直流屏容量计算实例

直流屏容量计算实例
直流屏容量计算实例

变配电所直流屏容量计算实例

1、蓄电池

1.1 蓄电池定义及选型

1.1.1 蓄电池(组)

能将化学能和直流电能相互转换,而且放电后经过充电能恢复使用的装置叫蓄电池;用导线两个或多个单体蓄电池用作能源的设备称作蓄电池组。

1.1.2 蓄电池的选型

常用的蓄电池包括镉镍蓄电池和铅酸蓄电池两类,其中铅酸蓄电池又分为防酸式铅酸蓄电池和阀控式密封铅酸蓄电池两种。

a. 镉镍蓄电池:正极活性物质主要由镍制成,负极活性物质主要由镉制成的一种碱性蓄电池。

b. 防酸式铅酸蓄电池:蓄电池槽与蓄电池盖之间密封,使蓄电池内产生的气体只能从防酸栓排出,电极主要由铅制成,电解液是硫酸溶液的一种蓄电池。

c. 阀控式密封铅酸蓄电池:蓄电池正常使用时保持气密和液密状态,当内部气压超过预订值时,安全阀自动开启,释放气体,当内部气压降低后安全阀自动闭合,同时防止外部空气进入蓄电池内部,使其密封。蓄电池在使用寿命期限内无需补加电解液。目前市政工程35kV、10 kV 变配电所(站)中常用阀控式密封铅酸蓄电池和镉镍蓄电池。

1.2.蓄电池的运行及维护

在直流电源系统中,保证用电设备不间断供电的核心部件是蓄电池,因此对蓄电池组的监测和维护尤其重要。其中主要包括:监控电池的充电电压和充电电流,实现各种充电状态之间的自动切换;进行充电电压的温度补偿,确保电

池工作状态最佳;电池定期维护保养,确保电池容量和寿命。

1.2.1 运行过程管理

监控系统根据设置的充电参数,控制充电模块自动完成电池充电程序,充电参数应根据阀控式密封铅酸蓄电池的容量以及厂家提供的资料设置。

★阀控式密封铅酸蓄电池运行示波图如1-2-1 所示,充电程序如下:

a. 阀控式密封铅酸蓄电池正常充电程序。用0.1C10A(可设置)恒流充电,电压达到整定值(2.30-2.40)V×n(n 为单体电池所含电池单元的数目)时,微机控制充电浮充电装置自动转为恒压充电,当充电电流逐渐减小,达到

0.01C10A(可设置)时,微机开始计时,3 小时(可设置)后,微机控制充电浮充装置自动转为浮充电状态运行,电压为(2.23-2.28)V×n。

b.长期浮充充电程序。正常运行浮充状态下每隔1-3 个月, 微机控制充电浮充电装置自动转入恒流充电状态运行,按阀控式密封铅酸蓄电池正常充电程序进行充电。

电装置停止工作,蓄电池通过降压硅链,无间断地向二次控制母线送电。当电池电压低于设置的告警限时系统监控模块发出声光告警。

d. 交流电源恢复程序。交流电源恢复送电运行时,微机控制充电装置自动进入恒流充电状态运行,按阀控式密封铅酸蓄电池正常充电程序进行充电。

★镉镍蓄电池的运行示波图如图1-2-2 所示,充电程序如下:

a. 镉镍蓄电池正常充电程序。用0.2C5A(可设置)恒流充电,电压达到均充整定值(1.47-1.55)V×n(n 为单体电池所含电池单元的数目)时,微机控制充电浮充电装置自动转为恒压充电,当充电电流逐渐减小,达到0.02C5A(可设置)时,微机开始计时,3 小时(可设置)后,充电浮充装置自动转为浮充电运行状态,电压为(1.36-1.45)V×n(可设置)。

b. 长期浮充充电程序。正常运行浮充状态下每隔1-3 个月,微机控制充电浮充电装置自动转入恒流充电状态运行,按镉镍蓄电池正常充电程序进行充电。

充电装置停止工作,蓄电池通过降压硅链,无间断地向控制母线送电。当电池电压低于设置的告警限时系统监控模块发出声光告警。

d. 交流电源恢复程序。交流电源恢复送电运行时,微机控制充电装置自动进入恒流充电状态运行,按镉镍蓄电池正常充电程序进行充电。

1.2.2 充电电压温度补偿

阀控式密封铅酸蓄电池在不同的温度下需对蓄电池充电电压做相应的调整才能保障电池处于最佳状态,通常通过电池管理系统监测环境温度,自动调整电池充电电压。

1.2.3电池定期维护保养

电池长期不用或长期处于浮充状态,电池极板的活性物质很易硫化,当活性物质越来越少时,电池的放电能力也越来越差,直至放不出电。此外,由于电池之间的离散性,单体电池之间的实际电压不尽相同,电池标称的浮充电压只是一种均值,所选定的浮充电压并不能满足每一节电池的要求,如果电池长期

处于浮充状态,其结果必定是,部分电池的电量能保证充满,而有一部分电池是无法充满的。没充满的电池表现出来的电压是虚的,需要放电时,其放电能力很差。因此,直流电源充电系统需具备定期对电池作维护性的均充活化功能,以免电池硫化、虚充,确保电池的放电能力和使用寿命。

1.3.铅酸蓄电池与镉镍蓄电池的比较

镉镍蓄电池具有放电倍率高,放电容量随放电电流的增加下降较缓,使用寿命较长,低温特性好等优点,但也存在自放电容量损失较大,价格较高,维护工作量较大等缺点。阀控式铅酸蓄电池具有自放电容量损失较小,维护工作量较少,价格相对较低、无污染等优点,但也存在放电容量随放电电流的增加下

降较陡,低温特性较差等缺点。综上所述,并考虑到目前变配电所中一般均采用弹簧操作机构,容量较以前采用电磁操作机构小很多,可有效的避免阀控式铅酸蓄电池放电容量随放电电流的增加下降较陡的缺点,故目前大多数的变配电所采用阀控式铅酸蓄电池。

2 、直流负荷分类

2.1 按功能分类

2.1.1 控制负荷:电气和热工的控制、信号、测量和继电保护、自动装置等负荷。

2.1.2 动力负荷:各类直流电动机、断路器电磁操动的合闸机构、交流不停电电源装置、远动、通信装置的电源和事故照明等负荷。

2.2 按性质分类

2.2.1 经常负荷:要求直流系统在正常和事故工况下均应可靠供电的负荷。

2.2.2 事故负荷:要求直流系统在交流电源系统事故停电时间内可靠供电的负荷。

2.2.3 冲击负荷:在短时间内施加的较大负荷电流。冲击负荷出现在事故初期(1min)称初期冲击负荷,出现在事故末期或事故过程中称随机负荷(5s)。

3、直流负荷统计

下面以某40万吨规模水厂为例分析统计。

该工程总变配电所为35kV /10 kV 变配电所,均采用3AH5 断路器,主要设备如下:

35kV 变配电系统配电柜共13 台,其中断路器柜6 台;10kV 变配电系统配电柜共25台,其中断路器柜22 台(包括10 台电动机柜和12 台其它断路器柜,

电动机柜停电后均要求跳闸,再来电时单台起动);35kV /10 kV配电系统的综合保护器分散在各开关柜上安装,未设单独保护屏,各开关柜内的柜内加热器、柜内照明灯均采用交流小母线供电,交流不停电电源装置由自控专业单独供电,应急照明由相关灯具自带蓄电池。直流负荷仅为弹簧操作机构、分合闸线圈、综合保护器、继电器、温湿度控制器、信号灯及线路损耗等。该变配电所为有人值班变电所,交流停电时间按1h 计算。

直流负荷统计表:

注:表中电动机开关柜断路器仅10 台。

4、蓄电池个数及容量选择计算

4.1 蓄电池个数

本工程也按2V 电池设计,直流系统中控制负荷和动力负荷采用合并方式供电。

a.蓄电池个数的选择

按浮充电运行时,直流母线电压为.05Un 选择蓄电池个数:

n =1.05Un/ Uf =1.05x220V/2.25V =102.7

(取103 只)采用阀控式铅酸蓄电池。

b.蓄电池均衡充电电压选择。根据蓄电池个数及直流母线电压允许的最高值选择单体蓄电池均衡充电电压值。

Uc ≤1.10Un/ n =1.10x220V/103 =2.35V(取2.3V)。

c.蓄电池放电终止电压选择。根据蓄电池个数及直流母线电压允许的最低值选择单体蓄电池事故放电末期终止电压。

Um≥0.875Un/n=0.875x220V/103=1.87V(取1.9V)。

公式中:Un―直流系统标称电压,V;

Uf―单体蓄电池浮冲电压,V;

Uc―单体蓄电池均衡充电电压,V;

Um―单体蓄电池放电末期终止电压,V;

n―蓄电池个数。

4.2 蓄电池容量选择计算

采用电压控制法:容量选择计算,应满足事故全停电状态下的持续放电容量:CC = Kk*Cs.x/ Kcc,Cs.x =IS* tS =2280/220*1=10.4Ah,Kcc 对应池事故放电末期终止电压1.9V,查相关阀控式铅酸蓄电池的容量选择选择系数表得:0.571。

公式中:

CC―蓄电池10h 放电率计算容量,Ah;

Cs.x―事故全停电状态下相对应的持续放电时间的放电容量;

Kk―可靠系数,取1.40;

Kcc―容量系数,在指定的放电终止电压下,对应事故放电时间xh。

故:CC = Kk * Cs.x/ Kcc =1.40*10.4/0.571=25.5 Ah,选择接近的蓄电池标称容量C10 取值为30 Ah。

4.3 电压水平计算

a、事故放电初期(1min)承受冲击放电电流时,蓄电池所能保持的电压:

Kcho = Kk * Icho / I10

Icho=(1200w+900w+2280w)/220V=19.9A

Kcho =1.1*19.9A/3A=7.3

根据Kcho 值,由图4.3 曲线查出单体电池电压值Ud 为1.87V。则UD =n*Ud = 103*1.87V=192.6V。即为标称电压的87.55%,满足要求。

b、1h事故放电阶段末期,承受随机(5S)冲击放电电流时,蓄电池所能保

持的电压:

Km.x =( Kk * Cs.x) /( t*I10) =(1.1*10.4Ah)/(1h*3)=3.81 Kchm.x = Kk * Ichm / I10=1.1*0.68A/3=0.25

由持续放电1.0h 后冲击放电曲线(见图4.3),根据Km.x 值找出对应的曲线,对应Kchm.x值查出单体电池电压值Ud=1.94V,

则:

UD=nUd=103*1.94V=199.82V。即为标称电压的90.8%,满足要求。

c、1h 事故放电阶段末期,蓄电池所能保持的电压:

Km.x =( Kk * Cs.x) /( t*I10)=(1.1*10.4Ah)/(1h*3)=3.81。

由持续放电1.0h 后冲击放电曲线(见图4.3),根据Km.x 值找出对应的曲线,对应Kchm.x=0 值查出单体电池电压值Ud=1.95V,

则:

UD=nUd=103*1.95V=200.85V。即为标称电压的91%,满足要求。公式中:

C10―蓄电池10h 放电率标称容量,Ah;

Cs.x―xh事故放电容量,Ah;

Icho―事故放电初期(1min)冲击放电电流值,A;

Ichm―事故放电阶段末期随机(5S)冲击放电电流值,A;

I10―10h放电率电流,A;

Kcho―事故放电初期(1min)冲击系数;

Kchm.x―xh事故放电末期冲击系数;

Km.x―任意事故放电阶段的10h 放电率电流倍数;

Kk―可靠系数,取1.10;

Ud―单体电池电压值,V;

UD―蓄电池组出口端电压值,V;

n―蓄电池组的单体电池个数;

t―事故放电时间,h。

4.4 结论

通过计算表明,根据本工程直流负荷情况,选择30Ah 蓄电池组,无论在事故放电初期承受冲击放电电流,还是在1h 事故放电阶段末期承受随机(5S)冲击放电电流,以及在1h 事故放电阶段末期蓄电池所能保持的电压等方面进线效验,均能满足系统的要求。

怎么计算直流屏容量

一般来说,老式的电操用电量比现在一般的弹操要大的多。 普通双电源带两个变压器的系统40AH就可以了,因为直流屏主要是倒闸操作,并且是瞬时的,容量选的大只是因为系统庞大,如果高压柜的数量增加,就65AH。 真要去计算的话,有很多种计算方法,不怎么统一,给你介绍个简单的: 直流操作电源的负荷一般来说可分为经常负荷(Izc)、事故负荷(Isg)和冲击负荷(Ihz)。经常负荷主要包括经常带电的继电器,信号灯以及其他接入直流系统的用电设备。事故负荷是当变配电所失去交流电源全所停电时必须由直流系统供电的负荷,主要为事故照明负荷等,冲击负荷主要是断路器合闸时的短时(0.1~0.5S)合闸冲击电流以及此时直流母线所须承担的其他负荷之和。此上三种负荷是选择直流操作电源容量的重要依据。据此可得: 蓄电池最大瞬时负荷:Imax=Izc+Isg+Ihz 蓄电池容量:C=Imax/C率(AH) C率是蓄电池放电倍率(A) 直流操作电源的负荷一般来说可分为经常负荷(Izc)、事故负荷(Isg)和冲击负荷(Ihz)。经常负荷主要包括经常带电的继电器,信号灯以及其他接入直流系统的用电设备。事故负荷是当变配电所失去交流电源全所停电时必须由直流系统供电的负荷,主要为事故照明负荷等,冲击负荷主要是断路器合闸时的短时(0.1~0.5S)合闸冲击电流以及此时直流母线所须承担的其他负荷之和。此上三种负荷是选择

直流操作电源容量的重要依据,据此可得蓄电池最大瞬时负荷:Imax=Izc+Isg+Ihz则蓄电池容量:C=Imax/C率(AH) C率是蓄电 池放电倍率(A).

你提的这个问题没说清楚,你仅仅说了高压采用直流保护和操作,但没有说是否还有别的直流负荷种类,直流屏通常说来可以分为动力负荷和控制负荷。动力负荷包括直流电动机、UPS电源、事故照明、直流变换电源等,控制负荷包括保护和自动装置电源、控制操作电源、计算机电源以及热工控制和远动装置电源。所以我们要做的工作首先是统计这两种负荷。通常计算蓄电池有两种方法,一种是容量法,源于原苏联,是过去我国工程设计中通用的计算法,这种计算方法对恒定放电的负荷计算简单快捷、准确,一般用于放电时间为1小时的放电过程。另一种是电流法在我国八十年代开始使用,起源于美国。在给定的事故放电电流I和事故放电时间t的情况下计算蓄电池容量时:电流法是用放电电流I和电流系数Kc=I/C10;容量法是用放电容量It=Cs和容量系数Kcc=Cs/C10计算,其基本计算式为:蓄电池容量系数:Kcc=Cs/C10=I*t/C10=Kct 蓄电池容量:Cc=Krel*Cs/Kcc=Krel*I*t/Kc*t=Krel*I/Kc 具体介绍可看《现代电力工程直流系统) 根据你提到的情况估计你使用的场所是在配电所中,这往往考虑的情况较为简单,因为你的负荷并不复杂,主要是保护和自动装置电源、控制操作电源、计算机电源和事故照明。通常不存在较大的冲击性,但有一种情况,就是仍然采用电磁操作系统的高压断路器,它的合闸电压相当大,以CD10型为例,它的合闸电流瞬间就高大147A,比起

(完整版)样本量计算(DOC)

1.估计样本量的决定因素 1.1资料性质 计量资料如果设计均衡,误差控制得好,样本可以小于30例;计数资料即使误差控制严格,设计均衡,样本需要大一些,需要30-100例。 1.2研究事件的发生率 研究事件预期结局出现的结局(疾病或死亡),疾病发生率越高,所需的样本量越小,反之就要越大。 1.3 1.4 1.5 度为 1.6 1.7 1.8双侧检验与单侧检验 采用统计学检验时,当研究结果高于和低于效应指标的界限均有意义时,应该选择双侧检验,所需 样本量就大;当研究结果仅高于或低于效应指标的界限有意义时,应该选择单侧检验,所需样本量 就小。当进行双侧检验或单侧检验时,其α或β的Ua?界值通过查标准正态分布的分位数表即可得到。

2.样本量的估算 由于对变量或资料采用的检验方法不同,具体设计方案的样本量计算方法各异,只有通过查阅资料,借鉴他人的经验或进行预实验确定估计样本量决定因素的参数,便可进行估算。 护理中的量性研究可以分为3种类型:①描述性研究:如横断面调查,目的是描述疾病的分布情况或现况调查;②分析性研究:其目的是分析比较发病的相关因素或影响因素;③实验性研究:即队列研究或干预实验。研究的类型不同,则样本量也有所不同。 2.1描述性研究 例. =0.1, 2.2 2.2.1探索有关变量的影响因素研究 有关变量影响因素研究的样本量大多是根据统计学变量分析的要求,样本数至少是变量数的5-10倍。例如,如果研究肺结核患者生存质量及影响因素,首先要考虑影响因素有几个,然后通过文献回顾,可知约有12个预测影响变量,如年龄、性别、婚姻、文化程度、家庭月收入、医疗付费方式、病程、排菌、喀血、结核中毒症状、心理健康、社会支持,那么研究的变量就可以在60-120例。这是一种较为简便的估算样本量的方法,在获得相关文献支持下,最好根据公式计算,计量

直流屏设计原则及部分设备选型原则

直流屏设计原则及部分设备选型原则 本设计原则的制定是根据:DL/T 5044-2014 电力工程直流电源系统设计技术规程。 DL/T 720-2013 电力系统继电保护及安全自动装置柜(屏) 通用技术条件 DL/T 459-2000 电力系统直流电源柜订货技术条件 一、充电机的选型原则: 1、1组蓄电池配置1套充电机装置时,应按额定电流选择高频开关电源基本模块。当基本模块数量为6个及以下时,可设置1个备用模块;当基本模块数量为7个及以上时,可设置2个备用模块。 1.1每组蓄电池配置一组高频开关电源时,其模块选择应按下式计算: n =1n +2n 基本模块的数量按下式计算: 1n = me r I I 附加模块的数量应按下列公式计算: 2n =1(当1n ≤6时) 2n =2(当1n ≥7时) 1.2一组蓄电池配置两组高频开关电源或两组蓄电池配置三组高频开关电源时,其模块选择应按下式计算: n me r I I 式中:n —高频开关电源模块选择数量,当模块选择数量不为整数时,可取邻近值;

1n —基本模块数量 2n —附件模块数量 r I —充电装置电流(A ) me I —单个模块额定电流(A ) 2、高频开关电源模块数量根据充电装置额定电流和单个模块额定电流选择,模块数量控制在3个~8个。 3、充电装置回路断路器额定电流应按充电装置额定输出电流选择,且应按下式计算: n I ≥k K rn I 式中:n I —直流断路器额定电流(A ); k K —可靠系数,取1.2; rn I —充电装置额定输出电流(A ) 表1 充电机装置回路设备选择表

样本量计算方法

样本量及其计算依据: 根据现有文献[Gerald Holtmann,Nicholas Talley,Tobias Liebregts,Birgit Adam,Christopher Parow.A placebo-controlled trial of itopride in functional dyspepsia.The New England Journal of MEDICINE 2006;(8):832-840],功能性消化不良患者接受伊托必利50mg组治疗后,其NDI改善值的均数为18.0,本研究期望针刺本经取穴组治疗功能性消化不良的NDI改善值的均数为15.0,本研究共设了6个组别,检验水准α=0.05,检验效能1-β=0.90,采用多个样本均数比较的样本含量估计公式(王家良主编《临床流行学》.上海.上海科学技术出版社,2001.P142)进行样本量的估算,公式如下: k ψ2(Εs j2/k) n= j=1 k = Ε( X j- x ) 2/(k-l) j=1 通过公式计算,每组所需样本数n=77例,按15%的脱失率计算,每个组应不少于89例,6组应不少于534例。 样本量及其计算依据: 若分为三组或三组以上,采用多个样本均数比较的样本含量估计公式(王家良主编《临床流行学》.上海.上海科学技术出版社,2001.P142)进行样本量的估算,公式如下: k ψ2(Εs j2/k) n=

k = Ε(?X j- x ) 2/(k-l) k为研究所用的组数,?X j, s i各为每组的均数与标准差的估计值,x=Ε?X j/k,ψ为界值,可通过查阅ψ值表得到。

直流屏容量计算

给楼主提供一套方法。举例如下: 1)首先统计直流220V的负荷 2)按最大事故放电容量来选择 计算公式: ======================== 设直流屏所处环境平均温度为25度,于是有:K t=1-0.008(t-20)=1-0.008(25-20)=0.96代入表达式中,得到: C e=(3.23+17.93)x1/(0.75x0.8x0.96)=36.74(Ah) 故取直流屏容量为40Ah 3)校验事故放电后的冲击电流 计算公式如下:

由前计算确定Ce=40,代入电池内阻计算式,得: Re=0.04/40=0.001Ω 由于无法知道实际使用的电池,我姑且认为此直流屏电池组中单个电池的电压是2V的,其放电终止电压 U ac=1.2V 我们先确定直流屏放电倍率K: K=I ac/C e=(3.23+17.93)/40=21.16/40=0.529 再来确定电池放电容量C ac: Cac=I ac t=(3.23+17.93)x1=21.16(Ah) 已知U ac=1.2V,所以有: I max=(U ac-U en)/R e=(1.2-1)/0.001=200A 我们用第一个式子来校核: I max≥I ac+I ba=(3.23+17.93)+120=141.16A 可见此40Ah的直流屏完全满足要求 蓄电池的额定容量C,单位是安时(Ah),它是放电电流(A)和放电时间(h)的乘积。由于对同一个电池采用不同的放电参数所得出的Ah是不同的,所以电池容量被定义为:用设定的电流把电池放电至设定的电压所经历的时间和这个电流的乘积 首先根据电池构造特征和用途的差异,设定了若干个放电时率,最常见的有20小时、10小时等不同时率,写做C20、C10和C2等等。其中的C代表电池容量,后面跟随的数字表示该类电池以某种强度的电流放电到设定电压的小时数。于是用容量除以小时数即得出额定放电电流 容量相同而放电时率不同的电池,它们的标称放电电流却相差甚远。比如,一个电动自行车用的电池容量10Ah、放电时率为2小时,写做10Ah2,它的额定放电电流为10(Ah)/2(h)=5A;而一个汽车启动用的电池容量为54Ah、放电时率为20小时,写做54Ah20,它的额定放电电流仅为54(Ah)/20(h)=2.7A!这两种电池如果分别用5A和2.7A的电流放电,则分别能持续2小时和20小时才下降到设定的电压 上述所谓设定的电压是指终止电压Uac(单位V)。终止电压可以简单的理解为:放电时电池电压下降到不至于造成损坏的最低限度值。终止电压值不是固定不变的,它随着放电电流的增大而降低,同一个蓄电池放电电流越大,终止电压可以越低,反之应该越高。也就是说,大电流放电时容许蓄电池电压下降到较低的值,而小电流放电就不行,否则会造成损害 电池工作中的电流强度还常常使用倍率来表示,写做NCh 。N是一个倍数,C代表容量的安时数,h表示放电时率规定的小时数。在具体描述某个时率的电池时,倍率常常写成NC的形式。倍数N乘以容量C就等于

样本量计算(DOC)

1.估计样本量的决定因素 1.1 资料性质 计量资料如果设计均衡,误差控制得好,样本可以小于30例; 计数资料即使误差控制严格,设计均衡, 样本需要大一些,需要30-100例。 1.2 研究事件的发生率 研究事件预期结局出现的结局(疾病或死亡),疾病发生率越高,所需的样本量越小,反之就要越大。 1.3 研究因素的有效率 有效率越高,即实验组和对照组比较数值差异越大,样本量就可以越小,小样本就可以达到统计学的显著性,反之就要越大。 1.4 显著性水平 即假设检验第一类(α)错误出现的概率。为假阳性错误出现的概率。α越小,所需的样本量越大,反之就要越小。α水平由研究者具情决定,通常α取0.05或0.01。 1.5 检验效能 检验效能又称把握度,为1-β,即假设检验第二类错误出现的概率,为假阴性错误出现的概率。即在特定的α水准下,若总体参数之间确实存在着差别,此时该次实验能发现此差别的概率。检验效能即避免假阴性的能力,β越小,检验效能越高,所需的样本量越大,反之就要越小。β水平由研究者具情决定,通常取β为0.2,0.1或0.05。即1-β=0.8,0.1或0.95,也就是说把握度为80%,90%或95%。 1.6 容许的误差(δ) 如果调查均数时,则先确定样本的均数( )和总体均数(m)之间最大的误差为多少。容许误差越小,需要样本量越大。一般取总体均数(1-α)可信限的一半。 1.7 总体标准差(s) 一般因未知而用样本标准差s代替。 1.8 双侧检验与单侧检验 采用统计学检验时,当研究结果高于和低于效应指标的界限均有意义时,应该选择双侧检验,所需样本量就大; 当研究结果仅高于或低于效应指标的界限有意义

消防水池有效容积的计算

消防水池有效容积的计算 消防水池的有效容积为: V a=(Q p-Q b)×t 式中:V a——消防水池的有效容积(m3); Q p——消火栓、自动喷水灭火系统的设计流量(m3/h); Q b——在火灾延续时间内可连续补充的流量(m3/h); t——火灾延续时间(h)。 大部分的出题都会加一句不考虑补水时间。 [计算举例]消防水池的有效容积计算 某多层丙类仓库地上3层,建筑高度20m,建筑面积12000m2,占地面积4000m2,建筑体积72000m3,耐火等级二级。储存棉、麻、服装衣物等物品,堆垛储存,堆垛高度不大于6m。属多层丙类2项堆垛储物仓库。该仓库设消防泵房和两个500m3的消防水池,消防设施有室内、外消火栓给水系统、自动喷水灭火系统、机械排烟系统、火灾自动报警系统、消防应急照明、消防疏散指示标志、建筑灭火器等消防设施及器材。请 计算消防水池的有效容积。 根据《建筑设计防火规范》GB50016-2014的规定,每座占地面积大于1000m2的棉、毛、丝、麻、化纤、毛皮及其制品的仓库应设置自动喷水灭火系统,该仓库设计有自动喷水灭火系统。依据《自动喷水灭火系统设计规范》4.2.1表5.5.5-1的规定,该堆垛储物仓库自动喷水灭火系统应为湿式系统,火灾危险等级为仓库危险级Ⅱ级,喷水强度不小于16L/min·m2,作用面积200m2。 根据《消防给水及消防栓系统技术规范》表3.3.2、表3.5.2、3.6.2及《自动喷水灭火系统设计规范》表5.0.5-1的规定,该场所室外消火栓的设计流量为45L/s;室内消火栓的设计流量为25L/s.室、内外消火栓的 火灾延续时间为3小时,自动喷水系统灭火的的火灾延续时间为2小时。 故: 消防水池的有效容积=室外45L/s×3h+室内25L/s×3h+自喷16L/min·m2×200m2×2h=486+270+383m m3=1140m3。祝:考出优异成绩 1

直流屏容量计算

直流屏的容量怎么确定 直流屏容量确定: 1、根据操作机构选择,如:高压合闸机构为 CD系列,其合闸电流为120A左右,按电力部标准,应满足瞬时两台同时合闸电流即 240A,电池容量=240/放电倍率(一般取4) =60AH,所以选大于65AH的。 2、根据自定负荷选择。 普通双电源带两个变压器的系统 40AH就可以了,因为直流屏主要是倒闸操作,并且是瞬时的,容量选的大只是因为系统庞大,如果高压柜的数量增加,就65 AH。 真要去计算的话,有很多种计算方法,不怎么统一,给你介绍个简单的: 直流操作电源的负荷一般来说可分为经常负荷(Izc)、事故负荷(Isg)和冲击负荷(Ihz)。经常负荷主要包括经常带电的继电器,信号灯以及其他接入直流系统的用电设备。事故负荷是当变配电所失去交流电源全所停电时必须由直流系统供电的负荷,主要为事故照明负荷等,冲击负荷主要是断路器合闸时的短时(0. 1~0.5S )合闸冲击电流以及此时直流母线所须承担的其他负荷之和。此上三种负荷是选择直流操作电源容量的重要依据。据此可得: 蓄电池最大瞬时负荷:Imax=Izc+Isg+Ihz 蓄电池容量:C=lmax/C 率(AH) C率是蓄电池放电倍率(A) 直流操作电源的负荷一般来说可分为经常负荷(Izc)、事故负荷(Isg)和冲击

负荷(Ihz)。经常负荷主要包括经常带电的继电器,信号灯以及其他接入直流系统的用电设备。事故负荷是当变配电所失去交流电源全所停电时必须由直流系统供电的负荷,主要为事故照明负荷等,冲击负荷主要是断路器合闸时的短时(0. 1~0.5S )合闸冲击电流以及此时直流母线所须承担的其他负荷之和。此上三种负荷是选择直流操作电源容量的重要依据,据此可得蓄电池最大瞬时负荷:Ima x=lzc+lsg+lhz 则蓄电池容量:C=lmax/C 率(AH) C率是蓄电池放电倍率(A). 你提的这个问题没说清楚,你仅仅说了高压采用直流保护和操作,但没有说是否还有别的直流负荷种类,直流屏通常说来可以分为动力负荷和控制负荷。动力负荷包括直流电动机、UPS电源、事故照明、直流变换电源等,控制负荷包括保护和自动装置电源、控制操作电源、计算机电源以及热工控制和远动装置电源。 所以我们要做的工作首先是统计这两种负荷。通常计算蓄电池有两种方法,一种 是容量法,源于原苏联,是过去我国工程设计中通用的计算法,这种计算方法对恒定放电的负荷计算简单快捷、准确,一般用于放电时间为1小时的放电过程。另一种是电流法在我国八十年代开始使用,起源于美国。在给定的事故放电电流 I和事故放电时间t的情况下计算蓄电池容量时:电流法是用放电电流I和电流系数Kc=I/C10 ;容量法是用放电容量It=Cs和容量系数Kcc=Cs/C10计算,其基本计算式为: 蓄电池容量系数:Kcc=Cs/C10=l*t/C10=Kct 蓄电池容量:Cc=Krel*Cs/Kcc=Krel*l*t/Kc*t=Krel*l/Kc 具体介绍可看《现代电力工程直流系统)根据你提到的情况估计你使用的场所是在配电所中,这往往考虑的情况较为简

t检验计算公式

t 检验计算公式: 当总体呈正态分布,如果总体标准差未知,而且样本容量n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈t 分布。 t 检验是用t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。t 检验分为单总体t 检验和双总体t 检验。 1.单总体t 检验 单总体t 检验是检验一个样本平均数与一已知的总体平均数的差异是否显 著。当总体分布是正态分布,如总体标准差σ未知且样本容量n <30,那么样本平均数与总体平均数的离差统计量呈t 分布。检验统计量为: X t μ -= 。 如果样本是属于大样本(n >30)也可写成: X t μ -= 。 在这里,t 为样本平均数与总体平均数的离差统计量; X 为样本平均数; μ为总体平均数; X σ为样本标准差; n 为样本容量。 例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。问二年级学生的英语成绩是否有显著性进步? 检验步骤如下: 第一步 建立原假设0H ∶μ=73 第二步 计算t 值 79.273 1.63X t μ --= = = 第三步 判断 因为,以0.05为显著性水平,119df n =-=,查t 值表,临界值 0.05(19)2.093t = ,而样本离差的t = 1.63小与临界值 2.093。所以,接受原假设, 即进步不显著。

2.双总体t 检验 双总体t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体t 检验又分为两种情况,一是相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。二是独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检验用于检验两组非相关样本被试所获得的数据的差异性。 现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似,只不过0r =。 相关样本的t 检验公式为: t = 在这里,1X ,2X 分别为两样本平均数; 1 2 X σ,2 2X σ分别为两样本方差; γ为相关样本的相关系数。 例:在小学三年级学生中随机抽取10名学生,在学期初和学期末分别进行了两次推理能力测验,成绩分别为79.5和72分,标准差分别为9.124,9.940。问两次测验成绩是否有显著地差异? 检验步骤为: 第一步 建立原假设0H ∶1μ=2μ 第二步 计算t 值 X X t -= =3.459。 第三步 判断 根据自由度19df n =-=,查t 值表0.05(9) 2.262t =,0.01(9) 3.250t =。由于实际计算出来的t =3.495>3.250=0.01(9)t ,则0.01P <,故拒绝原假设。 结论为:两次测验成绩有及其显著地差异。 由以上可以看出,对平均数差异显著性检验比较复杂,究竟使用Z 检验还是使用t 检验必须根据具体情况而定,为了便于掌握各种情况下的Z 检验或t 检验,

直流屏选型方法和技术参数

专业的直流屏生产厂家:QQ:2514939347 网站:https://www.360docs.net/doc/559422428.html,/Product-8-1.html 目录表 一、产品简介 (1) 二、使用环境 (1) 三、技术指标 (1) 四、安装及开机前的准备 (2) 五、开机操作 (2) 六、主要部件介绍 (3) 七、保养维护 (3) 八、运输、贮存及保证期 (3) 九、附录(S型模块操作) (4)

GZDW智能直流屏使用手册 (S型模块系统) 1.产品简介 GZDW智能直流电源屏设计参照了电力部《DL/T5044-2004》、《JB/5777.2-2002》及《JB/5777.3-2002》等相关技术标准制作,能可靠满足输配电系统正常或非正常状态下的直流控制电源和高低压开关分合闸的供电需求。它广泛适用于500KV以下的变配电站和60万KW以下发电厂的直流操作电源需求。 2.使用环境 2.1 海拨高度不超过于1000米。 2.2 环境温度-10~+50℃。 2.3 日平均相对湿度不大于95%,月平均相对湿度不大于90%。 2.4 无强烈振动和冲击,无强烈电磁场干扰。 2.5 周围无严重尘土、爆炸危险介质、腐蚀金属和破坏绝缘的有害气体、导电微粒和严重的霉菌。 2.6 垂直倾斜度不大于5度。 3.技术指标 3.1 三相交流输入电压380V(+15%,-10%),频率50 HZ。 3.2 控制母线直流输出电压:220V。 3.3 控制母线直流输出电流额定值:4A。 3.4 免维护全密封铅酸蓄电池的电池容量额定值:40AH。 3.5 直流屏在0.5秒内瞬时输出电流值2C:80A。 3.6 控制母线电压稳定度≤±2%。 3.7 控制母线电压纹波系数≤±0.1%。 3.8 恒流精度≤±0.5%。 3.9 合闸母线电压≤+15%,-10%。 3.10 最大限流输出电流(A):1.2I N。 3.11 效率≥90%。 3.12 功率因数>0.92。 3.13 响应速度:0.2ms。 3.14 整机噪声≤50dB。 3.15 均流方式:自动均流。 3.16 谐波:无干扰。

样本量计算

样本量计算 调查研究中样本量的确定 在社会科学研究中,研究者常常会遇到这样得问题:“要掌握总体(population)情况,到底需要多少样本量(sample)?”,或者说“我要求调查精度达到95%,需要多少样本量?”。对此,我往往感到难以回答,因为要解决这个问题,需要考虑的因素是多方面的:研究的对象,研究的主要目的,抽样方法,调查经费…。本文将根据自己的经验,探讨在调查研究中确定调查所需样本量的一些基本方法,相信这些方法对于其他的社会调查研究也有一定的借鉴意义。 确定样本量的基本公式 在简单随机抽样的条件下,我们在统计教材中可以很容易找到确定调查样本量的公式: Z2 S2 n = ------------ (1) d2 其中: n代表所需要样本量 Z:置信水平的Z统计量,如95%置信水平的Z统计量为1.96,99%的Z为2.68。 S:总体的标准差; d :置信区间的1/2,在实际应用中就是容许误差,或者调查误差。 对于比例型变量,确定样本量的公式为: Z2 ( p ( 1-p)) n = ----------------- (2) d2 其中: n :所需样本量 z:置信水平的z统计量,如95%置信水平的Z统计量为1.96,99%的为2.68

p:目标总体的比例期望值 d:置信区间的半宽 关于调查精度 通常我们所说的调查精度可能有两种表述方法:绝对误差数与相对误差数。如对某市的居民进行收入调查,要求调查的人均收入误差上下不超过50元,这是绝对数表示法,这个绝对误差也就是公式(1)中置信区间半宽d。 而相对误差则是绝对误差与样本平均值的比值。例如我们可能要求调查收入与真实情况的误差不超过1%。假定调查城市的真实人均收入为10000元,则相对误差的绝对数是100元。 公式的应用方法 对于公式的应用,一些参数是我们可以事先确定的:Z值取决于置信水平,通常我们可以考虑95%的置信水平,那么Z=1.96;或者99%,Z=2.68。然后可以确定容许误差d(或者说精度),即我们可以根据实际情况指定置信区间的半宽度d。因此,公式应用的关键是如何确定总体的标准差S。如果我们可以估计出总体的方差(标准差),那么我们可以根据公式计算出样本量: 例如:要了解该城市的居民收入,假定我们知道该市居民收入的标准差为1500,要求的调查误差不超过100元,则在95%的置信水平下,所需的样本量为 n=1.962*15002/1002=8,643,600/10,000=864 即需要调查的样本量为864个。 最大样本量 以上公式只是理论上的,在实际调查中确定合理的样本量,必须考虑多方面的因素。 首先,由于人们通常缺乏对标准差的感性认识,因此对标准差的估计往往是最难的。总体的标准差是123,还是765?如果没有一点对样本的先验知识,那么对标准差的估计是不可能的。好在我们通常能对变量的平均值进行估计,如我们通过历史资料估计该地区目前的年人均收入大致为10,000元,那么根据统计学知识,我们引入变异系数的概念: 变异系数V=标准差S/平均值X<= 1 因此,我们知道人均收入的标准差应该小于平均值,就是说标准差应该在10000以下。当然,这对于我们确定样本量还不能起太大的作用。然而如果我们采用相对误差表述的精度,对公

直流屏技术规范

直流屏技术规范 2017年9月

直流电源技术规范 1.总则 具有强大的软件功能、高度的集成化、简单的主电路线路、技术先进,智能化水平高,性能稳定可靠,指标高于标准要求值,生产容易,操作简单,维护方便,性能价格比高。 编制适合直流系统的控制、调节、信号、报警软件,使系统各部分功能有机地融为一体。控制系统可根据运行情况及变化按设计要求,自动确定其工作状态,输出电压、电流及信号。可以随时随地对其运行状态监控,并进行相应的动态调节;技术方案先进,标准化设计,容量变化控制单元硬件不变,仅与软件设置有关,改变软件中的设置参数,就可以满足用户的要求;生产、维护均很方便,这也最大限度的减少了备品备件。控制单元设计特点是:硬件集成化、标准化、模块化,强化软件功能,控制方式灵活、方便。 2. 引用标准 DL/T459—2000 《电力系统直流电源柜订货技术》 DL/T 5777.4-2000 《电力系统直流电源设备通用技术条件及安全要求》 DL/T 724-2000 《电力系统用蓄电池直流电源装置运行与维护技术规程》 DL/T 781-2001 《电力用高频开关整流模块》 JB/T8456—1996 《低压直流成套开关设备》 DL/T637-1997 《阀控式密封铅酸蓄电池订货技术》 GB/T3859.1—1993 《半导体变流器基本要求的规定》 ZBK45017—90 《电力系统用直流屏通用技术条件》 GB/T17626—1998 《电磁兼容试验和测量技术》 GB/T7261-1987 《继电器及继电器保护装置基本试验方法》 GB2681-81 《电工成套装置中导线颜色》 GB/T17478-1998 《低压直流设备的特性及安全要求》 IEC896-2 《固定型铅酸蓄电池一般要求和试验方法》 LS(W)30-40-JT 《电力系统用微机控制直流电源柜技术条件》 DL/T 5044-2014 《电力工程直流系统设计技术规程》 3. 环境使用条件 3.1 海拔高度不超过2000m。 3.2 户内使用,周围环境温度不低于-10℃,不高于40℃。 3.3 环境的日平均相对湿度不超过95%,月平均相对湿度不超过90%。 3.4 运行地点无导电微粒,爆炸介质和严重尘埃,无腐蚀金属和破坏绝缘的气体,无强电磁干扰。 3.5 地震裂度::8度。 3.6 柜体前平面对安装水平面的不垂直度(向后),不超过柜体高度的5‰.

消防水池最小容积的计算题

某综合楼,高45m,底部4层为商场,每层面积为3500㎡,上部为写字楼,每层面积为1500㎡。设有室内、外消火栓给水系统;自动喷水灭火系统(设计流量为30L/s);跨商场4层的中庭采用雨淋系统(设计流量为40L/s);中庭与商场防火分隔采用防护冷却水幕(设计流量为30L/s)。室内的消防用水需储存在消防水池中,市政管网有符合要求的两条水管向水池补水,补水量分别为 50m3/h和40m3/h。求该建筑消防水池最小有效容积应为多少立方米? 【解析】根据《建筑设计防火规范》GB50016-2014(以下简称《建规》)表5.1.1,该建筑为一类高层公共建筑; 根据《消防给水及消火栓系统技术规范》GB50974-2014(以下简称《消规》)表3.5.2,一类高层公共建筑消火栓设计流量为30L/s; 又根据《消规》3.5.3,高层建筑当高度不超过50m且室内消火栓设计流量超过20L/s时,其室内消火栓设计流量可按本规范表3.5.2减少5L/s,所以该建筑室内消火栓设计最小流量应为25L/s,室内消火栓用水量应为25*3*3.6=270m3;根据《消规》3.6.1条文说明,一个防护对象或防护区的自动灭火系统的用水量按其中用水量最大的一个系统确定,所以自动灭火系统的用水量应为 40*1*3.6=144m3; 根据《消规》3.6.4,建筑内用于防火分隔的防火分隔水幕和防护冷却水幕的火灾延续时间,不应低于防火分隔水幕或防护冷却设置部位墙体的耐火极限。根据《建规》5.3.2-1,当中庭采用防火隔墙进行防火分隔时,其耐火极限不应低于1.00h,所以防护冷却水幕的用水量应为30*1*3.6=108m3; 所以该建筑室内消防用水量应为270+144+108=522m3。 根据《消规》4.3.5,火灾延续时间内的连续补水流量应按消防水池最不利进水管供水量计算,由于一类高层公共建筑火灾延续时间为3h,所以该市政管网在火灾延续时间内的连续补水量应为40*3=120m3。 因此,该建筑消防水池最小有效容积应为522-120=402m3。 扩展考点:常见场所的火灾延续时间 《消规》3.6.2:

直流屏技术规格书

四、直流屏 1 基本条件 1. 1 设备制造应遵循的标准和规范,包括但不限于: DL/T 5044-2014 《电力工程直流电源系统设计技术规程》 DL/T 459-2000 《电力系统直流电源柜订货技术条件》 DL/T 724一2000 《电力系统用蓄电池直流电源装置运行与维护技术规程》 DL/T 781-2001 《电力用高频开关整流模块》 GB/T 13337. 1-2011 《固定型排气式铅酸蓄电池第1部分:技术条件》 GB/T 3859. 1-2013 《半导体变流器通用要求和电网换相变流器第1-1部分γ基本要求规范》 GB/T 17626. 2-2006 《电磁兼容试验和测量技术静电放电抗扰度试验》 GB/T 17626. 12-2013 《电磁兼容试验和测量技术振铃波抗扰度试验》 GB 4208-2008 《外壳防护等级(IP代码)》 DL/T637-1997《阀控式密封铅酸蓄电池订货技术条件》 DL/T5137一2001 《电测量及电能计量装置设计技术规程》 1. 2设备使用环境条件 安装位置户内安装 海拔高度环境温度相对湿度小于1000米-4℃+42 ℃ 最大相对湿度:95% 平均相对湿度:90% 1. 3地震裂度运8度 1. 4系统参数 (1)系统概况 系统额定电压:400V

(2)系统接线方式:三相囚线 (3)容量(Ah):中心变电所10。他分变电所65Ah 2 技术要求 2. 1 系统功能要求 (1)直流电源装置提供的输出电源应满足各变电所lOkV系统的断路器合/分闸、继电保护、控制及信号等所需: (2)直流电源装置至少包括蓄电池组、直流馈电开关、电池充电/浮充电装置(一套)、稳绝缘监察、微机监控、电压监测、闪光信号装置等; 压装置、 (3)系统运行稳定,抗干扰能力强,技术精度高: (4)系统保护、故障告警功能完善,调整设定直观方便; (5)直流系统采用微机控制技术,能自动进行充电、浮充电、自动调压、自动投切:(6)系统对交流输入电压、直流母线电压和电流、电池电压和充电设备输出电流、绝缘、检测数据等重要参数,均可进行在线测量和数据上送:支持Modbus协议,具有RS485或以太网接口。 (7)系统应具备完善的设置、保护功能,可带电插拔,任一模块退出运行均不影响系统构正常运行,保证系统的高可靠性: (8)当监控系统故障退出时,高频开关电源模块能正常工作: (9)当蓄电池事故放电后,高频开关电源模块能对蓄电池自动进行补充电: (10)严格按照蓄电池充电曲线对蓄电池进行充电,避免过充和欠充现象,延长电池的使用寿命· (11)监控单元采用,大屏幕,LCD汉字显示,使设备的操作更为简便,并可进行参数设定、调节。并具有密码权限管理措施,杜绝非法操作,从而保障设备安全可靠运行。 2. 2 直流电源柜技术参数 (1)柜体尺寸:800mm*600mm*2200mm C W*D*H),由充电屏、电池屏两台柜组成;(2)输入电压:交流3相380V士15%,50Hz±2%; (3)额定输出电压:DC220V; (4)浮充电压:DC242V;

消防用水量实例计算

摘要:消防设计用水量包括流量和水量。 建筑中自动灭火系统的设计流量应按其中设计流量最大的一种系统确定,多种消防系统的设计总流量应按其中消防总流量最大的一个防护对象和防护区确定,一个防护区的总流量应为其中的消火栓、自动灭火、水幕系统流量之和。把出现在不同防护区的消火栓系统最大流量、自动灭火系统最大流量和水幕系统最大流量之和作为消防系统的设计总流量不符合每次只有1个失火点的消防基本设定。确定系统的设计水量,方法类似。 关键词:消防工程设计流量水量自动灭火系统建筑水消防系统建筑消防用水量包括流量和水量两个参数。用水流量决定消防水泵的流量和消防管径,用水水量决定消防水池的容积。流量和水量的合理确定一方面影响着消防系统的灭火性能或消防灭火的成败,另一方面还通过管径、水泵流量、水池容积等影响着消防丁程的投资规模。因此,消防流量和水量是消防灭火供水丁程中一组非常重要的数据。 1目前水量计算存在的问题根据国家规范,消防系统用水量按需要同时开启的灭火系统的用水量之和计算。然而,由于下列原因,需要同时开启的灭火系统越来越难以判断和把握,以至于判断结果及用水量的计算值往往因人而异,并且差别明显。 (1)建筑水消防灭火系统的种类越来越多,消火栓系统有室内、室外系统;自动灭火系统有:湿式系统、干式系统、预作用系统、雨淋系统、水喷雾系统、水幕系统、自动喷水一泡沫联用系统、消防水炮系统等;水幕系统有防火分区水幕、防火隔离单元水幕,且其中又分冷却水幕和隔断水幕。一个消防供水系统中,往往同时含有上述的多种系统。 (2)建筑的功能和构造越来越复杂,一个消防灭火系统所防护的建筑物特别是综合建筑一般由多种不同功能的建筑空间组成,有的是多栋建筑其功能互不相同,有的是一栋建筑含有多个功能区间。消防用水量随建筑功能而变化,同一灭火系统的用水量也会依功能区和建筑构造的变化而出现多个值。需要同时开启的系统种类或数量决定着用水量之和,哪些系统需要同时开启是设计中首先要解决的问题。但目前,需要同时开启的系统并没有可操作的判定标准,设计人员都根据自己的经验确定。由于火灾学专业水平和经验的差异,致使同时

怎样确定统计量的样本容量

样本量的确定方法(2008-10-14 09:12:34) 一、样本单位数量的确定原则 一般情况下,确定样本量需要考虑调查的目的、性质和精度要求。以及实际操作的可行性、经费承受能力等。根据调查经验,市场潜力和推断等涉及量比较严格的调查需要的样本量比较大,而一般广告效果等人们差异不是很大或对样本量要求不是很严格的调查,样本量相对可以少一些。实际上确定样本量大小是比较复杂的问题,即要有定性的考虑,也要有定量的考虑;从定性的方面考虑,决策的重要性、调研的性质、数据分析的性质、资源、抽样方法等都决定样本量的大小。但是这只能原则上确定样本量大小。具体确定样本量还需要从定量的角度考虑。 从定量的方面考虑,有具体的统计学公式,不同的抽样方法有不同的公式。归纳起来,样本量的大小主要取决于: (1)研究对象的变化程度,即变异程度; (2)要求和允许的误差大小,即精度要求; (3)要求推断的置信度,一般情况下,置信度取为95%; (4)总体的大小; (5)抽样的方法。 也就是说,研究的问题越复杂,差异越大时,样本量要求越大;要求的精度越高,可推断性要求越高时,样本量也越大;同时,总体越大,样本量也相对要大,但是,增大呈现出一定对数特征,而不是线形关系;而抽样方法问题,决定设计效应的值,如果我们设定简单随机抽样设计效应的值是1;分层抽样由于抽样效率高于简单随机抽样,其设计效应的值小于1,合适恰当的分层,将使层内样本差异变小,层内差异越小,设计效应小于1的幅度越大;多阶抽样由于效率低于简单随机抽样,设计效应的值大于1,所以抽样调查方法的复杂程度决定其样本量大小。对于不同城市,如果总体不知道或很大,需要进行推断时,大城市多抽,小城市少抽,这种说法原则上是不对的。实际上,在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。 二、样本量的确定方法 如何确定样本量,基本方法很多,但是公式检验表明,当误差和置信区间一定时,不同的样本量计算公式计算出来的样本量是十分相近的,所以,我们完全可以使用简单随机抽样计算样本量的公式去近似估计其他抽样方法的样本量,这样可以更加快捷方便,然后将样本量根据一定方法分配到各个子域中去。所以,区域二相抽样不能计算样本量的说法是不科学的。

消防水池容积计算

消防水池容积计算 应该是室内消火栓Q1,室外消火栓Q2,喷淋系统Q3在火灾时间内的全部消防用水量.即三项流量乘以火灾延续时间之和.V=Q1*T1+Q2*T2+Q3*T3;T3一般为1小时,T2,T1一般为2小时或3(高层建筑)小时消防水池的容积,是按照满足两小时消防灭火用水量(自消、普消)的前提下,不含前10分钟的用水,水池的有效容积。在计算时,需要加上1.3的系数。规范同时上说在能保证连续补水的前提下,水池的容量可以减去火灾延续时间内补充的水量。 消防水池的消防用水量可按下式确定: Vf=3.6(Qf-Ql)Tx Vf消防用水量,立方米 Qf室内外消防用水量,升每秒 Ql水池连续补充水量,升每秒 Tx火灾延续时间,是指消防水泵开始从水池抽水到火灾基本被扑灭为止的一段时间,具体查规范。小区和普通建筑一般取2小时。 水池根据消防用水量确定,一般水池的容积比用水量稍大。消防水池内的水一经动用,应尽快补充,以供在短时间内可能发生第二次火灾时使用,本条参考《建规》的要求,规定补水时间不超过48h。 为保证在清洗或检修消防水池时仍能供应消防用水,故要求

总有效容积超过500m3的消防水池应分成两个,以便一个水池检修时,另一个水池仍能供应消防用水。 消防水池容积计算是否正确 室内消火栓用水量为15喷淋为20室外为20二支150进水管请问消防水池做多大? 室内消防用水量为15*3.6*2+20*3.6*1=180室外消防用水量为20*3.6*2=144 单位时间流量=截面积*水流速度*时间 Q=A*V*T 150进水管按2.5计算二小时出水量为317 消防水池容积为180+144-317=7 假如补水流速按1m/s计算,补水时间按1h计算为妥,补水量为2x3.14159x0.15^2x1/4x1x3600=127m3,水池容积在200m3左右。 原则只有条件受限时才考虑补水量,有条件就不要考虑了!~如果有两路进水就不用考虑室外消防用水量,仅有一路时要考虑!~还有好多地方要求只有一路进水时要设置独立的室外消火栓系统!~也就是独立管网独立室外消火栓泵。 室内消火栓用水量为15*3.6*2=108(15l/s) 自喷用水量为20*3.6*1=72(15l/s) 室外消防用水量为20*3.6*2=144 (20l/s) 室外消防用水量由室外DN150供水,供水能力35L/S 水流速度1.8m/s,即室内外消火栓用水量 故消防水池需蓄全部自喷用水量,再应考虑最大时生活用水

直流屏技术参数

直流屏技术参数 额定电压: 380V±10 % ;三相四线+PE 线,2 回进线; 额定输入频率: 50HZ±2 %; 输出直流标称电压: 220V±0.5 %; 蓄电池的额定容量:见供货范围 设备负载等级: 负载等级为一级(即连续输出额定电流); 稳压精度:≤±0.3 % 稳流精度:≤±0.5 % 纹波系数: ≤0.5 % 均流不平衡度:≤ 3 % 浮充电压稳定调节范围: 210~250V 均恒充电电压稳定调节范围:220~290V 充电电压调节范围: DC 180~290V 直流输出电流调节范围: 10% ~ 100% 绝缘电阻: 10 MΩ 绝缘耐压:≥ 2KV 功率因数:≥ 0.9 效率:≥ 90 % 噪声:< 45 dB 五. 直流屏技术要求 5.1 高频充电成套装置主要技术参数 1) 主要技术参数 ●交流输入 三相输入额定电压: 380V ±10% 三相输入额定频率: 50HZ±5% 交流欠压保护值: 302V±5V 交流过压保护值: 460V±5V ●直流输出 单只充电模块输出额定值: 10A 电压调节范围: 180V-290V 连续可调 最大输出电流: 10.5 A 输出电流限流: 20~105%额定电流连续可调 负载适应能力: 0~105%额定电流均能正常工作 蓄电池充电限流: 20~100%额定电流连续可调 输出过压: DC250V 可调 输出欠压: 198V DC 充电稳流精度:≤0.3%(典型值0.2%) 充电稳压精度:≤0.3% 注:装置在稳流状态下运行时,在充电(稳流)电压调压范围内任一数值上,电网电压在

额定值的±10%范围内变化,直流输出电流能在额定值的0~100%范围任一点上保持稳定,稳流 精度:≤±0.3%;纹波系数:≤±0.1% 注:整流设备在均衡充电及浮充电(稳压)状态下,电网电压在在额定值的±10%范围内变 化,负载电流在0~100%范围内变化时(且为电阻性负载),其输出端的纹波系数:≤±0.1%; 并机不均流度:≤±3% 开关机过冲幅度(最大峰值):≤±150%Umax(设定值) 起动冲击电流(浪涌电流):≤±150%最大输入电流 转换效率:≥94%(满负荷输出) 动态响应:在20%负载跃变到80%负载时恢复时间≤200цS,超调≤±5% 表5-1 充电电压及浮充电压的调节范围(V) 蓄电池种类 调节范围 充电电压浮充电电压 阀控式密封铅酸蓄电池 2 (90%~125%) U (90%~125%) U 6、12 (90%~130%) U (90%~130%) U 注:U——直流标称电压。 2) 高频开关电源模块 a 采用N+1 冗余配置方式。可带电插拔,模块与模块之间采用隔离设计,防止模块间相互 影响。每个模块额定输出10A 或20A,每套充电器最少3 个充电模块。充电模块采用进口或合资 名优品牌产品。 b 模块内部自带CPU,模块的所有基准校准和控制全部采用12 位以上D/A 完成,替代所有 电位器,防止电位器固有的温度系数和机械特性所引起的参数漂移,并使模块的控制精度大大 提高,保证模块的运行参数永不丢失,即使脱离主监控工作其参数也不会有任何改变。 c 模块有多重保护设计: 三相交流输入首先经防雷处理和 EMI 滤波,可有效吸收雷击残压和电网尖峰,有效保证 模块后级电路安全。 输出过压保护:模块内设过压保护电路,出现过压后模块自动锁死,相应模块故障指示 灯亮,模块自动退出工作而不影响整个系统正常运行。 输出限流保护:超出模块限流值,模块自动调低输出电压以保护模块。

相关文档
最新文档