丙酮碘化反应速率常数的测定

丙酮碘化反应速率常数的测定
丙酮碘化反应速率常数的测定

丙酮碘化反应速率常数的测定

一、实验目的

1、掌握利用分光光度法测定酸催化时丙酮碘化反应速度常数及活化能的实验方法。

2、加深对复杂反应特征的理解。

二、实验原理

酸溶液中丙酮碘化反应是一个复杂反应,反应方程为:

C

CH 3H 3C

O

+I 2

H

+

C

CH 2I H 3C

O

+I -+H +

H +是反应的催化剂,由于丙酮碘化反应本身生成H +,所以这是一个自动催化反应。 实验测定表明,反应速率在酸性溶液中随氢离子浓度的增大而增大。反应式中包含产物,其动力学方程式为:

r q p

A A H c I c kc dt

I dc dt dc )()()(22+=-=-

=υ (1) 式中υ为反应速率,A c 、)(2I c 、)(+H c 分别为丙酮、碘、盐酸的浓度(mol/L ),κ为反应速率常数,p 、q 、r 分别为丙酮、碘和氢离子的反应级数。速率、速率常数和反应级数均可由实验测定。

实验证明丙酮碘化反应是一个复杂反应,一般认为可分成两步进行,即:

H

+

k 1k 2

C CH 2

H 3C

OH

C CH 2

H 3C

O

i )

C H 3C

O

C CH 2

H 3C

OH

I 2

CH 2I

I -

k 3

(ii)

反应(i)是丙酮的烯醇化反应,反应可逆且进行的很慢。反应(ii)是烯醇的碘化反应,反应快速且能进行到底。因此,丙酮碘化反应的总速度可认为是由反应(i)所决定。丙酮碘化反应对碘的反应级数是零级,故碘的浓度对反应速率没有影响,即动力学方程中q 为零,原来的速率方程可写成:

r p

A I H c kc dt

dc )(2+=-

=υ (2)

由于反应并不停留在一元碘化丙酮上,还会继续反应下去,故采取初始速率法,因此丙酮和酸应大大过量,而用少量的碘来限制反应程度。这样在碘完全消耗之前,丙酮和酸的浓度基本保持不变。由于反应速率与碘浓度无关(除非在酸度很高的情况下),因而直到碘全部消耗前,反应速率是常数。即:

常数==-

=+r p

A I H c kc dt

dc )(2υ (3)

因此,将)(2I c 对时间t 作图为一直线,直线斜率即为反应速率。

为了测定指数p ,需要进行两次实验。先固定氢离子的浓度不变,改变丙酮的浓度,若分别用I 、II 表示这两次实验,使)(II A c =u )(I A c ,)(+II H c = )(+

I H c ,由式子(3)可得:

p

I p

I p p I r I p II r II p I II u A C A C u H C A kC H C A kC ===++

)

()()()()()(υυ (4) u p I

II

lg lg

=υυ (5) u p I

II

lg /lg

υυ= (6) 同样方法可以求指数r 。使)(II A c =)(I A c I ,)(+

II H c =w )(+

I H c ,可得出:

w r I

III

lg /lg

υυ= (7) 根据式子(2),由指数、反应速率和浓度数据就可以计算出速率常数κ。由两个温度下的速率常数,由阿累尼乌斯公式:

1

21221lg 303.2k k

T T T T R

E -= (8)

求得化学反应的活化能E 。

因碘溶液在可见区有宽的吸收带,而在此吸收带中,盐酸、丙酮、碘化丙酮和碘化钾溶液则没有明显的吸收,所以可采用分光光度法直接测量碘浓度的变化,以跟踪反应进程。在本实验中,通过测定溶液510nm 光的吸收来确定碘浓度。溶液的吸光度A 与浓度c 的关系为:

A=Kcd (9)

其中A 为吸光度,K 为吸光系数,d 为溶液厚度,c 为溶液浓度(mol/L )。在一定的溶质、

溶剂、波长以及溶液厚度下,K、d均为常数,因此式子(9)可以写为:

A=Bc (10)

式中,常数B由已知浓度的碘溶液求出。

三、仪器与药品

1.仪器:

7200型分光光度计(附比色皿)1台,超级恒温槽1台,秒表1块,50mL容量瓶

4个,5mL移液管、10mL移液管各四支,100ml锥形瓶4个。

2.药品:

4.000 mol·L-1 丙酮溶液(精确称量配制),1.000mol·L-1 HCl标准溶液(标定),0.0200mol·L-1 碘溶液。

四、实验步骤

1.实验前的准备

(1)调节恒温槽到25℃。

(2)打开7200型分光光度计,进行预热20分钟后进行0%和100%校正。取10mL经标定的碘溶液至50mL容量瓶并稀释至刻度,而后将稀释的碘溶液装入比色皿中,将分光光度计功能设置为浓度档,调节吸收光波长至510nm,转动浓度调节纽直至在数字窗中显示出溶液的实际浓度(详细操作过程见第六部分)。在本实验中,碘溶液初始浓度为0.02mol·L-1 ,经稀释5倍后浓度为0.004mol·L-1 ,可将初始值设置为400,则实际浓度值为显示值×10-6.

2.测定四组溶液的反应速率

在50mL容量瓶中按照下列体积配置四组溶液:

表1 待测反应速率的四组溶液配比

序号V(碘溶液)/mL V(丙酮溶液)/mL V(盐酸溶液)/mL V(水)/mL

1 10.0 3.0 10.0 27.0

2 10.0 1.5 10.0 28.5

3 10.0 3.0 5.0 32.0

4 5.0 3.0 10.0 32.0

反应前,将锥形瓶用气流烘干器烘干,容量瓶洗干净。准确移取上述体积的丙酮和盐酸

到锥形瓶中,移取碘溶液和水到容量瓶中,其中加水的体积应少于应加体积约2mL ,以便溶液总体积准确稀释到50mL 。将装有液体的锥形瓶和容量瓶放入恒温水浴中恒温10-15min 后,将锥形瓶中的液体倒入容量瓶中,用少量水将锥形瓶中剩余的丙酮和盐酸洗入容量瓶,并加水到刻度后混匀。当锥形瓶中溶液一半倒入容量瓶中开始计时,作为反应的起始时间。混合、标定动作要迅速,标定后马上进行测量。

将反应液装入比色皿中,每隔0.5min 测定一次反应液中的碘浓度。每次测定反应液中碘浓度之前,须将标准碘溶液的浓度值调准。每组反应液测定10-15个碘浓度值。 3.将超级恒温槽调节至35°C 重复上述实验。

五、数据记录与处理

1.数据记录

表一:测不同时刻t 的碘的浓度值

碘瓶编号 1 2 3 4 H 2O/mL HCl 溶液/mL 丙酮溶液/mL 碘溶液/mL )( H c /mol·

L -1 A c / mol·L -1 )(2I c /mol·

L -1

25°C 35°C 25°C 35°C 25°C 35°C 25°C 35°C )

(2I c mol·L

-1

(反

应开始后每0.5mi n 测定一次/分)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2.数据处理

1.将)(2I c 对时间t 作图,求出反应速率。

2.用表中第(1)、(2)、(3)号溶液数据,根据式(6)、(7)计算丙酮和氢离子的反应级数;用表中第(1)、(4)号溶液数据求出碘的反应级数。

3.按表中的实验条件,根据式(3)求出25°C 时丙酮碘化反应的速率常数κ。

4.求出35°C 时丙酮碘化反应的速率常数κ。

5.由式(8)求出丙酮电话反应的活化能E a 。 3.参考文献值

k (25℃)=2.86×10-5dm 3.mol -1.s -1 ,k (35℃)=8.80×10-5dm 3.mol -1.s -1,活化能E a = 86.2KJ.mol -1 摘自:F.Daniels,R.A.Alberty,J.W.Williams,etal., Experimental Physical Chemistry, 7th edn.p.152 MC Graw-Hill, Inc.,New York(1975)

六、7200型分光光度计已知标准样品浓度值的测量方法

(1) 接通电源,让仪器预热20分钟(不包括仪器自检时间)。 (2) 用键设置方式设置A (吸光度)状态。

(3) 用波长选择旋钮设置所需的分析波长,根据分析规程,每当分析波长改变时,

必须重新调整0A/100%T 。

(4) 将参比样品溶液,标准样品溶液和被测样品溶液分别倒入比色皿中,打开样

品室盖,将盛有溶液的比色皿分别插入比色皿槽中,盖上样品室盖。一般情况下,参比样品放在第一个槽位中。仪器所附的比色皿,其透射比是经过配对测定的,未经配对处理的比色皿将影响样品的测试精度,比色皿透光部分表面不能有指印、溶液痕迹,被测溶液中不能有气泡、悬浮物,否则也将影响样品测试的精度。

(5) 将0%T 校具(黑体)置入光路中,在T 方式下按“0%T”键,此时显示器显示“000.0”。 (6) 将参比样品推(拉)入光路中,按“0A/100%T”键调0A/100%T ,此时显示器显示的“BLA”直至显示“000.0”0%T 或“000.0”A 为止。

(7) 用键将测试方式设至C 状态。 (8) 将标准样品推(或拉)入光路中。

(9) 按“INC ”或“DEC ”键将已知的标准样品浓度值输入仪器,当显示器显示

样品浓度值时,按“ENT ”键。浓度值只能输入整数值,设定范围为0~1999。(注

意:若标样浓度值与它吸光度的比值大于1999时,将超出仪器测量范围,此时无法得到正确结果。比如标准溶液浓度设定为150,其吸光度值为0.065,则150/0.065=2308,已大于1999.这时可将标准样品浓度值除以10后输入,只是测得的实际浓度值要显示值乘以10。

(10)将被测样品中依次推(或拉)入光路中,这时便可以从显示器上分别得到被测样品的浓度值。

七、实验注意事项

1、温度影响反应速率常数,实验时体系始终要恒温。

2、实验所需溶液均要准确配制。

3、混合反应溶液时要在恒温槽中进行,操作必须迅速准确。

八、思考题

1.在本实验中,将丙酮溶液加入含有碘、盐酸的容量瓶时并不立即开始计时,而注入比色皿时才开始计时,这样做是否可以?为什么?

2.影响本实验结果精确度的主要因素是什么?

3.为什么要选择碘的最大吸收波长为测试波长?

4.在实验的过程中,漏测或少测一个数据对实验是否有影响?

丙酮碘化反应的速率方程

丙酮碘化反应的速率方程实验报告 姓名:王丹 学号:1017051032 班组:制药101班 同组人姓名:陆亚红 日期:2012年5月2日 一.实验目的: 1.掌握用孤立法确定反应级数的方法 2.测定酸催化作用下丙酮碘化反应的速率常数; 3.通过本实验加深对复杂反应特征的理解。 二.实验原理: 大多数化学反应是由若干个基元反应组成的。这类复杂反应的反应速率和反应物活度之间的关系大多不能用质量作用定律预示。以实验方法测定反应速率和反应物活度的计量关系,是研究动力学的一个重要内容。对复杂反应,可采用一系列实验方法获得可靠的实验数据,并据此建立反应速率方程式,以其为基础,推测反应的机理、提出反应模式。 孤立法是动力学研究中常用的一种方法。设计一系列溶液,其中只有某一种物质的浓度不同,而其它物质的浓度均相同,借此可以求得反应对该物质的级数。同样亦可得到各种作用物的级数,从而确定速率方程。 丙酮碘化反应是一个复杂反应,其反应式为: H 3C C CH 3O +I 2 + H 3C C CH 2I O H +I -++ 在实际操作中,一定浓度范围内,通常可以用物质的浓度替代活度表示某一物质对反应速率的影响,假设上述反应的反应速率常数方程为: H d d x y z c kc c c t +- =碘丙碘 (1) 式中,x 、y 、z 分别为丙酮、氢离子和碘的反应级数。将该式取对数得: H d lg()lg lg lg lg d c k x c y c z c t +- =+++碘 丙碘 (2) 在上述三种物质中,首先固定其中两个物质的浓度,配制出第三种物质浓度不同的一系列溶液。如此,反应速率速率只是该物质浓度的函数。 以lg(d /d )c t -碘对该组分浓度的对数作图,所得直线的斜率即为该物质在此反应中的反应级数。同理,可以得到其它两个物质的反应级数。 碘在可见光区有一个比较宽的吸收带,所以可利用分光光度计来测定丙酮碘化反应过程中碘的浓度随时间的变化关系。 按照朗伯-比耳(Lambert-Beer )定律: lg lg I A T abc I ===-碘 (3)

蔗糖水解反应速率常数的测定实验报告记录

蔗糖水解反应速率常数的测定实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

序号: 6 物理化学实验报告 姓名:××× 院系:化学化工学院 班级:××× 学号:××××××× 指导老师:××× 同组者:×××××××××××

实验项目名称:蔗糖水解反应速率常数的测定 一、实验目的 (1)根据物质的旋光性质研究蔗糖水解反应,测定其反应的速率常数和半衰期; (2)了解旋光仪的基本原理,掌握其使用方法。 二、实验原理 蔗糖在水中转化成葡萄糖与果糖,其反应方程式为 C 12H 22O 11 + H 2O === C 6H 12O 6 + C 6H 12O 6 为使水解反应加速,反应常常以H+为催化剂,故在酸性介质中进行。由于在较稀的蔗糖溶液中,水是大量的,反应达到终点时,虽有部分水分子参加反应,但可认为其没有改变。因此,在一定的酸度下,反应速度只与蔗糖的浓度有关,所有本反应可视为一级反应。该反应的速度方程为: -dt dc =KC 积分后: ln C C O =Kt 或 ㏑C=-k t+㏑C 。 式中,C 。为反应开始时蔗糖的浓度;C 为时间t 时的蔗糖浓度,K 为水解反应的速率常数。 从上式中可以看出,在不同的时间测定反应物的浓度,并以㏑C t 对t 作图,可得一条直线,由直线斜率即可求出反应速率常数K 。然而反应是不断进行的,要快速分析出某一时刻反应物的浓度比较困

难。但根据反应物蔗糖及生成物都具有旋光性,且他们的旋光性不同,可利用体系在反应过程中旋光度的改变来量度反应的进程。 旋光度与浓度呈正比,且溶液的旋光度为各组分的旋光度之和(加和性)。若以α0,αt,α∞分别为时间0,t,∞时溶液的旋光度,则可导出: C0∝(α0-α∞),C t∝(αt-α∞) 所以可以得出: ㏑(α0-α∞)/(αt-α∞)=k t 即:㏑(αt-α∞)=-k t﹢㏑(α0-α∞) 上式中㏑(αt-α∞)对t作图,从所得直线的斜率即可求得反应速度常数K。 一级反应的半衰期则用下式求取: t=㏑2/k=0.693/k 2/1 三、仪器和试剂 仪器:自动指示旋光仪一台;移液管(25 mL)2支;超级恒温槽1台;烧杯(150 mL)2个;恒温水浴锅1台;吸耳球1个;秒表1块;容量瓶(50mL)1个;锥形瓶(100 mL)2个; 试剂:蔗糖(AR);2 mol/L的盐酸溶液。 四、实验操作 1、温度设定与准备

丙酮碘化反应数据处理

丙酮碘化反应 物理化学实验报告2010-05-09 18:29:22 阅读70 评论0 字号:大中小订阅 一、实验目的 1.利用分光光度计测定酸催化时丙酮碘化反应的反应级数、速度常数; 2.掌握分光光度计的使用方法; 二、实验原理 丙酮碘化反应是一复杂反应,反应方程式为: H+是反应的催化剂,因丙酮碘化反应本身有H+生成,所以,这是一个自动催化反应,又因为反应并不停留在生成一元碘化丙酮上,反应还继续下去。所以应选择适当的反应条件,测定初始阶段的反应。因碘溶液在可见光区有宽的吸收带,而在此吸收带中盐酸、丙酮、碘化丙酮和碘化钾溶液则没有明显的吸收,所以可采用分光光度计法直接观察碘浓度的变化,从而测量反应的进程。 根据公式:al=(lg100-lgT)/CI2 求得比色皿的al值 该反应的速率方程可表示为: v=dC E /dt = -dC A/dt = -dC I 2/dt = kC p A C q I 2 C r H+ 式中CE,CA,CI2,CH+ 分别为碘化丙酮,丙酮,碘,盐酸的浓度;k为速度常数;指数p,q,r分别为丙酮,碘和氢离子的反应 级数。 实验证实在本实验条件下,丙酮碘化反应对碘是零级反应,即q为零。所以, v= dC E /dt = kC p A C r H+ 对上式积分后可得: C E = kC p A C r H+ t + C 又由于dC E /dt = -dC A/dt = -dC I 2/dt A = alC I2( 比尔-兰伯定理:A为吸光度;T为透光度) A = -lg T al=(lg100-lgT)/C I2 得:lg T = k(al) C p A C r H+ t + B 由lgT对t做图,通过其斜率m可求得反应速度,即:m=k(al) C p A C r H+ 又有:v =m/(al)

丙酮碘化反应速率常数的测定(最新讲义) (1)

丙酮碘化反应速率常数的测定 一、目的及要求 1、掌握孤立法确定反应级数的原理和方法。 2、测定酸催化作用下丙酮碘化反应的速率方程和速率常数。 3、通过本实验加深对复杂反应特征的理解。 4、进一步掌握分光光度计的原理和使用方法。 二、实验原理 1、反应速率的测定 CH 3COCH 3+n H ++I 2=CH 3COCH 2I +(n +1)H ++I - (a) 在实验条件下,丙酮碘化反应将按(a)的方式进行,其速率方程为: v =-[d )(I 2c /d t ]=k · q r p c c c )(I )(H (2??+丙酮) (b) 在酸的浓度较低的条件下,实验证明q =0,即反应(a)的速率与)(I 2c 无关。 因为实验中c (丙酮)?)(I 2c ,)(H +c ?)(I 2c ,可认为c (丙酮)和)(H +c 为定值,故 v =-[d )(I 2c /d t ]=k · r p c c )(H (+?丙酮)= 常数 (c) 积分(c)式可得 )(I 2c = -k · B t c c r p +??+)(H (丙酮) (d) 在反应(a)的混合溶液中,只有碘在可见光范围内产生光吸收,按朗伯-比尔定律: )(2I c l a A ??== lg(1/T )=-lgT (e) 解出)(I 2c : )(I 2c =A /(a ·l )=-lg T /(a ·l ) (f) 根据式(f),测定了已知浓度的标准碘溶液的吸光度A 即可求得(a ·l )。 将(f)代入(d)式整理后得:lg T =k ·(a ·l )·t c c r p ??+)(H (丙酮)-B ·a ·l (g) 可见以lg T 对t 作图为直线,斜率:m = k ·(a ·l ) ·r p c c )(H (+?丙酮) (h) 比较(c)、(h)式得:v =k ·r p c c )(H (+?丙酮) = m /(a ·l ) (i) 2、反应分级数p 、q 、r 的确定(孤立法) (1) p 的确定 由1、2号试液由上述关系求得v 1、v 2后: v 1/v 2= [k · q r p c c c )1,(I )1,(H 1,(2??+)丙酮]/ [k ·q r p c c c )2,(I )2,(H 2,(2??+)丙酮]=2p (其中c (丙酮,1)= 2c (丙酮,2);c (H+,1)= c (H+,2);c (I2,1)= c (I2,2) ) 上式两边取对数可得:p =[lg(v 1/v 2)]/lg2 (2) r 的确定 由1、3号试液同理可得:r =[lg(v 3/v 1)]/lg2 (3) q 的确定 由1、4号试液同理可得:q =[lg(v 1/v 4)]/lg2,直接求得的p 、q 、r 取整为最接近的整数。 3、速率常数的求算 由上述方法确定丙酮一碘代反应速率方程v = k · q r p c c c )(I )(H (2??+丙酮)后,分别代入1—4号试液的v 、c (丙酮)、)(I 2c 等数据,即可求出速率常数k ,取平均值。

实验五化学反应速率和速率常数的测定

实验五化学反应速率和速率常数的测定 一、预习要点 ①化学反应速率基本概念以及浓度、温度和催化剂对反应速率的影响。 ②本实验测定反应速率及速率常数的基本原理、实验方法。 二、目的要求 ①了解浓度、温度和催化剂对反应速率的影响。 ②测定过二硫酸俊与碘化钾反应的平均反应速率,并计算不同温度下的反应速率常数。 三、实验原理 在水溶液中,过二硫酸俊与碘化钾发生如下反应: (NH 4)2 S2O8+3KI ——(NH 4)2SO4 + K2SO4 + KI 3 它的离子反应方程式为: S2O8+3I-——2SO4+I3- 因为化学反应速率是以单位时间内反应物或生成物浓度的改变值来表示的,所以上述反 应的平均速率为: 2 2 2 、 C(S2O8 )1 C(S2O8 )2 C(S2O8 ) tT^1 t 式中,△ C(S2O82-)为S2O82-在At时间内浓度的改变值。为了测定出△ C(S2O82-),在混合(NH 4)2 S2O8和KI溶液时,用淀粉溶液作指示剂,同时加入一定体积的已知浓度的N32S2O3,这样 溶液在反应(1)进行的同时,也进行着如下反应: S2O32-+I3-——S4O62-+3I- 反应(2)进行得非常快,几乎瞬间完成,而反应(1)却慢得多,于是由反应(1)生成的碘立 刻与S2O32-反应,生成了无色的S4O62-和I-,因此在开始一段时间内,看不到碘与淀粉作用 而显示出来的特有的蓝色,但是,一旦Na2S2O3耗尽,则继续游离出来的碘,即使是微量的,也能使淀粉指示剂变蓝。所以蓝色的出现就标志着反应(2)的完成。 从反应方程式⑴和⑵的关系可以看出,S2O82-浓度的减少量等于S2O32-减少量的一半, 2 c(S2O8 )c(S2O;) 2 因为S2O32-在溶液显蓝色时几乎完全耗掉,故^ C(S2O32-)实际上就等于反应开始时 Na2S2O3的浓度,由于本实验中的每份混合溶液只改变(NH4)2S2O8和KI的浓度,而使用的Na2S2O3的起始浓度都是相同的,因此到蓝色出现时已耗去的S2O82-即^ C(S2O82-)也都是相同的。这样只要记下从反应开始到溶液出现蓝色所需要的时间(△ t),就可以求算在各种不同浓 2 度下的平均反应速率C(S 2°8) t 实验证明:过二硫酸俊与碘化钾的反应速率和反应的浓度的关系如下: 2 值。8 ) t kc(S2。;)C(I ) k式中的为反应速率常数,C(S2O82-)和C(I-)分别为两种离子的初始浓度(mol ? L-1),利用 (3)即可求算出反应速率常数k值。 四、实验用品 量筒(10mL),烧杯(50mL),秒表,温度计(0?100C)。

丙酮碘化实验报告

“复杂反应------丙酮碘化反应”实验报告 刘若晴 2007011980 材 72 同组实验者姓名:穆浩远 实验日期:2008年9月22日 提交报告日期:2008年10月11日 带实验的老师或助教姓名:王 实验日期:2008年9月20日 1 引言(简明的实验目的/原理) 本实验的目的有(1)采用分光光度法测定用酸作催化剂时丙酮碘化反应的速率系数、反应级数和活化能。(2)通过本实验加深对复合反应特征的理解。(3)熟练掌握分光光度计的原理和使用方法。 只有少数化学反应是由一个基元反应组成的简单反应,大多数化学反应并不是简单反应,而是由若干个基元反应组成的复合反应。大多数复合反应的反应速率和反应物浓度间的关系,不能用质量作用定律表示。因此用实验测定反应速率与反应物或产物浓度间的关系,即测定反应对各组分的分级数,从而得到复合反应的速率方程,乃是研究反应动力学的重要内容。 对于复合反应,当知道反应速率方程的形式后,就可以对反应机理进行某些推测。如该反应究竟由哪些步骤完成,各个步骤的特征和相互联系如何等等。 实验测定表明,丙酮与碘在稀薄的中性水溶液中反应是很慢的。在强酸(如盐酸)条件下,该反应进行得相当快。但强酸的中性盐不增加该反应的反应速率。在弱酸(如醋酸)条件下,对加快反应速率的影响不如强酸(如盐酸)。 酸性溶液中,丙酮碘化反应是一个复合反应,其反应式为: + H +32332 (CH )CO+I CH COCH I+H +2I ??→-- (1) 该反应由H +催化,而反应本身又能生成H +,所以这是一个H +自催化反应,其速率方程为: ()()()()()()3αβδ+ 3 -dc I -dc A dc E r ====kc A c I c H dt dt dt - - (2) 式中:r —反应速率; k —速率系数; ()c A 、()3c I -、()+ c H 、()c E —分别为丙酮、碘、氢离子、碘化丙酮的浓度, -3mol dm g ; α、β、γ—分别为反应对丙酮、碘、氢离子的分级数。 反应速率、速率系数及反应级数均可由实验测定。 丙酮碘化对动力学的研究是一个特别合适而且有趣的反应。因为3I -在可见光区有一个比较宽的吸收带,而在这个吸收带中,盐酸和丙酮没有明显的吸收,所以可以采用分光光度计测定光密度的变化(也就是3I -浓度的变化)来跟踪反应过程。

丙酮碘化反应速率方程的确定.

实验16 丙酮碘化反应速率方程的确定 实验目的 1. 了解复杂反应的反应机理和特征,熟悉复杂反应的反应级数和表观速率常数的计算方法。 2. 测定酸催化时丙酮碘化反应速率方程中各反应物的级数和总级数,测定速率常数。 3. 掌握752型分光光度计的使用方法。 实验原理 不同的化学反应其反应机理是不同的。按反应机理的复杂程度不同可以将反应分为基元反应(简单反应)和复杂反应两种类型。基元反应是由反应物粒子经碰撞一步就直接生成产物的反应。复杂反应不是经过简单的一步就能完成的,而是要通过生成中间产物、由许多步骤来完成的,其中每一步都是基元反应。常见的复杂反应有对峙反应(或称可逆反应,与热力学中的可逆过程的含义完全不同)、平行反应和连续反应等。 丙酮碘化反应是一个复杂反应,反应方程式为: H +是催化剂,由于反应本身能生成H + ,所以,这是一个自催化反应。一般认为该反应的反应机理包括下列两步: (a ) (b ) 这是一个连续反应。反应(a )是丙酮的烯醇化反应,它是一个进行得很慢的可逆反应。反应(b )是烯醇的碘化反应,它是一个快速且趋于进行到底的反应。由于反应(a )的反应速率很慢,而反应(b )的反应速率又很快,中间产物烯醇一旦生成就马上消耗掉了。根据联续反应的特点,该反应的总反应速率由丙酮的烯醇化反应的速率决定,丙酮的烯醇化反应的 速率取决于丙酮及氢离子的浓度。实验中忽略反应过程中增加的H +对氢离子浓度的影响,认 为反应过程中氢离子浓度为常数。如果以碘化丙酮浓度的增量与反应时间的比值来表示丙酮碘化反应的速率,则此反应的速率方程可表示为 βα +==-=H A D A C kC dt dC dt dC r (16-1)

丙酮碘化反应速率常数的测定1

一、实验目的 1.测定用酸作催化剂时丙酮碘化反应的速率常数及活化能。 2.初步认识复杂反应机理,了解复杂反应的表观速率常数的求算方法。 3.掌握分光光度计的使用方法。 二、预习要求 1.了解丙酮碘化反应的机理及动力学方程式。 2.明确所测物理量(透光率)与该反应速率常数之间的关系。 3.了解分光光度计的结构,掌握其使用方法。 三、实验原理 反应(1)是丙酮的烯醇化反应,它是一个很慢的可逆反应,反应(2)是烯醇的碘化反应,它是一个快速且趋于进行到底的反应。因此,丙酮碘化反应的总速率是由丙酮的烯醇化反应的速率决定,丙酮的烯醇化反应的速率取决于丙酮及氢离子的浓度,如果以碘化丙酮浓度的增加来表示丙酮碘化反应的速率,则此反应的动力学方程式可表示为: (3) 式中,CE为碘化丙酮的浓度;CH+为氢离子的浓度;CA为丙酮的浓度;k表示丙酮碘化反应总的速率常数。 由反应(2)可知: (4) 因此,如果测得反应过程中各时刻碘的浓度,就可以求出dCE/dt。由于碘在可见光区有一个比较宽的吸收带,所以可利用分光光度计来测定丙酮碘化反应过程中碘的浓度,从而求出反应的速率常数。若在反应过程中,丙酮的浓度远大于碘的浓度且催化剂酸的浓度也足够大时,则可把丙酮和酸的浓度看作不变,把(3)式代入(4)式积分得: (5) 按照朗伯-比耳(Lambert-Beer)定律,某指定波长的光通过碘溶液后的光强为It,通过蒸馏水后的光强为I0,则透光率可表示为:

(6) 并且透光率与碘的浓度之间的关系可表示为: (7) 式中,T为透光率,d为比色槽的光径长度,ε是取以10为底的对数时的摩尔吸收系数。将(5)式代入(7)式得: (8) 由lgT对t作图可得一直线,直线的斜率为kεdCACH+。式中εd可通过测定一已知浓度的碘溶液的透光率,由(7)式求得,当CA与CH+浓度已知时,只要测出不同时刻丙酮、酸、碘的混合液对指定波长的透光率,就可以利用(8)式求出反应的总速率常数k。 由两个或两个以上温度的速率常数,就可以根据阿累尼乌斯(Arrhenius)关系式估算反应的活化能。 或 (9) 为了验证上述反应机理,可以进行反应级数的测定。根据总反应方程式,可建立如下关系式: 式中α,β,γ分别表示丙酮、氢离子和碘的反应级数。若保持氢离子和碘的起始浓度不变,只改变丙酮的起始浓度,分别测定在同一温度下的反应速率,则: (10) 同理可求出β,γ (11) 四.仪器药品 1.仪器 分光光度计1套;容量瓶(50mL)3只;超级恒温槽1套;容量瓶(100mL)2只;带有恒温夹层的比色皿1个;移液管(10mL)3只;停表1块。 2.药品 碘溶液(含4%KI)(0.03mol·dm-3);标准盐酸溶液(1mol·dm-3);丙酮溶液(2mol·dm-3)。 五、实验步骤 方法一:手动采集数据

一级反应速率常数测量

一级反应速率常数测量 一、 实验原理 1. 蔗糖水解反应是典型的一级,是一个准一级反应而已。 C 12H 22O 11+H 2O (酸催化)= C 6H 12O 6(葡萄糖)+C 6H 12O 6(果糖) 本是二级反应,由于水是大量的, 成为准一级反应。 -dc/dt =k 1c 积分: lnc = k 1t + B 或 lnc 0/c = k 1t 2. 旋光度α与浓度的关系。 20℃时,蔗糖的比旋光度〔α〕=66.6°;葡萄糖比旋光度〔α〕=52.5°; 果糖的比旋光度〔α〕=-91.9° 蔗糖水解反应,开始体系是右旋的角度大,随反应进行,旋光角度减少,变成左旋。旋光角度α与浓度关系式:α=〔α〕Lc L 是旋光管长度,〔α〕仅与温度有关,当温度,旋光管长度一定,α与浓度c 成正比。可写成 α=Kc 3 .用α表示的一级反应动力学方程: A ――→ B + D t=0 C 0 α0=K A C 0 (1) t=t CA C B =C 0-C A ; C D =C 0-C A αt =αA +αB +αD =K A C A +(K B +K D ) (C B +C D ) (2) t=∞ 0 C 0 ; C 0 α∞=(K B +K D )C 0 (3) (1)-(3): α0-α∞=(K A -K B -K D )C 0 C0=(α0-α∞)/(K A -K B -K D ) (2)-(3):α0-αt =(K A -K B -K D )C A C A =(α0-αt )/(K A -K B -K D ) 代入一级反应动力学方程: ∝-∝-==ααααt A c c t k 001ln ln 或 B t k c +-=1ln 得到 ')ln(1B t k t +-=-∝αα 二、仪器药品(略)

丙酮碘化反应速率常数的测定讲义

丙酮碘化反应速率常数的测定 一、实验目的 1、掌握利用分光光度法测定酸催化时丙酮碘化反应速度常数及活化能的实验方法。 2、加深对复杂反应特征的理解。 二、实验原理 酸溶液中丙酮碘化反应是一个复杂反应,反应方程为: CH 3H 3C O +I 2 H + CH 2I H 3C O +I -+H + H +是反应的催化剂,由于丙酮碘化反应本身生成H +,所以这是一个自动催化反应。 实验测定表明,反应速率在酸性溶液中随氢离子浓度的增大而增大。反应式中包含产物,其动力学方程式为: r q p A A H c I c kc dt I dc dt dc )()()(22+=-=- =υ (1) 式中υ为反应速率,A c 、)(2I c 、)(+ H c 分别为丙酮、碘、盐酸的浓度(mol/L ),κ为反应速率常数,p 、q 、r 分别为丙酮、碘和氢离子的反应级数。速率、速率常数和反应级数均可由实验测定。 实验证明丙酮碘化反应是一个复杂反应,一般认为可分成两步进行,即: H + 2 C CH 2 H 3C OH C CH 2 H 3C O ( i ) C H 3C O C CH 2 H 3C OH I 2 CH 2I I - k 3 (ii) 反应(i)是丙酮的烯醇化反应,反应可逆且进行的很慢。反应(ii)是烯醇的碘化反应,反应快速且能进行到底。因此,丙酮碘化反应的总速度可认为是由反应(i)所决定。丙酮碘化反应对碘的反应级数是零级,故碘的浓度对反应速率没有影响,即动力学方程中q 为零,原来的速率方程可写成: r p A I H c kc dt dc )(2+=- =υ (2)

由于反应并不停留在一元碘化丙酮上,还会继续反应下去,故采取初始速率法,因此丙酮和酸应大大过量,而用少量的碘来限制反应程度。这样在碘完全消耗之前,丙酮和酸的浓度基本保持不变。由于反应速率与碘浓度无关(除非在酸度很高的情况下),因而直到碘全部消耗前,反应速率是常数。即: 常数==- =+r p A I H c kc dt dc )(2υ (3) 因此,将)(2I c 对时间t 作图为一直线,直线斜率即为反应速率。 为了测定指数p ,需要进行两次实验。先固定氢离子的浓度不变,改变丙酮的浓度,若分别用I 、II 表示这两次实验,使)(II A c =u )(I A c ,)(+ II H c = )(+ I H c ,由式子(3)可得: p I p I p p I r I p II r II p I II u A C A C u H C A kC H C A kC ===++ ) ()()()()()(υυ (4) u p I II lg lg =υυ (5) u p I II lg /lg υυ= (6) 同样方法可以求指数r 。使)(II A c =)(I A c I ,)(+ II H c =w )(+ I H c ,可得出: w r I III lg /lg υυ= (7) 根据式子(2),由指数、反应速率和浓度数据就可以计算出速率常数κ。由两个温度下的速率常数,由阿累尼乌斯公式: 1 21221lg 303.2k k T T T T R E -= (8) 求得化学反应的活化能E 。 因碘溶液在可见区有宽的吸收带,而在此吸收带中,盐酸、丙酮、碘化丙酮和碘化钾溶液则没有明显的吸收,所以可采用分光光度法直接测量碘浓度的变化,以跟踪反应进程。在本实验中,通过测定溶液510nm 光的吸收来确定碘浓度。溶液的吸光度A 与浓度c 的关系为: A=Kcd (9) 其中A 为吸光度,K 为吸光系数,d 为溶液厚度,c 为溶液浓度(mol/L )。在一定的溶质、

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定 一、实验目的 1.学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法; 2.了解二级反应的特点,学会用图解计算法求二级反应的速率常数; 3.熟悉电导仪的使用。 二、实验原理 (1)速率常数的测定 乙酸乙酯皂化反应时典型的二级反应,其反应式为: CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OH t=0 C 0 C 0 0 0 t=t Ct Ct C 0 - Ct C 0 -Ct t=∞ 0 0 C 0 C 0 速率方程式 2kc dt dc =- ,积分并整理得速率常数k 的表达式为: t 0t 0c c c c t 1k -?= 假定此反应在稀溶液中进行,且CH 3COONa 全部电离。则参加导电离子有Na + 、OH -、CH 3COO -,而Na +反应前后不变,OH -的迁移率远远大于CH 3COO -,随着反 应的进行, OH - 不断减小,CH 3COO -不断增加,所以体系的电导率不断下降,且体系电导率(κ) 的下降和产物CH 3COO -的浓度成正比。 令0κ、t κ和∞κ分别为0、t 和∞时刻的电导率,则: t=t 时,C 0 –Ct=K (0κ-t κ) K 为比例常数 t→∞时,C 0= K (0κ-∞κ) 联立以上式子,整理得:

∞+-?= κκκκt kc 1t 00t 可见,即已知起始浓度C 0,在恒温条件下,测得0κ和t κ,并以t κ对t t 0κκ-作图,可得一直线,则直线斜率0 kc 1 m = ,从而求得此温度下的反应速率常数k 。 (2)活化能的测定原理: )11(k k ln 2 1a 12T T R E -= 因此只要测出两个不同温度对应的速率常数,就可以算出反应的表观活化能。 三、仪器与试剂 电导率仪 1台 铂黑电极 1支 大试管 5支 恒温槽 1台 移液管 3支 氢氧化钠溶液(0.02mol/L ) 乙酸乙酯溶液(0.02mol/L ) 四、实验步骤 1.标定NaOH 溶液及乙酸乙酯溶液的配制 计算标定0.023/dm mol NaOH 溶液所需的草酸二份,放入锥形瓶中,用少量去离子水溶解之,标定溶液。计算出配制与NaOH 等浓度的乙酸乙酯溶液100mL 所需化学纯乙酸乙酯的质量,根据不同温度下乙酸乙酯的密度计算其体积(乙酸乙酯的取样是通过量取一定量的体积),于ml 100容量瓶中加入约3/2容积的去离子水,然后用1mL 移液管吸取所需的乙酸乙酯加入容量瓶中,加水至刻度,摇匀。 2.调节恒温水浴调节恒温水浴温度为30℃1.0±℃。 3.电导率0K 的测定 用mL 20移液管量取去离子水及标定过的NaOH 溶液各mL 20,在干燥的100mL 烧杯中混匀,用少量稀释后的NaOH 溶液淋洗电导电极及电极管3次,装入适量的此NaOH 溶液于电极管中,浸入电导电极并置于恒温水浴中恒温。将

复杂反应——丙酮碘化反应

复杂反应——丙酮碘化反应 姓名:*** 学号:2015012*** 班级:化学**班 实验日期:2018年4月4日提交报告日期:2018年4月6日 带课老师/助教:*** 1 引言(简明的实验目的/原理) 2 实验操作 2.1 实验药品、仪器型号及测试装置示意图 计算机与接口1套,722S型分光光度计(比色皿2个),恒温槽1套,10mL刻度移液管1支,5mL 刻度移液管3支,25mL容量瓶1个,镊子,洗瓶,滴管。 0.02145mol·L-1碘溶液,2.500mol·L-1丙酮溶液,1.075mol·L-1HCl溶液,去离子水。 2.2 实验条件 实验室室温:15.5℃;气压:102.64kPa。 2.3 实验操作步骤及方法要点 1. 准备: 检查仪器、药品,接通电源。将装有碘溶液、丙酮溶液、盐酸溶液和去离子水的玻璃瓶放入恒温槽中恒温。打开恒温槽电源,设定恒温槽温度在25℃。 2. 设定分光光度计: 开启分光光度计和电脑。打开分光光度计控制软件,点击右方“联机”连接仪器。在“功能选择”菜单中选择“定点扫描”。通过拉动样品架拉杆,使得下方样品仓对准分光光度计光路。仪器预热10min后,点击“调0”,放入黑色塑料块挡住光路,点击确定,等待调0完毕;取出黑色塑料块,点击“调100”,放入装有去离子水的比色皿作为空白,点击确定,等待调100完毕。 3. 测定ε(I3-)L值:

用5 mL带刻度移液管移取2.5 mL碘溶液于25 mL棕色容量瓶中,用恒温槽中的去离子水稀释至刻度,摇匀。润洗比色皿3次,加入碘溶液至大约2/3容量,放入分光光度计样品仓,点击右方“数据选取”,即显示碘溶液吸光度值,保存数据。 注:依据原理,在实验条件(565nm)下,ε(I3-)=ε(I2),为了书写方便,下文简记为ε,即ε=ε(I3-)=ε(I2)。 4. 测定反应速率: 按照表1,用移液管快速移取相应体积的三种溶液于容量瓶中(碘溶液最后加入),滴管移取恒温去离子水稀释至刻度,摇匀,润洗比色皿3次,加入混合溶液至大约2/3容量,放入分光光度计样品仓。 在“功能选择”菜单中选择“时间扫描”,点击右方“参数设置”,“时间”设定为20分(可根据实验情况终止数据采集),“测量模式”改为“吸光度”,点击“确定”。点击右方“开始”,开始数据采集。可通过“坐标扩展”修改横纵轴上下限。采集合适时间后,点击右方“停止”,保存数据并导出到Excel。 表1 反应溶液的配比表 序号温度碘溶液V/mL 丙酮溶液V/mL 盐酸溶液V/mL I 25℃ 5 5 5 II 25℃ 5 2.5 5 III 25℃ 5 5 2.5 IV 25℃7.5 5 5 V 35℃7.5 5 5 5. 结束实验,关闭仪器,收拾实验台。 注意事项: 1. 测定波长必须保持565nm,否则影响结果准确性,光谱仪上不要放物品,避免误触旋钮改变波长; 2. 配液要快,碘液要最后加入,碘会刺激呼吸道,眼睛粘膜,含碘废液瓶须加塞,并及时处理; 3. 使用分光光度计时,注意确认光路通畅,实验中避免触碰拉杆改变其位置,比色皿装液不宜太满。 3 结果与讨论 3.1 原始实验数据 3.1.1 εL值的测定 所用碘液被稀释了10倍,故c(I2)=0.002145mol·L-1;分光光度计测定吸光度A=0.3665。 3.1.2 反应速率的测定 第I~V组实验的吸光度-时间曲线(A-t曲线)如图1~图5。

丙酮碘化反应的速率方程

丙酮碘化反应的速率方程 一、实验目的 1 测定酸作催化剂时丙酮碘化反应中的丙酮和酸的分级数; 2 测定不同温度下丙酮碘化反应的速率系数; 3 学会用孤立法确定反应级数的方法; 4 学习分光光度计的使用。 二、实验原理 大多数化学反应均是由若干个基元反应组成的复杂反应。这类反应的反应速率与反应物浓度间的关系不能用质量作用定律来确定, 只能在一定条件下通过实验来求得。若有多种物质参加反应, 可以采用孤立法确定各反应组分的分级数,即先改变一种物质的浓度而其它物质的浓度保持不变, 求出反应对该物质的反应分级数。依次类推, 就可以确定反应对各种物质的反应分级数, 从而建立反应速率方程。 在酸性条件下,丙酮的碘化反应是一个复杂反应,该反应的化学方程式为: CH 3COCH 3 + I 2 CH 3COCH 2I + H + + I - 此反应中H +作为催化剂,又是反应产物之一,所以这是一个自催化反应。其反应的速率方程可写为: 2 + 2 I αγA I H d =-d β=c r kc c c t (2-16-1) 式中,A 表示丙酮;r 、2 I d - d c t 表示碘化反应的速率;k 表示反应速率系数;A c 、2 I c 、+H c 分别表示丙 酮、碘、氢离子的浓度; α、β、γ分别表示丙酮、碘、氢离子的反应分级数。 如果进行两次实验,两次实验中都保持I 2和H +的初始浓度相同,只改变CH 3COCH 3的初始浓度,分别测定在同一温度下的反应速率,则 则它们初始速率之比为 ()()()()α A A 2α1 A A 2211??? ?= =???? kc c r r kc c α (2-16-2) () () 21A A lg(/) lg 2/1= r r c c α (2-16-3) 同理可求出 β、γ: ()()( ) + +31H H lg(/)lg 3/1= r r c c γ (2-16-4)

丙酮碘化反应

物理化学实验丙酮碘化反应动力学C202 2010-03-29 T= P= 一、实验目的 1.根据实验原理由同学设计实验方案,包括仪器、药品、实验步骤等 2.测定反应常数k、反应级数n、活化能Ea 3.通过实验加深对复杂反应的理解 二、实验原理 丙酮碘化反应是一个复杂反应,其反应式为: 实验测定表明,反应速率在酸性溶液中随氢离子浓度的增大而增大。反应式中包含产物,故本反应是自催化反应,其动力学方程式为: -dC A/dt=-dC/dt=kC AαC HβCγ 式中C为各物质浓度(mol/L),k为反应速率常数或反应比速,指数为反应级数n。 丙酮碘化反应的反应机理可分为两步: 第一步为丙酮烯醇化反应,其速率常数较小,第二部是烯醇碘化反应,它是一个快速的且能进行到底的反应。用稳态近似法处理,可以推导证明,当k2C H>>k3C I时,反应机理与实验证明的反应级数相符。 丙酮碘化反应对碘的反应级数是零级,级碘的浓度对反应速率没有影响,原来的速率方程可写成 -d C/dt=kC AαC Hβ 为了测定α和r,在C A>> C、C H>>C2及反应进程不大的条件下进行实验,则反应过程中,C A和C H可近似视为常数,积分上式的: C=- kC AαC Hβt+A’ C以对t作图应为直线。与直线的斜率可求得反应速率常数k及反应级数n。 在某一指定的温度下,进行两次实验,固定氢离子的浓度不变,改变丙酮的浓度,使其为C A=mC A,根据-d C/dt=kC AαC Hβ得:n B=(lg(r i/r j))/lgm 若测得两次反应的反应速率,即求得反应级数p。用同样的方法,改变氢离子的浓度,固定丙酮的浓度不变,也可以得到对氢离子的反应级数r。 若已经证明:p=r=1,q=0,反应速率方程可写为:-dC/dt=kC A C H在大量外加酸存在下及反应进程不大的条件下,反应过程的氢离子可视为不变,因此,反应表现为准一级反应或假一级反应:-dC/dt=k'C A式中k'=k C H,k'为与氢离子浓度有关的准反应比速。 设丙酮及碘的初始浓度为C A0、C0.侧有:C A= C0-(C0- C)由数学推导最终可得: C= - C A0 k't+ C A0C'+ C0 若在不同的时刻t,测得一系列C,将其对t作图,得一直线,斜率为- C A0 k',即可求得k'的值。在不同的氢离子浓度下,k’值不同。 分光光度法,在550 nm跟踪I2随时间变化率来确定反应速率。 三、仪器及药品 721分光光度计1套丙酮标准液*L-1)

皂化反应速率常数的测定实验数据处理

五、实验记录和处理 1、将实验数据记录于下表一中。 室温:24℃ 大气压:100.42KPa k0(25℃)=2.510 k∞(25℃)=0.896 k0 2、以k t对(k0-k t)/t作图,根据直线斜率求速率常数值。拟合直线见图一、图二。

k t (k 0-k t )/t 图一25℃下k t ~(k 0-k t )/t 拟合直线 注:拟合度R 2=0.99089,说明直线拟合的很好,可以用于计算。 k t (k 0-k t )/t 图二35℃下k t ~(k 0-k t )/t 拟合直线

注:拟合度R 2=0.9694,说明直线拟合地较好,可以用于计算。 (1)由图一知,直线斜率为15.70158 NaOH (分析纯):0.0832g 定容体积:100mL NaOH 浓度:0.0208mol/L 稀释后NaOH 浓度:0.0104mol/L ,即a=0.0104mol/L 。 根据推导公式: k t = ∞+-?k t k k t 0ak 1 所以,25℃时反应速率常数k=6.1238L/(mol ·min) 查阅书籍:25℃时的反应速率常数标准值为:6.4254L/(mol ·min) 因此实验测量的相对误差为:4.69% (2)由图二知,直线斜率为8.23511, a=0.0104mol/L 。 根据推导, k t = ∞+-?k t k k t 0ak 1 所以,35℃时反应速率常数k=11.6761L/(mol ·min) 查阅书籍,35℃时的反应速率常数标准值为:11.9411L/(mol ·min) 因此实验测量的相对误差为:2.2% 3、计算反应活化能。 根据Arrhenius 公式: lnk 2/k 1=E(T 2-T 1)/(RT 1T 2) 所需物理量的相关数值见表二: 表二求活化能所需物理量的相关数值 将数值代入公式,求得:E=49.29kJ/mol 将反应速率常数标准值代入公式,求得反应活化能的标准值:E=47.34kJ/mol 因此实验测量的相对误差为:4.12%

实验十一丙酮碘化反应级数的测定

丙酮碘化反应级数的测定 一、 目的要求 1. 掌握用孤立法确定反应级数的方法。 2. 测定酸催化作用下丙酮碘化反应的速率常数。 3. 通过本实验加深对复杂反应特征的理解。 4. 掌握722s 型分光光度计的基本原理及使用方法。 二、 实验原理 大多数化学反应是复杂反应,其中包含了许多个基元反应,反应级数是根据实验的结果而确定的,并不能从化学计量方程式简单的利用质量作用定律推得。反应级数的确定是很重要的,它不仅告诉我们浓度是怎样影响反应速度,从而通过调整浓度来控制反应速度,而且可以帮助我们推测反应机理,了解反应真实过程。 确定反应级数的方法通常有孤立法(微分法)、半簑期法、积分法,其中孤立法是动力学研究中的常用方法。本实验用孤立法确定丙酮碘化反应级数,从而确定丙酮碘化反应速率方程。 酸催化的丙酮碘化反应是一个复杂反应,初始阶段反应为: + H -+ 33232CH COCH +I CH COCH I +I +H H +是反应的催化剂,因丙酮碘化反应本身有H +生成,所以,这是一个自催化反应。设反应动力学方程为: 2+2I I H x y z dc kc c c dt - =A (1) 式中:c A ,+H c ,2I c 分别为碘化丙酮(A )、丙酮、碘、盐酸的浓度,mo l ·L -1 ;x , y ,z 分别代表丙酮、氢离子、碘的反应级数,k 为速率系数。将上式两边取对数得: 2 +2I A I H lg lg lg lg lg dc k x c y c z c dt ?? - =+++ ??? (2) 从上式可以看出,反应级数,,x y z 分别是2I lg dc dt ?? - ??? 对A lg c 、+H lg c 、2I lg c 的偏微 分,如果用图解法,我们可以这样处理:在三种物质中,固定两种物质的浓度,配 制出第三种物质浓度不同的一系列溶液,以2 I lg dc dt ?? - ??? 对该组分浓度的对数作图,所得斜率即为该物质在此反应中的反应级数。

丙酮碘化反应速率常数的测定

实验十四 丙酮碘化反应速率常数的测定 ............................................................ I 一、实验目的 ........................................................................................................ I 二、实验原理 ........................................................................................................ I 三、仪器与药品 ................................................................................................... II 四、实验步骤 ....................................................................................................... II 1.实验前的准备 .......................................................................................... II 2.测定l a 值(25℃条件下): .................................................................. I II 3.测反应进行到不同时刻t 的吸光度A (25℃条件下) ...................... I II 五、实验注意事项 ..............................................................................................IV 六、四种模型三维优化结构及最低能量(min E ) ...........................................IV 七、丙酮的键长与键角 ................................................................................... V III 实验十四 丙酮碘化反应速率常数的测定 XX * 一、实验目的 1、掌握利用分光光度法测定酸催化时丙酮碘化反应速度常数及活化能的实验方法。 2、加深对复杂反应特征的理解。 3、掌握722型分光光度计的使用方法。 二、实验原理 丙酮碘化反应方程为: CH 3COCH 3+I 2 CH 3COCH 2I+H ++I - + H +是反应的催化剂,由于丙酮碘化反应本身生成H +,所以这是一个自动催化反应。实验证明丙酮碘化反应是一个复杂反应,一般认为可分成两步进行,即: CH 3COCH 3+H +CH 3COH CH 2 (1) CH 3COH CH 2+ I 2 CH 3COCH 2I+H ++I - (2) 反应⑴是丙酮的烯醇化反应,反应可逆且进行的很慢。反应⑵是烯醇的碘化反应, * 作者简介:XX ,女,XXXXXX 学院,化学与化学工程学院,09化学 邮箱:763839867@https://www.360docs.net/doc/5510848621.html, 通讯地址:

相关文档
最新文档