有效地抑制核酸酶,提高mRNA 的稳定性。另外“蛋白质-核糖体-mRNA”三元复合物的稳定性也较差,但可通过在缓冲液中加入一定浓度的镁离子、交联核糖体RNA 的磷酸基团,抑制核糖体复合物的解离[20]。

4重组抗体的临床应用及其最新进展

从鼠源单抗开始,已通过多种技术制备了具有高度亲和性的完全人源化抗体,作为靶向治疗多种疾病的新型药物。其中由杂交瘤技术制备的单克隆抗体不仅结果均一、纯度高、特异性强、血清交叉反应弱,而且制备成本低,而基因工程抗体既保持单抗的均一性、特异性强等优点,又能克服其为鼠源性的不足,因此,拓展mAbs 的广泛应用,是研究开发治疗性抗体药物最理想的途径。近三十年来,在基因工程抗体方面的研究成果振兴了整个生物制药行业。目前,全球约有500多种治疗性药物正处于临床前研究,100 多种已处于临床试验中。其中,已被FDA 批准的有治疗淋巴瘤的Rituximab,治疗乳腺癌的Herceptin [21],以及抗肿瘤坏死因子的嵌合mAb (infliximAb)对克隆病(Crohns disease,CD)等自生免疫性疾病方面的治疗应用。另外,还有一些抗体药物在抑制器官移植术后排斥反应和病毒感染性疾病等方面也显示了较好的应用前景。

此外,抗体还可能执行除目前所具有之外的更多功能。如Yamazaki 等近年来新研究出的等位基因特异的抗-HLA 单克隆抗体(ASHmAb),可用于干细胞移植的组织相容性抗原分型的临床诊断[22]。抗体疗法是一门动态学科,它随着技术的成熟而得到发展。但是目前技术还不成熟。据报道,曾有6 个健康志愿者在英国因参加关于CD28 靶向mAb、TGN1412 的一期临床试验,而被送往深切治疗部[2]。因此,虽然靶向抗体药物疗法的基本原理早在10 年以前就已被提出,但是它离实际的临床应用尚有距离。目前,该方法还在不断的发展和完善,主要的目标是能在兼顾亲和力和免疫活性的同时,降低抗体的异原性,从而建立更好的抗体疗法。而据多方实验表明,抗体疗法的主要障碍在于全人源性抗体的生产和抗体药物的靶向作用问题。生物多价体Fv 作为生产新型免疫分子的模板,以及体内抗体靶向治疗问题(如稳定性、安全性、生产成本和生物干扰等)将成为下一代抗体药物治疗临床试验研究的新热点。

参考文献

[1]KOhler G, Milstein C. Continuous cultures of fused cells

secreting antibody of predefinedspecificity[J]. Nature, 1975,

256:495.

[2]David F. Antibody engineering and modification technologies,

review[J].science Biomolecular Engineering,2007, (24),

201-215.

[3]Ober RJ, Radu CG, Ghetie V, et al.Differences in promiscuity

for antibody-FcRninteractions across species:implications

for therapeutic antibodies[J].Int Immunol,2001, (13):

1551.

[4]Boulianne GL, Hozumi N, Shulman MJ.Production of functional

chimaeric mouse/human antibody[J]. Nature, 1984, (312):

643.

[5]Makiko Yamashita,Yoshinroi Katakura,Sanetaka Shirahata,

et al. Recent advances in the generation of human monoclonal

antibody[J].Cytotechnology,2007,55:55-60.

[6]Jones PT,Dear PH,Foote J.Replacing the complementari -

ty-determining regions in a human antibody with those

from a mouse[J].Nature,1986,321:522.

[7]Caldas C,Coelho V,Kalil J,et a1.Humanization of the anti-CDl8antibody

6.7:an unexpected effect of a framework residue in

binding to antigen[J].Mol Immunol,2003,39(15):941.

[8]Smith GP.Filamentous fusion phage:novel expression vectors

that display cloned antigens on the virion surface [J].

Science,1985,228(4705):1315-1317.

[9]Jacqueline Sharon, Seshi R. Sompuram, Chiou-Ying Yang,

et al. Construction of Polyclonal Antibody Libraries Using

Phage Display [J]. Methods in Molecular Biology,2003,

178(5):101-112.

[10]万英,代佳平,王燕,等. 一种稳定、易于操作的噬菌体随

机肽库载体的构建[J]. 第三军医大学学报,1999,21(4):

256-258.

[11]Barbas CF,Kang AS,Leruer RA,et a1.Assembly of combinatorial antibody libraries on phage surfaces:the geneⅢ

site[J].Proc NatI Acard Sci USA,199l,88(18):7978.

[12]Lowe D, Jermutus L. Combinatorial protein biochemistry

for therapeutics and proteomics[J]. Curr Pharm Biotechnol, 2004, 5(1):17-27.

[13]Lonberg N, Taylor LD, Harding FA, et al . Antigen-specific human antibodies from mice comprising four distinct

genetic modifications[J]. Nature,1994, 368:856.

[14]朱学泰,谢溱,马瑞君.单克隆抗体制备技术研究进展[J].

甘肃科技,2005,21(3):108-109,98..

[15]Green LL, Jakobovits A. Regulation of B Cell Development by Variable Gene Complexity in Mice Reconstituted

with Human Immunoglobulin Yeast Artificial Chromosomes[

J]. J Exp Med,1998, 188(3):483-495.

[16]Mendez MJ, Green LL, Corvalan JFR, et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice [J].Nat Genet,

1997, 15:146-156.

[17]Lonberg N. Human antibodies from transgenic animals[J]. Nat Biotechnol,2005, (23);1117.

[18]赵晓玲,陈伟强,李静梅,等. 应用核糖体展示技术筛选

制备抗TNF-人源抗体的研究[J].细胞与分子免疫学杂

志,2009,25(2):145.

[19]岳建华,潘秀珍,张军,等.核糖体展示小分子抗体的研

究进展[J].中国药物与临床,2006,4,6(4):245.

[20]王业荣,童德文,李立,等.人源化抗体制备及其应用研

究进展[J].生物技术通讯,2007,18(4):683-687.

安维汀的作用机制

安维汀(贝伐珠单抗注射液)的作用机制 血管生成是新血管 形成的过程。肿瘤 需建立独立 的血供 以使其直径 超过 1-2mm ,因此血管生成是恶性肿瘤生长中的一个重要过程。 VEGF 为肿瘤血管 生成的关键调控者 [1 , 2] ,并且是唯一一种表达于整个肿瘤生命周期的血管生成因 子 [3,4] 。VEGF 的持续表达,以及VEGF 和内皮细胞的遗传学稳定性(基于临床 前研究的观 察结果)[2,5] ,可使-直接并且持续靶向于VEGF 成为一种重要的抗 肿瘤策略。 安维汀(贝伐珠单抗注射液)的精确 VEGF 抑制作用:理解安维汀(贝伐珠单 抗注射液)的作用机制 安维汀直接抑制VEGF 可阻断血管生成级联反应 [1-4] 血置生成 安堆;T 咒讯鮭单抗注J 桂?冋在Ifi 夕聊那ECJF 因lit.可収抑制血抵生成而不 干扰眶GF 通路以外的兗点 * 安维汀是一种可特异性结合VEGF 的人源化单克隆抗体,并可阻断VEGF 受体的激活。 * 安维汀可在胞外抑制VEGF ,因此,可以抑制血管生成而不干扰 VEGF 通路以外的靶点 [1-4] 。 * 临床前模型和临床观察的结果均提示,安维汀可在整个肿瘤生长过程中发 挥持续的抗血管效应 血番生成 血管生底 王豪通过 VEGFIHVEGFR2 的相互作用而介导

现存肿瘤血管出现快速退化,可表现为微血管密度的显著降低 [5 — ?使存活的成熟血管正常化[6,8] ?抑制肿瘤血管再生[9,10] ?安维汀抑制VEGF的结果包括[11 -4]: ?维持功能更佳和结构正常的血管 ?潜在改善药物输送的能力 ?抑制肿瘤生长和转移 ?抗VEGF药物的效应可迅速产生,有时候甚至在单次输注后即可产生, 而单克隆抗体的长半衰期也可使抗VEGF效应持续维持[5]。 安维汀?(贝伐珠单抗注射液)可使肿瘤血管退化 在结肠癌异种移植瘤模型中观察到的血管退化[5] Yuan F, etal. PNAS USA 1996;93(25):14765 -70. Copyright 2009 Nati onal Academy of Scien ces, USA. 临床前模型和临床观察的结果均显示,安维汀?可使现存的肿瘤血管退化。在单 次输注安维汀?单药后,肿瘤血管的体积和密度可出现显著减小[5°O 在一项使用人类肿瘤建立的异种移植瘤临床前模型中,单次输注(0.2ml )安维汀?可使肿瘤血管的体积减少80% [5],这种变化可在输注24小时内迅速出现。

单克隆抗体的制备及应用

单克隆抗体的制备及应用 单克隆抗体是由淋巴细胞杂交瘤产生的、只针对复合抗原分子上某一单个抗原决定簇。单克隆抗体技术(monoclonal antibody technique):一种免疫学技术,将产生抗体的单个B淋巴细胞同骨髓肿瘤细胞杂交,获得既能产生抗体,又能无限增殖的杂种细胞,并以此生产抗体。是仅由一种类型的细胞制造出来的抗体,对应于多克隆抗体、多株抗体——由多种类型的细胞制造出来的一种抗体。 1 单克隆抗体的优点与局限性: 单克隆抗体的优点:(1)杂交瘤可以在体外“永久”地存活并传代,只要不发生细胞株的基因突变,就可以不断地生产高特异性、高均一性的抗体。(2)可以用相对不纯的抗原,获得大量高度特异的、均一的抗体。(3)由于可能得到“无限量”的均一性抗体,所以适用于以标记抗体为特点的免疫学分析方法,如IRMA和ELISA等。(4)由于单克隆抗体的高特异性和单一生物学功能,可用于体内的放射免疫显像和免疫导向治疗。 总体来说,即:高特异性、高纯度、重复性好、敏感性强、成本低和可大量生产等。 单克隆抗体的局限性:(1)单克隆抗体固有的亲和性和局限的生物活性限制了它的应用范围。由于单克隆抗体不能进行沉淀和凝集反应,所以很多检测方法不能用单克隆抗体完成。 (2)单克隆抗体的反应强度不如多克隆抗体。(3)制备技术复杂,而且费时费工,所以单克隆抗体的价格也较高。 2 单克隆抗体的制备: 单克隆抗体的制备原理:应用细胞杂交技术使骨髓瘤细胞与免疫的淋巴细胞二者合二为一,得到杂种的骨髓瘤细胞。这种杂种细胞继承两种亲代细胞的特性,它既具有B淋巴细胞合成专一抗体的特性,也有骨髓瘤细胞能在体外培养增殖永存的特性,用这种来源于单个融合细胞培养增殖的细胞群,可制备抗一种抗原决定簇的特异单克隆抗体。 单克隆抗体的制备过程:抗原准备、动物的选择与免疫、细胞融合、选择杂交瘤细胞及抗体检测、杂交瘤的克隆化、杂交瘤细胞的冻存与复苏、单克隆抗体的纯化等步骤。 抗原准备 抗原,是指能够刺激机体产生(特异性)免疫应答,并能与免疫应答产物抗体和致敏淋巴细胞在体外结合,发生免疫效应(特异性反应)的物质。抗原的基本特性有两种,一是诱导免疫应答的能力,也就是免疫原性,二是与免疫应答的产物发生反应,也就是抗原性。很多物质都可以成为抗原,抗原的具体分类可以参见抗原,在进行单克隆抗体制备过程中,很多物质都可以成为抗原,在常规的科研实验中,科研者经常选用每只小鼠/大鼠每次注射10~50ug 重组蛋白、偶联多肽、偶联小分子等作为抗原产生特异性的单克隆抗体。 动物的选择与免疫

单克隆抗体制备的基本原理

单克隆抗体制备的基本原理 一、单克隆抗体的概念 抗体(antibody)是机体在抗原刺激下产生的能与该抗原特异性结合的免疫球蛋白。常规的抗体制备是通过动物免疫并采集抗血清的方法产生的,因而抗血清通常含有针对其他无关抗原的抗体和血清中其他蛋白质成分。一般的抗原分子大多含有多个不同的抗原决定簇,所以常规抗体也是针对多个不同抗原决定簇抗体的混合物。即使是针对同一抗原决定簇的常规血清抗体,仍是由不同B细胞克隆产生的异质的抗体组成。因而,常规血清抗体又称多克隆抗体(polyclonal antibody),简称多抗。由于常规抗体的多克隆性质,加之不同批次的抗体制剂质量差异很大,使它在免疫化学试验等使用中带来许多麻烦。因此,制备针对预定抗原的特异性均质的且能保证无限量供应的抗体是免疫化学家长期梦寐以求的目标。随着杂交瘤技术的诞生,这一目标得以实现。 1975年,Kohler和Milstein建立了淋巴细胞杂交瘤技术,他们把用预定抗原免疫的小鼠脾细胞与能在体外培养中无限制生长的骨髓瘤 细胞融合,形成B细胞杂交瘤。这种杂交瘤细胞具有双亲细胞的特征,既像骨髓瘤细胞一样在体外培养中能无限地快速增殖且永生不死,又能像脾淋巴细胞那样合成和分泌特异性抗体。通过克隆化可得到来自单个杂交瘤细胞的单克隆系,即杂交瘤细胞系,它所产生的抗体是针

对同一抗原决定簇的高度同质的抗体,即所谓单克隆抗体(monoclonal antibody,McAb),简称单抗。 与多抗相比,单抗纯度高,专一性强、重复性好、且能持续地无限量供应。单抗技术的问世,不仅带来了免疫学领域里的一次**,而且它在生物医学科学的各个领域获得极广泛的应用,促进了众多学科的发展。 德国科学家柯勒(Georges Ko1er)和英国科学家米尔斯坦(Cesar Milstein)两人由此杰出贡献而荣获1984年度诺贝尔生理学和医学奖。 二、杂交瘤技术 (一)杂交瘤技术的诞生 淋巴细胞杂交瘤技术的诞生是几十年来免疫学在理论和技术两方面 发展的必然结果,抗体生成的克隆选择学说、抗体基因的研究、抗体结构与生物合成以及其多样性产生机制的揭示等,为杂交瘤技术提供了必要理论基础,同时,骨髓瘤细胞的体外培养、细胞融合与杂交细胞的筛选等提供了技术贮备。1975年8月7日,Kohler和Milstein 在英国《自然》杂志上发表了题为“分泌具有预定特异性抗体的融合细胞的持续培养”(Continuous cultures of fused cells secreting antibody of

单克隆抗体药物研究新进展

单克隆抗体药物研究新进展 单克隆抗体药物,俗称“生物导弹”,是一种具备疾病治疗靶向性治疗的药物,该种药物针对一些对应疾病的治疗具备极强的治疗针对性,往往可以取得较为有效的治疗效果,其整体所占市场份额也比较大。该领域的药品已经慢慢成为一种治疗疾病的主流药物,随着相关研究人员的不断研究推进,其整体呈现一种不断拓宽化的发展。本文从单克隆抗体药物整体的市场情况、靶点及技术三个方面进行全面的研究探索。 标签:治疗性抗体;上市抗体药物;靶点;技术综述 抗体药物的第一次应用是于十九世纪,采用血清疗法针对患者进行相关治疗,在这个阶段人们对抗体药物的认知停留在使用有效的阶段;随着医疗实力的不断发展,直到1975年杂交瘤技术之后,才逐步实现了抗体的更为全面的认知及大规模量产的过程。现阶段随着社会的不断发展,疾病种类也越来越多,治疗起来也越来越麻烦,在这样一种大的背景下,单克隆抗体药物的全面研究和使用,有效的帮助患者进行疾病的靶向治疗和恢复。 一、抗体药物的市场情况 抗体药无是一种具备靶向性,能实现与靶抗原特异性结合来实现对疾病针对性治疗的药物,该种药物在进行使用的过程中,对患者的病症能做到针对性的治疗,具备治疗过程中的安全性治疗及快速准确性治疗。该种药物常常作用与一些恶性肿瘤及免疫性疾病的治疗。因为这些疾病都具备一定的治疗难度,故此药物的出现,可以有效的实现对症治疗,帮助患者进行相关疾病的缓解,因为这样的一种原因,导致在进行相关应用的过程中,该种药物得到了巨大的发展[1]。现阶段,单克隆抗体药物已经成为一种在市场上占据巨大份额的药物,其具备巨大的经济效益,同时帮助患者进行各种疾病的治疗和恢复,其整体已经成为针对疾病进行治疗的有效思路及理论。针对该种药物的扩展,主要是针对一些靶向性进行全面的研究,研究出新的靶点,制造出更多针对更多病症的单克隆抗体药物。 二、靶点研究进展 单克隆抗体药物具备一对一的治疗针对性,其靶点的把控是针对疾病治疗的重要点。世界范围之内,针对新靶点的研究如火如荼。针对热点靶点的研究,主要通过分析世界范围内患者的病症及发病几率进行全面的分类研究,研究出一些有效且具备普遍性的靶点,全面促进单克隆抗体药物的研究和发展。其现阶段世界主要研究靶点分以下几类。 (一)PD-1、PD-L1 PD-1是一种存在于T细胞表面的免疫抑制跨膜蛋白,主要针对癌症进行相关治疗,其主要作用有两点:1.针对慢性感染炎症进行相关限制;2.针对癌症中

4第四章 单克隆抗体与基因工程抗体制备技术

第四章单克隆抗体与基因工程抗体制备技术 本章考点 1.概念 2.杂交瘤技术基本原理 3.杂交瘤抗体的制备技术 4.基因工程抗体 由杂交瘤细胞产生的针对抗原分子上某一单个抗原决定簇的抗体,称为单克隆抗体。其理化性状高度均一、生物活性单一、与抗原结合的特异性强、且来源容易。 传统的方法是将抗原注入动物,由动物体内B细胞产生的抗体。由于多数天然的抗原分子具有多种抗原决定簇,每一种决定簇可激活具有相应抗原受体的B细胞产生针对某一抗原决定簇的抗体。因此,将抗原注入机体后,刺激多个B细胞克隆所产生的抗体是针对多种抗原决定簇的混合抗体,故称为多克隆抗体(PoAb)。 第一节杂交瘤技术基本原理 单克隆是指利用在细胞融合基础上的B细胞杂交瘤技术。 杂交瘤技术的基本原理是通过融合两种细胞而同时保持两者的主要特征。这两种细胞分别是经抗原免疫的小鼠脾细胞和小鼠骨髓瘤细胞。被特异性抗原免疫的小鼠脾细胞(B淋巴细胞)的主要特征是它的抗体分泌功能,但不能在体外连续培养,小鼠骨髓瘤细胞则可在培养条件下无限分裂、增殖,即具有所谓永生性。在选择培养基的作用下,只有B细胞与骨髓瘤细胞融合的杂交细胞才能具有持续培养的能力,形成同时具备抗体分泌功能和保持细胞永生性两种特征的细胞克隆。 一、B细胞杂交瘤技术 1.细胞的选择和融合:杂交瘤技术的目的是制备对抗原特异性的单克隆抗体,所以融合一方必须是经过抗原免疫的B细胞,通常选用被免疫动物的脾细胞,脾淋巴细胞的主要特征是抗体分泌功能。融合细胞另一方则要求在培养条件下的永生性,只有肿瘤细胞才是具备这一条件,所以选择同一体系的骨髓瘤细胞,因多发性骨髓瘤是B细胞系恶性肿瘤,其特点是稳定易培养、自身不分泌免疫球蛋白及细胞因子、融合率高、是次黄嘌呤磷酸核酸核糖转化酶(HGPRT)的缺陷株,是理想的脾细胞融合对象。 2.选择培养基的应用:细胞融合的选择培养基中有三种关键成分:次黄嘌呤(H)、氨甲蝶呤(A)、胸腺嘧啶核苷(T),所以取三者的字头称为HAT培养基。次黄嘌呤和胸腺嘧啶核苷是细胞DNA合成的途径;氨甲蝶呤(A)是叶酸的拮抗剂,可阻断瘤细胞利用正常途径合成DNA,而融合作用的瘤细胞是经毒性培养基选取出的缺乏HGPRT细胞株,不能在该培养基上生长,只有融合细胞具有亲代双方遗传性能,才能在HAT 培养基上长期存活与繁殖。 3.有限稀释与抗原特异性的选择:细胞融合是一个随机的过程,需在融合细胞抗体筛选的基础上进行特异性筛选。将融合细胞进行充分稀释,进行克隆化处理,再将阳性细胞进行再次克隆化,应用特异性抗原包被的ELISA找出针对目标抗原的抗体阳性细胞株进行增殖,再进行冰冻,体外培养或动物腹腔接种。

单克隆抗体的制备流程

单克隆抗体的制备流程 (一)动物的选择与免疫 1.动物的选择纯种BALB/C小鼠,较温顺,离窝的活动范围小,体弱,食量及排污较小,一般环境洁净的实验室均能饲养成活。目前开展杂交瘤技术的实验室多选用纯种BALA/C小鼠。 2.免疫方案选择合适的免疫方案对于细胞融合杂交的成功,获得高质量的McAb 至关重要。一般在融合前两个月左右根据确立免疫方案开始初次免疫,免疫方案应根据抗原的特性不同而定。 (1)可溶性抗原免疫原性较弱,一般要加佐剂,半抗原应先制备免疫原,再加佐 剂。常用佐剂:福氏完全佐剂、福氏不完全佐剂。 初次免疫抗原1~50μg加福氏完全佐剂皮下多点注射或脾内注射(一般0.8~1ml,0.2ml/点) ↓3周后 第二次免疫剂量同上,加福氏不完全佐剂皮下或ip(腹腔内注射)(ip剂量不宜超过0.5ml) ↓3周后 第三次免疫剂量同一,不加佐剂,ip(5~7天后采血测其效价) ↓2~3周 加强免疫,剂量50~500μg为宜,ip或iv(静脉内注射) ↓3天后 取脾融合 目前,用于可溶性抗原(特别是一些弱抗原)的免疫方案也不断有所更新,如:① 将可溶性抗原颗粒化或固相化,一方面增强了抗原的免疫原性,另一方面可降低抗 原的使用量。②改变抗原注入的途径,基础免疫可直接采用脾内注射。③使用细胞 因子作为佐剂,提高机体的免疫应答水平,增强免疫细胞对抗原的反应性。 (2)颗粒抗原免疫性强,不加佐剂就可获得很好的免疫效果。以细胞性抗原为例,免疫时要求抗原量为1~2×107个细胞。 初次免疫1×107/0.5ml ip ↓2~3周后 第二次免疫1×107/0.5ml ip ↓3周后 加强免疫(融合前三天)1×107/0.5ml ip或iv ↓ 取脾融合 (二)细胞融合

单克隆抗体在肿瘤治疗中的应用

单克隆抗体在肿瘤治疗中的应用 抗体分子是生物学及医学领域中用途最为广泛的蛋白质分子。利用传统的免疫方法或通过细胞工程和基因工程技术制备的抗肿瘤特异性抗原、肿瘤相关抗原、独特型决定簇、某些细胞因子受体、激素及一些癌基因产物的多克隆抗体、单克隆抗体或基因工程抗体等使肿瘤的被动免疫治疗发生了改观。人们可以用单抗单独应用于肿瘤治疗,也可以以单抗为特异性载体而将与其偶联的放射性核素、抗癌药物、毒素、酶和其他类型生物制剂“携运”至肿瘤部位,发挥相应的抗瘤效应,这种免疫偶联物亦称为“生物导弹”。 人们最初期望用类似于抗感染的被动免疫方法来治疗肿瘤,即用特异性的同种或异种抗血清或患同类肿瘤“痊愈”病人的血清注射给肿瘤病人。由于人类肿瘤细胞抗源性、肿瘤细胞异质性等诸多理论上的问题未能解决,因而要获取特异性强且效价高的抗肿瘤抗血清很不现实。直到20世纪70年代中期B 淋巴细胞杂交瘤技术的建立,人类在这领域的研究才向前迈进一大步。B淋巴细胞与鼠的骨髓瘤细胞融合,在选择性培养基的条件下,筛选出杂交瘤细胞,筛选出的杂交瘤细胞继承了其亲代细胞的性质,既可分泌抗体,又能无限传代。由特异抗原致敏的某个B细胞克隆所产生的抗体即为单克隆抗体。这种由杂交瘤技术制备的单抗是杂交瘤细胞所分泌的抗体,其质地均一,纯度高,效价高,且能重复大量生产。由于单克隆抗体特异性高,能在多种抗原中识别特异性抗原决定簇,已帮助人类鉴定出多种肿瘤相关抗原,但某种肿瘤是否存在特异性抗原至今未获普遍认同。 目前认为单抗的作用机制有阻断作用、信号传导作用以及靶向作用等三种作用机制:11阻断作用 现用于临床的大部分未偶联单抗主要用于自身免疫和免疫抑制,是通过阻断和调节作用完成的。几乎在所有的单抗应用中,通常都是通过阻断免疫系统的一种重要的胞浆或受体-配体相互作用而实现的。另一种相类似的阻断活性可能存在于单抗的抗病毒感染中,通过阻断和抵消病原体的进入和扩散表现出对机体的防御功能,短期给予单抗后可取得长期疗效。21信号传导作用许多抗癌单抗是通过恢复效应因子,直接启动信号机制而获得细胞毒效应的。在抗-Id的临床试验中,B细胞受体(BCR)与抗体的交联导致正常细胞和肿瘤细胞的生长受抑制和凋亡。对trastuaumab而言,单抗结合可诱导一系列在肿瘤生长控制中起作用的信号传递,该抗原是生长因子受体家族的一个成员,能提供重要的有丝分裂信号,其单抗似乎能阻断与促进肿瘤生长有关的重要的配体-受体相互作用。31靶向作用单抗靶向肿瘤细胞的首要目的是产生肿瘤特异性反应物,然后由免疫系统中的活化因子将其消灭,如早期抗-Id单抗在淋巴瘤中的应用。研究表明:利用单抗与化学药物、放射性核素以及毒素形成的偶联物具有对肿瘤细胞的选择性杀伤作用,同时具有更高的疗效,并且对耐药性肿瘤细胞也有杀伤作用。这些研究结果为应用于肿瘤治疗的可行性提供了重要依据。单克隆抗体用于抗肿瘤治疗有2种基本的方式,一是单抗的单独应用,二是

单克隆抗体制备与应用

单克隆抗体制备与应用 姓名:王志豪学号:10073485 班级:工优070 关键词:单克隆抗体,人抗体,杂交瘤细胞 摘要:1975年德国学者Kohler和英国学者Milstein成功地将骨髓瘤细胞和产生抗体的B淋巴细胞融合为杂交瘤细胞,其分泌的抗体是由识别一种抗原决定簇 的细胞克隆所产生的均一性抗体,称之为单克隆抗体。从鼠源单抗之后,单抗历经了鼠源性抗体、嵌合抗体、人源化抗体、人源性抗体4个发展阶段。随着分子生物学和细胞生物学的发展,单抗理论几乎应用到生物学研究的每一个区域。 1975 年, Kohler 和Milstein 创立了杂交瘤技术制备单克隆 抗体,此后单克隆抗体迅速广泛地应用于生物学和医学的各个领域。单克隆抗体可用于分析抗原的细微结构及检验抗原抗体未知的结构 关系;生产出针对复杂生物混合物中的特定分子的抗体,可用于分离、分析及纯化该特定分子抗原;其试剂可用于临床诊断和治疗,或用于 以单抗为弹头的“生物导弹”药物等。但单克隆抗体技术自问世以来,在临床治疗方面进展缓慢,主要原因是目前单克隆抗体大多是鼠源性的,而鼠源单抗应用于人体治疗时存在诸多问题:鼠源单抗在人体中 常不能有效激活补体和Fc 受体相关的效应系统;被人体免疫系统所 识别,产生人抗鼠抗体(HAMA) 反应;且在人体循环系统中很快被清除。因此,在保持对特异抗原表位的高亲和力的基础上人源化和全人化的改造,减少异源抗体的免疫原性成为单抗研究的重点。此外,传统杂交瘤技术还存在制备周期较长,成本较高,杂交瘤细胞不稳定抗性会丢

失等缺陷。近年来,随着分子生物学技术的发展,出现了嵌合单克隆抗体和由转基因小鼠、噬菌体展示技术、核糖体展示技术及共价展示技术所制备的单克隆抗体。这些技术可有效解决传统杂交瘤技术所存在的问题,为单克隆抗体的应用提供更广阔的空间。 1994 年, 美国Cell Genesys 公司和Genpharm公司宣布转基因小鼠作为生产全人抗体的载体问世。这项技术是将人抗体基因微位点转入小鼠体内,产生能分泌人抗体的转基因小鼠。其前提是人的抗体基因片段在小鼠体内进行重排并表达,并且这些片段能与小鼠细胞的信号机制相互作用,即在抗原刺激后,这些片段可被选择、表达并活化B 细胞分泌人抗体。这些转基因小鼠的不足之处在于转移基因片段较小,仅30kb 左右,因此这种抗体库在面对抗原多样性时,其抗体应答显得单薄而不足。此后,Green 等人利用基因打靶技术将编码人抗体轻重链的基因片段大约18Mb 的DNA 全部转到自身抗体基因位点已被灭活的小鼠基因组中,再经过繁育筛选,建立了稳定的转基因小鼠品系。这样得到的转基因小鼠对特异的抗原能产生高亲和力的人抗体。用传统的杂交瘤技术,将表达特异抗体的转基因小鼠B 细胞和骨髓瘤细胞融合,获得杂交瘤细胞系,产生人源抗体。利用转基因小鼠技术已获得了一系列抗IL8 、TNFα以及EGFR 的人单克隆抗体,这些细胞因子在肿瘤或其他疾病中起着重要的作用,因此其单克隆抗体作为导向剂具有重要的临床治疗意义。目前生产的单抗大多是鼠源性的,但其在临床应用方面还存在着很大的弊端,主要是鼠源单抗与NK 等免疫细胞表面Fc 段受体亲和力弱,产生的抗体依赖性细胞介导的细胞毒

单克隆抗体及其应用的研究进展

2009年第1期畜牧兽医科技信息国兽医科学,2007,37(1):29-32 [9]李余动,等.胶体金免疫层析法快速检测氯霉素残留[J].中国食品卫生杂志,2005,17(5):416-419 [10]张明,等.免疫胶体金法检测磺胺甲恶唑残留的研究[J].中国兽药 杂志,2006,40(4):17-24 [11]邓省亮,等.胶体金免疫层析法快速检测黄曲霉毒素B1的研究 [J].食品科学,2007,28(2):232-236 [12]Sun Xiulan,et al.Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1[J].International Journal of Food Microbiology ,2005,99(2):185-194 [13]赖卫华,等.应用胶体金试纸条快速检测赭曲霉毒素A 的研究[J]. 食品科学,2005,26(5):204-207 [14]Timo Klewitz,et al.Immunochromatographic assay for determina tion of botulinum neurotoxin type D[J].Sensors and Actuators B:Chemical,2006,113(2):582-589 1975年德国学者Kohler 和英国学者M ilstein 发明了杂交瘤技术。他们成功地将骨髓瘤细胞和产生抗体的B 淋巴细胞融合为杂交瘤细胞,这种合成的杂交瘤细胞稳定、有致瘤性、能产生抗体,其分泌的抗体是由识别一种抗原决定簇的细胞克隆所产生的均一性抗体,故称之为单克隆抗体(简称单抗)。自从鼠源单抗之后,单抗历经了鼠源性抗体、嵌合抗体、 人源化抗体、人源性抗体4个发展阶段。近年来随着分子生物学和细胞生物学的发展,单克隆抗体的应用已日益普及,单抗理论几乎应用到生物学研究的每一个区域。单克隆抗体制备技术的发展也就显得尤为重要。1 单克隆抗体的研究进展 1.1鼠源性单抗自单克隆抗体制备技术问世以来,制备单抗的一般程序基本相同,从超免疫的供体中即抗原免疫的小鼠,获取脾细胞,再与骨髓瘤细胞融合,最后对单个细胞进行克隆,培养出能分泌单抗的克隆细胞。目前生产的单抗大多是鼠源性的,但其在临床应用方面还存在着很大的弊端,主要是鼠源单抗与NK 等免疫细胞表面Fc 段受体亲和力弱,产生的抗体依赖性细胞介导的细胞毒作用(ADCC)作用较弱,而且它与人补体成分结合能力低,对肿瘤细胞的杀伤能力较弱,并且鼠源性抗体在人血循环中的半衰期短,它发挥AD-CC 作用的时间较短; 其次鼠单克隆抗体还具有免疫原性,使宿主易引起过敏反应。这样一方面降低了单抗的效价,另一方面又会给病人带来严重的后果。因此鼠源性单克隆抗体还应进一步改善才能广泛应用于临床。 1.2嵌合抗体抗体的恒定区是抗体分子结构中免疫原性 最强的部位,而决定抗体特异性的是抗体的可变区。从杂交瘤细胞分离出功能性可变区基因,与人Ig 恒定区的基因连 接,再插入适当表达载体,转染宿主细胞,表达人-鼠嵌合抗体。也就是将鼠源性单抗在保留其抗原结合活性的基础上,尽可能的去除鼠源化部分或代之以人源化片断,减少了鼠源性抗体的免疫原性,从而尽可能的减少单抗的异源性,同时保留了亲本抗体特异性结合抗原的能力。但是这种抗体仍保留了30%的鼠源性,可诱发人抗小鼠反应(HAM A)。 1.3人源化抗体由于嵌合抗体异源性仍然很大,因此需要对鼠源抗体进行人源化改造,进一步人源化的方法很多,主要是重构抗体和表面重塑技术。重构抗体就是互补决定区(complementarity determining region,CDR)移植,将鼠抗体的CDR 移植到人抗体的相应部位,这样人源化程度可达90%以上,目前该方法是人源化单抗最常用、最基本的方法。而表面重塑技术,即将鼠抗体框架区表面氨基酸的残基(surface amino acid residues,SAR)进行人源化改造。该方法是仅替换与人抗体SAR 差别明显的区域,在维持抗体活性并兼顾减少异源性基础上选用与人抗体表面残基相似的氨基酸替换。 1.4人源性抗体虽然人源化抗体解决了鼠抗体的免疫原 性等问题,但生产人源化抗体仍有很大的困难;人源化过程需大量繁复、昂贵的电脑模拟,需取代不同的氨基酸以恢复选择性和亲和力,工作量非常大,并且它总还含有少量鼠源性成分。完全的人源性抗体才是用于治疗的理想抗体,目前它主要通过3种途径来研制:噬菌体抗体库技术、核糖体展示技术和转基因小鼠制备人源性抗体。1.4.1 噬菌体抗体库技术 噬菌体抗体库技术是迄今发展 最成熟、 应用最广泛的抗体库技术。其基本原理是将蛋白分子或肽段的基因克隆到丝状噬菌体的基因组DNA 中,与噬菌体的外壳蛋白形成融合蛋白,从而使该异源分子呈现于噬菌体表面。通过这种方式,形成了一个收藏上亿个以体外方式制得的不同抗体的基因数据库,使从任何真实的抗原中迅速分离高度相似的同族抗体成为可能。分离得到的抗体可用于 单克隆抗体及其应用的研究进展 孔 维1,杨文辉2 (1.东北农业大学动物医学院,哈尔滨150001;2.哈尔滨北方森林动物园,哈尔滨150300) 000000000000000000000000000000000000000000000000000000000000作者简介:孔维(1979~),湖南平江人,硕士研究生 专论与综述 9

单克隆抗体制备流程

单抗制备流程 1975年,Kohler和Milstein发现将小鼠骨髓瘤细胞和绵羊红细胞免疫的小鼠脾细胞进行融合,形成的杂交细胞既可产生抗体,又可无限增殖,从而创立了单克隆抗体杂交瘤技术。这一技术上的突破不仅为医学与生物学基础研究开创了新纪元,也为临床疾病的诊、防、治提供了新的工具。 制备单克隆抗体包括动物免疫、细胞融合、选择杂交瘤、检测抗体、杂交瘤细胞的克隆化、冻存以及单克隆抗体的大量生产,要经过几个月的一系列实验步骤,下面按照制备单克隆抗体的流程顺序,逐一介绍其实验方法。 一、细胞融合前准备 (一) 免疫方案 选择合适的免疫方案对于细胞融合杂交的成功,获得高质量的McAb至关重要。一般要在融合前两个月左右确立免疫方案开始初次免疫,免疫方案应根据抗原的特性不同而定。 1.颗粒性抗原免疫性较强,不加佐剂就可获得很好的免疫效果。下面以细胞性抗原为例的免疫方案: 初次免疫1×107/0.5ml ip (腹腔内注射) ↓2~3周后 第二次免疫1×107/0.5ml ip ↓3周后 加强免疫(融合前三天) 1×107/0.5ml ip或iv(静脉内注射) ↓ 取脾融合 2.可溶性抗原免疫原性弱,一般要加佐剂,常用佐剂:福氏完全佐剂,福氏不完全佐剂。要求抗原和佐剂等体积混合在一起,研磨成油包水的乳糜状,放一滴在水面上不易马上扩散呈小滴状表明已达到油包水的状态。商品化福氏完全佐剂在使用前须振摇,使沉淀的分枝杆菌充分混匀。 初次免疫 Ag 1~50μg 加福氏完全佐剂皮下多点注射

│(一般0.8~1ml 0.2ml/点) ↓3周后 第二次免疫剂量同上,加福氏不完全佐剂皮下或ip │(ip剂量不宜超过0.5ml) ↓3周后 第三次免疫剂量同上,不加佐剂,ip │ (5~7天后采血测其效价,检测免疫效果) ↓2~3周后 加强免疫,剂量50~500μg为宜,ip或iv ↓3天后 取脾融合 目前,用于可溶性抗原(特别是一些弱抗原)的免疫方案也不断有所更新,如①将可溶性抗原颗粒化或固相化,一方面增强了抗原的免疫原性,另一方面可降低抗原的使用量。②改变抗原注入的途径,基础免疫可直接采用脾内注射。③使用细胞因子作为佐剂,提高机体的免疫应答水平,促进免疫细胞对抗原反应性。 (二) 饲养细胞 在制备单克隆抗体过程中,许多环节需要加饲养细胞,如:在杂交瘤细胞筛选、克隆化和扩大培养过程中,加入饲养细胞是十分必要的。常用的饲养细胞有:小鼠腹腔巨噬细胞(较为常用)、小鼠脾脏细胞或小鼠胸腺细胞,也有人用小鼠成纤维细胞系3T3经放射线照射后作为饲养细胞,使用比较方便,照射后可放入液氮罐长期保存,随用随复苏。 小鼠腹腔巨噬细胞的制备 小鼠采用与免疫小鼠相同的品系,常用BaLb/c小鼠6~10周龄 ↓ 拉颈处死浸泡于75%酒精,消毒3~5分钟 ↓

新型抗HER2单克隆抗体的抗肿瘤作用及机制研究

新型抗HER2单克隆抗体的抗肿瘤作用及机制研究人表皮生长因子受体2(Human Epidermal growth factor Receptor 2,HER2,也称为ErbB2)是受体酪氨酸激酶的ErbB受体家族成员。约20%-30%乳腺癌患者的癌组织中有HER2基因的过度表达,HER2过表达的乳腺癌浸润性强,无病生存期短,预后差。 HER2是具有酪氨酸激酶活性的跨膜蛋白,它没有天然配体,在单体状态下无活性,当与ErbB家族其他3个成员EGFR、HER3、HER4形成异源二聚体时可使酪氨酸激酶活化,激活MAPK和PI3K/Akt通路,最终导致肿瘤细胞增殖。近年来以HER2为靶点的靶向治疗已成为乳腺癌治疗研究的热点。 Trastuzumab(Herceptin,曲妥珠单抗,赫赛汀)是由美国Genentech公司开发的靶向HER2的人源化单克隆抗体,它于1998年获得美国FDA批准用于HER2高表达转移性乳腺癌的治疗。HER2分子的膜外区包括I、II、III、IV四个结构域,Trastuzumab与HER2分子的细胞外结构域IV结合,可阻断配体非依赖的HER2:HER3异源二聚体的形成,但不能阻断配体依赖的HER2:HER3异源二聚体形成。 即使在HER2高表达乳腺癌,Trastuzumab的有效率也仅为30%。Pertuzumab(Omnitarg,帕妥珠单抗)是美国Genentech公司研制的另一株的抗HER2人源化抗体。 Pertuzumab可通过结合HER2分子膜外区的结构域II阻断配体依赖的HER2:HER3异源二聚体的形成,但不能阻断配体非依赖的二聚体形成。总的说来,Trastuzumab抑制配体非依赖HER2异源二聚体,而Pertuzumab抑制配体依赖的HER2异源二聚体,它们具有互补的抗肿瘤作用机理。

人源化单克隆抗体的研究进展

论人源化单克隆抗体的研究进展 *** (生物工程一班生命科学学院 ***大学哈尔滨 150080) 摘要:自从单克隆抗体问世至今已广泛应用与临床治疗,然而鼠源性单克隆抗体在临床治疗中会产生人抗鼠抗体反应,从而使鼠源性单克隆抗体的应用受到极大限制。随着基因工程技术和抗体工程技术的迅速发展,人源性单克隆抗体开始快速发展而逐渐代替鼠源性单克隆抗体。本文将就人源化单克隆抗体的构建以及其在临床治疗方面的应用进行综述。 关键词:单克隆抗体人源化临床治疗 Theory humanized monoclonal antibody research progress *** (The 1st class of Bioengineering , College of Life Science, *** University, Harbin, 150080) Abstract: Since the advent of monoclonal antibody has been widely applied in clinical treatment, but the mouse source sex monoclonal antibodies in clinical treatment will produce people resistance to mouse antibody response, so that the rat source sex monoclonal antibody application are highly limited. Along with the genetic engineering technology and the rapid development of antibody engineering technology, humanized sex monoclonal antibody began to rapid development and gradually replaces the rat source sex monoclonal antibody. This paper will review humanized monoclonal antibody construction and the application of clinical treatment in this article. Keywords: monoclonal antibody humanized clinical treatment 1975年。Kohler和Milstein将小鼠骨髓瘤细胞和经免疫的小鼠脾细胞融合,形成了可产生单克隆抗体的杂交瘤细胞,该细胞机能产生抗体,又可无限增殖,从而创立了单克隆抗体杂交瘤技术[1],此后单抗药物开始迅速发展并广泛应用于临床。1982年,Philip Karr 将第一株抗独特型单抗(anti- ld) 应用于B细胞淋巴瘤的临床治疗并取得成功[2],使得治疗性抗体的研究很快成为生物医药的热点,许多以单克隆抗体为研究对象的公司相继成立。然而,鼠源性单克隆抗体应用于人类有较强的免疫原性,能诱发人抗鼠抗体( Human ant-i mouse antibody, HAMA) 反应,引起强烈的免疫排斥反应[3],而且鼠源性单克隆抗体不能有效地激活人体的生物效应功能,因此限制了其临床应用。这使研究学者意识到研制鼠源性单克隆抗体人源化或完全的人源性抗体才有可能减少或避免HAMA反应并提高疗效。然而反复实验证明, 杂交瘤技术不能提供稳定分泌人抗体的细胞株。直到80年代末期,随着分子生物学研究的深入,在抗体基因工程研究领域相继出现了一

单克隆抗体制备方法(全)

单克隆抗体制备方法 1975年Kohler和Milstein发现将小鼠骨髓瘤细胞与和绵羊红细胞免疫的小鼠脾细胞进行融合,形成的杂交瘤细胞既可产生抗体,又可无性繁殖,从而创立了单克隆抗体杂交瘤技术。这一技术上的突破使血清学的研究进入了一个高度精确的新纪元。 采用杂交瘤技术制备单克隆抗体包括动物免疫、细胞融合、选择杂交瘤、检测抗体、杂交瘤细胞的克隆化、冻存以及单克隆抗体的大量生产,要经过几个月的一系列实验步骤。 主要仪器设备: 超净工作台、CO2恒温培养箱、超低温冰箱(-70℃)、倒置显微镜、精密天平或电子天平、液氮罐、离心机(水平转子,4000r/min)、37℃水浴箱、纯水装置、滤器、真空泵等。其需要的主要器械包括:100ml、50ml、25ml细胞培养瓶,10ml、1ml刻度吸管,试管,滴管(弯头、直头),平皿,烧杯,500ml、250ml、100ml盐水瓶,青霉素小瓶,10ml、5ml、1ml注射器等,96孔、24孔细胞培养板,融合管(50ml圆底带盖玻璃或塑料离心管),眼科剪刀,眼科镊,血细胞计数板,可调微量加样器(~50ul,~200ul,~1000ul),弯头针头,200目筛网,小鼠固定装置等。此外,一般的单克隆抗体制备方法大同小异。 方法 动物的选择与免疫 1. 动物的选择 BALB/C小鼠,较温顺,离窝的活动范围小,体弱,食量及排污较小,一般环境洁净的实验室均能饲养成活。目前开展杂交瘤技术的实验室多选用纯种BALA/C小鼠。 2. 免疫方案 选择合适的免疫方案对于细胞融合杂交的成功,获得高质量的McAb至关重要。一般在融合前两个月左右根据确立免疫方案开始初次免疫,免疫方案应根据抗原的特性不同而定。 (1)可溶性抗原免疫原性较弱,一般要加佐剂,半抗原应先制备免疫原,再加佐剂。常用佐剂:福氏完全佐剂、福氏不完全佐剂。 初次免疫抗原1~50μg加福氏完全佐剂皮下多点注射或脾内注射(一般0.8~1ml,0.2ml/点) ↓3周后 第二次免疫剂量同上,加福氏不完全佐剂皮下或ip(腹腔内注射)(ip剂量不宜超过0.5ml) ↓3周后 第三次免疫剂量同一,不加佐剂,ip(5~7天后采血测其效价) ↓2~3周 加强免疫,剂量50~500μg为宜,ip或iv(静脉内注射) ↓3天后取脾融合 目前,用于可溶性抗原(特别是一些弱抗原)的免疫方案也不断有所更新,如:①将可溶性抗原颗粒化或固相化,一方面增强了抗原的免疫原性,另一方面可降低抗原的使用量。②改变抗原注入的途径,基础免疫可直接采用脾内注射。③使用细胞因子作为佐剂,提高机体的免疫应答水平,增强免疫细胞对抗原的反应性。

单克隆抗体制备过程中经过两次筛选

单克隆抗体制备过程中经过两次筛选 单克隆抗体制备过程中,总共有两次筛选,第一次筛选出杂交瘤细胞,第二次筛选出能产生特异性抗体的杂交瘤细胞,两次筛选的原理和方法是不相同的。 第一次筛选的原理与方法:细胞融合后,杂交瘤细胞的选择性培养是第一次筛选的关键。普遍采用的HAT选择性培养液是在普通的动物细胞培养液中加入次黄嘌呤(H)、氨基喋呤(A)和胸腺嘧啶核苷酸(T)。其依据是细胞中的DNA合成有两条途径:一条途径是生物合成途径(“D途径”),即由氨基酸及其他小分子化合物合成核苷酸,为DNA分子的合成提供原料。在此合成过程中,叶酸作为重要的辅酶参与这一过程,而HAT培养液中氨基喋呤是一种叶酸的拮抗物,可以阻断DNA合成的“D途径”。另一条途径是应急途径或补救途径(“S途径”),它是利用次黄嘌呤—鸟嘌呤磷酸核苷转移酶(HGPRT)和胸腺嘧啶核苷激酶(TK)催化次黄嘌呤和胸腺嘧啶核苷生成相应的核苷酸,两种酶缺一不可。因此,在HAT培养液中,未融合的效应B细胞和两个效应B细胞融合的“D途径”被氨基喋呤阻断,虽“S途径”正常,但因缺乏在体外培养液中增殖的能力,一般10d左右会死亡。对于骨髓瘤细胞以及自身融合细胞而言,由于通常采用的骨髓瘤细胞是次黄嘌呤—鸟嘌呤磷酸核苷转移酶缺陷型(HGPRT)细胞,因此自身没有“S途径”,且“D途径”又被氨基喋呤阻断,所以在HA T培养液中也不能增殖而很快死亡。惟有骨髓瘤细胞与效应B细胞相互融合形成的杂交瘤细胞,既具有效应B细胞的“S途径”,又具有骨髓瘤细胞在体外培养液中长期增殖的特性,因此能在HA T培养液中选择性存活下来,并不断增殖。 第二次筛选的原理和方法:在实际免疫过程中,由于采用连续注射抗原的方法,且一种抗原决定簇刺激机体形成相对应的一种效应B淋巴细胞,因此,从小鼠脾脏中取出的效应B淋巴细胞的特异性是不同的,经HA T培养液筛选的杂交瘤细胞特异性也存在差异,所以必须从杂交瘤细胞群中筛选出能产生针对某一预定抗原快定簇的特异性杂交瘤细胞。通常采用有限稀释克隆细胞的方法,将杂交瘤细胞多倍稀释,接种在多孔的细胞培养板上,使每一孔含一个或几个杂交瘤细胞(理论上30%的孔中细胞数为0时,才能保证有些孔中是单个细胞),再由这些单细胞克隆生长,最终选出分泌预定特异抗体的杂交细胞株进行扩大培养。因此,单克隆抗体制备过程中,两次筛选的原理和方法是不相同的。 单克隆抗体制备的基本原理与过程 原理: B淋巴细胞在抗原的刺激下,能够分化、增殖形成具有针对这种抗原分泌特异性抗体的能力。B细胞的这种能力和量是有限的,不可能持续分化增殖下去,因此产生免疫球蛋白的能力也是极其微小的。将这种B细胞与非分泌型的骨髓瘤细胞融合形成杂交瘤细胞,再进一步克隆化,这种克隆化的杂交瘤细胞是既具有瘤的无限生长的能力,又具有产生特异性抗体的B淋巴细胞的能力,将这种克隆化的杂交瘤细胞进行培养或注入小鼠体内即可获得大量的高效价、单一的特异性抗体。这种技术即称为单克隆抗体技术。 过程: 1)免疫脾细胞的制备制备单克隆抗体的动物多采用纯系Balb/c小鼠。免疫的方法取决于所用抗原的性质。免疫方法同一般血清的制备,也可采用脾内直接免疫法。 2)骨髓瘤细胞的培养与筛选在融合前,骨髓瘤细胞应经过含8-AG的培养基筛选,防止细胞发生突变恢复HGPRT 的活性(恢复HGPRT的活性的细胞不能在含8-AG的培养基中存活)。骨髓瘤细胞用10%小牛血清的培养液在细胞培养瓶中培养,融合前24h换液一次,使骨髓瘤细胞处于对数生长期。 3)细胞融合的关键: 1技术上的误差常常导致融合的失败。例如,供者淋巴细胞没有查到免疫应答。这必然要失败的。 2融合试验最大的失败原因是污染,融合成功的关键是提供一个干净的环境,以及适宜的无菌操作技术。 4)阳性克隆的筛选应尽早进行。通常在融合后10天作第一次检测,过早容易出现假阳性。检测方法应灵敏、准确、而且简便快速。具体应用的方法应根据抗原的性质,以及所需单克隆抗体的功能进行选择。常用的方法有RIA法、ELISA法和免疫荧光法等。其中ELISA法最简便,RIA法最准确。阳性克隆的筛选应进行多次,均阳性时才确定为阳性克隆进行扩增。 5)克隆化克隆化的目的是为了获得单一细胞系的群体。克隆化应尽早进行并反复筛选。这是因为初期的杂交瘤细胞是不稳定的,有丢失染色体的倾向。反复克隆化后可获得稳定的杂交瘤细胞株。克隆化的方法很多,而最常用的是有限稀释法。 (1)显微操作法:在显微镜下取单细胞,然后进行单细胞培养。这种方法操作复杂,效率低,故不常用。 (2)有限稀释法:将对数生长期的杂交瘤细胞用培养液作一定的稀释后,按每孔1个细胞接种在培养皿中,细胞增值后成为单克隆细胞系。第一次克隆化时加一定量的饲养细胞。由于第一次克隆化生长的细胞不能保证单克隆化,所以为获得稳定的单克隆细胞株需经2~3次的再克隆才成。应该注意的是,每次克隆化过程中所有有意义的细胞都

单克隆抗体的制备及其应用研究进展

单克隆抗体的制备及其应用研究进展 燕珊珊 摘要:单克隆抗体技术的突破为医学和生物学的基础研究开创了新纪元。基因工程抗体技术的发展更为疾病治疗、临床试验和科研方面做出巨大贡献。此外,抗体还可能执行除目前所具有之外的更多功能。本文将就单克隆抗体的制备及其应用研究进展进行论述。 关键词:单克隆抗体;基因工程;小鼠骨髓瘤细胞;细胞杂交瘤技术;噬菌体;临床应用 抗体是机体免疫系统的重要效应分子,从第一代多克隆抗体(polyclonalantibody,PcAb)到第二代单克隆抗体的成功制备,人们投入了大量的临床应用研究,对医学和生物学的发展发挥了巨大的作用。 单克隆抗体(monoclonal antibodies,mAbs)技术的突破为医学和生物学的基础研究开创了新纪元。基因工程抗体技术的发展更为疾病治疗、临床试验和科研方面做出巨大贡献。目前,制备mAbs 的方法中比较成熟的主要有以下几种:1. 抗原特异性的B 淋巴细胞杂交瘤技术;2. 人-鼠嵌合抗体制备技术; 3.噬菌体展示技术获得的抗原特异性人源性抗体;4. 转基因小鼠制备的人mAbs;5.核糖体展示技术。

通过这些方法,我们利用相应抗原靶向构建治疗性抗体,从而达到预防、治疗疾病的目的,促进生物制药学的发展。以下主要是对抗体制备技术的发展及其应用研究进展进行综述。 1 鼠源性抗体 1975 年,Kohler 和Milstein[1] 将小鼠骨髓瘤细胞和经绵阳红细胞免疫的小鼠脾细胞融合,形成了可产生单克隆抗体的杂交瘤细胞,该细胞既能产生抗体,又可无限增殖,从而创立了单克隆抗体杂交瘤技术。由免疫B细胞-浆细胞、瘤细胞融合形成的杂交瘤细胞系可分泌单一、特异性、纯化的抗体,且能在选择培养基中生长、无限增值、分裂,同时在选择培养基作用下,利用代谢缺陷补救机理筛选出同时具有两种细胞特征的细胞克隆。这种经过反复克隆而挑选出来的融合细胞所产生的抗体称为单克隆抗体(McAb)。它在分子结构、氨基酸序列以及特异性等方面都是一致的。淋巴细胞杂交瘤技术的主要步骤包括:动物免疫、细胞融合、杂交瘤细胞的筛选与单抗检测、杂交瘤细胞的克隆化、冻存、单抗的鉴定等。至今,科学家们已经建立众多鼠源性mAbs 来诊断和治疗多种人类疾病。然而作为在人体内的应用,鼠源单抗尚存在一些问题。鼠源性抗体作为异种蛋白应用于人体可引起免疫反应,产生人抗鼠抗体(human anti-mouse antibody,HAMA)[2],很大程度上限制了mAbs 的临床应用。此外,鼠源性mAbs 不能与人类抗体FcRn 结合[3]。为了克服以上这些问题,近年,随着分子生物学的发展,人们已有可能通过抗体工程技术制备人-鼠嵌合抗体、人源化抗体或全人抗体。

相关文档
最新文档