医学信号处理第二次实验报告

医学信号处理第二次实验报告
医学信号处理第二次实验报告

电子科技大学生命科学与技术学院标准实验报告

(实验)课程名称生物医学信号处理

2018-2019-第2学期

电子科技大学教务处制表

一、实验室名称:品学楼B302

二、实验名称:随机信号多角度认知和脑电信号特征的认知

三、实验学时:

四、实验原理:

(一)

1、均值公式为:

方差公式为:

2、一个平稳随机信号中两个时间点上的自相关和自协方差公式为:

3、随机信号的功率谱密度函数定义为自相关函数的傅里叶变换:

(二)

1、傅里叶变换对:频域上与窗函数卷积使得频率谱更加平滑

2、脑电波是一些自发的有节律的神经电活动,其频率变动范围在每秒1-30次之间的,可划分为四个波段:

δ(1-3Hz):为人的深度睡眠阶段的脑电波。

θ(4-7Hz):为人的睡眠的初期阶段。

α(8-13Hz):大脑处于完全放松的精神状态下,或是在心神专注的时候出现的脑电波。

β(14-30Hz)这种脑电波反映的是人类在一种通常的、日常的清醒状态下的脑电波情况。

五、实验目的:

1、了解randn和rand产生序列的特征和区别,能够计算各种样本

数字特征及理解一阶统计量与二阶统计量间的区别。

2、利用周期图法估计信号功率谱,知道相关函数结果与功率谱的

DFT关系。

3、探讨不同窗函数对周期图法信号处理结果的影响。通过数据差

别分析信号区别。

六、实验内容:

(一)随机信号的时域和频域认识

1、在波形产生函数中选randn和rand两种波形发生器,各产生一

段随机信号,请观察它们是什么样的信号,描述它们的时域特征。

2、编制一个程序,计算这两个随机信号的样本数字特征,包括均

值、方差、相关函数(xcorr)、协方差函数(xcov),比较并描述这两个信号一阶和二阶统计量的区别。

3、对以上信号样本计算频数直方图(hist)并估计这两个随机信

号的概率密度函数(ksdensity)及估计他们的概率分布函数

(ksdensity) 。

4、利用周期图法估计这两个信号功率谱,比较并描述它们的频域

特征。

5、查看相关函数结果和功率谱之间是否是一对DFT。

(二)开闭眼脑电信号特征的认识

1、按照(学号后两位*班号)选择一路脑电信号,观察和描述开

眼和闭眼脑电信号的时域波形特征。(数据文件“eegclose.mat”

and “eegopen.mat”,Fs=250 Hz,幅度单位:微伏)

2、使用周期图法对开眼和闭眼的脑电信号进行分析,探讨不同窗

函数对分析结果的影响(矩形窗之外选三种窗);

3、将某一种窗函数下的开眼和闭眼功率谱图进行比较,找出开眼

与闭眼功率谱上存在的差异。(例如测量脑电delta,theta、alpha,beta四个波段内的功率峰值,采用表格方式列出,这样可以比较开眼和闭眼的功率谱分布的差异)。

4、给出一段文字总结开眼和闭眼脑电信号之间的差异总结。

七、实验器材(设备、元器件):matlab2014b

八、实验步骤:首先整理思路,写程序并记录运行结果,分析数据并写报告。

九、实验数据及结果分析:

(一)程序:

clear all;

clc;

N=10000;

s_randn = randn(1,N);

s_rand = rand(1,N);

%均值方差

mean_randn = mean(s_randn) mean_rand = mean(s_rand)

V_randn = var(s_randn)

V_rand = var(s_rand)

%相关函数

xg_randn = xcorr(s_randn,'biased'); xg_rand = xcorr(s_rand,'biased');

figure(1)

subplot(3,2,1)

plot(1:N,s_randn)

title('正态分布随机数')

subplot(3,2,2)

plot(1:N,s_rand)

title('均匀分布随机数')

subplot(3,2,3)

plot(1:length(xg_randn),xg_randn) title('正态分布随机数自相关')

subplot(3,2,4)

plot(1:length(xg_rand),xg_rand) title('均匀分布随机数自相关')

xfc_randn = xcov(s_randn,'biased'); xfc_rand = xcov(s_rand,'biased'); subplot(3,2,5)

plot(1:length(xfc_randn),xfc_randn) title('正态分布随机数协方差') subplot(3,2,6)

plot(1:length(xfc_rand),xfc_rand) title('均匀分布随机数协方差')

figure(2)

subplot(3,2,1)

hist (s_randn,100);

title('正态分布随机数频率直方图') subplot(3,2,2)

hist (s_rand,100);

title('均匀分布随机数频率直方图') [f1,s1] = ksdensity(s_randn);

[f2,s2] = ksdensity(s_rand); subplot(3,2,3)

plot(s1,f1)

title('正态分布随机数概率密度曲线') subplot(3,2,4)

plot(s2,f2)

title('均匀分布随机数概率密度曲线')

F1 = zeros(1,length(f1));

F2 = zeros(1,length(f2));

for i = 1:length(f1)

F1(i) = sum(f1(1:i));

end

for i = 1:length(f2)

F2(i) = sum(f2(1:i));

end

subplot(3,2,5)

plot(1:length(F1),F1)

title('正态分布随机数概率分布函数曲线') subplot(3,2,6)

plot(1:length(F2),F2)

title('正态分布随机数概率分布函数曲线') pow_n=abs(fft(s_randn,2*N-1)).^2/N;

xgn_fft=abs(fft(flip(fftshift(xg_randn)))); d1=pow_n-xgn_fft;

pow=abs(fft(s_rand,2*N-1)).^2/N;

xg_fft=abs(fft(flip(fftshift(xg_rand))));

d2=pow-xg_fft;

figure(3)

suptitle('验证相关与功率谱是一对DFT')

subplot(1,2,1)

plot(1:length(pow_n),pow_n,'*',1:length(xgn_fft),xgn_fft,'o') legend('正态序列功率谱','正态序列相关')

subplot(1,2,2)

plot(1:length(pow),pow,'*',1:length(xg_fft),xg_fft,'o') legend('平均序列功率谱','正态序列相关')

disp('正态随机信号的计算误差最大值为:')

max(d1)

disp('均匀随机信号的计算误差最大值为:')

max(d2)

结果:

1、2 :两个随机信号的样本数字特征

表1 信号的均值及方差表

图1 信号的时域图像和二阶统计量图像

3:频数直方图(hist)并估计这两个随机信号的概率密度函数(ksdensity)及估计他们的概率分布函数(ksdensity) 。

图2 频数直方图概率密度函数及概率分布函数4:相关函数结果和功率谱比较

图3 信号的功率谱和相关函数

正态随机信号的计算误差最大值为: 4.4409e-15

均匀随机信号的计算误差最大值为: 1.3088e-13

(一)程序:

clear all

close=load('eegclose');

open=load('eegopen');

close=close.eegclose(:,8*2);

open=open.eegopen(:,8*2);

n = length(close);

fs = 250;

x=(0:n-1)'/fs;

figure(1)

subplot(2,2,1)

plot(x,close);

xlabel('时间/s');ylabel('幅度/mV');title('闭眼信号') subplot(2,2,2)

plot(x,open);

xlabel('时间/s');ylabel('幅度/mV');title('睁眼眼信号')

%构造

win=cell(1,4);

rect=boxcar(n);win{1,1}=rect;

trian=triang(n);win{1,2}=trian;

hamm=hamming(n);win{1,3}=hamm;

bman=blackman(n);;win{1,4}=bman;

figure(2)

plot(1:n,rect);hold on

plot(1:n,trian);hold on

plot(1:n,hamm);hold on

plot(1:n,bman);

legend('矩形窗','三角窗','海明窗','布莱克曼窗')

close_w = cell(1,4);

open_w = cell(1,4);

for i = 1:length(win)

close_w{1,i }= abs(fft(close.*win{1,i})).^2/n;

[pks1,locs1] = findpeaks(close_w{1,i});

open_w{1,i} = abs(fft(open.*win{1,i})).^2/n;

[pks2,locs2] = findpeaks(open_w{1,i});

end

freq = (0:n/2-1)/n *fs;

figure(3)

names={'矩形窗','三角窗','海明窗','凯撒窗'};

%在功率谱中标注出δ(1-3Hz)、θ(4-7Hz)、α(8-13Hz)、β(14-30Hz) locate_mid = [1.5,5.5,10.5,22];

%生成四种脑电波的定位矩阵

loc = {[1,3] [4,7] [8,13] [14,30]};

for i = 1:4

subplot(4,2,2*i-1)

plot(freq,close_w{1,i}(1:n/2))

xlabel('频率/Hz')

title(['闭眼加',names{1,i},'的功率谱']);

axis([0 40 0 max(close_w{1,i})/10])

set(gca,'XTickmode','manual','Xtick',locate_mid) subplot(4,2,2*i)

plot(freq,open_w{1,i}(1:n/2))

xlabel('频率/Hz')

title(['睁眼加',names{1,i},'的功率谱']);

axis([0 40 0 max(open_w{1,i})/10])

set(gca,'XTickmode','manual','Xtick',locate_mid) end

peaks_c = zeros(4,4);

peaks_o = zeros(4,4);

locate = cell(1,4);

for j=1:4

for i = 1:4

locate{1,i} = find ((freq > loc{1,i}(1)) & (freq < loc{1,i}(2)));

peaks_c(j,i) = max( findpeaks( close_w{1,j}( (locate{1,i}) ) ) );

peaks_o(j,i) = max( findpeaks( open_w{1,j}( (locate{1,i}) ) ) );

end

end

f = figure('Position',[440 500 461 146]);

% Create the column and row names in cell arrays

cnames = {'δ(1-3Hz)','θ(4-7Hz)','α(8-13Hz)','β(14-30Hz)'};

% Create the uitable

t = uitable(f,'Data',peaks_c, 'ColumnName',cnames,'RowName',names);

% Set width and height

t.Position(3) = t.Extent(3);

t.Position(4) = t.Extent(4);

f = figure('Position',[440 500 461 146]);

% Create the column and row names in cell arrays

cnames = {'δ(1-3Hz)','θ(4-7Hz)','α(8-13Hz)','β(14-30Hz)'};

% Create the uitable

t = uitable(f,'Data',peaks_o, 'ColumnName',cnames,'RowName',names); t.Position(3) = t.Extent(3);

t.Position(4) = t.Extent(4);

结果:

1:开眼和闭眼脑电信号的时域波形特征

图4 闭眼和开眼信号时域图像

2:使用周期图法对开眼和闭眼的脑电信号进行分析

图5闭眼和睁眼信号加窗分析信号功率谱

3、比较开眼和闭眼的功率谱分布的差异

表2 闭眼信号各各波段功率谱峰值

表3 睁眼信号各各波段功率谱峰值

表4 两信号各各波段功率谱峰值差值表

图7闭眼信号各波段峰值对比图

矩形窗

三角窗 海明窗 布莱克曼窗 0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03 δ(1-3Hz)

θ(4-7Hz)

α(8-13Hz)

β(14-30Hz)

闭眼信号各波段峰值

矩形窗 三角窗

海明窗

布莱克曼窗

图8 闭眼信号各波段峰值对比图

图9 闭、睁眼信号各波段峰值差值对比图

(闭眼减去睁眼)

十、总结及心得体会: (一)

1、正态分布随机信号:值为-4到4之间的随机信号,但大多数值

矩形窗

三角窗 海明窗 布莱克曼窗 0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03 δ(1-3Hz)

θ(4-7Hz)

α(8-13Hz)

β(14-30Hz)

睁眼信号各波段峰值

矩形窗 三角窗

海明窗

布莱克曼窗

集中在-2到2之间。可以看到有均匀分布的较为凸出的“毛刺”。

平均分布随机信号:值均为正数,在0到1之间,没有明显凸出的“毛刺”

2、一维统计量:

正态信号均值接近0,方差接近1。

均匀信号均值接近0.5,方差接近0。

二维统计量:

正态信号自相关与自协方差类似,除了中点为1外值越靠近中间越大,但接近于零。

均匀信号自相关仍是中点凸出,其他部分形状从两边向中间线性递增形成类似于三角形形状。自协方差形状与正态分布类似。3、正态信号:频数分布成正态分布特征,概率密度函数(ksdensity)形状类似。概率分布函数变化集中在中位数附近。

均匀信号:频数分布成均匀分布特征,概率密度函数(ksdensity)形状类似,但出现了小于0和大于1的部分。概率分布函数变化均匀几乎呈线性。

4、正态信号:功率谱上的点频率分布(横向分布)平均,纵向分布功率越小的点越多。

均匀信号:功率功率谱基本上全为0。

5、计算的差值的峰值在10E-11以下,从图像也可以观察到相关函数结果和功率谱之间是一对DFT。(由于相关函数不完全对称,很小的虚部忽略)

(二)

1、闭眼信号:时间为18s,幅度在-40mv到30mv之间。毛刺幅

度较睁眼信号密,且幅度略大。

睁眼信号:时间18s,幅度在-30mv到40mv之间。可以观测到第6s的时候又一次剧烈变化。

2、通过图7和图8各波段峰值比较图可以明显看出,窗函数会使

得频率谱变得平滑。可以减少泄露但也会降低频谱分辨率。

3、通过波段峰值差值比较图图9和差值表4可以明显看出:

睁眼和闭眼波形的差别主要在δ(1-3Hz) ,α(8-13Hz)。如果将差值进行归一化,取差值与峰值平均的比值为纵坐标,那么差别最大的将会是α波。

这也许说明被试闭眼时处于静息状态,甚至快要睡着了。

十一、对本实验过程及方法、手段的改进建议:无

语音信号处理实验指导书

语音信号处理实验指导书 实验一 语音信号采集与简单处理 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 基本概念: (a )短时过零率: 短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。 对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。 其中sgn[.]为符号函数 ?? ?? ?<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n)) 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 (b )基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 ∑--= -=1 )]1(sgn[)](sgn[21N m n n n m x m x Z

由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容 易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz ,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT 、谱图法、小波法等等。 三、使用仪器、材料 微机(带声卡)、耳机,话筒。 四、 实验步骤 (1)语音信号的采集 利用Windows 语音采集工具采集语音信号,将数据保存wav 格式。 采集一组浊音信号和一组清音信号,信号的长度大于3s 。 (2)采用短时相关函数计算语音信号浊音基音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。 (3)计算短时过零率,清音和浊音的短时过零率有何区别。 五、实验过程原始记录(数据,图表,计算) 短时过零率 短时相关函数 P j j n s n s j R N j n n n n ,,1) ()()(1 =-=∑-= ∑--=-=10 )]1(sgn[)](sgn[21N m n n n m x m x Z

数字信号处理实验报告

一、实验名称:基本信号的产生 二、实验目的:I 利用MATLAB 产生连续信号并作图 II 利用MATLAB 产生离散序列并作图 III 利用MATLAB 进行噪声处理 三、 实验内容: I 利用MATLAB 产生下列连续信号并作图 ①X(t)=-2u(t-1),-1=0); plot(t,x); 图形如右: ② X(t)=-(e^-0.1t)*sin(2/3*t),0

-1.5-1 -0.5 0.5 1 1.5 2 II 利用MATLAB 产生下列离散序列并作图 ① X(t)=1,-5<=t<=5 else 0,-15<=t<=15 MATLAB 程序如下: k= -15: 15; x=[zeros(1,10),ones(1,11),zeros(1,10)]; stem(k,x) 图形如下: ② X(t)=0.9^k*(cos(0.25*pi*k)+sin(0.25*pi*p),-20

信号处理实验指导

目录 绪论 (1) 1离散时间信号和系统分析 1.1 离散时间信号产生与运算 (2) 1.2 离散时间系统的时域分析 (9) 1.3 离散时间系统的频域分析 (13) 1.4 离散时间系统频响的零极点确定 (14) 2快速傅立叶变换的应用 2.1 FFT的计算 (17) 2.2 利用FFT进行谱分析 (18) 2.3利用FFT实现快速卷积 (19) 3数字滤波器的设计 3.1数字滤波器的结构 (23) 3.2无限冲激响应(IIR)数字滤波器的设计 (25) 3.3有限冲激响应(FIR)数字滤波器的设计 (27) 4综合应用举例 4.1 语音信号处理 (32) 4.2 电话拨号音的合成与识别 (32)

绪论 数字信号处理主要研究如何对信号进行分析、变换、综合、估计与识别等加工处理的基本理论和方法。随着计算机技术和大规模集成电路技术的发展,数字信号处理以其方便、灵活等特点引起人们越来越多的重视。在40多年的发展过程中,这门学科基本形成了一套完整的理论体系,其中也包括各种快速、优良的算法,而且数字信号处理的理论和技术也在不断、快速地丰富和完善,新理论和新技术也层出不穷。学习这门课程的过程中,容易使人感到数字信号处理的概念抽象难懂,其中的分析方法与基本理论不容易很好地理解与掌握。因此,如何理解与掌握课程中的基本概念、基本原理、基本分析方法以及综合应用所学知识解决实际问题的能力,是本课程学习中所要解决的关键问题。 Matlab是一种面向科学和工程的高级语言,现已成为国际上公认的优秀的科技界应用软件,在世界范围内广为流行和使用。在欧美高等院校里,Matlab已成为大专院校学生、教师的必要基本技能,广泛应用于科学研究、工程计算、教学等。上世纪90年代末和本世纪初Matlab在我国也被越来越多地应用于科研和教学工作中。Matlab是一套功能强大的工程计算及数据处理软件,在工业,电子,医疗和建筑等众多领域均被广泛运用。它是一种面向对象的,交互式程序设计语言,其结构完整又具有优良的可移植性。它在矩阵运算,数字信号处理方面有强大的功能。另外,Matlab提供了方便的绘图功能,便于用户直观地输出处理结果。 本文通过Matlab系列仿真,旨在掌握基本的数字信号处理的理论和方法,提高综合运用所学知识,提高Matlab计算机编程的能力。进一步加强独立分析问题、解决问题的能力、综合设计及创新能力的培养,同时注意培养实事求是、严肃认真的科学作风和良好的实验习惯。

医学信号处理作业

1. 设)(n x 和)(n y 是有限长的序列,]1.0,1,1.0,1[)(-=↑n x ,]1,1.0,1,1.0[)(-=↑ n y ,箭头所指位置表示n =0的序列值,箭头右边依次是n =1、2、3 ┉,箭头左边依次是n =- 1、- 2、-3 ┉。求这两个序列的线性相关函数。(分布使用直接计算法和表格法求解) 2. 试采用傅里叶变换对一段医学信号进行处理。 要求:有原信号波形、源代码和处理结果。 肌电原始信号: 做傅里叶变换: N=10000; M=1; y1=fft(x1,N); subplot(4,1,1) ; plot(f(1:N/2),y1(1:N/2)); axis([0 500 0 20]); grid on;

3.试采用频谱分析对一段医学信号进行处理。 要求:有原信号波形、源代码和处理结果。 肌电原始信号: 做频谱分析: clear; close all; %fft 频率分析 a=load('EMG.txt'); y=fft(a,10000); %做10000点福利叶变换fs=1000; N=length(y); mag=abs(y); f=(0:N-1)/N*fs; figure; plot(f,mag);%做幅频谱 xlabel('频率'); ylabel('幅值'); title('肌电幅频 N=10000'); figure; plot(f,angle(y));% 做相频谱 xlabel('频率'); ylabel('相位'); title('肌电相频 N=10000'); grid on;

频率幅值 频率相位肌电相频 N=10000 做功率谱分析: clear; close all; a=load('EMG.txt'); y=fft(a,10000); %做10000点傅里叶叶变换 fs=1000; N=length(y); mag=abs(y); f=(0:N-1)/N*fs; power1=(mag.^2)/10000;%周期图法求功率谱 figure; plot(f,power1); xlabel('频谱'); ylabel('功率谱'); title('肌电信号功率谱'); grid on;

数字信号处理-实验报告

学生实验报告 (理工类) 课程名称:数字信号处理专业班级:通信(4)班学生学号:学生姓名: 所属院部:网络与通信工程学院指导教师: 20 16 ——20 17 学年第一学期 金陵科技学院教务处制

实验报告书写要求 实验报告原则上要求学生手写,要求书写工整。若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。纸张一律采用A4的纸张。 实验报告书写说明 实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。各院部可根据学科特点和实验具体要求增加项目。 填写注意事项 (1)细致观察,及时、准确、如实记录。 (2)准确说明,层次清晰。 (3)尽量采用专用术语来说明事物。 (4)外文、符号、公式要准确,应使用统一规定的名词和符号。 (5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。 实验报告批改说明 实验报告的批改要及时、认真、仔细,一律用红色笔批改。实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。 实验报告装订要求 实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:MATLAB语言工作环境和基本操作实验学时: 同组学生姓名:实验地点:工科楼A205 实验日期:实验成绩: 批改教师:批改时间: 一、实验目的和要求 目的: 1.初步了解MATLAB开发环境和常用菜单的使用方法; 2.熟悉MATLAB常用窗口,包括命令窗口、历史窗口、当前工作窗口、工作空间浏览器窗口、数组编辑器窗口和M文件编辑/调试窗口等; 3.了解MATLAB的命令格式; 4.熟悉MATLAB的帮助系统。 要求: 1. 简述实验原理及目的。 2. 记录调试运行情况及所遇问题的解决方法。 3. 简要回答思考题。 二、实验仪器和设备 微型计算机、Matlab6.5以上版本的编程环境。 三、实验过程 命令窗口(Command Window): (1) 用于执行MATLAB命令,正常情况下提示符为“>>”,表示MATLAB进入工作状态。 (2) 在提示符后输入运算指令和函数调用等命令(不带“;”),MATLAB将迅速显示出结果并 再次进入准备工作状态。 (3) 若命令后带有“;”,MATLAB执行命令后不显示结果。 (4) 在准备工作状态下,如果按上下键,MATLAB会按顺序依次显示以前输入的命令,若要执 行它,则直接回车即可。 工作空间(Workspace): (1) 显示计算机内存中现有变量的名称、类型、结构及其占用子节数等。 (2) 如果直接双击某变量,则弹出Array Editor窗口供用户查看及修改变量内容。 (3) 该窗口上有工具条支持用户将某变量存储到文件中或者从文件中载入某变量。 命令历史记录(Command History): (1) 保存并显示用户在命令窗口中输入过的命令,以及每次启动MATLAB的时间等信息 (2) 若双击某条命令记录,则MATLAB会再次执行该命令。 当前路径窗口(Current Directory):

信号处理实验报告、

第一题 如何用计算机模拟一个随机事件,并估计随机事件发生的概率以计算圆周率π。 解: (一)蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看以这两个实数为横纵坐标的点是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和外切正方形面积之比为π:4),当随机点取得越多时,其结果越接近于圆周率。 代码: N=100000000; x=rand(N,1); y=rand(N,1); count=0; for i=1:N if (x(i)^2+y(i)^2<=1) count=count+1; end end PI=vpa(4*count/N,10) PI = 3.1420384

蒙特卡洛法实验结果与试验次数相关,试验次数增加,结果更接近理论值 (二)18世纪,法国数学家布丰和勒可莱尔提出的“投针问题”,记载于布丰1777年出版的著作中:“在平面上画有一组间距为d的平行线,将一根长度为l (l

数字信号处理实验五

实验五:FIR数字滤波器设计与软件实现 信息学院 10电本2班王楚炘 2010304224 10.5.1 实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示; 图10.5.1 具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,

调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本书 第7章和第?章; 采样频率Fs=1000Hz,采样周期T=1/Fs; 根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。]实验程序框图如图10.5.2所示,供读者参考。 Fs=1000,T=1/Fs xt=xtg 产生信号xt, 并显示xt及其频谱 用窗函数法或等波纹最佳逼近法 设计FIR滤波器hn 对信号xt滤波:yt=fftfilt(hn,xt) 1、计算并绘图显示滤波器损耗函数 2、绘图显示滤波器输出信号yt End 图10.5.2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. 答:用窗函数法设计线性相位低通滤波器的设计步骤: a.根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口的长度N; b.构造希望逼近的频率响应函数; c.计算h d(n); d.加窗得到设计结果h(n)=h d(n)w(n)。 (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为和,阻带上、下截止频率为和,试求理想带通滤波器的截止频率。 答:希望逼近的理想带通滤波器的截止频率分别为:

视频信号处理实验报告

中南大学 实验报告(实验一) 实验名称 JM代码编译与编解码参数配置 课程名称视频信号处理 姓名:杨慧成绩:__________________ 班级:电子信息工程1301班学号: 0903130117 日期: 2016.6.10 地点:综合实验楼 备注:

1.实验目的 1)掌握常用的编解码器参数及其用法,实现测试序列的编解码 2)初步了解H.264视频编解码的基本原理、熟开发工具的使用 3)学会使用相关的开发工具修改、调试参考软件,掌握使用相应软件实现视频编解码的经验与技巧,锻炼提高分析问题和解决问题的能力 4)调试、编译好相应的实验程序,正确配置测试参数,能预计可能出现的结果2.实验环境(软件、硬件及条件) Windows 7 3.实验方法 1)JM工作目录与文件设置 ①下载并解压JM源代码。 ②在源代码根目录下的bin文件夹中新建backup文件夹,将bin文件夹中所有文件移入该文件夹做备份。 ③在源代码根目录下新建encodtest文件夹,作为编码使用。将编码过程所需要的文件,例如:编码配置文件(encoder_baseline.cfg)、待编码视频序列文件(foreman_part_qcif.yuv,对应为编码配置文件中InputFile参数的值)复制到该文件夹中。 ④在源代码根目录下新建decodtest文件夹,作为解码使用。将解码过程所需要的文件,例如:解码配置文件(decoder.cfg)复制到该文件夹中。 ⑤检查实验用机安装的MS Visual C++版本,根据表3,本实验打开jm_vc10.sln 解决方案。

2)配置、编译、测试编码项目——lencod ①选中lencod项目,打开主菜单“项目——属性”,将所有配置(Debug、Release)和所有平台(Win32、x64)“常规”选项中的“输出目录”设置为 “.\bin\$(Configuration)_$(Platform)\”;将“调试”选项中“工作目录”设置为“.\encodtest”,在“命令参数”中设置要使用的解码配置文件,例如:“-d encoder_baseline.cfg”,然后确定修改。 ②选中lencod工程,选择鼠标右键菜单“设为启动项目”。 ③打开主菜单“生成--批生成”,勾选所有的lencod项目,点击生成后,将会在主目录bin文件夹的Debug_Win32/x64文件夹及Release_Win32/x64文件夹下生成Win32/x64平台的调试版(运行速度慢)和发行版(运行速度快)编码器程序lencod.exe。打开主菜单“生成--配置管理器”,将活动解决方案配置和平台分别设置为Release何Win32,执行调试完成编码。此时会在源代码根目录下的encodtest文件夹中生成几个新文件,其中test.264(对应编码配置文件中OutputFile参数的值)即为压缩码流文件。 3)配置、编译、测试解码项目--ldecod ①选中ldecod项目,打开主菜单“项目——属性”,将所有配置(Debug、Release)和所有平台(Win32、x64)“常规”选项中的“输出目录”设置为 “.\bin\$(Configuration)_$(Platform)\”;将“调试”选项中“工作目录”设置为“.\decodtest”,在“命令参数”中设置要使用的解码配置文件,例如:“ decoder.cfg”,然后确定修改。 ②将编码生成的压缩码流文件test.24复制到decodtest文件夹中。 ③选中lencod工程,选择鼠标右键菜单“设为启动项目”。 ④打开主菜单“生成--批生成”,勾选所有的ldecod项目,点击生成后,将会在主目录bin文件夹的Debug_Win32/x64文件夹及Release_Win32/x64文件夹下生成Win32/x64平台的调试版(运行速度慢)和发行版(运行速度快)编码器程序ldecod.exe。打开主菜单“生成--配置管理器”,将活动解决方案配置和平台分别设置为Release何Win32,执行调试完成编码。此时会在源代码根目录下的decodtest文件夹中生成几个新文件,其中test_dec.yuv(对应解码配置文

哈尔滨工程大学 语音信号处理实验报告

实 验 报 告 实验课程名称: 语音信号处理实验 姓名: 班级: 20120811 学号: 指导教师 张磊 实验教室 21B#293 实验时间 2015年4月12日 实验成绩 实验序号 实验名称 实验过程 实验结果 实验成绩 实验一 语音信号的端点检测 实验二 语音信号的特征提取 实验三 语音信号的基频提取

实验一 语音信号的端点检测 一、实验目的 1、掌握短时能量的求解方法 2、掌握短时平均过零率的求解方法 3、掌握利用短时平均过零率和短时能量等特征,对输入的语音信号进行端点检测。 二、实验设备 HP 计算机、Matlab 软件 三、实验原理 1、短时能量 语音信号的短时能量分析给出了反应这些幅度变化的一个合适的描述方法。对于信号)}({n x ,短时能量的定义如下: ∑ ∑∞ -∞ =∞ -∞ =*=-= -= m m n n h n x m n h m x m n w m x E )()()()()]()([222 2、短时平均过零率 短时平均过零率是指每帧内信号通过零值的次数。对于连续语音信号,可以 考察其时域波形通过时间轴的情况。对于离散信号,实质上就是信号采样点符号变化的次数。过零率在一定程度上可以反映出频率的信息。短时平均过零率的公式为: ∑∑-+=∞ -∞=--= ---=1)] 1(sgn[)](sgn[2 1 ) ()]1(sgn[)](sgn[21N n n m w w m n m x m x m n w m x m x Z 其中,sgn[.]是符号函数,即 ? ? ?<-≥=0)(10)(1 )](sgn[n x n x n x

数字信号处理实验指导手册

数字信号处理实验指导手册 西安文理学院 机械电子工程系

目录 实验一离散时间信号 (2) 实验二时域采样定理 (7) 实验三离散时间系统 (10) 实验四线性卷积与圆周卷积 (13) 实验五用FFT作谱分析 (16) 实验六用双线性变换法设计IIR数字滤波器 (18) 实验七 FIR滤波器设计 (20)

实验一 离散时间信号 【实验目的】 用MATLAB 实现离散时间信号的表示和运算,掌握MATLAB 的基本命令和编程方法,为后续实验打基础。 【实验原理】 在数字信号处理中,所有的信号都是离散时间信号,因此应首先解决在MATLAB 中如何表示离散信号。 设一模拟信号经A/D 变换后,得到序列信号 }),1(),0(),1(,{)}({)( x x x n x n x -== 由于MATLAB 对下标的约定为从1开始递增,因此要表示)(n x ,一般应采用两个矢量,如: ]5,4,3,2,1,0,1,2,3[---=n ]1,2,5,4,0,2,3,1,1[-=y 这表示了一个含9个采样点的矢量: )}5(,),1(),2(),3({)(x x x x n y ---= 【实验内容】 熟悉下面序列(信号)的产生方法及相关运算 1、 单位采样序列 2、 单位阶跃序列 3、 信号翻转 4、 信号相加 5、 信号折叠 6、 信号移位 【参考程序】 单位采样序列 1、impluse1.m (图1-1) n=10; x=zeros(1,n); x(1)=1;

plot(x,'*'); 2、 impluse2.m (图1-2) n=-5:5; x=[n==0]; stem(x,'*'); 3、impluse3.m (图1-3) n=1:10; n0=3; x=[(n-n0)==1]; plot(x,'*'); 单位阶跃序列 1、steps1.m (图1-4) n=10; x=ones(1,n); plot(x,'*'); 2、steps2.m (图1-5) n=10; x=ones(1,n); x(1)=0; x(2)=0; 图1-1 单位采样序列1 图1-2 单位采样序列2 图1-3 单位采样序列3

医学信息系统

第1章医学信息系统概论 1.我国卫生信息化建设存在那些问题? 2.未来医药学专业大学生的IT知识结构中应包含哪些方面?3.信息处理包含哪些内容 4.医学信息系统的特点、作用和分类? 5.医院信息系统的体系结构和功能要求是什么? 6. 怎样划分医院信息系统处理信息的层次? 第2章医院信息系统 1、医院信息系统的定义是什么? 2、根据数据流量、流向及处理过程,说明医院信息系统结构。 3、简述医院信息系统的系统构成。 4、临床诊疗部分包括哪些内容? 5、药品管理部分包括哪些功能? 6、费用管理包括哪些系统? 7、综合管理和统计分析各有哪些分支? 8、简述HIS的开发过程。 9、HIS开发模式有哪几种?各有什么特点? 10、HIS开发的主要困难是什么? 11、说明远程医疗的系统结构。 第3章电子病历与病历信息标准化

1.什么是病历?什么是电子病历? 2.电子病历的特点有哪些? 3.电子病历的作用体现在哪些方面? 4.电子病历的组成元素有哪些?这些元素是如何分类的? 5.什么是医生工作站?医生工作站有哪些功能? 6.电子病历使用中应注意的事项有哪些? 7.如何实现电子病历的安全性? 8.国际疾病分类—ICD的分类原理与方法是什么? 第4章典型HIS系统需求分析 1.观访问您家附近的一所医院,参照本书图4-2某医院组织结构图,画出这家医院的组织结构图。 2.某病人在看过门诊后医生告诉他需要住院治疗,请读者设计一个病人从门诊到住院的系统工作流程。 第5章医院信息系统总体设计 1、医院信息系统与一般信息系统在系统的总体结构上有何异同? 2、描述医院信息系统设计的一般原则。 第6章医院信息系统开发 1.VB工程的文件组成包含有哪些类型? 2.VB访问数据库主要有哪些方法?

信号检测论有无法实验报告剖析

------------------------------------------------------------------------------- 实验报告信息栏 系别心理系年级 13级2班姓名魏晓芹同组成员杨思琪、张彤、韩永超 实验日期 2016年4月学号 120105510215 教师评定 ------------------------------------------------------------------------------- 信号检测论有无法实验报告 摘要本次实验采用信号检测论中的有无法,测定被试在不同先定概率下对呈现信号和刺激的击中率与虚报率,计算其辨别力d′和判定标准β,并绘制出ROC 曲线;检验信号呈现的先定概率发生变化时,被试的击中率、虚报率、辨别力d′和判定标准β是否会受到影响。结果显示:(1)被试在先定概率为0.2、0.5、0.8的条件下,击中率分别为0.8、0.92、0.8625,虚报率分别为0.5125、0.56、0.75,辨别力d′分别为0.592、1.254、0.406,判定标准β分别为0.70、0.38、0.71。 关键词信号检测论;有无法;先定概率;辨别力d′;判定标准β 1引言 传统心理物理学对阈限的理解是有限的,不能将个体客观的感受性和主观的动机、反应偏好等加以区分,从而使研究者渐渐陷入到了由阈限概念本身所引发的僵局之中。而在1954年,坦纳和斯韦茨等人首次应用的信号检测论,正好解决了这个问题。 信号检测论的研究对象是信息传播系统中信号的接收问题。在心理学中,它是借助于数学的形式描述“接收者”在某一观察时间内将掺有噪音的信号从噪音中辨别出来。 信号检测论应用于心理学中的基本原理是:将人的感官、中枢分析综合过程看作是一个信息处理系统,应用信号检测论中的一些概念、原理对它进行分析。信号检测论在心理学中具体应用时,常把刺激变量当作信号,把对刺激变量起干扰作用的因素当作噪音,这样就可以把人接收外界刺激时的分辨问题等效于一个在噪音中检测信号的问题,从而便可以应用信号检测论来处理心理学中的实验结果。 信号检测论的理论基础是统计决策。信号检测论本身就是一个以统计判定为根据的理论。它的基本原理是:根据某一观察到的事件,从两个可选择的方面选

工程信号处理实验报告

( 2011-2012 学年 第二学期) 重庆理工大学研究生课程论文 课程论文题目: 《工程信号处理实验报告》 课程名称 工程信号处理实验 课程类别 □学位课 非学位课 任课教师 谢明 所在学院 汽车学院 学科专业 机械设计及理念 姓名 李文中 学 号 50110802313 提交日期 2012年4月12日

工程信号处理实验报告 姓名:李文中学号:50110802313 实验报告一 实验名称:数据信号采集及采样参数选定 1实验目的 1.1了解信号采集系统的组成,初步掌握信号采集系统的使用。 1.2加深对采样定理的理解,掌握采样参数的选择方法 1.3了解信号采集在工程信号处理中的实际应用,及注意事项。 2 实验原理 2.1 模数转换及其控制 对模拟信号进行采集,就是将模拟信号转换为数字信号,即模/数(A/D)转换,然后送入计算机或专用设备进行处理。模数转换包括三个步骤:(1)采样,(2)量化,(3)编码。采样,是对已知的模拟信号按一定的间隔抽出一个样本数据。若间隔为一定时间 T,则称这种采样为等时间间隔采样。除特别注明外,一般都采用等时间间隔采样;量化,是一种用有限字长的数字量逼近模拟量的过程。编码,是将已经量化的数字量变为二进制数码,因为数字处理器只能接受有限长的二进制数。模拟信号经过这三步转换后,变成了时间上离散、幅值上量化的数字信号。A/D转换器是完成这三个步骤的主要器件。 在信号采集系统中,A/D 转换器与计算机联合使用完成模数转换。用计算机的时钟或用软件产生等间隔采样脉冲控制 A/D 转换器采样。A/D 转换器通过内部电路进行量化与编码,输出有限长的二进制代码。信号采集系统中,通常由以 A/D转换器为核心的接口电路及控制软件,进行信号采集控制。 *注这部分是由本实验所用的信号采集器自动完成的,以上也是实验器材-信号采集器的部分工作原理。以后实验中就不再赘述。 2.2 信号采集的参数选择

信号处理实验报告

数字信号处理 第四次实验报告 一、 实验目的 1.了解离散系统的零极点与系统因果性能和稳定性的关系 2.观察离散系统零极点对系统冲激响应的影响 3.熟悉MATLAB 中进行离散系统零极点分析的常用子函数 4.加深对离散系统的频率响应特性基本概念的理解 5.了解离散系统的零极点与频响特性之间的关系 6.熟悉MATLAB 中进行离散系统分析频响特性的常用子函数,掌握离散系统幅频响应和相频响应的求解方法。 二、实验过程 9.2已知离散时间系统函数分别为 ) 7.05.0)(7.05.0(3 .0)(1j z j z z z H ++-+-= )1)(1(3 .0)() 8.06.0)(8.06.0(3 .0)(32j z j z z z H j z j z z z H ++-+-= ++-+-= 求这些系统的零极点分布图以及系统的冲击响应,并判断系统因果稳定性。 %---------第一式-----------------------------------------------------------------------------% z1=[0.3,0]';p1=[-0.5+0.7j,-0.5-0.7j]';k=1; %z1零点向量矩阵,p1极点向量矩阵,k 系统增益系数---------------------------% [bl,al]=zp2tf(z1,p1,k); %将零极点增益函数转换为系统传递函数 subplot(3,2,1),zplane(bl,al); %zplane 显示离散系统的零极点分布图 ylabel('极点在单位圆内'); subplot(3,2,2),impz(bl,al,20); %impz 绘制系统的冲激响应图 %---------第二式-----------------------------------------------------------------------------% z2=[0,3,0]';p2=[-0.6+0.8j,-0.6-0.8j]'; %z2零点向量矩阵,p2极点向量矩阵---------------------------------------------------% [b2,a2]=zp2tf(z2,p2,k); %将零极点增益函数转换为系统传递函数 subplot(3,2,3),zplane(b2,a2); %zplane 显示离散系统的零极点分布图 ylabel('极点在单位圆上'); subplot(3,2,4),impz(b2,a2,20); %impz 绘制系统的冲激响应图 %---------第三式-----------------------------------------------------------------------------%

matlab数字信号处理实验指导

电工电子实验中心实验指导书 数字信号处理 实验教程 二○○九年三月

高等学校电工电子实验系列 数字信号处理实验教程 主编石海霞周玉荣 攀枝花学院电气信息工程学院 电工电子实验中心

内容简介 数字信号处理是一门理论与实践紧密联系的课程,适当的上机实验有助于深入理解和巩固验证基本理论知识,了解并体会数字信号处理的CAD手段和方法,锻炼初学者用计算机和MATLAB语言及其工具箱函数解决数字信号处理算法的仿真和滤波器设计问题的能力。 本实验指导书结合数字信号处理的基本理论和基本内容设计了八个上机实验,每个实验对应一个主题内容,包括常见离散信号的MATLAB产生和图形显示、离散时间系统的时域分析、离散时间信号的DTFT、离散时间信号的Z变换、离散傅立叶变换DFT、快速傅立叶变换FFT及其应用、基于MATLAB的IIR和FIR数字滤波器设计等。此外,在附录中,还简单介绍了MATLAB的基本用法。每个实验中,均给出了实验方法和步骤,还有部分的MATLAB程序,通过实验可以使学生掌握数字信号处理的基本原理和方法。

目录 绪论 (1) 实验一常见离散信号的MATLAB产生和图形显示 (2) 实验二离散时间系统的时域分析 (6) 实验三离散时间信号的DTFT (9) 实验四离散时间信号的Z变换 (14) 实验五离散傅立叶变换DFT (18) 实验六快速傅立叶变换FFT及其应用 (24) 实验七基于MATLAB的IIR数字滤波器设计 (30) 实验八基于MATLAB的FIR数字滤波器设计 (33) 附录 (37) 参考文献 (40)

绪论 绪论 随着电子技术迅速地向数字化发展,《数字信号处理》越来越成为广大理工科,特别是IT领域的学生和技术人员的必修内容。 数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。数字信号处理的理论和技术一出现就受到人们的极大关注,发展非常迅速。而且随着各种电子技术及计算机技术的飞速发展,数字信号处理的理论和技术还在不断丰富和完善,新的理论和技术层出不穷。目前数字信号处理已广泛地应用在语音、雷达、声纳、地震、图象、通信、控制、生物医学、遥感遥测、地质勘探、航空航天、故障检测、自动化仪表等领域。 数字信号处理是一门理论和实践、原理和应用结合紧密的课程,由于信号处理涉及大量的运算,可以说离开了计算机及相应的软件,就不可能解决任何稍微复杂的实际应用问题。Matlab是1984年美国Math Works公司的产品,MATLAB 语言具备高效、可视化及推理能力强等特点,它的推出得到了各个领域专家学者的广泛关注,其强大的扩展功能为各个领域的应用提供了基础,是目前工程界流行最广的科学计算语言。早在20世纪90年代中期,MATLAB就己成为国际公认的信号处理的标准软件和开发平台。从1996年后,美国新出版的信号处理教材就没有一本是不用MATLAB的。 本实验指导书结合数字信号处理的基本理论和基本内容,用科学计算语言MATLAB实现数字信号处理的方法和实践,通过实验用所学理论来分析解释程序的运行结果,进一步验证、理解和巩固学到的理论知识,从而达到掌握数字信号处理的基本原理和方法的目的。

数字信号处理实验报告

实验一:信号的表示 1.实现单位采样序列、单位阶跃序列、矩形序列程序及绘图1.1代码部分 subplot(3,1,1); n1=-5:10; y1=[zeros(1,5),1,zeros(1,10)]; stem(n1,y1) axis([-5,10,0,2]); title(' 单位采样序列 ') subplot(3,1,2); n2=-5:10; y2=[zeros(1,5),ones(1,5),zeros(1 ,6)]; stem(n2,y2) axis([-5,10,0,2]) title(' 矩形序列 ') subplot(3,1,3); n3=-5:10; y3=[zeros(1,5),ones(1,11)]; stem(n3,y3,'r') axis([-5,10,0,2]) title(' 单位阶跃序列 ') 1.2仿真结果 2.实现三角波、方波、锯齿波、sinc函数及绘图2.1代码部分 %三角波 subplot(4,1,1); x=0:0.001:0.05; y1=sawtooth(2*pi*50*x,0.5);

plot(x,y1) %锯齿波 subplot(4,1,2); x=0:0.001:0.05; y2=sawtooth(2*pi*50*x); plot(x,y2) %方波 subplot(4,1,3); x=0:0.001:0.05; y3=square(2*pi*50*x,50); plot(x,y3) %sinc函数 subplot(4,1,4); t=-5:0.1:5; y=sinc(t); plot(t,y); xlabel('时间t');ylabel('幅值A'); title('Sa函数') 2.2仿真结果 实验二:FFT频谱分析及应用 1.用FFT函数分析某信号的频率成分和功率谱密度并绘图1.1代码部分 t=0:0.001:0.8; x=sin(2*pi*50*t)+cos(2*pi*120*t) ; y=x+1.5*randn(1,length(t)); subplot(3,1,1); plot(t,x); subplot(3,1,2); plot(t,y); Y=fft(y,512); P=Y.*conj(Y)/512;

数字信号处理实验报告(同名22433)

《数字信号处理》 实验报告 课程名称:《数字信号处理》 学院:信息科学与工程学院 专业班级:通信1502班 学生姓名:侯子强 学号:0905140322 指导教师:李宏 2017年5月28日

实验一 离散时间信号和系统响应 一. 实验目的 1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解 2. 掌握时域离散系统的时域特性 3. 利用卷积方法观察分析系统的时域特性 4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析 二、实验原理 1. 采样是连续信号数字化处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。 对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: ?()()()a a x t x t p t = 式中()p t 为周期冲激脉冲,$()a x t 为()a x t 的理想采样。 ()a x t 的傅里叶变换为μ ()a X j Ω: 上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。也即采样信 号的频谱μ()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成 的。因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号 计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即 ()() n P t t nT δ∞ =-∞ = -∑μ1()()*() 21 ()n a a a s X j X j P j X j jn T π∞ =-∞ Ω=ΩΩ= Ω-Ω∑μ()()|j a T X j X e ωω=ΩΩ=

新语音信号处理实验指导2015年秋

《语音信号处理》 实验指导书 哈尔滨理工大学 自动化学院 电子信息科学与技术系 2014.10

语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。同时,语言也是人与机器之间进行通信的重要工具,它是一种理想的人机通信方式,因而可为信息处理系统建立良好的人机交互环境,进一步推动计算机和其他智能机器的应用,提高社会的信息化程度。语音信号处理是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。虽然从事这一领域研究的人员主要来自信号与信息处理及计算机应用等学科,但是它与语音学、语言学、声学、认知科学、生理学、心理学等许多学科也有非常密切的联系。 20世纪60年代中期形成的一系列数字信号处理的理论和算法,如数字滤波器、快速傅立叶变换(FFT)等是语音信号数字处理的理论和技术基础。随着信息科学技术的飞速发展,语音信号处理取得了重大的进展:进入70年代之后,提出了用于语音信号的信息压缩和特征提取的线性预测技术(LPC),并已成为语音信号处理最强有力的工具,广泛应用于语音信号的分析、合成及各个应用领域,以及用于输入语音与参考样本之间时间匹配的动态规划方法;80年代初一种新的基于聚类分析的高效数据压缩技术—矢量量化(VQ)应用于语音信号处理中;而用隐马尔可夫模型(HMM)描述语音信号过程的产生是80年代语音信号处理技术的重大发展,目前HMM已构成了现代语音识别研究的重要基石。近年来人工神经网络(ANN)的研究取得了迅速发展,语音信号处理的各项课题是促进其发展的重要动力之一,同时,它的许多成果也体现在有关语音信号处理的各项技术之中。 为了深入理解语音信号数字处理的基础理论、算法原理、研究方法和难点,根据数字语音信号处理教学大纲,结合课程建设的需求,我们编写了本实验指导书。

相关文档
最新文档