传感器类别大全

传感器类别大全
传感器类别大全

传感器类别大全,22种你都知道吗?

随着现代自动化的发展,传感器的应用越来越多,传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器的类别有千万种,细分的话,但是我们常见的就这22种。

1.称重传感器

称重传感器是一种能够将重力转变为电信号的力→电转换装置,是电子衡器的一个关键部件。

能够实现力→电转换的传感器有多种,常见的有电阻应变式、电磁力式和电容式等。电磁力式主要用于电子天平,电容式用于部分电子吊秤,而绝大多数衡器产品所用的还是电阻应变式称重传感器。电阻应变式称重传感器结构较简单,准确度高,适用面广,且能够在相对比较差的环境下使用。

2.电阻应变式传感器

传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。

3.电阻式传感器

电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。

4.变频功率传感器

变频功率传感器通过对输入的电压、电流信号进行交流采样,再将采样值通过电缆、光纤等传输系统与数字量输入二次仪表相连,数字量输入二次仪表对电压、电流的采样值进行运算,可以获取电压有效值、电流有效值、基波电压、基波电流、谐波电压、谐波电流、有功功率、基波功率、谐波功率等参数。

5.压阻式传感器

压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。

6.热电阻传感器

热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,已开始采用镍、锰和铑等材料制造热电阻。它主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。

7.激光传感器

利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲,经目标反射后激光向各方向散射,部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。

8.霍尔传感器

霍尔传感器是根据霍尔效应制作的一种磁场传感器,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

9.温度传感器

温度传感器主要是根据电阻阻值、热电偶的电势随温度不同发生有规律的变化的原理,我们可以得到所需要测量的温度值。温度传感器不但种类繁多,而且组合形式多样,应根据不同的场所选用合适的产品。

10.无线温度传感器

无线温度传感器将控制对象的温度参数变成电信号,并对接收终端发送无线信号,对系统实行检测、调节和控制。可直接安装在一般工业热电阻、热电偶的接线盒内,与现场传感元件构成一体化结构。通常和无线中继、接收终端、通信串口、电子计算机等配套使用,这样不仅节省了补偿导线和电缆,而且减少了信号传递失真和干扰,从而获的了高精度的测量结果。

11.智能传感器

智能传感器的功能是通过模拟人的感官和大脑的协调动作,结合长期以来测试技术的研究和实际经验而提出来的。是一个相对独立的智能单元,它的出现对原来硬件性能苛刻要求有所减轻,而靠软件帮助可以使传感器的性能大幅度提高。

12.光敏传感器

光敏传感器是最常见的传感器之一,它的种类繁多,主要有:光电管、光电倍增管、光敏电阻、光敏三极管、太阳能电池、红外线传感器、紫外线传感器、光纤式光电传感器、色彩传感器、CCD和CMOS图像传感器等。它的敏感波长在可见光波长附近,包括红外线波长和紫外线波长。光传感器不只局限于对光的探测,它还可以作为探测元件组成其他传感器,对许多非电量进行检测,只要将这些非电量转换为光信号的变化即可。光传感器是目前产量最多、应用最广的传感器之一,它在自动控制和非电量电测技术引中占有非常重要的地位。

13.视觉传感器

视觉传感器是指:具有从一整幅图像捕获光线的数发千计像素的能力,图像的清晰和细腻程度常用分辨率来衡量,以像素数量表示。视觉传感器具有从一整幅图像捕获光线的数以千计的像素,图像的清晰和细腻程度通常用分辨率来衡量,以像素数量表示。

14.位移传感器

位移传感器又称为线性传感器,把位移转换为电量的传感器。位移传感器是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器。

15.光栅传感器

计量光栅通常用于数字检测系统,用来检测高精度直线位移和角位移,是数控机床上应用较多的一种检测装置。光栅传感器的空间分辨率一般可达1μm左右,单根光栅的长度可达600mm以上,主光栅能够进行拼接,测量范围可达几米以上。如图所示光栅由4光源,透镜,2指示光栅,3光电元件,驱动电路和1标尺光栅组成。

16.红外传感器

红外线传感器是利用热电偶原理,由红外辐射与物质相互作用所呈现出来的物理效应探测红外辐射的传感器,多数情况下是利用这种相互作用所呈现出的电学效应。测量目标物与传感器或者物体与环境温度之间的差值,热电偶的原理是二种不同的金属A和B构成一个闭合回路,当二个接触端温度不同时(T>To),回路中产生热电势Eab,其中T称为热端、工作端或测量端,To称为冷端、自由端或参比端。A和B称为热电极。热电势的大小由接触电势(也叫伯尔贴电势)和温差电势(也叫汤姆逊电势)决定。

17.真空度传感器

真空度传感器,采用先进的硅微机械加工技术生产,以集成硅压阻力敏元件作为传感器的核心元件制成的绝对压力变送器,由于采用硅-硅直接键合或硅-派勒克斯玻璃静电键合形成的真空参考压力腔,及一系列无应力封装技术及精密温度补偿技术,因而具有稳定性优良、精度高的突出优点,适用于各种情况下绝对压力的测量与控制。

18.压力传感器

压力传感器引是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。

19.锑电极酸度传感器

锑电极酸度传感器是集PH检测、自动清洗、电信号转换为一体的工业在线分析仪表,它是由锑电极与参考电极组成的PH值测量系统。在被测酸性溶液中,由于锑电极表面会生成三氧化二锑氧化层,这样在金属锑面与三氧化二锑之间会形成电位差。该电位差的大小取决于三所氧化二锑的浓度,该浓度与被测酸性溶液中氢离子的适度相对应。

20.电导传感器

它是通过测量溶液的电导值来间接测量离子浓度的流程仪表(一体化传感器),可在线连续检测工业过程中水溶液的电导率。

由于电解质溶液与金属导体一样的电的良导体,因此电流流过电解质溶液时必有电阻作用,且符合欧姆定律。但液体的电阻温度特性与金属导体相反,具有负向温度特性。为区别于金属导体,电解质溶液的导电能力用电导(电阻的倒数)或电导率(电阻率的倒数)来表示。当两个互相绝缘的电极组成电导池时,若在其中间放置待测溶液,并通以恒压交变电流,就形成了电流回路。如果将电压大小和电极尺寸固定,则回路电流与电导率就存在一定的函数关系。

21.超声波测距离传感器

超声波测距离传感器采用超声波回波测距原理,运用精确的时差测量技术,检测传感器与目标物之间的距离,采用小角度,小盲区超声波传感器,具有测量准确,无接触,防水,防腐蚀,低成本等优点,可应于液位,物位检测,特有的液位,料位检测方式,可保证在液面有泡沫或大的晃动,不易检测到回波的情况下有稳定的输出。

22.电容式物位传感器

电容式物位传感器由电容式传感器与电子模块电路组成,它以两线制4~20mA恒定电流输出为基型,经过转换,可以用三线或四线方式输出,输出信号形成为1~5V、0~5V、0~10mA 等标准信号。电容传感器由绝缘电极和装有测量介质的圆柱形金属容器组成。当料位上升时,因非导电物料的介电常数明显小于空气的介电常数,所以电容量随着物料高度的变化而变化。

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义与分类 传感器的分类方法很多.主要有如下几种: (1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。这种分类有利于选择传感器、应用传感器 (2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。 (3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。这种分类法可分出很多种类。 (4)按照传感器输出量的性质分为摸拟传感器、数字传感器。其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。传感器数字化就是今后的发展趋势。 (5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用与家电用传感器等。若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。 (6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用与分析用传感器等。 主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造与更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。微型化就是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。 主要功能常将传感器的功能与人类5大感觉器官相比拟: 光敏传感器——视觉 声敏传感器——听觉 气敏传感器——嗅觉 化学传感器——味觉 压敏、温敏、传感器(图1) 流体传感器——触觉 敏感元件的分类: 物理类,基于力、热、光、电、磁与声等物理效应。 化学类,基于化学反应的原理。 生物类,基于酶、抗体、与激素等分子识别功能。 通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件与味敏元件等十大类(还有人曾将敏感元件分46类)。 1)光纤传感器 光纤传感器技术就是随着光导纤维实用化与光通信技术的发展而形成的一门崭新的技术。光纤传感器与传统的各类传感器相比有许多特点,如灵敏度高、抗电磁干扰能力强,耐腐蚀,绝缘性好,结构简单,体积小、耗电少,光路有可挠曲性,以及便于实现遥测等、 光纤传感器一般分为两大类,一类就是利用光纤本身的某种敏感特性或功能制成的传感器、称为功能型传感器;另一类就是光纤仅仅起传输光波的作用,必须在光纤端面或中间加装其她敏感元件才能构成传感器,称为传光型传感器。无论哪种传感器,其工作原理都就是利用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已调制的光信号进行检测,从而得到被测量。

液位计的种类、原理及优缺点

液位计的种类、原理及优缺点 磁性浮子液位计 根据浮力原理和磁性耦合作用研制而成。当被测容器中的液位升降时,液位计本体管中的磁性浮子也随之升降,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示器,驱动红、白翻柱翻转,当液位上升时翻柱由白色转变为红色,当液位下降时翻柱由红色转变为白色,指示器的红白交界处为容器内部液位的实际高度,从而实现液位清晰的指示。 可以做到高密封,防泄漏和适用于高温、高压、耐腐蚀的场合。对高温、高压、有毒、有害、强腐蚀介质更显其优越性。 与介质直接接触,浮球密封要求要严格,不能测量粘性介质。磁性材料如退磁易导致液位计不能正常工作 磁性翻板(柱)式液位计 与上同 与上同 翻板容易卡死,造成无法远传指示。磁性材料如退磁易导致液位计不能正常工作。 电磁波雷达液位计(导波雷达液位计) 雷达液位计采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下: D=CT/2(D:雷达液位计到液面的距离C:光速T:电磁波运行时间) 雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。

不需要传输媒介,不受大气、蒸气、槽内挥发雾影响的特点,能用于挥发介质的液位测量。采用非接触式测量,不受槽内液体的密度、浓度等物理特性的影响。 价格昂贵。仪表需要设置的参数较多,一旦出现问题,通常很难查出是什么原因造成的。如果天线本身不慎沾上介质会报错。如有结晶结冰现象会报错,需加热保温处理,并清理天线。最初安装需要是空仓,即空料位? 超声波液位计 超声波液位计是由微处理器控制的数字物位仪表。在测量中脉冲超声波由传感器(换能器)发出,声波经物体表面反射后被同一传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。 无机械可动部分,可靠性高,安装简单、方便,属于非接触测量,且不受液体的粘度、密度等影响 精度比较低,测试容易有盲区。不可以测量压力容器,不能测量易挥发性介质。 电容式液位计 采用测量电容的变化来测量液面的高低的。它是一根金属棒插入盛液容器内,金属棒作为电容的一个极,容器壁作为电容的另一极。两电极间的介质即为液体及其上面的气体。由于液体的介电常数ε1和液面上的介电常数ε2不同,比如:ε1》ε2,则当液位升高时,两电极间总的介电常数值随之加大因而电容量增大。反之当液位下降,ε值减小,电容量也减小。所以,可通过两电极间的电容量的变化来测量液位的高低。电容液位计的灵敏度主要取决于两种介电常数的差值,而且,只有ε1和ε2的恒定才能保证液位测量准确,因被测介质具有导电性,所以金属棒电极都有绝缘层覆盖。 传感器无机械可动部分,结构简单、可靠;精确度高;检测端消耗电能小,动态响应快;维护

图文传感器大全

霍尔位移传感器外形编号HK外观尺寸 M12×1*50可检测物体永磁铁检测距离埋入式:0-15mm额定工作电压4.5~10.5VDC功耗检测时:≤20mA…<4mA;无检测时:≤20mA负载电阻电流型:0~300Ω;电压型:≥2.2KΩ输出电流型:4~20mA;电压型:0~5V允许电压波动≤5%输出信号PNP模拟线形误差≤1.5%温度飘移≤0.01mm/℃重复精度≤1%环境温度 -40℃~150℃外壳材料金属防护等级 IP67 BURKERT宝德液位传感器技术参数:测量范围:1Hz~45KHz输出方式:低电平有效,驱动能力不小于15mA 输出信号:波形:矩形波幅值:高电平接近供电电源,低电平≤0.5V供电电源:(4.5~24)VDC,(12~18)V最值每转脉

冲数:与贴的磁片数量一致检测距离:≤4mm 正常工作条件温度:-20℃~+80℃相对湿度:不大于85%大气压力:86KPa~106KPa周围无爆炸性、腐蚀性气体□外形及开孔尺寸总长:L+21.9(不包括输出导线) 外螺纹:M12×1螺纹有效长度:L,L=50,75,100mm输 出导线:2m 极限参数参数符号量值单位电源电压V CC :4.5-24 V磁感应强度B 不限mT输出反向击穿电压V ce 40 V输出低电平电流I OL 25 mA工作环境温度T A -40~150℃高 温贮存温度T S 150℃磁场 低噪音模拟信号路径可通过新的滤波引脚设置器件带宽 5 μs 输出上升时间,对应步进输入电流80 千赫带宽总输出误差为 1.5%(当TA = 25°C时)小型低厚度SOIC8 封装1.2 mΩ 内部传导电阻引脚1-4 至5-8 之间2.1 VRMS 最小绝缘电压 5.0 伏特,单电源操作66 至185 mV/A 输出灵敏度输出电压与交流或直流电流成比例出厂时精确度 校准极稳定的输出偏置电压近零的磁滞电源电压的成比例输出

传感器分类

传感器分类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。 按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。

2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参数的测量。 3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。

SPR生物传感器研究综述

SPR生物传感器研究综述 刘小林 (宜春学院,江西宜春336000) 摘 要:SPR生物传感器已广泛应用于易变反应物与传感器表面固定结合配体之间特定定性与定量分析1 文章综述了这种新技术的研究和应用进展情况,传感器的组成和工作原理,传感器表面和固定,应用于实验 的步骤,实验结果与未来发展趋势1 关键词:SPR生物传感器;固定技术;生物大分子 中图分类号:Q6 文献标识码:A 文章编号:1671-380X(2006)04-0120-04 Rev i ews on the Study of Surface Pl a s m on Resonance B i osen sors L I U Xiao-lin (Yichun College1J iangxi Y ichun336000China) Abstract:Surface p las mon res onance bi osens ors have become increasingly popular for the qualitative and quantitative characterizati on of the s pecific binding of a mobile reactant t o a binding partner i m mobilized on the sens or surface1This A rticle revie ws the study devel2 opments of this ne w technique,including sens or surface and i m mobilizati on,an app lied experi m ental p r ocedure,experi m ental results and future pers pectives1 Key words:Surface Plas mon Res onance B i osens or;I m mobilizati on Technique;B i ol ogicalMacr omolecule 1990年,随着SPR生物传感器(Surface p las mon res o2 nance bi osens ors)的传播,可视的光波生物传感器随即被广泛应用并逐渐成为生物大分子间相互作用的定性和定量的检测工具1对照于其他方法,这种生物传感器能察觉到在流动时期结合到被固定在生物传感器表面的特殊反应1SPR 生物传感器部分地引起关注是因为被测的物理量是折射率变化,因此,没有chr omophoric组或被标记的生物大分子是必须要的1另外,SPR生物传感器在结合的过程中提供即时的消息,也适用于μM到sub---n M宽物质间的相互作用1 目前,很多大分子间的相互作用在SPR生物传感器上的应用被公开地应用于多个领域1包括细胞粘附因子,T 细胞抗原受体和MHC-编码分子,受体—配体的相互作用,抗体抗原的相互作用,病毒研究,蛋白质—DNA和DNA--DNA间的相互作用,脂类泡状体或平面双层间的相互作用及与膜结合的单程转录复合物的合成等1除了由B iacore、Upp sala、s weden(B I A core)、I ntersents I nstru ments BV、Amersfoort、Netherlands(I B I S)制造的工业上应用的SPR生物传感器和几种用于装备实验室的SPR生物传感器外,目前只有两种渐消失的光波导耦合方式生物传感器在工业上被应用,这两种生物传感器(Kretsch mann结构为基础的棱镜型和衍射光栅型生物传感器)是以反射原理和光栅配体原理为基础,它们在描述可视物质的相互作用的性能上与SPR生物传感器类似1 用渐消失的光波生物传感器得到的可靠的数据描述化学结合动力学和平衡点,比较于简单的结合定性分析,这是一种费时费力的工作1即便是反应都遵守简单的准一级动力学规律,需要克服的困难却有:(1)固定技术必须按本来的结构结合自由反应物,必须反应均匀,必须达到方位1表面不允许有较多的非特异性结合1(2)相对地小折射率的指标增加的大多数生物大分子必须有限制的集中于传感器表面的结合位点上1(3)自由反应物能有效地运输到反应的传感器表面等问题比混合反应物的问题难解决得多1结果,测量的结合过程曲线受到限制自由反应物的质量转移,和到达传感器表面和在传感器表面上毗邻结合位点的障碍,这些测量的结合过程曲线也同样受到固定反应物不同亚群结合过程重叠和非特异性结合的影响1最近几年,最重大的进展是实验技术的发展使这些问题可以得到解决或降低其影响,在计划上控制实验,在分析程序和诊断上的发展,在结果的描述上都有改进1 SPR生物传感器的基本构造是一个由很薄的金属薄膜(通常是金的或银的)组成的棱镜,这个结构最早由Kretsch mann和Raether提出,光在棱镜内部的全部反射往往激发金属薄膜上的非放射性表面胞质团1这种胞质团是使金属薄膜表面产生等离子膜共振1 1 生物传感器的组成和工作原理 第28卷 第4期2006年8月 宜春学院学报(自然科学) Journal of Yichun University(s ocial science) Aug128,No14 Aug12006 收稿日期:2006-04-17 作者简介:刘小林(1966-),男,江西高安市人,副教授,在读博士研究生,研究方向:农学与生物技术1

传感器的分类_传感器的原理与分类_传感器的定义和分类

传感器的分类_传感器的原理与分类_传感器的定义和分类 传感器的分类方法很多.主要有如下几种: (1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。这种分类有利于选择传感器、应用传感器 (2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。 (3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。这种分类法可分出很多种类。 (4)按照传感器输出量的性质分为摸拟传感器、数字传感器。其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。传感器数字化是今后的发展趋势。 (5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。 (6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。 主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。 主要功能常将传感器的功能与人类5大感觉器官相比拟: 光敏传感器——视觉 声敏传感器——听觉 气敏传感器——嗅觉 化学传感器——味觉 压敏、温敏、传感器(图1) 流体传感器——触觉 敏感元件的分类: 物理类,基于力、热、光、电、磁和声等物理效应。 化学类,基于化学反应的原理。 生物类,基于酶、抗体、和激素等分子识别功能。 通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。 1)光纤传感器 光纤传感器技术是随着光导纤维实用化和光通信技术的发展而形成的一门崭新的技术。光纤传感器与传统的各类传感器相比有许多特点,如灵敏度高.抗电磁干扰能力强,耐腐蚀,绝缘性好,结构简单,体积小.耗电少,光路有可挠曲性,以及便于实现遥测等. 光纤传感器一般分为两大类,一类是利用光纤本身的某种敏感特性或功能制成的传感器.称为功能型传感器;另一类是光纤仅仅起传输光波的作用,必须在光纤端面或中间加装其他敏感元件才能构成传感器,称为传光型传感器。无论哪种传感器,其工作原理都是利用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已调制的光信号进行检测,从而得到被测量。

生物传感器综述

生物传感器综述

————————————————————————————————作者: ————————————————————————————————日期: ?

生物传感器课程论文 论文题目:生物传感器技术在环境分析 与检测方面的应用研究进展专业: 分析化学 姓名:雷杰 学号:12015130529 指导教师:晋晓勇 时间:2015年10月23日

生物传感器技术在环境分析与检测方面的应用研究进展 摘要:生物传感器作为一类新兴传感器,它是以生物分子敏感元件,将化学信号、热信号、光信号转换成电信号或者直接产生电信号予以放大输出,从而得到检测结果。文章综述了生物传感器在环境监测,包括水环境、大气环境等领域的应用和最新进展,并展望了环境监测生物传感器的发展前景及发展方向。 关键词:生物传感器技术;环境分析检测;

0.前言 生物传感器这门课属于分析化学和生物化学的一门交叉学科,它涉及到生物化学、电化学等多个基础学科。就目前生物传感器研究的历史阶段,它仍然处于十分活跃的研究阶段,生物传感器的研究逐渐变得专业化、微型化、集成化、也有一些生物相容的生物传感器,生物可控和智能化的传感器制成[1]。基于生物传感器的基本结构和性能,从它的选择性,稳定性,灵敏度和传感器系统的集成化发展的特点和趋势,科研人员主要研究生物传感器在医疗、食品工业和环境监测等方面,它的发展对生产生活都有极大影响,尤其是生物传感器专一性好、易操作、设备简单、可现场检测、便携式、测量快速准确、适用范围广,从而深受研究者的青睐。本文主要概述了近三年来生物传感器在环境分析与检测方面的应用研究,从而对以后生物传感器技术的研究有所帮助与借鉴。 1.生物传感器技术 1.1生物传感器的组成及工作原理 生物传感器主要是由生物识别和信号分析两部分组成。生物识别部分是由具有分子识别能力的生物敏感识别元件构成,包括细胞、生物素、酶、抗体及核酸。信号分析部分通常叫换能器。它们的工作原理一般是根据物质电化学、光学、质量、热量、磁性等,物理化学性质将被分析物与生物识别元件之间反应的信号转变成易检测、量化的另一种信号,比如电信号、焚光信号等,再经过信号读取设备的转换过程,最终得到可以对分析物进行定性或定量检测的数据[2]。 生物传感器识别和检测待测物的工作原理:首先,待测物分子与识别元素接触;然后,识别元素把待测物分子从样品中分离出来;接着,转换器将识别反应相应的信号转换成可分析的化学或物理信号;最后,使用现代分析仪器对输出的信号进行相应的转换,将输出信号转化为可识别的信号。生物传感器的各个部分包括分析装置、仪器和系统也由此构成。生物传感器中的识别元素决定了传感器的特异性,是生物定性识别的决定因素;识别元素与待测分子的亲合力,以及换能器和检测仪表的精密度,在很大程度上决定了传感器的灵敏度和响应速度。

液位传感器的分类方法

按液位计传感器的所属学科分类。可分为物理型、化学型和生物型。把被测量转换成电址参数;化学型是利用化学反应,物理型是利用各种物理效应,把被测量转换成为电量参数;生物型是利用生物 按液位计传感器转换过程中的能量关系分类,可分为能最转换型和能最控制型。能量转换型是磁性翻柱液位计传感器直接将被测量的能最转换为输出量的能量;能量控制型是由外部供给液位计传感器能量。而由被测量来控制输出的能量。 按液位计传感器转换原理分类,可分为电阻式、微波式、激光式、超声式、光电式、热电式、电感式、电容式、电磁式、压电式、髯尔式、光纤式及核辐射式等等。 按液位计传感器转换过程中的物理现象分类,可分为结构型和物性型。结构型是依靠液位计传感器结构变化来实现参数转换的;物性型是利用液位计传感器的敏感元件特性变化实现参数转换的。 按液位计传感器的用途分类。可分为重址、位移、速度、加速度、力、电压、电流、温度、压力、流傲、功率物性参数等等。 效应及机体部分组织、微生物,把被测量转换为电最参数。 按液位计传感器输出量的形式分类,可分为模拟式和数字式。模拟式液位计传感器枪出为模拟量;数字式液位计传感器输出直接为数字量。 按液位计传感器的功能分类。可分为传统型和智能型。传统型磁翻板液位计传感器一般是指只具有显示和输出功能的液位计传感器;真正意义上的智能液位计传感器,推理、感知、应该具备学习、通讯等功能,具有精度高、性能价格比高、使用方便等特点。 智能型液位计传感器发展迅速,目前可实现的功能,概括起来有: 具有自动补偿功能具有自校零、自标定、白校正功能;具有双向通讯、标准化数字输出或者符号输出功能能够自动采集数据,并对数据进行预处理;能够自动进行检验、自选量程、自动诊断故障;具有数据存储、记忆与信息处理功能;具有判断、决策处理功能。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商

生物传感器及其在农药残留中的应用

专业文献综述 题目: 生物传感器及其在农药残留中的应用姓名: 李枞 学院: 植物保护 专业: 农药学 班级: 5 学号: 2011102159 指导教师: 杨红职称: 教授 2012 年05月01日

生物传感器及其在农药残留中的应用 摘要:生物传感器是一种新型的分析工具,在农药残留的检测中具有极其重要的应用价值。本文介绍了生物传感器的定义、原理、分类和特点,并对生物传感器分析农药残留物的应用、研究进展和发展趋势进行了探讨。 关键词:生物传感器;农药残留物;应用;研究进展 The Application of Biosensor in the Determination of Pesticide Residues Abstract:Biosensor is a new analysis tool.It has very important applied value in the pesticide residues analyse.This article describes the definition,theory,classification and characteristics of biological sensors in detail,and discussed the applications,research development and development trends of biosensor analysis of pesticide residues. Key word:biosensor;pesticide residues;application;research development 前言 自上世纪80年代以来,国际上农药残留分析新技术的研究非常活跃,不断有新方法、新技术涌现,以满足现场快速检测样品量的迅速增加,对分析的灵敏度、特异性和快捷性提出了更苛刻的要求。生物传感器法就是其中日渐成熟的一种。生物传感器具有体积小、成本低、灵敏度高、选择性及抗干扰能力强、响应快等优点。近年来,随生物技术的日臻完善、微电子学技术的迅速发展以及实际应用领域的迫切要求,作为一种多学科交叉的高技术、作为一种强有力的分析工具,它已成功地应用于医学、国防、环境、食品工业及农业等领域。该文主要对生物传感器在农药残留分析中的应用进行了概述。 1生物传感器 生物传感器实际上是一种特殊的化学传感器,是用生物活性物质( 如酶、抗体、抗原、细胞等) 作识别元件,配以适当的物理或化学信号转换器所构成的分析工具。 1. 1 生物传感器的工作原理 生物传感器以生物化学和传感技术为基础,其工作原理可用图1表示:待测物质经扩散作用进入分子识别元件,经分子识别,与分子识别元件特异性结合,发生生物化学反应,产生的生物学信息通过信号转换器转化为可以定量处理的光信号或电信号,再经仪表的放大和输出,即可达到分析检测的目的。 图1

传感器分类及常见传感器的应用

机电一体化技术常用传感器及其原理 班级:机械设计制造及其自动化姓名: 学号:

一、传感器的分类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。 2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参

数的测量。

3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。 另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。前者是把输入给传感器的非电量一次性的变换为电信号输出,如光

传感器的概念、分类及其使用

传感器总结 一、概念 传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。 二、传感器 1.3mm/5mm红绿双色LED(共阴)模块:可以用于电子词典、PDA、MP3、耳 机、数码相机、VCD、DVD、汽车音响等等。 2.3色LED模块(RGB):用Arduino控制。有三个颜色。 3.7彩自动闪烁LED模块:5mm圆头高亮度发光二极管,发光颜色:粉、黄、 绿(高亮度)。 4.继电器模块:继电器是具有隔离功能的自动开关元件,广泛应用于遥控、遥 测、通讯、自动控制、机电一体化及电力电子设备中。可以:a.扩大控制范围,b.放大,c.综合信号,d.自动、遥控、监测。 5.按键开关模块:按键开关模块和数字13 接口自带LED 搭建简单电路,制作 按键提示灯利用数字13 接口自带的LED,将按键开关传感器接入数字3接口,当按键开关传感器感测到有按键信号时,LED 亮,反之则灭。 6.磁簧模块:磁环模块和数字13 接口自带LED 搭建简单电路,制作磁场提示 灯利用数字13 接口自带的LED,将磁环传感器接入数字3接口,当磁环传感器感测到有按键信号时,LED 亮,反之则灭。 7.高感度声音检测模块:用于声音检测。 8.光敏电阻:光敏电阻属半导体光敏器件,除具灵敏度高,反应速度快,光谱 特性及r 值一致性好等特点外,在高温,多湿的恶劣环境下,还能保持高度的稳定性和可靠性,可广泛应用于照相机,太阳能庭院灯,草坪灯,验钞机,石英钟,音乐杯,礼品盒,迷你小夜灯,光声控开关,路灯自动开关以及各种光控玩具,光控灯饰,灯具等光自动开关控制领域。 9.光遮断模块:光遮断模块和数字13 接口自带LED 搭建简单电路,制作光遮 断提示灯利用数字13 接口自带的LED,将光遮断传感器接入数字3接口,当光遮断传感器感测到有按键信号时,LED 亮,反之则灭。 10.红外避障传感器:是专为轮式机器人设计的一款距离可调式避障传感器。 11.红外发射和接收模块:,可将电能直接转换成近红外光并能辐射出去的发光器 件。

各种传感器的分类、比较和应用

传感器的定义传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。文档收集自网络,仅用于个人学习 传感器原理结构在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着:文档收集自网络,仅用于个人学习 (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路文档收集自网络,仅用于个人学习 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成 1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2 从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。文档收集自网络,仅用于个人学习 传感器分类倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供

最新电化学生物传感器

电化学生物传感器 生物分子的分析检测对获取生命过程中的化学与生物信息、了解生物分子及其结构与功能的关系、阐述生命活动的机理以及对疾病的有效诊断与治疗都具有十分重要的意义。如何高效、快速、灵敏地检测这些生物分子,是当前生命科学领域中面临的一个十分重要的问题。解决这些问题的关键就在于发展各种新型的分析检测技术。生物传感器的出现为有效地解决这些问题提供了新的工具,为生命科学及其相关领域的研究提供了许多新的方法 1电化学生物传感器的基本结构及工作原理 1.1 基本结构 通常情况下,生物传感器由两个主要部分组成即生物识别元件和信号转换器。生物识别元件是指具有分子识别能力,能与待测物质发生特异性反应的生物活性物质,如酶、抗原、抗体、核酸、细胞、组织等。信号转换器主要功能是将生物识别作用转换为可以检测的信号,目前常用的有电化学、光学、热和质量分析几种方法[1]。其中,电化学方法就是一种最为理想的检测方法。 图1 电化学生物传感器的基本结构 1.2 工作原理 电化学生物传感器采用固体电极作基础电极,将生物敏感分子固定在电极表面,然后通过生物分子间的特异性识别作用,生物敏感分子能选择性地识别目标分子并将目标分子捕获到电极表面,基础电极作为信号传导器将电极表面发生的识别反应信号导出,变成可以测量的电信号,从面实现对分析目标物进行定量或定性分析的目的。 2电化学生物传感器的分类

由各种生物分子(抗体、DNA、酶、微生物或全细胞)与电化学转换器(电流型、电位型、电容型和电导型)组合可构成多种类型的电化学生物传感器,根据固定在电极表面的生物敏感分子的不同,电化学生物传感器可分为电化学免疫传感器、电化学DNA传感器、电化学酶传感器、电化学微生物传感器和电化学组织细胞传感器等。 2.1 电化学免疫传感器 电化学免疫传感器是一种将免疫技术与电化学检测相结合的标记免疫分析方法。它是以抗原.抗体特异性反应为基础,将抗原/抗体反应达到平衡状态后的生物反应信号转换成可测量的电信号并通过基础电极将其导出。当采用电化学检测方法测量时,其信号大小与目标分析物在一定浓度范围内成线性关系,从而实现对目标检测物的分析测定。 根据抗原-抗体间的免疫反应的类型,电化学免疫传感器可分为两种:竞争法和夹心法。竞争法的分析原理是基于标记抗原和非标记抗原共同竞争与抗体的反应[2]。而夹心法则是将捕获抗体、抗原和检测抗体结合在一起,形成一种捕获抗体/抗原/检测抗体的夹心式复合物,也称“三明治”式结合物[3]。 图2 竞争法 图3 夹心法 2.2 DNA生物传感器 DNA生物传感器主要检测的是核酸的杂交反应。电化学DNA传感器的工作原理如图所示,即将单链DNA(ssDNA)探针,固定在电极上,在适当的温度、pH、离子

葡萄糖生物传感器的进展过程及研究成果[文献综述]

文献综述 葡萄糖生物传感器的进展过程及研究成果 摘要:总结了葡萄糖生物传感器研究的发展过程;阐述了第一代经典葡萄糖酶电极、第二代传递介体传感器及第三代直接传感器的原理和特性,并介绍了其它类型的葡萄糖传感器技术及产品,部分产品在医学上的应用。最后,总结和展望了葡萄糖生物传感器研究及应用的发展趋势。 关键词:葡萄糖;生物传感器;医学领域;进展 引言:葡萄糖传感器是生物传感器领域研究最多、商品化最早的生物传感器。葡萄糖生物传感器的发展基于两个方面的技术基础:第一,葡萄糖是动物和植物体内碳水化合物的主要组成部分,葡萄糖的定量测定在生物化学、临床化学和食品分析中都占有很重要的位置,其分析方法的研究一直引起人们的关注。特别是临床检验中对血糖分析技术的需求,促进了葡萄糖酶分析方法建立;第二,1954年,Clark建立了氧电极分析方法。1956年又对极谱式氧电极进行了重大改进,使使活体组织氧分压的无损测量成为可能,并首次提出了氧电极与酶的电化学反应理论。根据Clark电极理论,自20世纪60年代开始,各国科学家纷纷开始葡萄糖传感器的研究。经过近半个世纪的努力,葡萄糖传感器的研究和应用已有了很大的发展,在食品分析、发酵控制、临床检验等方面发挥着重要的作用[1]。 1 经典葡萄糖酶电极 1962年,Clark和Lyon发表了第一篇关于酶电极的论文[2]。1967年Updik和Hicks首次研制出以铂电极为基体的葡萄糖氧化酶(GOD)电极。用于定量检测血清中的葡萄糖含量[3]。这标志着第一代生物传感器的诞生。 该方法中葡萄糖氧化酶固定在透析膜和氧穿透膜中间,形成一个“三明治”的结构,

再将此结构附着在铂电极的表面。在施加一定电位的条件下,通过检测氧气的减少量来确定葡萄糖的含量。由于大气中氧气分压的变化,会导致溶液中溶解氧浓度的变化,从而影响测定的准确性[4]。 为了避免氧干扰,1970年,Clark对其设计的装置进行改进后,可以较准确地测定 H 2O 2 的产生量,从而间接测定葡萄糖的含量[5]。此后,许多研究者采用过氧化氢电极作 为基础电极,其优点是,葡萄糖浓度与产生的H 2O 2 有当量关系,不受血液中氧浓度变化 的影响。 早期的H 2O 2 电极属于开放型,即铂电极直接与样品溶液接触,干扰比较大。现在的 商品化都是隔膜型(Clark)型,即通过一层选择性气透膜(聚乙烯膜获tefion膜)将电极与外溶液隔开。这样在用于生物样品测定时,可以阻止抗坏血酸、谷胱甘肽、尿素等许多还原性物质的干扰。同时,葡萄糖氧化酶的固定化技术也逐步发展和完善,这些研究包括聚乙烯碳酸酯膜和多孔膜包埋法、重氮化法、牛血清蛋白(BSA)-多聚甲醛膜法、牛血清白蛋白-戊二醛交联法等。1972年,Guilbault在铂电极上覆盖一层掺有葡萄糖氧化酶的选择性膜,保存10个月后相应电极上响应的稳定电流只减少了0.1%,从而制得具有较高稳定性和测量准确性的葡萄糖生物传感器[6]。这一技术被美国Yellow Spring Instrument(YSI)公司采用,于1975年首次研制出全球第一个商业用途的葡萄糖传感器。 目前,葡萄糖酶电极测定仪已经有各种型号商品,并在许多国家普遍应用。我国第一台葡萄糖生物传感器于1986年研制成功,商品化产品主要有SBA葡萄糖生物传感器[7]。该传感器选用固定化葡萄糖氧化酶与过氧化氢电极构成酶电极葡萄糖生物传感分析仪,每次进样两25uL,进样后20s可测出样品中葡萄糖含量,在10~1000mg/L范围内具良好的线性关系,连续测定20次的变异系数小于2%。 2 介体葡萄糖酶电极 在葡萄糖氧化酶电极中引入化学介体(chemical mediator)取代O 2/H 2 O 2 ,作用是把 葡萄糖氧化酶氧化,使之再生后循环使用,而电子传递介体本身被还原,又在电极上被 氧化。利用电子传递介体后,既不涉及O 2,也不涉及H 2 O 2 ,而是利用具有较低氧化电位的 传递介体在电极上产生的氧化电流,在测定葡萄糖时,可以避免其他电活性物质的干扰,提高了测定的灵敏度和准确性。 Cass等[8]将GOD固定在石墨电极(graphite electrode)上,以水不溶性二茂铁

几种液位计的原理与选型

几种液位计的原理与选型. 磁翻柱液位计 主要原理 磁翻柱液位计也称为磁翻板液位计,它的结构主要基于浮力和磁力原理设计生产的。带有磁体的浮子(简称磁性浮子)在被测介质中的位置受浮力作用影响。液位的变化导致磁性浮子位置的变化、磁性浮子和磁翻柱(也成为磁翻板)的静磁力耦合作用导致磁翻柱翻转一定角度(磁翻柱表面涂敷不同的颜色),进而反映容器内液位的情况。 配合传感器(磁簧开关)和精密电子元器件等构成的电子模块和变送器模块,可以变送输出电阻值信号、电流值(4~20mA)信号、开关信号以及其他电学信号。从而实现现场观测和远程控制的完美结合。 适用范围及特点 本液位计采用优质磁体和进口电子元件,使产品具有:设计合理、结构简单、使用方便、性能稳定、使用寿命长、便于安装维护等优点。 本液位计输出信号多样,实现远距离的液位指示、检测、控制和记录。 本液位计几乎可以适用于各种工业自动化过程控制中的液位测量与控制。可以广泛运用于石油加工、食品加工、化工、水处理、制药、电力、造纸、冶金、船舶和锅炉等领域中的液位测量、控制与监测。 磁浮球液位计(液位开关) 主要原理 磁浮球液位计(液位开关)结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串联入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。 该液位计可以直接输出电阻值信号,也可以配合使用变送模块,输出电流值(4~20mA)信号;同时配合其他转换器,输出电压信号或者开关信号(也可以按照客户需求转换器由公司配送)。从而实现电学信号的远程传输、分析与控制。 适用范围及特点 本产品采用优质磁体和进口电子元件,使产品具有:结构简单、使用方便、性能稳定、使用寿命长、便于安装维护等优点。 本产品几乎可以适用与各种工业自动化过程控制中的液位测量与控制,可以广泛运用于石油加工、食品加工、化工、水处理、制药、电力、造纸、冶金、船舶和锅炉等领域中的液位测量、控制与监测。 防爆浮球液位开关 主要原理 防爆浮球液位开关,也称为防爆浮球液位控制器。它是专门为爆炸性环境中使用而设计制造的液位控制仪表,本产品是基于浮力原理和杠杆原理设计的,当容器内液位发生变化时,浮球的位置将随液位的变化而变化,浮球的这种位移将通过杠杆作用于微动开关,进而由微动开关产生开关信号。 适用范围及特点 本产品采用优质材料和进口电子元件,使产品具有:设计合理、结构简单、使用方便、性能

相关文档
最新文档