烟气脱硫脱硝技术简介

烟气脱硫脱硝技术简介
烟气脱硫脱硝技术简介

烟气脱硫脱硝技术简介

:烟气脱硫脱硝技术是应用于多氮氧化物、硫氧化物生成化工工业的一项锅炉烟气净化技术。氮氧化物、硫氧化物是空气污染的主要来源之一。故应用此项技术对环境空气净化益处颇多。目前已知的烟气脱硫脱硝技术有PAFP、ACFP、软锰矿法、电子束氨法、脉冲电晕法、石膏湿法、催化氧化法、微生物降解法等技术。

一、磷铵肥法(PAFP)烟气脱硫技术

磷铵肥法(Phosphate Ammoniate Fertilizer Process,简称PAFP),是我校和四川省环科院、西安热工所、大连物化所等单位共同研究开发的烟气脱硫新工艺(国家“七五”(214)项目新技术083号)。其脱硫率≥95%,脱硫副产品为氮硫复合肥料。此技术的特点是将烟气中的SO2脱除并针对我国硫资源短缺的现状,回收SO2取代硫酸生产肥料,在解决污染的同时,又综合利用硫资源,是一项化害为利的烟气脱硫新方法。而且该技术已于1991年通过国家环保局组织的正式鉴定,获国家“七五”攻关重大成果奖,四川省科技进步二等奖等多项奖励。

二、烟气脱硫脱硝技术活性炭纤维法(ACFP)烟气脱硫技术

活性炭纤维法(Activated Carbon FiberProcess,简称ACFP)烟气脱硫技术是采用新材料脱硫活性炭纤维催化剂(DSACF)脱除烟气中SO2并回收利用硫资源生产硫酸或硫酸盐的一项新型脱硫技术。

该技术脱硫率可达95%以上,单位脱硫剂处理能力会高于活性炭脱硫一个数量级以上(一般GAC处理能力为102Nm3/h.t,而ACF可达104Nm3/h.t)。由于工艺过程简单,设备少,操作简单。投资和运行成本低,且能在消除SO2污染同时回收利用硫资源,因而可在电厂锅炉烟气、有色冶炼烟气、钢铁厂烧结烟气及各种大中型工业锅炉的烟气SO2污染控制中采用,改善目前烟气脱硫技术装置“勉强上得起,但运行不起”的状况。该烟气脱硫技术按10万KW机组锅炉机组烟气计,装置投资费用3500万,年产硫酸3万~4万吨。仅用于全国高硫煤电厂脱硫每年约可减少SO2排放240万吨,副产硫酸360万吨,产值可达数十亿元。该技术已获国家发明专利,并已列入国家高新技术产业化项目指南。

三、烟气脱硫脱硝技术软锰矿法烟气脱硫资源化技术

MnO2是一种良好的脱硫剂。在水溶液中,MnO2与SO2发生氧化还原发应,生成了MnSO4。软锰矿法烟气脱硫正是利用这一原理,采用软锰矿浆作为吸收剂,气液固湍动剧烈,矿浆与含SO2烟气充分接触吸收,生成副产品工业硫酸锰。该工艺的脱硫率可达90%,锰矿浸出率为80%,产品硫酸锰达到工业硫酸锰要求(GB1622-86)。

常规生产工业硫酸锰方法是:软锰矿粉与硫酸和硫精沙混合反应,产品净化得到工业硫酸锰。由于我国软锰矿品位不高,硫酸耗量增大,成本上升。该法与常规生产工业硫酸锰相比是,不用硫酸和硫精沙,溶液杂质也降低,原料成本和工艺成本都有降低,比常规生产工业硫酸锰方法节约成本25%以上,加之国家对环保产品在税收上的优惠,竞争力将大大提高。

该工艺原料软锰矿价廉,大约200~300元/吨,估计5年左右可收回投资。该工艺不但治理了工业废气,处理了制酸废水,并且回收了硫酸锰产品,具有明显的社会环境和经济效益。

四、烟气脱硫脱硝技术电子束氨法烟气脱硫脱硝技术

电子束氨法烟气脱硫脱硝工业化技术(简称CAEB-EPS技术),充分挖掘电子束辐照烟气脱硫脱硝技术的潜力,结合中国具体国情,具有投资省、运行费用低、运行维护简便、可靠性高等独有的特点,居国际先进水平。

CAEB-EPS技术是利用高能电子束(0.8~1MeV)辐照烟气,将烟气中的二氧化硫和氮氧化物转化成硫酸铵和硝酸铵的一种烟气脱硫脱硝技术。该技术的工业装置一般采用烟气降温增湿、加氨、电子束辐照和副产物收集的工艺流程。除尘净化后的烟气通过冷却塔调节烟气的温度和湿度(降低温度、增加含水量),然后流经反应器。在反应器中,烟气被电子束辐照产生多种活性基团,这些活性基团氧化烟气中的SO2和NOx,形成相应的酸。它们同在反应器烟气上游喷入的氨反应,生成硫酸氨和硝酸氨微粒。副产物收集装置收集产生的硫酸氨和硝酸氨微粒,可作为农用肥料和工业原料使用。

五、烟气脱硫脱硝技术脉冲电晕放电等离子体烟气技术

脉冲电源产生的高电压脉冲加在反应器电极上,在反应器电极之间产生强电场,在强电场作用下,部分烟气分子电离,电离出的电子在强电场的加速下获得能量,成为高能电子(5~20eV),高能电子则可以激活、裂解、电离其他烟气分子,产生OH、O、HO2等多种活性粒子和自由基。在反应器里,烟气中的SO2、NO被活性粒子和自由基氧化为高阶氧化物SO3、NO2,与烟气中的H2O相遇后形成H2SO4和HNO3,在有NH3或其它中和物注入情况下生成

(NH4)2SO4/NH4NO3的气溶胶,再由收尘器收集。脉冲电晕放电烟气脱硫脱硝反应器的电场本身同时具有除尘功能。具有装置简单、运行成本低、有害污染物清除彻底、不产生二次污染等优点。燃煤电厂、化工、冶金、建材等行业产生的含二氧化硫和氮氧化物的烟气。

六、烟气脱硫脱硝技术石灰石/石膏湿法

该方法是世界上最成熟的烟气脱硫技术,采用石灰或石灰石乳浊液吸收烟气中的SO2,生成半水亚硫酸钙或石膏。优点:(1)脱硫效率高(有的装置Ca/S=1时,脱硫效率大于90%);(2)吸收剂利用率高,可达90%;(3)设备运转率高(可达90%以上)。缺点:成本较高、副产物产生二次污染等。

七、烟气脱硫脱硝技术“MN法”烟气脱硫技术

该技术采用新型脱硫剂MN进行烟气脱硫,脱硫效率高于95%,吸收剂再生容易,损失率小,无阻塞现象,在脱硫过程中再生可回收利用,投资和运行费用低于类似的“W-L”法脱硫技术。

八、烟气脱硫脱硝技术“柠檬酸盐法”烟气脱硫技术

该法采用柠檬酸进行烟气脱硫,脱硫效率高于90%,由于采用添加剂,吸收剂再生容易,SO2可回收利用,投资和运行费用较低。

九、烟气脱硫脱硝技术催化氧化法烟气脱硫技术

该法采用适用低浓度的新型催化剂,通过催化氧化,在脱硫过程中,将SO2转化为硫酸,其脱硫效率高于90%,产品有市场,以国内有关研究为基础,通过与国外合作研究、国内留学基金资助,其技术正逐步成熟,有望成为一种有竞争力的新型烟气脱硫技术。

十、烟气脱硫脱硝技术造纸黑液烟气脱硫技术

该技术利用造纸黑液脱除烟气中SO2,既治理了SO2烟气污染又使造纸黑液得以处理,并同时回收生产木质素。

十一、烟气脱硫脱硝技术烟气除尘脱硫一体化技术

以碱性液体(石灰、石灰石、其他碱液废液)为吸收剂,在一结构紧凑、功能齐全的装置中去除烟气中SO2,脱硫效率50~95%,除尘效率>90%,投资节省,运行费低,占地面积小,阻力小,适用于35t/h以下锅炉使用。

十二、烟气脱硫脱硝技术微生物烟气脱硫技术研究

利用微生物作用,将千代田法脱硫的低价铁氧化为高价铁,循环使用,脱硫与尾液处理并用。脱硫率>90%,在常温常压下,效率优于千代田法,为国家自然科学基金。

十三、烟气脱硫脱硝技术等离子法烟气脱硫技术

烟气SO2中在高压脉冲电压作用下,与加入的NH3反应生成(NH4)2SO4,脱硫效率大于90%,已完成400m3/h的实际燃煤烟气试验。该法为国家自然科学基金资助项目。

十四、烟气脱硫脱硝技术磷酸盐法烟气脱硫技术

该法在对几十种磷酸盐进行烟气脱硫试验基础上,优选出一些我国较为丰富价廉的磷酸盐作为脱硫剂进行烟气脱硫,其脱硫率高,价廉的磷酸盐经过脱硫升值较高。如磷矿石脱硫除镁新工艺。其脱硫率高达90%,还得到副产品MgSO4,具有较好的市场前景。

十五、烟气脱硫脱硝技术络合铁法烟气脱硫技术

该法由我校和美国劳伦斯国家实验室合作研究,并获国家回国人员资金资助,有关研究表明,采用络合铁法烟气脱硫,脱硫效率可达90%以上,硫可回收利用,脱硫剂再生容易,损失率低。

烟气脱硝装置( SCR)技术

烟气脱硝装置( SCR)技术 一、SCR装置运行原理如下: 氨气作为脱硝剂被喷入高温烟气脱硝装置中,在催化剂的作用下将烟气中NOx 分解成为N2和H2O,其反应公式如下: 4NO + 4NH3 +O2 →4N2 + 6H2O NO +NO2 + 2NH3 →2N2 + 3H2O 一般通过使用适当的催化剂,上述反应可以在200 ℃~450 ℃的温度范围内有效进行, 在NH3 /NO = 1的情况下,可以达到80~90%的脱硝效率。 烟气中的NOx 浓度通常是低的,但是烟气的体积相对很大,因此用在SCR装置的催化剂一定是高性能。因此用在这种条件下的催化剂一定满足燃煤锅炉高可靠性运行的要求。 二、烟气脱硝技术特点 SCR脱硝技术以其脱除效率高,适应当前环保要求而得到电力行业高度重视和广泛的应用。在环保要求严格的发达国家例如德国,日本,美国,加拿大,荷兰,奥地利,瑞典,丹麦等国SCR脱硝技术已经是应用最多、最成熟的技术之一。根据发达国家的经验, SCR脱硝技术必然会成为我国火力电站燃煤锅炉主要的脱硝技术并得到越来越广泛的应用。 图1为SCR烟气脱硝系统典型工艺流程简图。

三、SCR脱硝系统一般组成 图1为SCR烟气脱硝系统典型工艺流程简图, SCR系统一般由氨的储存系统、氨与空气混合系统、氨气喷入系统、反应器系统、省煤器旁路、SCR旁路、检测控制系统等组成。 液氨从液氨槽车由卸料压缩机送人液氨储槽,再经过蒸发槽蒸发为氨气后通过氨缓冲槽和 输送管道进人锅炉区,通过与空气均匀混合后由分布导阀进入SCR反应器内部反应, SCR反应器设置于空气预热器前,氨气在SCR 反应器的上方,通过一种特殊的喷雾装置和烟气均匀分布混合,混合后烟气通过反应器内催化剂层进行还原反应。

烟气脱硫脱硝行业介绍.docx

1.烟气脱硫技术 由于我国的大部分煤炭、铁矿资源中含硫量较高,因此在火力发电、钢铁、建材生产过程中由于高温、富氧的环境而产生了含有大量二氧化硫的烟气,从而给我国大气污染治理带来了极大的环保压力。 据国家环保部统计,2012年全国二氧化硫排放总量为2117.6万吨,其中工业二氧化硫排放量1911.7万吨,而分解到三个重点行业分别如下:电力和热力生产业为797.0万吨、钢铁为240.6万吨、建材为199.8万吨,三个行业共计1237.4万吨达到整个工业二氧化硫排的64.7%。“十一五”期间,我国全面推行烟气脱硫技术以后,我国烟气脱硫通过近十年的发展,积累了大量的工程实践经验,其中最常用的为湿法、干法以及半干法烟气三种脱硫技术。

1.1湿法脱硫技术 1.1.1石灰石-石膏法 这是一种成熟的烟气脱硫技术,在大型火电厂中,90%以上采用湿式石灰石—石膏法烟气脱硫工艺流程。该工艺采用石灰石(即氧化钙)浆液作为脱硫剂,与烟气中的二氧化硫发生反应生产亚硫酸钙,亚硫酸钙与氧气进一步反应生产硫酸钙。硫酸钙经过过滤、干燥后形成脱硫副产品石膏。 这项工艺的关键在于控制烟气流量和浆液的pH值,在合适的工艺条件下,即使在低钙硫比的情况下,也能保持较高的脱硫效率,通常可以达到95%以上。但是该工艺流程复杂且需要设置废水处理系统,因而工程造价高、占地面积大。同时,由于石灰石浆液的溶解性较低,即使通过调节了浆液pH值提高了石灰石的溶解度,但是在使用喷嘴时由于压力的变化,仍然容易发生堵塞喷嘴的情况并且易磨损设备,因而大幅度增加了脱硫设施后期的运营维修费用。 同时由于脱硫烟气中的粉尘成分复杂,在采用石灰石-石膏法时生成的脱硫石膏的杂质含量较多,在石灰石资源丰富的我国,这种品质有限的脱硫石膏很难具有利用价值,通常只能采用填埋进行处理。为了解决这一问题,有企业采用白云石(即氧化镁)作为脱硫剂来替代石灰石,从而使脱硫副产品由石膏变为了七水硫酸镁,而七水硫酸镁由于其水溶性高易于提纯,因而可以制成为合格品质的化学添加剂或化肥使用,其经济价值要远高于脱硫石膏。但是与其相关对的是脱硫剂白云石的成本也远高于石灰石,给企业后期运营成本也带来较大的压力。

SCR脱硝技术简介

SCR 兑硝技术 SCR ( Selective Catalytic Reduction )即为选择性催化还原技术, 近几年来发展较快, 在西欧和日本得到了广泛的应用,目前氨催化还原法是应用得最多的技术。它没有副产物, 不形成二次污染,装置结构简单,并且脱除效率高(可达 90鳩上),运行可靠,便于维护等 优点。 选择性是指在催化剂的作用和在氧气存在条件下, NH 犹先和NOx 发生还原脱除反应, 生成氮气和水,而不和烟气中的氧进行氧化反应,其主要反应式为: 4NO 4NH 3 O 2 > 4N 2 6H 2O 2NO 2 4NH 3 O 2 > 3N 2 6H 2O 在没有催化剂的情况下,上述化学反应只是在很窄的温度范围内( 980C 左右)进行, 采用催化剂时其反应温度可控制在 300- 400C 下进行,相当于锅炉省煤器与空气预热器之间 的烟气温度,上述反应为放热反应,由于 NOx 在烟气中的浓度较低, 故反应引起催化剂温 度的升高可以忽略。 下图是SCR 法烟气脱硝工艺流程示意图 SCR 脱硝原理 SCR 技术脱硝原理为:在催化剂作用下,向温度约280?420 C 的烟气中喷入氨,将NO X 还原成N 2和H 20。 吿毓恤翔

且主要反应如卩: ANO +4NH2 + 6 T 4 恥 + 6M? +4AW3 ->5^2 + 6 円2。 6N6 +8A7/3 T INCh +12血0 2NO2 + 42^3 + 6 T 咖 + 6H10 反应原理如图所示; 惟化剂 - - - - - —— - J - 1 e *NO.烟 气"L NO. 幺X*** N H) € . ?NO. Q X-* N % N0( $ K ? NH31 ? —> () ? > Nj ?” Hi 0 》N; ? 脱硝催化剂: 催化剂作为SCR脱硝反应的核心,其质量和性能直接关系到脱硝效率的高低,所以,在火电厂脱硝工程中,除了反应器及烟道的设计不容忽视外,催化剂的参数设计同样至关重要。 一般来说,脱硝催化剂都是为项目量身定制的,即依据项目烟气成分、特性,效率以及客户要求来定的。催化剂的性能(包括活性、选择性、稳定性和再生性)无法直接量化,而是综合体现在一些参数上,主要有:活性温度、几何特性参数、机械强度参数、化学成分含量、工艺性能指标等。 催化剂的形式有:波纹板式,蜂窝式,板式 脱硝原理

(强烈推荐)燃油燃气锅炉烟气脱硝可行性研究报告最新

燃油、燃气锅炉烟气脱硝方案 研 究 报 告 长沙奥邦环保实业有限公司二零一二年十月

燃油、燃气锅炉烟气脱硝技术研究 1 国内外脱氮技术介绍 目前脱氮技术有两种,一是低氮燃烧技术,在燃烧过程中控制NOx的产生.分为低氮燃烧器技术、空气分级燃烧技术、燃料分段燃烧技术;工艺相对简单、经济,但不能满足较高的NOx排放标准。另一种是烟气脱硝技术,使NOx在形成后被净化,主要有选择性催化还原(SCR)、选择性非催化还原(SNCR)、电子束法等;排放标准严格时,必须采用烟气脱硝。1.1低氮燃烧技术 由氮氧化物(NOx)形成原因可知对NOx的形成起决定作用的是燃烧区域的温度和过量空气量。低NOx燃烧技术就是通过控制燃烧区域的温度和空气量,以达到阻止NOx生成及降低其排放量的目的。对低NOx燃烧技术的要求是,在降低NOx的同时,使锅炉燃烧稳定,且飞灰含碳量不能超标。 1.1.1 燃烧优化 燃烧优化是通过调整锅炉燃烧配风,控制NOx排放的一种实用方法。它采取的措施是通过控制燃烧空气量、保持每只燃烧器的风粉(煤粉)比相对平衡及进行燃烧调整,使燃料型NOx的生成降到最低,从而达到控制NOx排放的目的。 煤种不同,燃烧所需的理论空气量亦不同。因此,在运行调整中,必须根据煤种的变化,随时进行燃烧配风调整,控制一次风粉比不超过1.8:1。调整各燃烧器的配风,保证各燃烧器下粉的均匀性,其偏差不大于5% 10%。二次风的配给须与各燃烧器的燃料量相匹配,对停运的燃烧器,在不烧火嘴的情况下,尽量关小该燃烧器的各次配风,使燃料处于低氧燃烧,以降低NOx的生成量。

1.1.2空气分级燃烧技术 空气分级燃烧技术是目前应用较为广泛的低NOx燃烧技术,它的主要原理是将燃料的燃烧过程分段进行。该技术是将燃烧用风分为一、二次风,减少煤粉燃烧区域的空气量(一次风),提高燃烧区域的煤粉浓度,推迟一、二次风混合时间,这样煤粉进入炉膛时就形成了一个富燃料区,使燃料在富燃料区进行缺氧燃烧,以降低燃料型NOx的生成。缺氧燃烧产生的烟气再与二次风混合,使燃料完全燃烧。 该技术主要是通过减少燃烧高温区域的空气量,以降低NOx的生成技术。它的关键是风的分配,一般情况下,一次风占总风量的25~35%。对于部分锅炉,风量分配不当,会增加锅炉的燃烧损失,同时造成受热面的结渣腐蚀。因此,该技术较多应用于新锅炉的设计及燃烧器的改造中。1.1.3 燃料分级燃烧技术 该技术是将锅炉的燃烧分为两个区域进行,将85%左右的燃料送入第一级燃烧区进行富氧燃烧,生成大量的NOx,在第二级燃烧区送入15%的燃料,进行缺氧燃烧,将第一区生成的NOx进行还原,同时抑制NOx的生成,可降低NOx的排放量。 1.1.4 烟气再循环技术 该技术是将锅炉尾部的低温烟气直接送入炉膛或与一次风、二次风混合后送入炉内,降低了燃烧区域的温度,同时降低了燃烧区域的氧的浓度,所以降低了NOx的生成量。该技术的关键是烟气再循环率的选择和煤种的变化 1.1.5技术局限 这些低NOx燃烧技术设法建立空气过量系数小于1的富燃区或控制燃烧温度,抑制NOx的生成,在燃用烟煤、褐煤时可以达到国家的排放标准,

脱硫脱硝工艺概述

石灰石-石膏湿法脱硫工艺概述 烟气脱硫采用技术为石灰石-石膏湿法烟气脱硫工艺。脱硫剂采用石灰石粉(CaCO3), 石灰石由于其良好的化学活性及低廉的价格因素而成为目前世界上湿法脱硫广泛采用的脱硫剂制备原料。SO2与石灰石浆液反应后生成的亚硫酸钙, 就地强制氧化为石膏,石膏经二级脱水处理可作为副产品外售。 本设计方案采用传统的单回路喷淋塔工艺,将含有氧化空气管道的浆池直接布置在吸收塔底部, 塔内上部设置三层喷淋层和二级除雾器。从锅炉来的原烟气中所含的SO2与塔顶喷淋下来的石灰石浆液进行充分的逆流接触反应,从而将烟气中所含的SO2去除,生成亚硫酸钙悬浮。在浆液池中通过鼓入氧化空气,并在搅拌器的不断搅动下,将亚硫酸钙强制氧化生成石膏颗粒。脱硫效率按照不小于90%设计。其他同样有害的物质如飞灰,SO3,HCI 和HF也大部分得到去除。该脱硫工艺技术经广泛应用证明是十分成熟可靠的。 工艺布置采用一炉一塔方案,石灰石制浆、石膏脱水、工艺水、事故浆液系统等两塔公用。#1锅炉来的原烟气由烟道引出,经升压风机(两台静叶可调轴流风机) 增压后, 送至吸收塔,进行脱硫。脱硫后的净烟气经塔顶除雾器除雾后通过烟囱排放至大气。#2炉的烟道系统流程与#1炉相同,布置上与#1炉为对称布置。 脱硫剂采用外购石灰石粉,用滤液水制成30%的浆液后在石灰石浆液箱中贮存,通过石灰石浆液泵不断地补充到吸收塔内。脱硫副产品石膏通过石膏排出泵,从吸收塔浆液池抽出,输送至石膏旋流站(一级脱水系统),经过一级脱水后的底流石膏浆液其含水率约为50%左右,直接送至真空皮带过滤机进行二级过滤脱水。石膏被脱水后含水量降到10%以下。石膏产品的产量为20.42t/h(#1、#2炉设计煤种,石膏含≤10%的水分)。脱硫装置产生的废水经脱硫岛设置的废水处理装置处理后达标排放或回收利用。 脱硝工艺系统描述 3.1 脱硝工艺的原理和流程 本工程采用选择性催化还原法(SCR)脱硝技术。SCR脱硝技术是指在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物反应生成无害的氮和水,从而去除烟气中的NOx。选择性是指还原剂NH3和烟气中的NOx发生还原反应,而不与烟气中的氧气发生反应。 化学反应原理 4 NO + 4 NH3 + O2 --> 4 N2 + 6 H2O 6 NO2 + 8 NH3 + O2 --> 7 N2 + 12 H2O

SCR脱硝技术简介

SCR 脱硝技术 SCR (Selective Catalytic Reduction )即为选择性催化还原技术,近几年来发展较快,在西欧和日本得到了广泛的应用,目前氨催化还原法是应用得最多的技术。它没有副产物,不形成二次污染,装置结构简单,并且脱除效率高(可达90%以上),运行可靠,便于维护等优点。 选择性是指在催化剂的作用和在氧气存在条件下,NH3优先和NOx 发生还原脱除反应,生成氮气和水,而不和烟气中的氧进行氧化反应,其主要反应式为: O H N O NH NO 22236444+→++ O H N O NH NO 222326342+→++ 在没有催化剂的情况下,上述化学反应只是在很窄的温度范围内(980℃左右)进行,采用催化剂时其反应温度可控制在300-400℃下进行,相当于锅炉省煤器与空气预热器之间的烟气温度,上述反应为放热反应,由于NOx 在烟气中的浓度较低, 故反应引起催化剂温度的升高可以忽略。 下图是SCR 法烟气脱硝工艺流程示意图 SCR 脱硝原理 SCR 技术脱硝原理为:在催化剂作用下,向温度约280~420 ℃的烟气中喷入氨,将X NO 还原成2N 和O H 2。

SCR脱硝催化剂: 催化剂作为SCR脱硝反应的核心,其质量和性能直接关系到脱硝效率的高低,所以,在火电厂脱硝工程中, 除了反应器及烟道的设计不容忽视外,催化剂的参数设计同样至关重要。 一般来说,脱硝催化剂都是为项目量身定制的,即依据项目烟气成分、特性,效率以及客户要求来定的。催化剂的性能(包括活性、选择性、稳定性和再生性)无法直接量化,而是综合体现在一些参数上,主要有:活性温度、几何特性参数、机械强度参数、化学成分含量、工艺性能指标等。 催化剂的形式有:波纹板式,蜂窝式,板式

烟气脱硫脱硝技术简介

烟气脱硫脱硝技术简介 :烟气脱硫脱硝技术是应用于多氮氧化物、硫氧化物生成化工工业的一项锅炉烟气净化技术。氮氧化物、硫氧化物是空气污染的主要来源之一。故应用此项技术对环境空气净化益处颇多。目前已知的烟气脱硫脱硝技术有PAFP、ACFP、软锰矿法、电子束氨法、脉冲电晕法、石膏湿法、催化氧化法、微生物降解法等技术。 一、磷铵肥法(PAFP)烟气脱硫技术 磷铵肥法(Phosphate Ammoniate Fertilizer Process,简称PAFP),是我校和四川省环科院、西安热工所、大连物化所等单位共同研究开发的烟气脱硫新工艺(国家“七五”(214)项目新技术083号)。其脱硫率≥95%,脱硫副产品为氮硫复合肥料。此技术的特点是将烟气中的SO2脱除并针对我国硫资源短缺的现状,回收SO2取代硫酸生产肥料,在解决污染的同时,又综合利用硫资源,是一项化害为利的烟气脱硫新方法。而且该技术已于1991年通过国家环保局组织的正式鉴定,获国家“七五”攻关重大成果奖,四川省科技进步二等奖等多项奖励。 二、烟气脱硫脱硝技术活性炭纤维法(ACFP)烟气脱硫技术 活性炭纤维法(Activated Carbon FiberProcess,简称ACFP)烟气脱硫技术是采用新材料脱硫活性炭纤维催化剂(DSACF)脱除烟气中SO2并回收利用硫资源生产硫酸或硫酸盐的一项新型脱硫技术。 该技术脱硫率可达95%以上,单位脱硫剂处理能力会高于活性炭脱硫一个数量级以上(一般GAC处理能力为102Nm3/h.t,而ACF可达104Nm3/h.t)。由于工艺过程简单,设备少,操作简单。投资和运行成本低,且能在消除SO2污染同时回收利用硫资源,因而可在电厂锅炉烟气、有色冶炼烟气、钢铁厂烧结烟气及各种大中型工业锅炉的烟气SO2污染控制中采用,改善目前烟气脱硫技术装置“勉强上得起,但运行不起”的状况。该烟气脱硫技术按10万KW机组锅炉机组烟气计,装置投资费用3500万,年产硫酸3万~4万吨。仅用于全国高硫煤电厂脱硫每年约可减少SO2排放240万吨,副产硫酸360万吨,产值可达数十亿元。该技术已获国家发明专利,并已列入国家高新技术产业化项目指南。 三、烟气脱硫脱硝技术软锰矿法烟气脱硫资源化技术 MnO2是一种良好的脱硫剂。在水溶液中,MnO2与SO2发生氧化还原发应,生成了MnSO4。软锰矿法烟气脱硫正是利用这一原理,采用软锰矿浆作为吸收剂,气液固湍动剧烈,矿浆与含SO2烟气充分接触吸收,生成副产品工业硫酸锰。该工艺的脱硫率可达90%,锰矿浸出率为80%,产品硫酸锰达到工业硫酸锰要求(GB1622-86)。 常规生产工业硫酸锰方法是:软锰矿粉与硫酸和硫精沙混合反应,产品净化得到工业硫酸锰。由于我国软锰矿品位不高,硫酸耗量增大,成本上升。该法与常规生产工业硫酸锰相比是,不用硫酸和硫精沙,溶液杂质也降低,原料成本和工艺成本都有降低,比常规生产工业硫酸锰方法节约成本25%以上,加之国家对环保产品在税收上的优惠,竞争力将大大提高。

脱硝工艺介绍

图6-1 典型火电厂SCR法烟气脱硝工艺流程图 脱硝工艺介绍 1脱硝工艺 图1 LNB、SNCR和SCR在锅炉系统中的位置 目前成熟的燃煤电厂氮氧化物控制技术主要包括燃烧中脱硝技术和烟气脱硝技术,其中燃烧中脱硝技术是指低氮燃烧技术(LNB),烟气脱硝技术包括SCR、SNCR和SNCR/SCR 联用技术等,其在锅炉系统中的位置如图1所示。 1.1烟气脱硝工艺应用 目前进入工业应用的成熟的燃煤电厂烟气脱硝技术主要包括SCR、SNCR和SNCR/SCR 联用技术。 1)SNCR脱硝技术是指在锅炉炉膛出口900~1100℃的温度范围内喷入还原剂(如氨 气)将其中的NOx选择性还原成N 2和H 2 O。SNCR工艺对温度要求十分严格,对机组负荷 变化适应性差,对煤质多变、机组负荷变动频繁的电厂,其应用受到限制。大型机组脱硝效率一般只有25~45%,SNCR脱硝技术一般只适用于老机组改造且对NOx排放要求不高的区域。 2)SCR烟气脱硝技术是指在300~420℃的烟气温度范围内喷入氨气作为还原剂,在 催化剂的作用下与烟气中的NOx发生选择性催化反应生成N 2和H 2 O。SCR烟气脱硝技术具 有脱硝效率高,成熟可靠,应用广泛,经济合理,适应性强,特别适合于煤质多变、机组负荷变动频繁以及对空气质量要求较敏感的区域的燃煤机组上使用。SCR脱硝效率一般可达80~90%,可将NOx排放浓度降至100mg/m3(标态,干基,6%O 2 )以下。 3)SNCR/SCR联用技术是指在烟气流程中分别安装SNCR和SCR装置。在SNCR区段喷入液氨等作为还原剂,在SNCR装置中将NOx部分脱除;在SCR区段利用SNCR工艺逃逸 的氨气在SCR催化剂的作用下将烟气中的NOx还原成N 2和H 2 O。SNCR/SCR联用工艺系统 复杂,而且脱硝效率一般只有50~70%。 三种烟气脱硝技术的综合比较见表1。 表1 烟气脱硝技术比较

烟气脱硝工艺

综述燃煤电厂烟气脱硝技术 摘要:人们对空气质量的要求越来越高,氮氧化物污染引起了人们的广泛注意。废气脱硝工艺一直是研究重点。本文通过对比燃煤电厂的脱硝的各种工艺,选出了最优工艺——SCR技术,本文综述了SCR的原理、国内外研究状况、应用情况及运行费用。通过本文可以使人们更好的了解燃煤电厂脱硝工艺。 关键字:烟气脱硝;低NO X燃烧技术;SCR技术 Summary of coal-fired power plant flue gas denitrification technology Abstract: People on air quality have become increasingly demanding, nitrogen oxide pollution has aroused extensive attention. Exhaust gas denitration process has been a research priority. By contrast coal-fired power plant denitration various processes, optimum process --SCR elected technology, this paper reviews the SCR principle, research status, applications and operating costs. Through this allows people to better understand the coal-fired power plant denitrification process. Key words: Flue gas denitrification ; Low NO X Combustion Technology ;SCR 氮氧化物是大气主要污染物之一。通常所说的氮氧化物有多种不同形式,如N2O、NO、NO2、N2O3和N2O5等,其中NO和NO2所占比例最大,是最重要的大气污染物[1]。NO X排入大气后,通过物理、化学作用,引发一系列的环境问题。对人体健康和生态环境造成威胁[2]。 氮氧化物的产生途径主要有一下几个方面:1.机动车辆排放的尾气2.工业生产过程中产生了氮氧化物3. 燃烧过程产生的氮氧化物。其中燃烧过程产生的氮氧化物包括热力型、瞬时型和燃料型[3]。 机动车排气量较小,排放源流动分散。主要采用机内净化的方法去除氮氧化物[4]。某些工业生产过程也会排出NO X废气,一般来说,它具有成分相对比较单一和气量小的特点,此类废气在治理中多采用湿法,并且尽量将分离出来的NO返回原生产系统,或者形成新的副产品,或者加以无害化处理[5]。在燃烧过程中,控制NO X的排放有两种途径:一种是在锅炉燃烧中控制燃料的燃烧,减少氮氧化物的生成;另一种是对烟气进行处理,消除烟气中的氮氧化物[6]。 交通运输、电力和火电厂排放的NO X占全部排放量的90%以上[7]。电力工业又是燃煤大户。具预测,到2020年,原煤消耗将达到20.5亿~29.0亿吨,燃煤产生的NO X将急剧增加[8]。由于火电厂燃烧所产生的NO X所生成的含量最多且成分较复杂,所以引起了人们的广泛重视。所以本文主要介绍燃煤电站烟气脱硝技术。 1 烟气脱硝工艺比选 烟气脱硝是指从烟气中去除氮氧化物,是世界各国控制氮氧化物污染、防治酸雨危害的主要措施[9]。据火电厂燃煤锅炉调查,一般采用低氮氧化合物燃烧技术(包括低负荷稳燃改造)的锅炉排烟中氮氧化物的浓度为500~900mg/m3,而未采用低氮氧化合物燃烧技术的锅炉排烟中NO X的质量浓度定700~1300mg/m3之间,平均1000g/m3左右。所以在烟气脱硝之前先采用低NO X燃烧技术,减少氮氧化物的产生,为后续处理减轻负担[10]。

SCR烟气脱硝技术原理介绍

脱硝技术 一、SCR烟气脱硝技术原理介绍 选择性催化还原系统(Selective Catalytic Reduction,SCR)是指在催化剂的作用下,"有选择性"的与烟气中的NOX反应,将锅炉烟气中的氮氧化物还原成氮气和水。 SCR催化剂最佳的活性范围在300~400 ℃,一般被安排在锅炉的省煤器与空气预热器之间,因此对于燃煤锅炉的烟气脱硝系统,SCR催化剂是运行在较高灰尘环境下。 SCR烟气脱硝技术最高可达到90%以上的脱硝效率,是最为成熟可靠的脱硝方法。在保证SCR脱硝效率的同时还有控制NH3的逃逸率和SO2的转化率,以保证SCR系统的安全连续运行。烟气流动的均匀性、烟气中NOX和NH3混合的均匀以及烟气温度场的均匀性是保证脱硝性能的关键,是设计中需要考虑的因素。 二、SCR烟气脱硝工艺流程 三SCR烟气脱硝的技术特点 ?深入了解催化剂特性,针对不同的工程选择合适的催化剂,包括蜂窝、板式和波纹板式,不拘泥于某个种类或某个厂家的催化剂,并能通过优化催化剂参数,降低催化剂积灰风险,保持较低的烟气压降,可以联合催化剂厂商给业主提供催化剂管理经验,方便业主对催化剂进行管理; ?与国外最专业的流场模拟厂家合作,使用物模与数模技术,精心设计SCR系统的烟道布置、烟道内导流板布置、喷氨格栅、静态混合器等,使催化剂内烟气的温度、速度分布均匀,烟气中NOX与NH3混合均匀,可以最有效的利用催化剂,最大程度的降低氨的消耗量,减少SCR系统积灰,并保持SCR系统较低的烟气压降;

?反应器的设计合理,方便安装催化剂,并可适应多个主要催化剂提供商生产的催化剂,方便催化剂厂商的更换; ?过程参数采用自动控制,根据锅炉的负荷、烟气参数、NOX含量以及出口NH3的逃逸率自动控制喷氨量,优先保证氨逃逸率的情况下,满足系统脱硝效率。 ?针对脱硝还原剂,可以提供多种系统:液氨系统和尿素系统,博奇所提供的尿素催化水解系统具有安全、响应快、起停迅速以及能耗低等特点,可以为重视安全的业主提供最佳的脱硝解决方案。

SCR脱硝技术简介

S C R脱硝技术简介-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

SCR脱硝技术 SCR(Selective Catalytic Reduction)即为选择性催化还原技术,近几年来发展较快,在西欧和日本得到了广泛的应用,目前氨催化还原法是应用得最多的技术。它没有副产物,不形成二次污染,装置结构简单,并且脱除效率高(可达90%以上),运行可靠,便于维护等优点。 选择性是指在催化剂的作用和在氧气存在条件下,NH3优先和NOx发生还原脱除反应,生成氮气和水,而不和烟气中的氧进行氧化反应,其主要反应式为:4NO+4NH3+O2→4N2+6H2O(1) 2NO2+4NH3 +O2→ 3N2+6H2O(2) 在没有催化剂的情况下,上述化学反应只是在很窄的温度范围内(980℃左右)进行,采用催化剂时其反应温度可控制在300-400℃下进行,相当于锅炉省煤器与空气预热器之间的烟气温度,上述反应为放热反应,由于NOx在烟气中的浓度较低,故反应引起催化剂温度的升高可以忽略。 下图是SCR法烟气脱硝工艺流程示意图 SCR脱硝原理 SCR 技术脱硝原理为:在催化剂作用下,向温度约280~420 ℃的烟气中喷入氨,将NOX 还原成N2 和H2O。

SCR脱硝催化剂: 催化剂作为SCR脱硝反应的核心,其质量和性能直接关系到脱硝效率的高低,所以,在火电厂脱硝工程中, 除了反应器及烟道的设计不容忽视外,催化剂的参数设计同样至关重要。 一般来说,脱硝催化剂都是为项目量身定制的,即依据项目烟气成分、特性,效率以及客户要求来定的。催化剂的性能(包括活性、选择性、稳定性和再生性)无法直接量化,而是综合体现在一些参数上,主要有:活性温度、几何特性参数、机械强度参数、化学成分含量、工艺性能指标等。

SCR烟气脱硝工艺设计方案

SCR烟气脱硝工艺方案 1. 脱硝工艺的简介 有关NO X的控制方法从燃料的生命周期的三个阶段入手,限燃烧前、燃烧中和燃烧后。当前,燃烧前脱硝的研究很少,几乎所有的脱硝都集中在燃烧中和燃烧后的NO X的控制。所以在国际上把燃烧中NO X的所有控制措施统称为一次措施,把燃烧后的NO X控制措施统称为二次措施,又称为烟气脱硝技术。 目前普遍采用的燃烧中NO X控制技术即为低NO X燃烧技术,主要有低NO X燃烧器、空气分级燃烧和燃料分级燃烧。 应用在燃煤电站锅炉上的成熟烟气脱硝技术主要有选择性催化还原技术(Selective Catalytic Reduction,简称SCR)、选择性非催化还原技术(Selective Non-Catalytic Reduction,简称SNCR)以及SNCR/SCR混合烟气脱硝技术。 2 .SCR烟气脱硝技术 近几年来选择性催化还原烟气脱硝技术(SCR)发展较快,在欧洲和日本得到了广泛的应用,目前催化还原烟气脱硝技术是应用***多的技术。 1)SCR脱硝反应 目前世界上流行的SCR工艺主要分为氨法SCR和尿素法SCR两种。此两种法都是利用氨对NO X的还原功能,在催化剂的作用下将NO X(主要是NO)还原为对大气没有多少影响的N2和水。还原剂为NH3,其不同点则是在尿素法SCR中,先利用一种设备将尿素转化为氨之后输送至SCR触媒反应器,它转换的方法为将尿素注入一分解室中,此分解室提供尿素分解所需之混合时间,驻留时间及温度,由此室分解出来之氨基产物即成为SCR的还原剂通过触媒实施化学反应后生成氨及水。尿素分解室中分解成氨的方法有热解法和水解法,主要化学反应方程式为:

【资料】烟气脱硫脱硝技术简介6

【资料】烟气脱硫脱硝技术简介6

45t/h锅炉烟气脱硫脱硝技术方案 (2) 燃煤锅炉烟气脱硫脱硝技术简介 (37) 烟气脱硫脱硝技术简介 (50) 45t/h锅炉烟气脱硫脱硝技术方案 45t/h锅炉烟气现场调查 燃煤质量状况 标识符号指标名称单位实际指标备注R 燃煤发热量大卡4500 A 煤中灰分% 25 S 燃煤全硫分% 3.8 C 燃煤中碳含 量% 80 O 燃煤中氧含 量% 6 H 燃煤中氢含 量% 4 W 燃煤中水分% 10 锅炉烟气排放现状

项目符 号调查项目名称单位实测指标ω锅炉蒸吨位t/n 38 t1 接口处温度℃112 υ接口烟气流速m/s 8.4 D 接口断面长× 宽cm 198×198 Q 烟气流量m3/h 118541 QN 标态干烟气流 量Nm3/h 84057 V0 空气理论需要 量Nm3/kg 9.926 QY 空气实际需要 量Nm3/kg 12.013 q 环评烟气验算 量m3/t 11746 锅炉烟气中污染物排放现状 序号项目 名称 初始生成 量 最终排放 量 年度 减排 量 要求系 统脱除 效率Kg /h mg/N m3 Kg/ h mg/N m3 (吨)达到%

1 烟尘66 8 6540 8.1 6 80 4754 97.55 2 SO2 56 9 5569 20. 49 200 3951 95.4 3 NOx 45 44 4 15. 35 150 217 65.4 锅炉烟气脱除效率难点分析 当地环保部门对本项目提出的最新要求目前国内 60t/h以下锅 炉AC-GTsx 的平均先进 水平 达到本 项目指 标的难 易程度 控制项目脱除效 率 (%) 排放标 准 (mg/N m3) (%) 烟 尘 97.55 80 99 易SO2 95.4 200 96 易NO x 65.4 150 47 难建议与商权

(完整版)SCR烟气脱硝工艺简介

SCR烟气脱硝工艺简介 吴金泉1李勇1,2 (1 福建鑫泽环保设备工程有限公司,福建福州350002; 2 江西理工大学环境与建筑学院,江西赣州 341000) 摘要:选择性催化还原法(SCR)是目前国际上处理火电厂氮氧化物的最主要处理方法。我公司于2004年与德国STEULER公司在烟气脱硝技术方面展开了全方位的合作,并在国内开发烟气脱硝市场。本文从SCR工艺原理出发,介绍了合作公司的相关运行工艺。 关键词:烟气脱硝;SCR;脱硝催化剂;脱硝工艺 随着我国经济的发展, 在能源消费中带来的环境污染也越来越严重。其中,大气烟尘、酸雨、温室效应和臭氧层的破坏已成为危害人民生存的四大杀手。燃煤烟气所含的烟尘、二氧化硫、氮氧化物等有害物质是造成大气污染、酸雨和温室效应的主要根源。在我国,二氧化硫、氮氧化物等有害物质主要是由燃煤过程产生的。 随着我国经济实力的增强,耗电量也将逐步加大。目前,我国已经开展了大规模的烟气脱硫项目, 但烟气脱硝还未大规模的开展。有研究资料表明,如果继续不加强对烟气中氮氧化物的治理, 氮氧化物的总量和在大气污染物中的比重都将上升, 并有可能取代二氧化硫成为大气中的主要污染物。 我国烟气脱硝项目起步较晚,目前国内运行的烟气脱硝项目所采用的工艺也是引进欧、美、日等发达国家和地区烟气脱硝技术, 为适应国内烟气脱硝市场的需要,我公司于2004年与德国STEULER公司在烟气脱硝技术方面展开了全方位的合作,主要由德方提供技术支持,我方负责开拓市场、消化有关技术。 1 SCR脱硝技术简介 在众多的脱硝技术中,选择性催化还原法(SCR)是脱硝效率最高,最为成熟的脱硝技术。1975 年在日本Shimoneski 电厂建立了第一个SCR系统的示范工程,其后SCR技术在日本得到了广泛应用。在欧洲已有120 多台大型装置的成功应用经验,其NOx的脱除率可达到80%~90%。日本大约有170套装置,接近100GW 容量的电厂安装了这种设备,美国政府也将SCR技术作为主要的电厂控制NOx技术,SCR 方法已成为目前国内外电厂脱硝比较成熟的主流技术。 1.1 SCR法烟气脱硝原理 在催化剂作用下,向温度约280℃~420℃的烟气中喷人氨,将N0还原成N2和NO。化学反应方程式如下: 在有氧的条件下: 在无氧(或者缺氧)的条件下: 在反应条件改变时,就有可能发生以下副反应:【1】 由于该反应没有产生副产物,并且装置结构简单,适合于处理大量的烟气。 1.2 SCR烟气脱硝工艺的影响因素 1.2.1 温度对催化剂反应性能的影响 目前,运用于电厂烟气脱硝中的的SCR催化剂有很多,不同的催化剂,其适宜的反应温度也差别各异。如果反应温度太低,催化剂的活性降低,脱硝效率下降,则达不到脱硝的效果。并且,如果催化剂在低温下持续运行,将导致催化剂的永久性损坏;如果反应温度太高,NH3容易被氧化,生成NO x的量增加,甚至会引起催化剂材料的相变,导致催化剂的活性退化。 采用何种催化剂与SCR反应器的布置方式是密切相关的,一般可以把催化剂的种类分为三类:高温催化剂(345℃~590℃)、中温催化剂(260℃~380℃)和低温催化剂(80℃~300℃)。目前,国内外SCR系统大多采用高温催化剂,反应温度在315℃~400℃。 1.2.2 空速(SV)对催化剂性能的影响 烟气在SCR反应塔中的空塔速度是SCR 的一个关键设计参数, 它是烟气体积流量(标准状态下的湿烟气))与SCR反应塔中催化剂体积比值, 反映了烟气在SCR 反应塔内的停留时间的大小。烟气的空塔速度越大,其停留时间越短。一般SCR 的脱硝效率将随烟气空塔速度的增大而降低。空塔速度通常是根据SCR反应塔的布置、脱硝效率、烟气温

脱硝电除尘脱硫简介

脱硝、电除尘、脱硫简介 一、脱硝系统: (一)#5、6机组: 1、主要设备简介: 1)低氮燃烧器:低氮燃烧器是国内外燃煤锅炉控制NOx排放的优先选用技术。现代低NOx燃烧技术将煤质、制粉系统、燃烧器、二次风及燃尽风等技术作为一个整体考虑,以低NOx 燃烧器和空气分级为核心,在炉内组织燃烧温度、气氛和停留时间,形成早期的、强烈的、煤粉快速着火欠氧燃烧,利用燃烧过程产生的氨基中间产物来抑制或还原已经生成的NOx。低NOx直流燃烧器:燃烧器首要任务是燃烧,浓淡偏差稳燃措施也有助于控制NOx。在煤粉喷嘴前,通过偏流装置(弯头、百叶窗、挡块)使煤粉浓缩分离成浓淡两股。喷嘴设扰流钝体,一方面可卷吸高温烟气回流,另一方面使浓相煤粉在绕流时偏离空气,射入高温回流烟气区域。这样,在燃烧器钝体下游,可形成高浓度煤粉在高温烟气中的浓淡偏差欠氧燃烧,从而有效控制燃烧初期的NOx生成量。 2)脱硝SCR:SCR是一种成熟的深度烟气氮氧化物后处理技术,无论是新建机组还是在役机组改造,绝大部分煤粉锅炉都可以安装SCR装置。典型的烟气脱硝SCR工艺流程见图,具有如下特点:

●脱硝效率可以高达95%,NOx排放浓度可控制到 50mg/m3以下,是其他任何一项脱硝技术都无法单独达到的。 ●催化剂是工艺关键设备。催化剂在和烟气接触过程中, 受到气态化学物质毒害、飞灰堵塞和冲蚀磨损等因素的影响,其活性逐渐降低,通常3~4年增加或更换一层催化剂。对于废弃的催化剂,由于富集了大量痕量重金属元素,需要谨慎处理。 ●反应器内烟气垂直向下流速约4~4.5m/s,催化剂通道 内烟气速度约5~7m/s。300MW、600MW及1000MW机组对应的每台SCR反应器截面积分别约80~90m2、150~180m2、230~250m2。 ●脱硝系统会增加锅炉烟道系统阻力约约700~1000Pa, 需提高引风机压头。 ●SCR系统的运行会增加空预器入口烟气中SO3浓度,并 残留部分未反应的逃逸氨气,二者在空预器低温换热面上反应形成硫酸氢铵,易恶化空预器冷端的堵塞和腐蚀,需要对空预器采取抗硫酸氢铵堵塞措施。 ●受制于锅炉烟气参数、飞灰特性及空间布置等因素的 影响,根据反应器的布置位置,SCR工艺分为高灰型、低灰型和尾部型等三种:高灰型SCR是主流布置,工作环境相对恶劣,催化剂活性惰化较快,但烟气温度合适(300~400℃),经济性最高;低灰型SCR和尾部型SCR的选择,主要是为了净化催化剂运行的烟气条件或者是受到布置空间的限制,由于需将烟气加热到300℃以上,只适合于特定环境。

烟气脱硫脱硝技术介绍

烟气脱硫脱硝技术介绍 为了控制SO2污染,防治酸雨Σ害,加快我国烟气除尘技术和产业发展已刻不容缓。国家烟气除尘工程技术研究中心对多种烟气脱硫脱硝技术进行了研究开发,主要包括: 1、磷铵肥法(PAFP)烟气脱硫技术 磷铵肥法(PhosphateAmmoniateFertilizerProcess,简称PAFP),是我校和四川省环科院、西安热工所、大连物化所等单λ共同研究开发的烟气脱硫新工艺(国家“七五”(214)项目新技术083号)。其脱硫率≥95%,脱硫副产品为氮硫复合肥料。此技术的特点是将烟气中的SO2脱除并针对我国硫资源短缺的现状,回收SO2取代硫酸生产肥料,在解决污染的同时,又综合利用硫资源,是一项化害为利的烟气脱硫新方法。而且该技术已于1991年通过国家环保局组织的正式鉴定,获国家“七五”攻关重大成果奖,四川省科技进步二等奖等多项奖励。 2、活性炭纤维法(ACFP)烟气脱硫技术 活性炭纤维法(ActivatedCarbonFiberProcess,简称ACFP)烟气脱硫技术是采用新材料脱硫活性炭纤维催化剂(DSACF)脱除烟气中SO2并回收利用硫资源生产硫酸或硫酸盐的一项新型脱硫技术。 该技术脱硫率可达95%以上,单λ脱硫剂处理能力会高于活性炭脱硫一个数量级以上(一般GAC处理能力为102Nm3/h.t,而ACF可达104Nm3/h.t)。由于工艺过程简单,设备少,操作简单。投资和运行成本低,且能在消除SO2污染同时回收利用硫资源,因而可在电厂锅ˉ烟气、有色冶炼烟气、钢铁厂烧结烟气及各种大中型工业锅ˉ的烟气SO2污染控制中采用,改善目前烟气脱硫技术装置“勉强上得起,但运行不起”

SNCR脱硝工艺简介

SNCR脱硝工艺简介 SNCR是在不采用催化剂的情况下,在炉膛(或循环流化床分离器)内烟气适宜温度处均匀喷入氨或尿素等氨基还原剂,还原剂在炉内迅速分解,与烟气中的NOx反应生成N2和H2O(反应基本不与烟气中的氧气发生作用),从而达到脱硝目的。SNCR反应控制在很窄的烟气温度范围对应的炉膛位置进行。以氨水为还原剂的SNCR工艺原理图见图1-1 图1-1 以尿素为还原剂的工艺原理图见图1-2 图1-2 1、工艺原理 由于脱NOx主要是脱除烟气中的NO(占95%左右),因此在炉膛850-1100℃范围内,用氨水或尿素的主要反应如下: 氨水为还原剂时, 尿素为还原剂时, 2、系统组成 SNCR系统烟气脱硝过程主要由四个方面组成:还原剂储存系统,还原剂、空气计量系统,炉区喷射系统,辅助设备系统。 3、技术特点 (1)SNCR脱硝系统的建设为一次性投资,运行成本低。在脱硝过程中不使用催化剂,不存在增加系统的压力损失等其他烟气脱硝技术引起的弊端。 (2)SNCR脱硝系统的设备占地面积小,当现有锅炉的脱硝技术改造效率低时,SNCR脱硝技术经济性高。 (3)SNCR工艺的还原过程都在锅炉内部进行,不需要另设反应器。

(4)SNCR脱硝技术在锅炉内部进行,脱硝效率收到锅炉设计、锅炉负荷等因素的影响较大,脱硝效率低,在30-50%范围内。 (5)由于SNCR不需要使用催化剂,不受煤质和煤灰的影响,可以在锅炉上更经济有效地取得总量控制的较好要求,可以单独使用或作为SCR及其他低氮燃烧技术的必要补充。 4、脱硝系统工艺流程 还原剂在氨区的接收和储存,用计量泵将还原剂以一定比例与空气混合后,在锅炉合适位置注入稀释后的还原剂,通过选择性非催化还原法,当使用含氨化合物的水溶液时,化合物分解就会释放出氨气,氨基在850℃-1100℃时NO生成氮气和水蒸气:NH2+NO <=>H2O+N2,达到脱硝目的。同时,氨逃逸率控制在8mg/m3以下。 5、影响脱硝性能的因素 (1)温度。当温度高于1200℃时,NH3会被氧化成NO,反而造成NOx排放浓度增大;当温度低于800℃时,反应不完全,会造成“氨穿透”,氨逃逸率高,造成新的污染。因此,最佳的温度区间是两种趋势对立统一的结果,一般控制在850-1100℃。 (2)氨氮比NSR 氨氮比NSR是NH3/NO X反应物体系中氨与NO X浓度的比值,对反应进行的速度和程度至关重要。根据化学动力学原理,反应物浓度越大,反应速率越快。但NSR超过一定范围时,NO X的转化率不再增加,造成还原剂NH3的浪费,泄漏量增大,造成二次污染。因此,实际工程中应控制在1.0-2.0范围内比较合适。 (3)反应剂和烟气混合程度 反应剂与烟气混合不好会使NOx还原反应效果降低,可采取以下方法改善混合效果: ①增加传给液滴的能量;

水泥窑尾烟气SCR脱硝技术

一刖吕 2015年全国氮氧化物排放量1851.9万吨,其中,水泥排放氮氧化物约占全国排放总量的10%,仅次于火电和机动车行业,位居第三。 2016 W底,国务院印发《“十三五”节能减排综合工作方案》,提出到2020年氮氧化物排放总量比2015年下降15%以上的主要目标。《水泥工业大气污染物排放标准》(GB 4915-2013 )要求氮氧化物排放限值400 mg/Nm3,重点地区320 mg/Nm3 ;在氮氧化物排放要求日趋严格背景下,2017年5月,江苏省环保厅《矢于开展全省非电行业氮氧化物深度减排的通知》要求,水泥行业2019年6月1日前氮氧化物排放不高于100 mg/Nm3 ;2018年9月,《唐L1I市生态环境深度整治攻坚月行动方案》提出氮氧化物排放浓度不高于50 mg/Nm3。 现行的脱硝技术大体分为氧化法脱硝和催化还原法脱硝。氧化法脫硝采用强氧化剂,如臭氧、亚氯酸钠等强氧化剂,把NOx氧化 成高价氮氧化物,然后通过水或者碱液体进行吸收,但是存在耗电高、二次污染物废水排放问题。催化还原法,一般指SCR法,因其无二次污染排放问题,脫硝效率高,可以实现超净排放,运行可靠稳定、适应负荷波动等优点,广泛的应用在各个工矿企业中。SCR 脱硝技术作为全世界应用

最广泛高效的氮氧化物脫除技术,符合水泥行业日趋严格的氮氧化物排放要求,是一种理想的 水泥窑脱硝技术。研究高效水泥窑SCR脱硝技术,具有现实意义。 二水泥窑尾烟气特点 (1 ) NOx 含量高,为300-1300mg/Nm。3 (2) 湿度大,水含量8-16% ;水蒸气露点一般为45~55°C。 (3) 粉尘含量高,烟尘浓度达60-120 g/Nm3,并含有碱土金属氧化物等腐蚀性成分。 (4) 粉尘粒径小(小于10ym的颗粒约占75-90%)、比电阻高,除尘难度大。 (5) 粉尘中碱金属氧化物含量高。 以上这些烟气特点均增加了脫硝的难度和投资成本。 表1某水泥窑尾飞灰与燃煤锅炉飞灰主要成分对比

相关文档
最新文档