电力电子技术现状

学号:20105042057

学院物理电子工程学院

专业物理学

年级2010级

姓名王书易

论文题目浅谈电力电子技术现状、应用及前景

指导教师刘力伟职称

成绩

2012年5月20日

目录

错误!未指定书签。

关键词............................................. 错误!未指定书签。错误!未指定书签。

1.1电力电子技术的简介.......................... 错误!未指定书签。

错误!未指定书签。

2电力电子技术的发展............................... 错误!未指定书签。

错误!未指定书签。

2.2逆变器时代.................................. 错误!未指定书签。

错误!未指定书签。

3电力电子技术的应用............................... 错误!未指定书签。

错误!未指定书签。

3.2交流输配电系统(FACTS)....................... 错误!未指定书签。

错误!未指定书签。

3.4分布电力能源................................ 错误!未指定书签。错误!未指定书签。

4.1标准化...................................... 错误!未指定书签。

错误!未指定书签。

4.3高性能化.................................... 错误!未指定书签。

错误!未指定书签。

4.5无污染化.................................... 错误!未指定书签。错误!未指定书签。

参考文献........................................... 错误!未指定书签。

电力电子技术现状、应用及前景

学生姓名:王书易学号:20105042057

学院:物理电子工程学院专业:电子信息

指导老师:刘力伟职称:副教授

摘要:电力电子技术是目前发展较为迅速的一门学科,是高新技术产业发展的主要基础技术之一,是传统产业改革的重要手段。本文主要阐述了电力电子技术研究的内容及其应用,并对其发展前景进行了展望。

关键词:电力电子技术;应用;发展前景

Power electronic technology,application and Prospect Abstract:Power electronics technology is now developing rapidly in a discipline,the high-tech industry is based mainly on the development of traditional industry,is the important means to reform.This article mainly elaborated the power electronic technology research and application,and its development prospect.

Key word:Power:electronic technology Application Development prospect

1概述

1.1电力电子技术的简介

电力电子技术是应用于电力领域的电子技术,它是利用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的新兴学科。电力电子技术可以理解为功率强大,可供诸如电力系统那样大的电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅是因为它能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、运行效率的问题。电力电子技术分为电力电子器件制造技术和交流技术(整流、逆变、斩波、变频、变相等)两个分支。

1.2电力电子技术的地位和作用

电力电子技术诞生至今已经近50年,特别是近年来更是获得了

突飞猛进的发展,已经形成较为完整的科学体系和理论。各国家学者认为,信息技术的发展造就了信息时代,而实现了“弱电控制强电”电力电子技术的发展是人类社会的第二次电子革命。在将来工业高度自动化的情况下,计算技术、电力电子技术以及自动控制技术奖成为三种最重要的技术。

2电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整电子产品流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

2.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

2.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器1件的主角。类似的应用还包括高压直

流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

2.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。

新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

3电力电子技术的应用

3.1电力拖动

旋转电机是电力市场主要用户,其占有量大概是整个电力系统容量的70%左右,因此,它的发展动态从一定的意义上来说对电力系统电力负荷的性质起着决定性的作用.电厂锅炉系统风机,水泵,蓄水站扬水系统等大型电机的恒速运行,不仅给风量,水量等的调节带来诸多不便,而且在绝大部分工况下还浪费了很大的电能;其它方面比如压缩机,各种控制用伺服电机等等也有很高的调速要求。随着电力电子技术的不断发展,交流调速的水平取得了巨大的进步,在很多应用场合已经逐步的取代直流调速,尤其是在大功率应用场合更是显出其优势。与此同时,根据不同的调速特性要求,无换向器直流调速,开关磁阻调速,内馈调速等,也有一些应用的场合。这些技术的存在和发展都为交流电机的调速运行奠定了技术基础。目前,低压中,小功率的调速

变换器的发展水平相对成熟,国内外有很多电气生产厂家分别有不同型号的产品正在服务于调速领域,除了交流变频调速以外,还有直流调速,磁阻电机调速,直线电机调速,伺服电机调速等等都取得了较好的成果和调速性能

3.2交流输配电系统(FACTS)

目前,FACTS已经发展成为有十多类产品的大家族,主要分为两大类,一类是针对电网的污染而设计的功率因数校正和谐波治理装置(简称滤波装置),另一类是针对高压直流输电(HVDC)而设计的直流输电装置.滤波装置的发展从最早用机械开关投切电感和电容来吸收或者发出无功,发展到基于现代电力电子技术为基础的滤波装置,例如SVG,STATCOM,SMES,BESS,TCSC,SSSC,UPFC,CSC等等。值得一提的是,超导技术在近期不断的发展,使得电力有源滤波装置的发展又进入了一个新的阶段,众所周知,在电力电子电路里,如果没有阻性元件存在,那么此电路就没有损耗,所发生的只是储能元件之间的能量交换,而超导,就是利用一定工艺制成的材料,加上一定的外部条件,使得它的电阻值很低。因此,利用超导储能可以大大减少电路的损耗,同时,超导储能还具备响应快,随意控制有功和无功,并联方便等优点。HVDC 技术对于大容量远距离输电来说具有很强的经济性,并具备交流输电所没有的优越性.据统计,中国80%的石油,煤炭,天然气,水力能源集中在中西部地区,而80%的经济产值集中在东部及沿海地区,资源产出和资源消耗关系极端不平衡.因此,电力输送成了中国电力系统的一个关键问题之一.到2002年为止,220kV的输电线路达到18.8万公里.虽然,经过多年的改革及发展,我国的电网建设已经比较成熟,但是类似三峡这样中国海南中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集545一些大的发电站的建成并逐渐投产,我国的电网输电能力及输电安全性又面临着新的挑战,直流输电以它优越的特性在三峡向华东电网输电的任务中发挥了重大的角色.目前,FACTS的发展水平还相对较低,虽然有许一些在高压,大容量方面的应用,但是大规模成熟的应用还是以低压,小容量的居多,而

且有些产品的性能相对较低,有时候甚至本身就是一个谐波污染源.主要表现在以下几个方面:(1)在现有器件耐压,耐流的水平下,大容量化难以实现(2)控制技术,包括谐波含量的实时分析理论等需要进一步发展(3)设备自身由于控制策略,器件的开关过程等等因素的影响,使得自身就对电网发出谐波污染.

3.3应用电源系统

应用电源系统主要指的是直流电源,电焊机,脉冲电源,UPS电源,稳压电源等等,这些应用也是电力市场的主要用户之一.以电力系统操作电源为例,从最早的磁饱和式硅整流电源,到后来的可控硅整流,直至现在应用很广的开关式电源,应该说直流电源的发展也经历了几个时代.早期的电源,存在着体积和质量相对大,效率低,噪声大,可靠性能低等缺点.随着电力电子技术的发展,开关电源技术也得到了发展.其高频化工作的特点带来了很多优点:隔离变压器小型化,开关噪声高频化(超越听觉范围),使得开关电源的体积,重量,噪声等大大减少.同时,软开关技术的发展,带有源滤波整流器的发展,N+1冗余的设计思想,都使得应用电源的发展水平不断提升.

3.4分布电力能源

近年来,小水力,风力,太阳能等再生能源的开发应用越来越广泛.然而,要能够使这些功率小,分布散,电压等级多样的电站并网运行,那么基于电力电子技术的并网研究就显得十分重要.目前国内外已经有很多学者在从事这方面的工作,但是发展的水平还相对较低.

4电力电子技术发展前景

4.1标准化根据情况,不断完善行业标准,并且在产品研制过程中贯彻执行相关的标准.

4.2大容量化高压,大电流的产品的市场需求量比较大,而由于电力电子器件发展水平的限制,这方面的发展不尽如人意.

4.3高性能化虽然电力电子技术的发展迅速,并且在许多领域都开始大规模的应用,但是在控制性能的改善上还需要作大量的研究. 4.4高可靠性电力系统安全问题历来就是一个很值得重视的问题,

如果电力电子设备本身就不可靠,那么在实际应用中可能会给电力系统的安全运行带来隐患.

4.5无污染化电力电子设备对电网的污染已经成了公认的问题.目前,由于电力电子设备发展的落后性,很多设备产生的污染,需要别的设备去进行治理,属于被动型的,主动型(自身治理自身)的发展也成为了一个趋势.

5结束语

电子电力技术已经渗入到我们日常生活的方方面面,而且给我们带来了极大地方便。电子电力技术的发展变化也是日新月异的。在这短短的几十年里已经取得了极大的进步,我们相信在这高科技极速发展的时代,电力电子技术将会进入一个更高的层次。

参考文献

[1]李发海,陈汤铭,郑逢时,等.电机学(第二版)[M].北京:科学出版社,1991.

[2]郭群岭,张湘南,王强,等.不对称补偿控制的研究现状[J].华中电力2000

[3]赵遵廉.中国电网的发展与展望[J].中国电力2004

[4]张建诚,陈志业,梁志瑞.现代电力电子技术在电力系统中的应用[J].电力情报1999[5]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社1998

[6]刘胜利,严仰光.现代高频开关电源使用技术[M].北京:电子工业出版社2001

电力电子技术的发展史

电力电子技术的发展史 电子技术是根据电子学的原理,运用电子器件设计和制造某种特定功能的电路以解决实际问题的科学,包括信息电子技术和电力电子技术两大分支。信息电子技术包括 Analog (模拟) 电子技术和 Digital (数字) 电子技术。电子技术是对电子信号进行处理的技术,处理的方式主要有:信号的发生、放大、滤波、转换。 目录 电力电子技术 现代电力电子技术 高频开关电源的发展趋势 半导体器件基础 电路发展 1.电力电子技术发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能

浅谈电力电子技术在电子电源中的应用

浅谈电力电子技术在电子电源中的应用 衢州电力局吴丹 电力电子技术无处不在、天生具有节能效果预计全球未来将有95%以上的电能要经过电力电子技术的处理后才能使用。电力电子技术的核心是电力电子元器件电力电子元器件的发展先后经历了整流器时代、逆变器时代和变频器时代,以功率MOSFET和IGBT为代表的功率半导体器件的诞生,标志着传统电力电子技术已经进入现代电力电子时代。CCID预计电力电子器件的年平均增长速度超过20%。IGBT 等新型电力电子器件的年平均增长率超过30%。电力电子装置种类繁多、行业应用范围极广电力电子装置主要包括三大类产品:变频器、电能质量类产品以及电子电源产品。电力电子技术在电力行业的应用涉及发电、输电、配电、其中电力电子技术在电子电源产品中的应用尤为突出。 电子电源就是对公用电网或某种电能进行变换和控制,向各种用电负载提供优质电能的供电设备,其代表有开关电源和不间断电源(UPS)等。其中开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。因为开关三极管总是工作在“开” 和“关” 的状态,所以叫开关电源。开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,变压器反馈式振荡电路,能产生有规律的脉冲电流或电压的电路叫振荡电路,变压器反馈式振荡电路就

是能满足这种条件的电路。 程控交换站,计算机、电视、医疗设备、航天、航海舰艇及家电上,都广泛应用开关电源,开关电源最大的应用领域是在通信行业,美国开关电源中用于通信方面的占开关电源总量的35%。这些开关电源都采用高频化技术,使其体积重量大大减小,能耗和材料也大为降低。 下面介绍一款典型的单片开关电源产品——TOP开关。 1、结构:TOP开关集各种控制功能、保护功能及耐压700V的功率开关MOSFET于一体,采用TO 220或8脚DIP封装。少数采用8脚封装的TOP开关,除D、C两引脚外,其余6脚实际连在一起,作为S端,故仍系三端器件。三个引出端分别是漏极端D、源极端S和控制端C。其中,D是内装MOSFET的漏极,也是内部电流的检测点,起动操作时,漏极端由一个内部电流源提供内部偏置电流。控制端C 控制输出占空比,是误差放大器和反馈电流的输入端。在正常操作时,内部的旁路调整端提供内部偏置电流,且能在输入异常时,自动锁定保护。源极端S是MOSFET的源极,同时是TOP开关及开关电源初级电路的公共接地点及基准点。 2、工作原理:TOP包括10部分,其中Zc为控制端的动态阻抗,RE是误差电压检测电阻。RA与CA构成截止频率为7kHz的低通滤波器。主要特点是: (1)前沿消隐设计,延迟了次级整流二级管反向恢复产生的尖峰电流冲击;

电力电子技术答案第五版(全)

电子电力课后习题答案 第一章电力电子器件 1.1 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受正相阳极电压,并在门极施加触发电流(脉冲)。 或者U AK >0且U GK >0 1.2 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 1.3 图1-43中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为 I m ,试计算各波形的电流平均值I d1 、I d2 、I d3 与电流有效值I 1 、I 2 、I 3 。 解:a) I d1= Im 2717 .0 )1 2 2 ( 2 Im ) ( sin Im 2 1 4 ≈ + = ?π ω π π π t I 1= Im 4767 .0 2 1 4 3 2 Im ) ( ) sin (Im 2 1 4 2≈ + = ?π ? π π π wt d t b) I d2= Im 5434 .0 )1 2 2 ( 2 Im ) ( sin Im 1 4 = + = ?wt d t π π ? π I 2= Im 6741 .0 2 1 4 3 2 Im 2 ) ( ) sin (Im 1 4 2≈ + = ?π ? π π π wt d t c) I d3= ?= 2 Im 4 1 ) ( Im 2 1π ω π t d I 3= Im 2 1 ) ( Im 2 1 2 2= ?t dω π π 1.4.上题中如果不考虑安全裕量,问100A的晶阐管能送出的平均电流I d1、I d2 、I d3 各为多 少?这时,相应的电流最大值I m1、I m2 、I m3 各为多少? 解:额定电流I T(AV) =100A的晶闸管,允许的电流有效值I=157A,由上题计算结果知 a) I m1 35 . 329 4767 .0 ≈ ≈ I A, I d1 ≈0.2717I m1 ≈89.48A

电力电子技术课程综述.doc

HefeiUniversity 合肥学院电力电子技术课程综述 系别:电子信息及电气工程系 专业:自动化 班级: 姓名: 学号:

目录 摘要: (3) 绪论 (4) 1.1电力电子技术简介: (4) 1.2电力电子技术的应用: (4) 1.3电力电子技术的重要作用: (5) 1.4电力电子技术的发展 (5) 本课程简介 (6) 2.1电力电子器件: (6) 2.1.1根据开关器件是否可控分类 (6) 2.1.2 根据门极)驱动信号的不同 (6) 2.1.3 根据载流子参与导电情况之不同,开关器件又可分为单极型器件、双极型器 件和复合型器件。 (6) 2.2 DC-DC变换器 (7) 2.2.1主要内容: (7) 2.2.2直流-直流变换器的控制 (7) 2.3 DC-AC变换器(无源逆变电路) (8) 2.3.1电压型变换器 (8) 2.3.2电流型变换器 (8) 2.3.3脉宽调制(PWM)变换器 (9) 2.4 AC-DC变换器(整流和有源逆变电路) (9) 2.4.1简介 (9) 2.4.2工作原理 (9) 2.5 AC-AC变换器 (10) 2.5.1 简介 (10) 2.5.2 分类 (10) 2.6 软开关变换器 (10) 2.6.1分类 (10) 2.6.2 重点 (10) 总结 (11) 参考文献 (11)

摘要:电力电子技术是在电子、电力与控制技术上发展起来的一门新兴交 叉学科,被国际电工委员会(IEC)命名为电力电子学(Power Electronics)或称为电力电子技术。近20年来,电力电子技术已渗透到国民经济各领域,并取得了迅速的发展。作为电气工程及其自动化、工业自动化或相关专业的一门重要基础课,电力电子技术课程讲述了电力电子器件、电力电子电路及变流技术的基本理论、基本概念和基本分析方法,为后续专业课程的学习和电力电子技术的研究与应用打下良好的基础。 关键词:电力电子技术控制技术自动化电力电子器件 Abstract: Power electronic technology is in Electronics, electric Power and control technology developed on an emerging interdisciplinary, is the international electrotechnical commission (IEC) named Power Electronics (Power Electronics) or called Power electronic technology. Nearly 20 years, power electronic technology has penetrated into every field of national economy, and have achieved rapid development. As electrical engineering and automation, industrial automation or related professional one important courses, power electronic technology course about power electronics device, power electronic circuits, the basic theory of converter technology, the basic concept and basic analysis for subsequent specialized course of study and power electronic technology research and application lay a good foundation. Keywords:Power electronic technology control technology automation power electronics device

电力电子技术知识点

(供学生平时课程学习、复习用,●为重点) 第一章绪论 1.电力电子技术:信息电子技术----信息处理,包括:模拟电子技术、数字电子技术 电力电子技术----电力的变换与控制 2. ●电力电子技术是实现电能转换和控制,能进行电压电流的变换、频率的变换及相 数的变换。 第二章电力电子器件 1.电力电子器件分类:不可控器件:电力二极管 可控器件:全控器件----门极可关断晶闸管GTO电力晶体管GTR 场效应管电力PMOSFET绝缘栅双极晶体管IGBT及其他器件 ☆半控器件----晶闸管●阳极A阴极K 门极G 2.晶闸管 1)●导通:当晶闸管承受正向电压时,仅在门极有触电电流的情况晶闸管才能开通。 ●关断:外加电压和外电路作用是流过晶闸管的电流降到接近于零 ●导通条件:晶闸管承受正向阳极电压,并在门极施加触发电流 ●维持导通条件:阳极电流大于维持电流 当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才会开通。 当晶闸管导通,门极失去作用。 ●主要参数:额定电压、额定电流的计算,元件选择 第三章 ●整流电路 1.电路分类:单相----单相半波可控整流电路单相整流电路、桥式(全控、半控)、单相全波可控整流电路单相桥式(全控、半控)整流电路 三相----半波、●桥式(●全控、半控) 2.负载:电阻、电感、●电感+电阻、电容、●反电势 3.电路结构不同、负载不同●输出波形不同●电压计算公式不同

单相电路 1.●变压器的作用:变压、隔离、抑制高次谐波(三相、原副边星/三角形接法) 2.●不同负载下,整流输出电压波形特点 1)电阻电压、电流波形相同 2)电感电压电流不相同、电流不连续,存在续流问题 3)反电势停止导电角 3.●二极管的续流作用 1)防止整流输出电压下降 2)防止失控 4.●保持电流连续●串续流电抗器,●计算公式 5.电压、电流波形绘制,电压、电流参数计算公式 三相电路 1.共阴极接法、共阳极接法 2.触发角ā的确定 3.宽脉冲、双窄脉冲 4.●电压、电流波形绘制●电压、电流参数计算公式 5.变压器漏抗对整流电流的影响●换相重叠角产生原因计算方法 6.整流电路的谐波和功率因数 ●逆变电路 1.●逆变条件●电路极性●逆变波形 2.●逆变失败原因器件触发电路交流电源换向裕量 3.●防止逆变失败的措施 4.●最小逆变角的确定 触发电路 1.●触发电路组成 2.工作原理 3.触发电路定相 第四章逆变电路

电力电子技术的发展及应用趋势

浅析电力电子技术的发展及应用 张友均 摘要:本文主要简要回顾了电力电子技术的发展史,简述了电力电子在电力系统中的一些应用及发展趋势。关键词:电力电子技术;发展史;电力系统;应用;发展趋势 1 引言 自上世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气控制技术舞台,标志着电力电子技术的诞生。究竟什么是电力电子技术呢?美国电气与电子工程师协会下设的电力电子学会对“电力电子技术”的阐述是:有效的使用电力半导体器件,应用电路设计理论以及分析开发工具,实现对电能高效能变换和控制的一门技术。对电能的高效能变换和控制包括对电压,电流,频率或波形等方面的变换。它广泛应用于电力、电气自动化及各种电源系统等工业生产和民用部门。它是介于电力、电子和控制三大领域之间的交叉学科。目前,电力电子技术的应用已遍及电力、汽车、现代通信、机械、石化、纺织、家用电器、灯光照明、冶金、铁路、医疗设备、航空、航海等领域。进入21世纪,随着新的理论、器件、技术的不断出现,特别是与微控制器技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。 2 电力电子技术的发展史 电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 2.1 整流器时代 大功率的工业用电由工频( 50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解) 、牵引(电气机车、电传动的

电力电子技术的实际应用(读书笔记)

电力电子技术的实际应用 摘要 随着科技的飞速进步,时代的高速发展,电力电子技术作为一个新兴的学科诞生并被迅速应用于电力电子领域中,已在国民经济中发挥着巨大作用,已对输变电系统性能将产生巨大影响。目前电力电子技术的应用已涉及电力系统的各个方面,包括发电环节、输配电系统、储能系统等等。电力电子技术是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术,其发展在优化电能使用、改造传统产业和发展机电一体化等新兴产业、扩大电网规模和功能等方面起到了重要作用。本文将重点介绍电力电子技术在电 理网络中的应用。 关键字:电力电子技术、输配电系统、晶闸管、电力网络。 在电气工程领域,电力电子技术作为一个新兴的学科,因其在电力领域中起到的巨大作用,越来越受到重视。随着晶闸管等电力器件的发明并被应用于电力领域,正式标志着电力电子技术被应用于电力系统,其在全球电力领域的发展中,有着里程碑的意义。 电力电子技术主要应用于电力领域中的电力系统中。电力系统由发电、输电、变电、配电和用电等环节组成的电能生产与消费系统。其功能就是产生电能,再经输电系统、变电系统和配电系统将电能供应到用户。为了实现此功能,电力电子技术的应用起到了举足轻重的作用。保证了用户能够获得安全、经济、优质的电能。 电力电子技术最初应用到电力领域的历史最早是在20世纪50年代利用不可控器件二极管构成的整流器来替代直流发电机对同步发电机进行励磁调节。随后出现的利用半控器件晶闸管构成的可控整流器更是为发电机的励磁提供里一个快捷有效的控制手段,从根本上改变了发电机的动态和静态性能,有效的改善了系统的稳定性。 在当前大范围使用的电力系统中,通常都是以固定的电压和频率来向用户提供交流电能的(例如我国使用220V、50Hz的交流电),但是最终的用户需要的电能可能形式会有着各式各样的差别,可能是不同频率的交流电、可能是同频率但电压不同的交流电也可能是直流电等等、如果这些要由普通的常规电力系统器件来完成,例如使用变频器,变压器和整流器等,这就需要大量的此类设备,且还要根据不同用户的要求而使用不同的器件,这是很不经济的,也不可能实现。而电力电气器件可以作为电力系统和用户之间的接口,通过受控的开关作用对系统输送到用户的电能进行不同的变换来满足用户不同的需求。故而自其问世以来,就被广泛的应用在电力领域的各个角落。 在电力领域中,实现常规电流变换的装置包括:整流器、逆变器、交流变换器和斩波器四种基本类型。整流器是利用电力电子器件的单向导电性和可控性将交流电能转换为可控的直流电能的变流装置;逆变器是将直流电能转换为交流电能的装置;交流变换器是把一种交流电能变换为另一种交流电能的装置;斩波器是把一种直流电脑变为另一种直流电能的装置。

浅谈电力电子技术

浅谈电力电子技术 【摘要】电力电子技术正在不断发展,新材料、新结构器件的陆续诞生,计算机技术的进步为现代控制技术的实际应用提供了有力的支持,在各行各业中的应用越来越广泛。电力电子技术在电力系统中的应用研究与实际工程也取得了可喜成绩。 【关键词】电力电子电路;电力电子;电子元件 电力电子技术诞生近半个世纪以来,使电气工程、电子技术、自动化技术等领域发生了深刻的变化,同时也给人们的生活带来了巨大的影响。目前,电力电子技术仍以迅猛的速度发展着,新的电力电子器件层出不穷,新的技术不断涌现,其应用范围也不断扩展。不论在全世界还是在我国,电力电子慢慢的被人所熟知,下面我们就电力电子电路和其应用、结构等进行简单阐述。 1.电力电子电路 1.1 电子电路的概念 电子电路时利用电力电子器件对工业电能进行变换和控制的大功率电子电路。因为电路中无旋转元、部件,故又称静止式变流电路,以区别于传统的旋转式变流电路(由电动机和发电机组成的变流电路)。电力电子电路始见于20世纪30年代,包括由气体闸流管和汞弧整流管组成的低频变流电路和由高频电子管组成的变流电路。它们构成了第一代电力电子电路。60年代由晶闸管组成了第二代电路,泛称半导体电力电子电路(又称半导体变流电路)。80年代,由于可关断晶闸管(GTO)和双极型功率晶体管(GTR)等新型器件的实用化,又逐渐在不同领域中取代了普通晶闸管并形成第三代电路。由于它们具有控制极关断和工作频带较宽的优点,使电力电子电路具有更佳的技术和经济性能,获得了更为广泛的应用。 1.2 电力电子电路的特征 电力电子器件一般都工作在开关状态导通时(通态)阻抗很小,接近于短路,电压降接近于零,而电流由外电路决定阻断时(断态)阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定电力电子器件的动态特性(也就是开关特性)和参数,也是电力电子器件特性很重要的方面,有些时候甚至上升为第一位的重要问题。作电路分析时,为简单起见往往用理想开关来代替 1.3 典型电力电子电路的系统结构 电力电子电路的系统包括以下三种: (1)电力电子器件:如功率二极管、晶闸管、功率MOSFET、IGBT、MCT

电力电子技术试题及答案(B)

电力电子技术答案 2-1与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力? 答:1.电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显著提高了二极管的通流能力。 2.电力二极管在P 区和N 区之间多了一层低掺杂N 区,也称漂移区。低掺杂N 区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N 区就可以承受很高的电压而不被击穿。 2-2. 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 2-3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 要使晶闸管由导通变为关断, 可利用外加电压和外电路的作用使流过晶闸管的电流降 到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 2-4图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I 、I 、I 。 πππ4 π4 π2 5π4a) b)c) 图1-43 图2-27 晶闸管导电波形 解:a) I d1= π21?π πωω4 )(sin t td I m =π2m I (122+)≈0.2717 I m I 1= ?π πωωπ 4 2 )()sin (21 t d t I m =2m I π 2143+≈0.4767 I m b) I d2 = π1?π πωω4)(sin t td I m =π m I ( 12 2 +)≈0.5434 I m I 2 = ? π π ωωπ 4 2) ()sin (1 t d t I m = 2 2m I π 21 43+ ≈0.6741I m c) I d3=π21?2 )(π ωt d I m =41 I m I 3 =? 2 2 ) (21π ωπt d I m = 2 1 I m 2-5上题中如果不考虑安全裕量,问100A 的晶阐管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、 I m3各为多少? 解:额定电流I T(AV)=100A 的晶闸管,允许的电流有效值I=157A,由上题计算结果知 a) I m1≈4767.0I ≈329.35, I d1≈0.2717 I m1≈89.48 b) I m2≈ 6741 .0I ≈232.90, I d2≈0.5434 I m2≈126.56 c) I m3=2 I = 314, I d3= 4 1 I m3=78.5 2-6 GTO 和普通晶闸管同为PNPN 结构,为什么GTO 能够自关断,而普通晶闸管不能? 答:GTO 和普通晶阐管同为PNPN 结构,由P1N1P2和N1P2N2构成两个晶体管V1、V2,分别具有共基极电流增益 1α和2α, 由普通晶阐管的分析可得, 121=+αα是器件临界导通的条件。1 21>αα+两个等效晶体管过饱和而导通;

电力电子技术重点王兆安第五版打印版

第1章绪论 1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类 (1)交流变直流AC-DC:整流 (2)直流变交流DC-AC:逆变 (3)直流变直流DC-DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术。 第2章电力电子器件 1 电力电子器件与主电路的关系 (1)主电路:指能够直接承担电能变换或控制任务的电路。(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。 2 电力电子器件一般都工作于开关状态,以减小本身损耗。 3 电力电子系统基本组成与工作原理 (1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。 (2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。 (4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。 4 电力电子器件的分类 根据控制信号所控制的程度分类 (1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如SCR晶闸管。 (2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。如GTO、GTR、MOSFET 和IGBT。 (3)不可控器件:不能用控制信号来控制其通断的电力电子器件。如电力二极管。 根据驱动信号的性质分类 (1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。如SCR、GTO、GTR。(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。如MOSFET、IGBT。 根据器件内部载流子参与导电的情况分类 (1)单极型器件:内部由一种载流子参与导电的器件。如MOSFET。 (2)双极型器件:由电子和空穴两种载流子参数导电的器件。如SCR、GTO、GTR。(3)复合型器件:有单极型器件和双极型器件集成混合而成的器件。如IGBT。 5 半控型器件—晶闸管SCR 将器件N1、P2半导体取倾斜截面,则晶闸管变成V1-PNP 和V2-NPN两个晶体管。 晶闸管的导通工作原理 (1)当AK间加正向电压A E,晶闸管不能导通,主要是中间存在反向PN结。 (2)当GK间加正向电压G E,NPN晶体管基极存在驱动电流G I,NPN晶体管导通,产生集电极电流2c I。 (3)集电极电流2c I构成PNP的基极驱动电流,PNP导通,进一步放大产生PNP集电极电流1c I。 (4)1c I与G I构成NPN的驱动电流,继续上述过程,形成强烈的负反馈,这样NPN和PNP两个晶体管完全饱和,晶闸管导通。 2.3.1.4.3 晶闸管是半控型器件的原因 (1)晶闸管导通后撤掉外部门极电流G I,但是NPN基极仍然存在电流,由PNP集电极电流1c I供给,电流已经形成强烈正反馈,因此晶闸管继续维持导通。 (2)因此,晶闸管的门极电流只能触发控制其导通而不能控制其关断。 2.3.1.4.4 晶闸管的关断工作原理 满足下面条件,晶闸管才能关断: (1)去掉AK间正向电压; (2)AK间加反向电压; (3)设法使流过晶闸管的电流降低到接近于零的某一数值以下。 2.3.2.1.1 晶闸管正常工作时的静态特性 (1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。 (3)晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。 (4)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。 2.4.1.1 GTO的结构 (1)GTO与普通晶闸管的相同点:是PNPN四层半导体结构,外部引出阳极、阴极和门极。 (2)GTO与普通晶闸管的不同点:GTO是一种多元的功率集成器件,其内部包含数十个甚至数百个供阳极的小GTO元,这些GTO元的阴极和门极在器件内部并联在一起,正是这种特殊结构才能实现门极关断作用。 2.4.1.2 GTO的静态特性 (1)当GTO承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当GTO承受正向电压时,仅在门极有触发电流的情

现代电力电子技术的发展(精)

现代电力电子技术的发展 浙江大学电气工程学院电气工程及其自动化992班马玥 (浙江杭州310027 E-mail: yeair@https://www.360docs.net/doc/5918803026.html,学号:3991001053 摘要:本文简要回顾电力电子技术的发展,阐述了现代电力电子技术发展的趋势,论述了走向信息时代的电力电子技术和器件的创新、应用,将对我国工业尤其是信息产业领域形成巨大的生产力,从而推动国民经济高速、高效可持续发展。 关键词:现代电力电子技术;应用;发展趋势 The Development of Modern Power Electronics Technique Ma Yue Electrical Engineering College. Zhejiang University. Hangzhou 310027, China E-mail: yeair@https://www.360docs.net/doc/5918803026.html, Abstract: This paper reviews the development of power electronics technique, as well as its current situation and anticipated trend of development. Keywords: modern power electronics technique, application, development trend. 1、概述 自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装臵,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。

电力科技论文电力电子技术论文:现代电力电子技术应用的探讨

电力科技论文电力电子技术论文: 现代电力电子技术应用的探讨 摘要:随着电力电子、计算机技术的迅速发展,交流调速取代直流调速已成为发展趋势。变频调速以其优异的调速和启、制动性能被国内外公认为是最有发展前途的调速方式。变频技术是交流调速的核心技术,电力电子和计算机技术又是变频技术的核心,而电力电子器件是电力电子技术的基础。电力电子技术是近几年迅速发展的一种高新技术,广泛应用于机电一体化、电机传动、航空航天等领域,现已成为各国竞相发展的一种高新技术。 关键词:电力电子;技术;发展;应用 1电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 2现代电力电子的应用领域 2.1计算机高效率绿色电源 高速发展的计算机技术带领人类进入了信息社会,同时也促进了

电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进入了电子、电器设备领域。 2.2通信用高频开关电源 通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V 的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。 因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。 2.3直流-直流(DC/DC)变换器

浅谈电力电子技术的发展及应用

浅谈电力电子技术的发展及应用 发表时间:2017-11-06T13:35:33.807Z 来源:《电力设备》2017年第18期作者:王鹏 [导读] 摘要:文章从电力电子技术的相关概念及其发展历程出发,就此项技术在交通运输、家电、电力节能等方面的具体应用展开探究。 (南瑞集团公司(国网电力科学研究院)国电南瑞科技股份有限公司江苏省南京市 210000) 摘要:文章从电力电子技术的相关概念及其发展历程出发,就此项技术在交通运输、家电、电力节能等方面的具体应用展开探究。 关键词:电力电子技术;发展;具体应用 1电力电子技术的相关概念 电力电子技术又称为功率电子技术,主要是对各种电子电力器件,以及与之构成的可控制、转换电能的相关装置及电路展开研究。此技术不仅是电工学在电子领域或弱电中的分支,同时也是电子学在电动领域或强电中的分支,总体来说,是结合强弱电的一门新型学科。当前,我国科技发展迅猛,电力电子技术也愈发重要,其可优化电能的使用情况,达到高效节能的目的。除此之外,通过应用电力电子技术,可有效改造相关传统产业,促进机电一体化发展,并且还能统一功率及信息化处理,在有机结合微电子技术的基础上,促进电子技术的进一步改革与发展。 2电力电子技术的发展历程 自上世纪五十年代诞生第一只晶闸管以来,电力电子技术就获得了显著发展,并在电气传动技术领域占据了重要的一席之地。以下就电力电子技术的发展历程展开探究。 2.1晶闸管整流时代 工频(也即50Hz)交流发电机为大功率工业用电的主要来源,在实际应用过程给中,以直流形式消费的电能约占20%,例如牵引(包括地铁机车、电气机车、城市无轨电车等)、直流传动(造纸及轧钢)、电解(包括化工原料及有色金属)等领域。为将工频交流电高效率地转变为直流电,就需要应用到大功率的硅整流器。在20世纪60、70年代,人们加大了大功率硅整流器的开发及应用力度,国内还曾掀起开办硅整流器厂的热潮,现阶段我国大部分的硅整流器制造厂就是于那个时代建成的,那一时期也被称为电力电子技术晶闸管时代。 2.2逆变时代 自20世纪70年代以后,自关断器件被制造出来并投入实际应用中,此时,电力电子技术便进入到逆变时代。当时,在世界范围内爆发了能源危机,而具备显著节能效果的交流电机变频调速因此获得了迅速的发展。其中,将直流电逆变为频率为0至100Hz的交流电为变频调速的关键性技术,而应用在大功率逆变中的晶闸管、门极可关断晶闸管、巨型功率晶体管等便迅速成为当时众多电力电子技术的主要组成部分。尽管当时电力电子技术已实现逆变以及整流等功能,但工作频率比较低,且只是在中低频率的范围内。 2.3现代变频器时代 自20世纪80年代以后,人们加大了大规模集成电路技术的应用力度,这为电力电子技术的发展奠定了扎实的基础。在集成电路技术中,高压大电流以及精细加工两种技术得到了有机结合。其中,传统采用低频技术处理问题为主的电力电子学,以及集大电流、高压、高频于一身的,以功率IGBT与MOSFET为代表的功率半导体复合器件,均朝着以高频处理问题为主的现代电力电子学方向进行转变。此种现象显示,当时已进入到了电力电子的现代变频器时代。在此时期,集成电路技术被大规模应用在各种新型的器件中,并不断朝着模块化及复合化的方向发展,不但有效缩小了电力电子器件的体积,使其结构更加紧凑,而且还能将不同器件的优点进行综合。总体而言,随着这些新型器件的飞速发展,交流电机变频调速的频率更高,性能也更加可靠、完善,这为电力电子技术的高频发展,以及用电设备的小型轻量化、节材节能高效化、机电一体化提供了非常重要的基础支持。 3电力电子技术的具体应用 3.1在交通运输中的具体应用 随着时代的进步与发展,电力电子技术在众多领域得到了非常广泛的应用,例如在电气化铁道交通中,电气机车中的交流机车便应用到了变频装置,而直流机车则应用到了整流装置。同时,在磁悬浮列车中的牵引电机传动以及各种辅助电源等方面,也应用到了电子电力技术,可以说,磁悬浮列车的顺利运行离不开电力电子技术的支持。除此之外,在电动汽车的电机方面,为了发挥出控制驱动的作用,同样需要对电子装置展开合理应用。而在飞机、船舶等交通运输工具方面,其对电源的应用也存在着不小的差异,因此,科学应用电力电子技术就具有关键性的作用。 3.2在家电中的具体应用 在人们日常生活中的各种家电方面,电力电子技术也得到了较为广泛的应用,给人们的生活带来了极大的便利。例如,生活中常见的洗衣机,通过应用电力电子技术,便可有效替代手工劳动,人们只需在洗衣机中放入脏衣服,再按下按钮,便可借助电力电子技术的相关功能完成洗衣服的整个过程。其次,厨房中常见的洗碗机,其应用电力电子技术的原理与洗衣机的应用原理大致相同;而空调器通过应用电力电子技术,可起到显著的节能效果,经大量实践研究证明,其节约的电能约占30%及以上;在工作效率方面,电频荧光灯要明显高于平常使用的普通白炽灯。 3.3在发电环节中的具体应用 经分析得知,我国经济快速发展离不开能源的支持,在经济建设不断深入的大背景下,消耗了大量的能源,特别是电能。现阶段,经济发展的一项关键条件便是有机结合电力与工业,正是由于电能具有利用率高、稳定性高等显著优势,因而其消耗量呈现出不断增加的趋势。分析我国工业发展的整体情况可知,当前的工业用电还存在一系列不了合理的情况,导致电力能源的严重浪费。随着可持续发展理念的提出与实行,人们对节约电能也愈发重视。而通过应用电力电子技术,便可有效节约原材料,优化各种电力设备的性能,最终充分降低电能的消耗程度。 3.4在电力节能中的具体应用 近些年来,我国不断加大对水力发电、风力发电等新能源的开发及利用力度,其中涉及到发电机电流频率的转换。具体来说,水头的流量及压力对水力发电的功率起到了决定性的作用,而这会影响到机组最佳转速的变化。此时,为实现有效功率的最大化,就需要对转子励磁电流频率进行调整,从而实现机组的变速运行。此外,在大型发电机中,也应用到了晶闸管整流自并励的方式来实现相对静止励磁的

电力电子技术课后题答案

0-1.什么是电力电子技术? 电力电子技术是应用于电力技术领域中的电子技术;它是以利用大功率电子器件对能量进行变换和控制为主要内容的技术。国际电气和电子工程师协会(IEEE)的电力电子学会对电力电子技术的定义为:“有效地使用电力半导体器件、应用电路和设计理论以及分析开发工具,实现对电能的高效能变换和控制的一门技术,它包括电压、电流、频率和波形等方面的变换。” 0-2.电力电子技术的基础与核心分别是什么? 电力电子器件是基础。电能变换技术是核心. 0-3.请列举电力电子技术的 3 个主要应用领域。 电源装置;电源电网净化设备;电机调速系统;电能传输和电力控制;清洁能源开发和新蓄能系统;照明及其它。 0-4.电能变换电路有哪几种形式?其常用基本控制方式有哪三种类型? AD-DC整流电;DC-AC逆变电路;AC-AC交流变换电路;DC-DC直流变换电路。 常用基本控制方式主要有三类:相控方式、频控方式、斩控方式。 0-5.从发展过程看,电力电子器件可分为哪几个阶段? 简述各阶段的主要标志。可分为:集成电晶闸管及其应用;自关断器件及其应用;功率集成电路和智能功率器件及其应用三个发展阶段。集成电晶闸管及其应用:大功率整流器。自关断器件及其应用:各类节能的全控型器件问世。功率集成电路和智能功率器件及其应用:功率集成电路(PIC),智能功率模块(IPM)器件发展。 0-6.传统电力电子技术与现代电力电子技术各自特征是什么? 传统电力电子技术的特征:电力电子器件以半控型晶闸管为主,变流电路一般 为相控型,控制技术多采用模拟控制方式。 现代电力电子技术特征:电力电子器件以全控型器件为主,变流电路采用脉宽 调制型,控制技术采用PWM数字控制技术。 0-7.电力电子技术的发展方向是什么? 新器件:器件性能优化,新型半导体材料。高频化与高效率。集成化与模块化。数字化。绿色化。 1-1.按可控性分类,电力电子器件分哪几类? 按可控性分类,电力电子器件分为不可控器件、半控器件和全控器件。 1-2.电力二极管有哪些类型?各类型电力二极管的反向恢复时间大约为多少? 电力二极管类型以及反向恢复时间如下: 1)普通二极管,反向恢复时间在5us以上。 2)快恢复二极管,反向恢复时间在5us以下。快恢复极管从性能上可分为快速恢复和超快速恢复二极管。前者反向恢复时间为数百纳秒或更长,后者在100ns 以下,甚至达到20~30ns,多用于高频整流和逆变电路中。 3)肖特基二极管,反向恢复时间为10~40ns。 1-3.在哪些情况下,晶闸管可以从断态转变为通态? 维持晶闸管导通的条件是什么? 1、正向的阳极电压; 2、正向的门极电流。两者缺一不可。阳极电流大于维持电流。

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

相关文档
最新文档