圆,垂径定理,圆周角圆心角,切线性质及判定

圆,垂径定理,圆周角圆心角,切线性质及判定
圆,垂径定理,圆周角圆心角,切线性质及判定

圆,垂径定理,圆周角圆心角,切线性质及判定

1、圆的定义

在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端

点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做

半径。

以点O为圆心的圆记作“⊙O”,读作“圆O”

例题:

1.到点A的距离等于5cm的所有点组成的图形是____________。

2.两个同心圆的直径分别为5 cm和3 cm,则圆环部分的宽度为_____ cm。

2、弦、弧等与圆有关的定义

(1)弦

连接圆上任意两点的线段叫做弦。(如图中的AB)

(2)直径

经过圆心的弦叫做直径。(如图中的CD)

直径等于半径的2倍。

直径所对的圆周角等于90度。

(3)半圆

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

(4)弧、优弧、劣弧

圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)

3、点和圆的位置关系(3分)

设⊙O的半径是r,点P到圆心O的距离为d,则有:

d

d=r?点P在⊙O上;

d>r?点P在⊙O外。

例题:

1.已知圆的半径等于5cm,根据下列点P到圆心的距离:(1)4cm;(2)5cm;(3)6cm,判定点P与圆的位置关系,并说明理由.

2.已知⊙O的周长为8πcm,若PO=2cm,则点P在_______;若PO=4cm,则点P在_____;若PO=6cm,则点P在_______.

课堂练习:

1.点A在以O为圆心,3cm为半径的⊙O内,则点A到圆心O的距离d的范围是 4.如果⊙O

的半径为r ,点P 到圆心O 的距离为d ,那么:①点P 在⊙O 外,则______; ②______ 则d =r ;③______则d

2.一点和⊙O 上的最近点距离为4cm ,最远距离为9cm ,则这圆的半径是 cm . 3.圆上各点到圆心的距离都等于 ,到圆心的距离等于半径的点都在 . 4.⊙O 的半径是3cm ,P 是⊙O 内一点,PO=1cm ,则点P 到⊙O 上各点的最小距离是 . 5.如图,在△ABC 中,∠ACB=90°,AC=2cm ,BC=4cm ,CM 为中线,以C

为圆心,

cm

为半径作圆,则A 、B 、C 、M 四点在圆外的有 ,在圆上的有 ,在圆内的有 .

6.如图,Rt △ABC 的两条直角边BC=3,AC=4,斜边AB 上的高为CD ,若以C 为圆心,分别以r 1=2cm ,r 2=2.4cm ,r 3=3cm 为半径作圆,试判断D 点与这三个圆的位置关系.

7.已知:如图,OA 、OB 、OC 是⊙O 的三条半径,∠AOC=∠BOC ,M 、N 分别为OA 、OB 的中点.求证:MC=NC .

4、垂径定理及其推论:

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。 垂径定理及其推论可概括为: 过圆心 垂直于弦

直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧

符号表示垂径定理及推论:

符号语言:∵AB 是⊙O 的直径 又∵CD AB ⊥

∴DE CE =

5

符号语言:∵AB是⊙O的直径又∵DE

CE=

∴CD

AB⊥

例题:

1、已知,如图在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,

求证:AC=BD。

2、如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm.求⊙O的半径。

3、如图,⊙O的直径AB和弦CD相交于点E,已知AE=6cm,EB=2cm,∠CEA=30°,求CD的长.(求弦长)

4、已知:⊙O半径为6cm,弦AB与直径CD垂直,且将CD分成1∶3两部分,求:弦AB的长.

5、已知如图等腰三角形ABC中,AB=AC,半径OB=5cm,圆心O到BC的距离为3cm,求△ABC 的周长。

课堂练习:

1.(1).圆上各点到圆心的距离都等于_________,到圆心的距离等于半径的点都在_________。

(2).如右图,____________是直径,___________是弦,

____________是劣弧,________是优弧,__________是半圆。

(3).圆的半径是4,则弦长x的取值范围是_______________。

(4).确定一个圆的两个条件是__________和_________。

2.如图1,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,?错误的是( ).

A .CE=DE

B . BC

BD = C .∠BAC=∠BAD D .AC>AD

(1) (2) (3)

3.如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )

A .4

B .6

C .7

D .8

4.如图3,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,?则下列结论中不正确的是( )

A .A

B ⊥CD B .∠AOB=4∠ACD

C . A

D BD

= D .PO=PD 5. 如图所示,圆O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段的OM 的长的取值范围是( )

A. 3≤OM ≤5

B. 4≤OM ≤5

C. 3<OM <5

D. 4<OM <5

6. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )

A .5米

B .8米

C .7米

D .

5米

7. 如图,AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=,求BC 的长;

8、已知:AB 为⊙O 的直径,CD 为弦,CE ⊥CD 交AB 于E DF ⊥CD 交AB 于F 求证:AE =BF

C

3cm 2

A B

5、圆周角定理及其推论 1、圆周角

顶点在圆上,并且两边都和圆相交的角叫做圆周角。 2、圆周角定理

一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

例题:

(

)

A 、1

B 、2

C 、2 判断下列命题是否正确?

⑴圆周角的顶点一定在圆上。( ) ⑵顶点在圆上的角是圆周角。( ) ⑶圆周角的两边都和圆相交。( )⑷两边都和圆相交的角是圆周角。( )

3、如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB 的度数?

4.如图,⊙O 是ABC ?的外接圆,AB 是直径,若 ?=∠80BOC ,则A ∠等于( ) A .60o B .50o C .40o D .30o

5.如图,已知CD 为⊙O 的直径,过点D 的弦DE 平行 于半径OA ,若∠D 的度数是50°,则∠C 的度数是: A .25° B .40° C .30° D .50°

6. 如图所示,A 、B 、C 三点在圆O 上,∠AOC=100°,则∠ABC 等于( ) A. 140° B. 110° C. 120° D. 130°

O

C

B

A

O

C

课堂练习:

1、如图,弦AB 分圆为1:3两段,则 AB 的度数= 度,

ACB 的度

数等

于 度;∠AOB = 度,∠ACB = 度,

2、如图,已知A 、B 、C 为⊙O 上三点,若 AB

、 CA 、 BC

的度数之比为1∶2∶3,则∠AOB = ,∠AOC = , ∠ACB = ,

3、如图1-3-2,在⊙O 中,弦AB=1.8cm ,圆周角∠ACB=30○

, 则 ⊙O 的半径等于=_________cm .

4、⊙O 的半径为5,圆心O 到弦AB 的距离OD=3, 则AD= ,AB 的长为 ;

5、如图,已知⊙O 的半径OA=13㎝,弦AB =24㎝, 则OD= ㎝。

6、如图,已知⊙O 的直径AB =10cm ,弦AC =8cm, 则弦心距OD 等于 cm.

7、已知:AB 为⊙O 的直径,C 为弧AF 中点,CD ⊥AB 于D ,CD 交AF 于E 求证:∠1=∠2

6、(1)归纳直线和圆的三种位置关系:

相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线。

相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点。

相离:直线和圆没有公共点时,叫做直线和圆相离。

· O A

B

D

第1小题

2小题

B

A

如果圆O 的半径为r ,圆心O 到直线l 的距离为d ,那么:

直线l 和圆O 相交 d r; 直线l 和圆O 相切 d r; 直线l 和圆O 相离 d r.

(2)切线的性质定理:圆的切线垂直于过切点的直径(或半径)。

(3)由直线与圆的位置关系和切线的性质定理推理总结出切线的判定定理:

切线的判定定理:经过半径(或直径)的外端并且垂直于这条半径(直径)的直线是圆的切线。 注意:“经过半径(或直径)的外端”和“垂直于这条半径(或直径)”这两个条件缺一不可。

引导学生理解:①经过半径外端;②垂直于这条半径.

请学生思考:定理中的两个条件缺少一个行不行? 定理中的两个条件缺一不可.

总结切线的判定方法: ① 直线到圆心的距离等于该圆的半径(直线与圆的位置关系);②线与圆有唯一公共点(切线

定义);③切线的判定定理. 切线例题:

1、 判断下列命题是否正确.

(1)经过半径外端的直线是圆的切线. (2)垂直于半径的直线是圆的切线.

(3)过直径的外端并且垂直于这条直径的直线是圆的切线. (4)和圆有一个公共点的直线是圆的切线.

(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.

图(1) 图(2) 图(3)

图(1) 图(2) 图(3)

A

2、PA 切⊙O 于点A,PA=4,OP=5,则⊙O 的半径是____。

3、已知:直线AB 经过⊙O 上的点C ,并且OA=OB ,CA =CB 。求:①直线AB 是⊙O 的切线;②若⊙O 的直径为8cm ,AB=10cm ,求OA 的长。

4、(宜昌市)如图,点O 是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOC=( )

A .130°

B .100°

C .50°

D .65

课堂练习题:

1、下列结论中正确的是( )

A .圆的切线垂直于半径

B .垂直于切线的直线必经过圆心

C .垂直于切线的直线必经过切点

D .经过圆心和切点的直线必须垂直于切线 2、如图4,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连结BC ,若∠A=36°,则∠C= 。 3、如图5,PA 、PB 分别切⊙O 于点A 、B ,点

E 是⊙O 上一点,且∠AEB=60°,则∠P= 。

4、如图6,AB 是⊙O 的直径,C 是⊙O 上的一点,∠BAC=30°,在AB 的延长线上取一点P ,连结PC ,当PB=

2

1

AB 时,求证:PC 是⊙O 的切线 5、正方形ABCD 的边长为4cm ,以正方形的边BC 为直径在正方形内部作半圆,AE 交CD 于点E ,且与半圆相切于点F ,求△ADE 的面积。

课后作业: 一、选择题.

1.下列说法:①三点确定一个圆;②三角形有且只有一个外接圆;?③圆有且只有一个内接三

角形;④三角形的外心是各边垂直平分线的交点;⑤三角形的外心到三角形三边的距离相等;⑥等腰三角形的外心一定在这个三角形内,其中正确的个数有(? ) A .1 B .2 C .3 D .4

2.如图,Rt △ABC ,∠C=90°,AC=3cm ,BC=4cm ,则它的外心与顶点C 的距离为( ).

A .2.5

B .2.5cm

C .3cm

D .4cm

3.如图,△ABC 内接于⊙O ,AB 是直径,BC=4,AC=3,CD 平分∠ACB ,则弦AD 长为( ) A .

5

2 B .5

2

C

D .3

4.如果两个圆心角相等,那么( )

A .这两个圆心角所对的弦相等;

B .这两个圆心角所对的弧相等

C .这两个圆心角所对的弦的弦心距相等;

D .以上说法都不对

5.在同圆中,圆心角∠AOB=2∠COD ,则两条弧AB 与CD 关系是( )

A .

AB =2 CD B . AB > CD C . AB <2 CD D .不能确定 6.如图5,⊙O 中,如果 AB =2 AC ,那么( ).

B A

A

(5) (6) 二、填空题

1.经过一点P 可以作_______个圆;经过两点P 、Q 可以作________?个圆,?圆心在_________上;

经过不在同一直线上的三个点可以作________个圆,?圆心是________的交点.

2.边长为a 的等边三角形外接圆半径为_______,圆心到边的距离为________.

3.直角三角形的外心是______的中点,锐角三角形外心在三角形______,钝角三角形外心在三角形

_________.

4.交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________. 5.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________.

6.如图6,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________. 三、解答题

1、如图,OA 、OB 、OC 都是圆O 的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC

2、如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB 的度数?

3.如图,在⊙O 中,C 、D 是直径AB 上两点,且AC=BD ,MC ⊥AB ,ND ⊥AB ,M 、N ?在⊙O 上.

(1)求证: AM = BN ;(2)若C 、D 分别为OA 、OB 中点,则 AM MN NB ==成立吗?

4.如图,以

ABCD 的顶点A 为圆心,AB 为半径作圆,分别交BC 、AD 于E 、F ,若∠D=50°,

求 BE

的度数和 EF 的度数.

B

A

5.如图,∠AOB=90°,C 、D 是AB 三等分点,AB 分别交OC 、OD 于点E 、F ,求证:AE=BF=CD .

课后作业(切线部分):

1、已知⊙O 的半径为8cm ,如一条直线和圆心O 的距离为8cm ,那么这条直线和这个圆的位置关系是( )

A .相离

B .相切

C .相交

D .相交或相离

2、(上海)如图9,从⊙O 外一点P 到⊙O 的两条切线PA 、PB ,切点分别为A 、B ,如果∠APB=60°,PA=8,那么弦AB 的长是( )

A .4

B .7

C . 34

D .38

3、如图10,PA 、PB 切⊙O 于点A 、B ,PA=10,CD 是⊙O 的切线,交PA 、PB 于C 、D 两点,则△PCD 的周长是( )

A .10

B .20

C .30

D .40

4、如图1,AB 与⊙O 切于点B ,AO=6cm ,AB=4cm ,则⊙O 的半径为( ) A .

B .

C .

D

(1) (2) (3)

https://www.360docs.net/doc/598279373.html,

O

https://www.360docs.net/doc/598279373.html,

5、如图2,已知∠AOB=30°,M为OB边上任意一点,以M为圆心,?2cm?为半径作⊙M,?当OM=______cm时,⊙M与OA相切.

6、已知:如图3,AB为⊙O直径,BC交⊙O于点D,DE⊥AC于E,要使DE是⊙O的切线,?那么图中的角应满足的条件为_______(只需填一个条件).

7、如图4,AB为半圆O的直径,CB是半圆O的切线,B是切点,AC?交半圆O于点D,已知CD=1,AD=3,那么cos∠CAB=________.

(4)(5)

8、如图5,BC为半⊙O的直径,点D是半圆上一点,过点D作⊙O?的切线AD,BA⊥DA于A,

BA交半圆于E,已知BC=10,AD=4,那么直线CE与以点O为圆心,5

2

为半径的圆的位置关系是

________.

9、如图,⊙O内切于△ABC,切点分别为D、E、F。已知∠B=50°∠C=60°.那么∠EDF=________.

10、已知:如图,AB是⊙O的直径,P是⊙O外一点,PA⊥AB,?弦BC∥OP,请判断PC是否为⊙O的切线,说明理由.

垂径定理、弦、弧、圆心角、圆周角练习

垂径定理、弦、弧、圆心角、圆周角练习 1.已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么? 2. 如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。 600 3. 如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。你认为图中有哪些相等的线段?为什么? A D B O C E 4.如图所示,OA是圆O的半径,弦CD⊥OA于点P,已知OC=5,OP=3,则弦CD=____________________。 5. 如图所示,在圆O中,AB、AC为互相垂直且相等的两条弦,OD ⊥AB,OE⊥AC,垂足分别为D、E,若AC=2cm,则圆O的半径为____________cm。 6. 如图所示,AB是圆O的直径,弦CD⊥AB,E为垂足,若AB=9,BE=1,则CD=_________________。

C A P O D C E O A D B 7. 如图所示,在△ABC中,∠C=90°,AB=10,AC=8,以AC为直径作圆与斜边交于点P,则BP的长为________________。 8. 如图所示,四边形ABCD内接于圆O,∠BCD=120°,则∠BOD=____________度。 9.如图所示,圆O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是() A. 3≤OM≤5 B. 4≤OM≤5 C. 3<OM<5 D. 4<OM<5 10.下列说法中,正确的是() A. 到圆心的距离大于半径的点在圆内 B. 圆的半径垂直于圆的切线 C. 圆周角等于圆心角的一半 D. 等弧所对的圆心角相等 11.若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于() A. 45° B. 90° C. 135° D. 270° 12. 如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC 等于() A. 140° B. 110° C. 120° D. 130°

九年级圆垂径定理弦弧圆心角圆周角提高练习

垂径定理、弦、弧、圆心角、圆周角提高练习 一、选择题 A1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ) A .4个 B .3个 C . 2个 D . 1个 A2如图,△ ABC 内接于⊙O ,D 为线段AB 的中点,延长OD 交⊙O 于点E ,连接AE ,BE ,则下列五 个结论①AB ⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C ,⑤ , 正确结论的个数是( ) A 、2个 B 、3个 C 、4个 D 、5个 A3.如图,点B 、C 在⊙O 上,且BO=BC ,则圆周角BAC ∠等于( ) A .60? B .50? C .40? D .30? A4.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠B 大小为 ( ) A .25° B .35° C .45° D .65° 5. 下列说法中,正确的是( ) A. 到圆心的距离大于半径的点在圆内 B. 圆的半径垂直于圆的切线 C. 圆周角等于圆心角的一半 D. 等弧所对的圆心角相等 A6、如图,AB 是⊙O 的弦,半径OA=2, 120=∠AOB ,则弦AB 的长是 ( ) (A )22 (B )32 (C )5 (D )23 B7.如图2,△ABC 内接于⊙O ,若∠OA B=28°,则∠C 的大小是( ) A .62° B .56° C .28° D .32° B8. 如图,点A 、B 、P 在⊙O 上,且∠APB=50°若点M 是⊙O 上的动 点,要使△ABM 为等腰三角形,则所有符合条件的点M 有 A .1个 B .2个 C .3个 D .4个 (第2题图) (第3题图) (第4题图)

圆的切线的性质和判定(教案)

切线的判定与性质(复习)教案 一、教学内容:中考数学复习——切线的判定与性质 二、教学目标: 1、知识技能: (1)掌握切线的判定定理,能判断一条直线是否为圆的切线; (2)掌握切线的性质定理,能利用切线的性质定理解决相关问题。 2、能力技能 (1)通过观察、比较切线的判定方法,发展学生的推理与归纳能力; (2)学生通过运用切线的性质解决问题的过程,逐渐形成用数学语言表述问题的能力。 (3)通过学习添加辅助线,提高思维能力。 3.情感、态度与价值观 经历复习圆的切线的判定与性质的过程,发展学生的数学思考能力;通过积极引 导,帮助学生有意识地积累学习经验,获得成功的体验;利用数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望. 三、重、难点: 重点:掌握切线的判定定理和性质定理 难点:切线的判定定理和性质定理应用 四、教学过程 (一)知识简要归纳——温故而知新 1. 2.判断一条直线是否为圆的切线,现已有 种方法: 一是看直线与圆公共点的个数: ( 与圆有 公共点的直线是圆的切线) 二看圆心到直线的距离d与圆的半径之间的关系;(当d r 时,直线是圆的切线) 三是利用 。 3.认真观察下列图形,看看下列说法是否正确 (1).与圆有公共点的直线是圆的切线. ( ) (2).和圆心距离等于圆的半径的直线是圆的切线; ( ) (3).垂直于圆的半径的直线是圆的切线; ( ) (4) 4 (二)、合作探究 图(1) 图(2) 图(3) 图(4) 图(5)

例1 直线A B 经过⊙O 上的点C , 并且O A =O B ,C A =C B , 求证:直线A B 是⊙O 的切线. 归纳小结: 象例1 这种证明方法可简记为: 有“切点”,连半径,证垂直。 例2:已知:O 为∠B A C 平分线上一点,O D ⊥A B 于D ,以O 为圆心,O D 为半径作⊙O 。 求证:⊙O 与A C 相切。 归纳小结:象例2这种证明方法可简记为: 无“切点”,作垂直,证半径 。 例3 如图,AB 是⊙O 的直径, C 为⊙O 上一点, AD 和过点C 的切线互相垂直,垂足为D. 求证:AC 平分∠DAB . 归纳小结:象例3这种证明方法可简记为: 知切点,连半径,得垂直 . (三)随堂练习 1.如图,PA 、PB 切⊙O 于点A 、B, ∠P=70°, 则∠C= ( B ), A. 70°, B. 55°, C. 110°, D. 140°. 2、如图:△ABC 的边AB ,经过圆心O ,交⊙O 于点A 、D ,∠BAC=∠B = 30°, 边BC 交圆于点C 。BC 是⊙O 的切线吗?为什么? 3.已知如图,△ABC 为等腰三角形,O 是底边BC 的中点, ⊙O 与腰AB 相切于点D 。AC 与⊙O 相切吗?为什么? 4.AB 是⊙O 的直径,BE 平分∠ABC 交⊙O 于点E,过点E 作⊙O 的 第1题图 第2题图

垂径定理和圆周角定理的复习

二、同步题型分析 关于垂径定理 例题1、如图,⊙O 的半径OD⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为( ) 【变式练习】1如图,AB 是⊙O 的直径,弦CD⊥AB,垂足为P .若CD=8,OP=3,则⊙O 的半径为( ) 【变式练习】2、如图,在⊙O 中,OC⊥弦AB 于点C ,AB=4,OC=1,则OB 的长是( ) 例题2、如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD⊥AB,垂足为P ,且BP :AP=1:5,则CD 的长为( ) 【变式练习】1、如图.Rt△ABC 内接于⊙O,BC 为直径,AB=4,AC=3,D 是弧AD 的中点,CD 与AB 的交点为E ,则 DE CE 等于( ) 【变式练习】2如图,AB 是⊙O 的直径,弦CD 交AB 于点E ,且AE=CD=8,∠BAC= 2 1 ∠BOD,则⊙O 的半径为( ) 【变式练习】3在半径为13的⊙O 中,弦AB∥CD,弦AB 和CD 的距离为7,若AB=24,则CD 的长为( ) 例题3、如图,以M (-5,0)为圆心、4为半径的圆与x 轴交于A 、B 两点,P 是⊙M 上异于A 、B 的一动点,直线PA 、PB 分别交y 轴于C 、D ,以CD 为直径的⊙N 与x 轴交于E 、F ,则EF 的长( ) 【变式练习】1、已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,且AB=8cm ,则AC 的长为( ) 【变式练习】2如图所示,在圆⊙O 内有折线OABC ,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长

切线的判定和性质(说课稿)

切线的性质和判定说课稿 一、说教材: 1.本节教材所处的地位和作用 切线的判定和性质的教学在平面几何乃至整个中学数学教学中都占有重要地位和作用:除了在证明和计算中有着广泛的应用外,它也是研究三角形内切圆的作法,切线长定理以及后面研究两圆的位置关系和正多边形与圆的关系的基础,所以它是《圆》这一章的重要内容,也可以说是本章的核心。除了要求学生能够较灵活地运用有关知识解题外,还要求学生掌握一些解题技巧,在培养学生的逻辑思维能力和综合运用知识解决问题的能力方面也起了重要作用。 2. 教学目标 (1)知识与技能 记住圆的切线判定定理,并能判定一条直线是否是圆的切线;掌握圆的切线的判定方法和切线的性质,能够运用切线的判定方法判断一条直线是否是圆的切线;能综合运用切线的判定和性质解决问题。 (2)过程与方法 通过演示直线与圆相切,培养学生观察图形并能从图形的位置去判断图形的性质和能力。 (3)情感、态度与价值观 通过学生自己实践发现定理,培养学生学习的主动性和积极性 3.教学重点与难点 重点:圆的切线的识别方法和圆的切线的性质。 难点:在识别圆的切线时,培养学生的逻辑推理能力。 二、说教法 本课注重直观,注重动手,注重探索能力的培养,并且九年级学生经过两年多的学习,已经积累了动手操作,探究问题的经验,也具备了这种探究问题,合作交流的能力。因此,根据本节课的内容和学生的认知水平,主要采用“教师引导,学生探究、发现”的教学方法。 三、说学法 为了充分体现《新课标》的要求,培养学生的动手实践能力,逻辑推理能力,

探索新知的能力,要充分体现学生的主体地位。为此,在本课的学习过程中学生主要使用探究式的学习方法。根据平面几何的特点,尽量让学生在动口说、动脑想、动手操作中获得更多的参与机会,从中学会分析、解决问题的方法。本节是定理的教学,我认为要指导学生做好如下两方面的工作: (1)学习定理一定要注重对基本图形的把握,理解和灵活运用定理是证题的基础,这正是学生感到困难的地方。从几何定理的特征出发,要解决这个难题,就要下功夫把定理内容和相应的基本图形建立起联系,使定理在头脑中活灵活现出来; (2)常见的辅助线一定要了解,本节添加辅助线的关键在于“已知条件中是否明确了直线和圆的公共点。”如果无公共点就作垂线证d=r,有公共点的话,连半径证垂直,即“有点连线证垂直,无点作垂线证d=r。” 四、说教学过程 (一)、创设情景,诱发动机 1、根据下图,回答以下问题 (1)、图1、图2、图3中的直线分别和⊙O是什么关系? l l (a)(b)(c) (2)、在上图中,哪个图中的直线是圆的切线?你是怎样判定的?还有更好的判定方法吗? 【设计意图】因为相切是直线和圆的三种位置关系中重点研究的内容,所以通过在学生已有的知识结构上提出问题,复习巩固直线和圆的三种位置关系、定义、性质和判定,达到“温故而知新”的目的。(顺势引出课题) (二)实践操作,探索新知 1、探究:圆的切线的判定定理 (1)实验发现 如图所示,画一个圆O及半径OA,经过圆的半径OA的外端A画一条直线L 垂直于这条半径OA。这条直线和圆有几个公共点?

圆心角圆周角垂径定理及其应用

第一课时辅导讲义

4、圆周角定理及其推论(重点) 同弧所对的圆周角等于它所对的圆心的角的一半。 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。 推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三 角形。 即:在△ABC中,∵OC=OA=OB ∴△ABC是直角三角形或∟C=90° 5.垂径定理的应用(难点) (1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的的弧, 垂径定理的表现形式:如图5-2-8所示, 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB是直径②AB CD ⊥③CE DE =④弧BC=弧BD⑤弧AC=弧AD 中任意2个条件推出其他3个结论。 C B A O O E D C B A

考点一:圆心角,弧,弦的位置关系 例1、(2006?)如图,BE是半径为6的圆D的1/4圆周,C点是BE上的任意一点,△ABD是等边三角形,则四边形ABCD的周长P的取值围是() 例2、有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有() 例3、(2007?)如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣孤DE的2倍;⑤AE=BC.其 中正确结论的序号是 例4.(2005?江)如图所示,⊙O半径为2,弦BD=2√3,A为弧BD的中点,E为弦AC的中点,且 在BD上,则四边形ABCD的面积为 考点二:圆周角定理 例1如图,三角形ABC中,∠A=60°,BC为定长,以BC为直径的⊙O分别交AB,AC于点D,E.连接DE,已知DE=EC.下列结论:①BC=2DE;②BD+CE=2DE.其中一定正确的有() 例2、(2011?)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角

《圆的切线的判定和性质》教学设计与反思

《圆的切线的判定和性质》教学设计与反思 教学目标 1、记住圆的切线的判定定理,并能判定一条直线是否是圆的切线; 2、记住切线的性质定理; 3、会运用切线的判定定理和性质定理解决问题。 重点: 切线的判定定理和切线判定的方法 难点: 切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径。 学习流程 一、揭示目标 二、自学指导 1、复习下列内容 (1)、直线与圆的位置关系有几种?分别是那些关系?直线与圆的位置关系的判断方法有哪几种? (2)、直线与圆相切有哪几种判断方法? (3)、思考作图:已知:点A为⊙o上的一点,如和过点A作⊙o的切线呢? 交流总结:根据直线要想与圆相切必须d=r,所以连接OA过A点作OA的垂线 2、知识导入: ______ 如图:直线BC和⊙O的位置关系是____,直线BC叫⊙O的_____,公共点A叫 思考:如图所示,它的数学语言该怎样表示呢? 3、思考探索; (1)、直线l垂直于半径OA,直线l是⊙O的切线吗? (2)、直线l经过半径OA的外端A,直线l是⊙O的切线吗?

小结: 判定一条直线是圆的切线的三种方法 (1)、利用定义:与圆有唯一公共点的直线是圆的切线。 (2)、利用定理:与圆心距离等于圆的半径的直线是圆的切线。 (3)、利用切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 4、例题精析: 例1、(教材103页例1)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB, 求证:直线AB是⊙O的切线。 o A B C 练习1: AB是⊙O的直径,TB=AB, ∠TAB=45°直线BT是⊙O的切线吗?为什么? 练习2、如图已知直线AB过⊙O上的点C,并且OA=OB,CA=CB 求证:直线AB是⊙O的切线 例2.如图:点O为∠ABC平分线上一点,OD⊥AB于D,以O为圆心,OD为半径作圆。 求证:BC是⊙O 的切线。 练习3、如图,⊙O的半径为8厘米,圆内的弦AB为83厘米,以O为圆心,4厘米为半径作小圆,求证:小圆与直线AB相切。

垂径定理-圆周角与圆心角的关系

圆 目录 一.圆的定义及相关概念 二.垂经定理及其推论 三.圆周角与圆心角 四.圆心角、弧、弦、弦心距关系定理五.圆内接四边形 六.会用切线, 能证切线 七.切线长定理 八.三角形的内切圆 九.了解弦切角与圆幂定理(选学)十.圆与圆的位置关系 十一.圆的有关计算 十二.圆的基础综合测试 十三.圆的终极综合测试

一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆:

锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。 考点5 点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。 ①点在圆外?d >r ;②点在圆上?d=r ;③点在圆内? d <r ; 【典型例题】 例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD 是直径,?=∠84EOD , 的度数。 例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。 例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长. A B D C O · E

圆的切线性质和判定教学设计

切线的判定和性质教学设计 【教学目标】 一、知识与技能:1.理解切线的判定定理和性质定理,并能灵活运用。 2.会过圆上一点画圆的切线. 二、过程与方法:以圆心到直线的距离和圆的半径之间的数量关系为依据,探究切线的判定 定理和性质定理,领会知识的延续性,层次性。 三、情感态度与价值观:让学生感受到实际生活中存在的相切关系,有利于学生把实际的问 题抽象成数学模型。 【教学重点】探索切线的判定定理和性质定理,并运用. 【教学难点】探索切线的判定方法。 【教学方法】自主探索,合作交流 【教学准备】尺规 【教学过程】 一、导语:通过上节课的学习,我们知道,直线和圆的位置关系有三种:相离、相切、相交. 而相切最特殊,这节课我们专门来研究切线。 师生行为:教师联系近期所学知识,提出问题,引起学生思考,为探究本节课定理作铺垫。 二、探究新知 (一)切线的判定定理 1.推导定理:根据“直线l和⊙O相切d=r”,如图所示,因为d=r直线l和⊙O相切,这 里的d是圆心O到直线l的距离,即垂直,并由d=r就可得到l经过半径r的外端,即半径OA的端点A,可得切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 分析: 1、垂直于一条半径的直线有几条? 2、经过半径的外端可以做出半径的几条垂线? 3、去掉定理中的“经过半径的外端"会怎样?去掉“垂直于半径”呢? 师生行为:学生画一个圆,半径OA,过半径外端点A的切线l,然后将“d=r直线l和⊙O 相切”尝试改写为: 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 设计意图:过学生亲自动手画图,进行探究,得出结论。 思考1:根据上面的判定定理,要证明一条直线是⊙O的切线,需要满足什么条件? 总结:①这条直线与⊙O有公共点;②过这点的半径垂直于这条直线. 思考2:现在可以用几种方法证明一条直线是圆的切线? ①圆只有一个公共点的直线是圆的切线 ②到圆心的距离等于半径的直线是圆的切线 ③切线的判定定理. 师生行为:教师引导学生汇总切线的几种判定方法 思考3:已知一个圆和圆上的一点,如何过这个点画出圆的切线? 2. 定理应用

圆(垂径定理、圆心角、圆周角)基础题练习

圆(垂径定理、圆心角、圆周角)基础题练习 1如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长. 2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为 3.如图,同心圆中,大圆的弦AB被小圆三等分,OP为弦心距,如果PD=2cm,那么BC=________cm. 4.如图,OA=OB,AB交⊙O于点C、D,AC与BD是否相等?为什么? 5.如图所示,已知在⊙O中,半径OC垂直弦AB于D,证明:AC=BC 6.已知,如图,△ABC内接于⊙O,∠A=30°,BC=4cm,求⊙O的直径 7.如图,是一个直径为650㎜的圆柱形输油管的横截面,若油面宽AB=600㎜,求油面的最 大深度. 8.已知:如图,△ABC内接于⊙0,AE⊥BC,AD平分∠BAC.求证:∠DAE=∠DAO. 圆心角、圆周角 1.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,求∠DCF的度数

5.如图,图中相等的圆周角有 A.3对 B.4对 C.5对 D.6对 6.如图,∠A是⊙O的圆周角,∠A=60°,则∠OBC的度数为________度. 7.如图示,∠BAC是⊙O的圆周角,且∠BAC=45°,BC=2,试求⊙O的半径大小. 8.已知:如图,点D的坐标为(0,6),过原点O,D点的圆交x轴的正半轴于A点.圆周角∠OCA=30°,求A点的坐标. 9.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,求⊙O的直径. 10如图,已知:AB、CD是⊙O的两条弦,且AB=CD,求证:AC=BD 11.已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm. (1)求证:AC⊥OD;(2)求OD的长. 12.如图,OA⊥BC,∠AOB=50°,试求∠ADC的大小 如图,⊙O中,弦AB=CD.求证:∠AOC=∠BOD 13.如图,⊙O中,OA⊥BC,∠CDA=35°,求∠AOB的度数. . 14.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,求∠DCF的度数.

《圆的切线的判定和性质》导学案

《圆地切线地判定和性质》教案 ---- 泓泉27 教案目标:理解切线地判定定理和性质定理并熟练掌握以上内容解决一些实际问题. 重<难)点:切线地判定定理;切线地性质定理及其运用它们解决一些具体地题目: 教案流程 一、复习下列内容 1?直线和圆有哪些位置关系? 2.什么叫相切? 3?我们学习过哪些切线地判断方法? 二新授1思考作图:已知:点A为。o 上地一点,如何过点A作。o地切线呢? 2?交流总结:根据直线要想与圆相切必须d=r,所以连接OA过A点作OA 地垂线 从作图中可以得出: 经过 _________________ 且_____________ 这条半径地地直线是圆地切线 思考:如图所示,它地数学语言该怎样表示呢? 3、思考探索;如图,直线I与。O相切于点是过切点地半径, A i 直线I与半径OA是否一定垂直?你能说明理由吗?

1.过半径地外端地直线是圆地切线< ) 2.与半径垂直地地直线是圆地切线< ) 3.过半径地端点与半径垂直地直线是圆地切线< ) 利用判定定理时,要注意直线须具备以下两个条件,缺一不可: (1> 直线经过半径地外端。 (2> 直线与这半径垂直. 小结:1. 想——想 判断一条直线是圆的切线,你现在会有多少种方法 有以下三种方法: 1.利用切线的定义:与圆有唯一公共点的直线是圆的切线。 2.利用d与r的关系作判断:当d = r时直线是圆的切线。 3.利用切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切 线。 2.切线地性质定理:圆地切线垂直于过切点地半径.<1 )圆地切线 < )过切点地半径. <2) —条直线若满足①过圆心,②过切点,③垂直于切线这三条中 地< )两条,就必然满足第三条

垂径定理、圆周角与圆心角

圆1 一、知识点 1、旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是 中心对称图形,对称中心是圆心. 在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等. 2、轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. 3、圆是轴对称图形,经过圆心的每一条都是它的对称轴。(因为直径是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”或说成:“圆的对称轴是经过圆心的每一条直线”。) 4、、垂径定理:垂直于弦的直径这条弦,并且弦所对的弧。(这里的垂径可以是直径、半径或过圆心的直线或线段,其本质是过“圆心”。) 5、推论:(1)平分弦(不是直径)的直径,并且平分弦所对的两条弧。 (2)弦的垂直平分线经过,并且平分弦所对的两条弧。 (3)平分弦所对的一条弧的直径,弦且平分弦所对的另一条弧。 推论:圆的两条平行弦所夹弧。 6、与圆有关的角 (1)圆心角:顶点在圆心的角叫圆心角. 圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质: ①圆周角等于它所对的弧所对的圆心角的一半. ②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 7、垂径定理及推论: ①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. ②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧. ④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 二、例题 (泸州市2008年)如图1,正方形ABCD是⊙O的内接正方形,点P在劣弧CD上不同于点C得到任意一点,则∠BPC的度数是() A.45 B.60 C.75 D.90 2.(PA切⊙O于A,PO交⊙O于B,若PA=6,PB=4,则⊙O的半径是()`

切线的判定与性质定理的教案

课题:圆的切线的判定与性质 主稿:饶爱红审核:备课组上课日期:______周课时数:_____ 总课时数:_____ 知识与技能:1、理解圆的切线的判定与性质, 2、会利用圆的切线的判定与性质解题, 3、了解用反证法证明切线的性质定理的过程。 过程与方法:学生预习、小组讨论、合作探究、共同讲解、综合应用 情感态度与价值观:培养学生的自主学习的能力和团结协作的精神。 教学重点:利用圆的切线的判定与性质解题 教学过程备注本期导学 1、切线的判定定理是什么? 2、切线的性质定理是什么? 3、如何应用它们解题? 知识回顾 1.直线和圆有哪些位置关系? 。。。。相切、相离、相交 2.什么叫相切? 。。。。直线与圆只有一个交点 3.我们学习过哪些切线的判断方法? 。。。。1、与圆只有一个交点,2、d=r 新知探究 1、设问 切线的判定还有什么方法吗? 切线还有什么性质吗? 2、引入思考 提问:如图,直线L经过点A,并且垂直半径OA,,问L与圆O是什么关系? OA既是半径,又是点O到直线L的距离,所以d=r ,由前面所学的可知,直线L与圆是相切 的关系。 给出切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 几何符号表达: ∵OA是半径,OA⊥l于A ∴l是⊙O的切线。 3、例题讲解 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。

求证:直线AB是⊙O的切线。 证明:连结OC(如图)。 ∵OA=OB,CA=CB, ∴OC是等腰三角形OAB底边AB上的中线。 ∴AB⊥OC。 ∵OC是⊙O的半径 ∴AB是⊙O的切线。 已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为 半径作⊙O。 求证:⊙O与AC相切。 证明:过O作OE⊥AC于E。 ∵AO平分∠BAC,OD⊥AB ∴OE=OD ∵OD是⊙O的半径 ∴AC是⊙O的切线 4、归纳总结 (1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这直线垂直。简 记为:连半径,证垂直。 (2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段为辅助线,再证垂 线段长等于半径长。简记为:作垂直,证半径 5、练习 如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P, PE⊥AC于E。 求证:PE是⊙O的切线 6、用反证法推出切线的性质定理,并利用它练习课后习题。 课堂小结 学生小结,说出本节课的知识点和重点。 练习与作业: 练习册和课后习题 教学反思:

圆的切线的性质与判定-练习题 含答案

圆的切线的性质与判定 副标题 一、选择题(本大题共2小题,共6.0分) 1.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为 A. 相离 B. 相切 C. 相交 D. 无法确定 【答案】C 【解析】解:半径,圆心到直线的距离, ,即, 直线和圆相交, 故选C. 由直线和圆的位置关系:,可知:直线和圆相交. 本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设的半径为r,圆心O到直线l的距离为d,直线l和相交;直线l和相切;直线l和相离. 2.在中,,,,以点C为圆心,以为半 径画圆,则与直线AB的位置关系是 A. 相交 B. 相切 C. 相离 D. 不能确定 【答案】A 【解析】解:过C作于D,如图所示: 在中,,,, , 的面积, , , 即, 以为半径的与直线AB的关系是相交; 故选A. 过C作于D,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出,根据直线和圆的位置关系即可得出结论. 本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此题的关键是能正确作出辅助线,并进一步求出CD的长,注意:直线和圆的位置关系有:相离,相切,相交. 二、填空题(本大题共3小题,共9.0分) 3.如图,已知是的内切圆,切点为D、E、 F,如果,,,则内切圆的半 径______ .

【答案】1 【解析】解:是的内切圆,切点为D、E、F, ,,, ,,, ,,, ,,, 是直角三角形, 内切圆的半径, 故答案为1. 根据切线长定理得出,,,进而得出是直角三角形,再利用直角三角形内切圆半径求法得出内切圆半径即可. 此题主要考查了切线长定理以及直角三角形内切圆半径求法,根据切线长定理得出是直角三角形是解题关键. 4.如图,AD、AE、CB均为的切线,D,E,F分 别是切点,,则的周长为______ . 【答案】16 【解析】解:、AE、CB均为的切线,D,E,F分别是切点, ,,, 的周长, 的周长, , 的周长为16. 根据切线长定理得:,,,再由的周长代入可求得结论. 本题主要考查了切线长定理,熟练掌握从圆外一点引圆的两条切线,它们的切线长相等;此题运用线段间的等量代换将周长转化为一条线段长的2倍,得出结论. 5.如图,PA、PB是的切线,A、B是切点,已知, ,那么AB的长为______. 【答案】 【解析】解:过点O作于点C, , 、PB是的切线, ,, , 是等边三角形, ,

垂径定理圆周角与圆心角的关系复习题

【知识点总结】 1.圆是 到定点的距离等于定长 的所有点组成的图形. 2.圆是轴对称图形,它的直径所在的直线都是对称轴;又时中心对称图形,它的中心是圆心. 3.垂径定理:(图1)垂直于弦的直径平分弦,并且平分弦所对的弧. 推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧 推论2:平分弧的直径垂直平分弧所对的弦 4.圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等. 关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线。 圆心到弦的距离、半径、弦长构成直角三角形,便将问题转化为直角三角形的问题。 5.顶点在圆周上,并且两边都和圆相交的角叫做圆周角. 6.圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半。 也可以理解为:一条弧所对的圆心角是它所对的圆周角的二倍;圆周角的度数等于它所对的弧的度数的一半。 7. 推论:半圆(或直径)所对的圆周角是直角;?90的圆周角所对的弦是直径. 8.在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等。 圆易错点 1.注意考虑点的位置 在解决点与圆的有关问题时,应注意对点的位置进行分类,如点在圆内圆外、点在优弧劣弧等. 例1.点P 到⊙O 上的最近距离为cm 3,最远距离为cm 5,则⊙O 的半径为 cm . 例2.BC 是⊙O 的一条弦, ?=∠120BOC ,点A 是⊙O 上的一点(不与B 、C 重合),则BAC ∠的度数为 . 2.注意考虑弦的位置 在解决与弦有关的问题时,应对两条的位置进行分类,即注意位于圆心同侧和异侧的分类. 图3 图4

例3.在半径cm 5为的圆中,有两条平行的弦,一条为cm 8,另一条为cm 6,则这两条平行弦的距离是 . 例4.AB 是⊙O 的直径,AC 、AD 是⊙O 的两条弦,且?=∠30BAC ,?=∠45BAD ,则CAD ∠的度数为 . 考点1:基本概念和性质 考查形式:主要考查圆的对称性、直径与弦的关系、等弧等有关命题,常以选择题的形式出现. 例5.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ). A .4个 B .3个 C . 2个 D . 1个 考点2:圆心角与圆周角的关系 例6.如图1,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=_______度. B A A (1) (2) (3) 例7..如图2,AB 是⊙O 的直径, BC BD =,∠A=25°,则∠BOD 的度数为________. 例8..如图3,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______. 考点3:垂径定理 考查形式:主要考查借助垂径定理的解决半径、弧、弦、弦心距之间的计算和证明,填空题、选择题或解答题中都经常出现它的身影.解决是应注意作出垂直于弦的半径或弦心距,构造直角三角形进行解决. 例9.如图,在⊙O 中,有折线OABC ,其中8=OA ,12=AB ,?=∠=∠60B A ,则弦BC 的长为( )。 A.19 B.16 C.18 D.20 1.下列命题中,正确命题的个数为( ). ①平分弦的直径垂直于弦;②圆周角的度数等于圆心角度数的一半;③?90的圆周角所对的弦是直;④圆周角相等,则它们所对的弧相等. A .1个 B .2个 C . 3个 D . 4个 2.下列说法中,正确的是( ) A. 到圆心的距离大于半径的点在圆内 B. 圆的半径垂直于圆的切线 C

圆的切线的判定与性质教学设计

备课人:杨智刚时间:2013年11月18日 【教学目标】 一、知识与技能:1.理解切线的判定定理和性质定理,并能灵活运用。 2.会过圆上一点画圆的切线。 二、过程与方法:以圆心到直线的距离和圆的半径之间的数量关系为依据,探究切线的判定定理和性质定理,领会知识的延续性,层次性。 三、情感态度与价值观:让学生感受到实际生活中存在的相切关系,有利于学生把实际的问题抽象成数学模型。 【教学重点】探索切线的判定定理和性质定理,并运用。 【教学难点】探索切线的判定方法。 【教学方法】自主探索,合作交流 【教学准备】尺规 【教学过程】 一、导语:通过上节课的学习,我们知道,直线和圆的位置关系有三种:相离、相切、相交。而相切最特殊,这节课我们专门来研究切线。 师生行为:教师联系近期所学知识,提出问题,引起学生思考,为探究本节课定理作铺垫。 二、探究新知 (一)切线的判定定理 1.推导定理:根据“直线l和⊙O相切d=r”,如图所示,因为d=r直线l和⊙O相切,这里的d是圆心O到直线l的距离,即垂直,并由d=r就可得到l经过半径r的外端,即半径OA的端点A,可得切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.分析: 1、垂直于一条半径的直线有几条? 2、经过半径的外端可以做出半径的几条垂线? 3、去掉定理中的“经过半径的外端”会怎样?去掉“垂直于半径”呢? 师生行为:学生画一个圆,半径OA,过半径外端点A的切线l,然后将“d=r直线l和⊙O相切”尝试改写为切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 设计意图:过学生亲自动手画图,进行探究,得出结论。 思考1:根据上面的判定定理,要证明一条直线是⊙O的切线,需要满足什么条件? 总结:①这条直线与⊙O有公共点;②过这点的半径垂直于这条直线。 思考2:现在可以用几种方法证明一条直线是圆的切线? ①圆只有一个公共点的直线是圆的切线②到圆心的距离等于半径的直线是圆 的切线③上面的判定定理. 师生行为:教师引导学生汇总切线的几种判定方法 思考3:已知一个圆和圆上的一点,如何过这个点画出圆的切线? 2. 定理应用 ①完成课本例1 分析:已知点C是直线AB和圆的公共点,只要证明OC⊥AB即可,所以需要连接OC,作出半径。 知道一条直线经过圆上某一点,则连接这点和圆心,证明该直线与所作半径垂直即可 . ②如图,O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,以OD为半径作⊙O. 求证:⊙O与AC相切 分析:题中没有给出直线AC与⊙O的公共点,过点O作直线AC的垂线OE,证明垂线段OE等于半径OD即可。不知道直线和圆有无公共点,则过圆心作已知直线的垂线,证明垂线段

圆的切线性质和判定教案

切线教案 【学习目标】: 使学生掌握圆的切线的判定方法和切线的性质,能够运用切线的判定方法判断一条直线是否是圆的切线,综合运用切线的判定和性质解决问题,培养学生的逻辑推理能力。 【学习过程】: 一、引入新课 同学产注意观察教师的表演,当老师高速转动这个圆盘时,圆盘边缘的线条的运动状态是怎样的?显然每根线都是成直线状态,这些直线就是⊙O 的切线,线固定在圆盘边缘上的点就是直线与圆相切的切点,这些切线与经过切点的半径垂直,如右图所示。 下雨天,当你转动雨伞,你会发现雨伞上的水珠顺着伞面的边缘飞出.仔细观察一下,水珠是顺着什么样的方向飞出的?这就是我们所要研究的直线与圆相切的情况。 二、切线的判定和性质 做一做:画一个圆O 及半径OA ,画一条CD 经过⊙O 的半径的外端点A , 且垂直于这条半径OA ,这条直线与圆有几个交点? 从图23.2.8可以看出,此时直线与圆只有一个交点,即直线l 是圆的切 线. 切线的判定方法:经过半径外端且垂直于这条半径的直线是圆的切线。 思考: 如图1,直线AB 垂直于半径OC ,直线AB 是⊙O 的切线吗? 如图2,直线AB 垂直于半径OC ,直线AB 是⊙O 的切线吗? 如上图,如果直线CD 是⊙O 的切线,点A 为切点,那么半径OA 与CD 垂直吗? 由于CD 是⊙O 的切线,圆心O 到直线CD 的距离等于半径,所以OA 是圆心O 到AB 的距离,因此C D AB 。 切线的性质:圆的切线垂直于经过切点的半径。 三、例题与练习 如图23.2.9,已知直线AB 经过⊙O 上的点A ,且AB =OA ,∠OBA =45°,直线AB 是⊙O 的切线吗?为什么? 分析:要证明一条直线是圆的切线,必须符合两个条件,其一是这条直线是否经过半径外端,其二是这条直线是否与这条半径垂直,若满足这两个条件,就能说明这条直线是圆的切线。 解 直线AB 是⊙O 的切线. 因为AB =OA ,且∠OBA =45°, 所以∠AOB =45°,∠OAB =90° ] 图 23.2.8 C 图2 C B 图23.2.9

九年级上册垂径定理,圆心角及圆周角的综合测试题

九年级上册垂径定理,圆心角及圆周角的综合测试题 班级______________姓名_______________ 一、选择题(每题3分,共30分) 1.如下图,已知ACB ∠是⊙O 的圆周角,50ACB ∠=?,则圆心角AOB ∠是( ) A .40? B. 50? C. 80? D. 100? 2.已知:如上图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧CD ⌒上不同于点C 的任意一点,则∠BPC 的度数是( )A .45° B .60° C .75° D .90° 3.圆的弦长与它的半径相等,那么这条弦所对的圆周角的度数是( ) A .30° B .150° C .30°或150° D .60° 4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A .第①块 B .第②块 C .第③块 D .第④块 5.如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2, 则等边三角形ABC 的边长为( ) A B C . D .6.下列命题中,正确的是( ) ①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等 A .①②③ B .③④⑤ C .①②⑤ D .②④⑤ 7、如上图,AB 是半圆直径,∠BAC=20°,D 是AC 的中点,则∠DAC 的度数是( ) A . 30° B. 35° C. 45° D . 70° 8、 下面每张方格纸上都画有一个圆,只用不带刻度的直尺就能确定圆心位置的是( ) 9、 已知AB 是⊙O 的直径,AC, AD 是弦,且 ,AD=1,则圆周角∠CAD 的度数是 ( ) A. 45°或60° B. 60° C . 105° D. 15°或105° 10、如图,AB 是⊙的直径,弦CD 垂直平分OB ,则∠BDC=( ) A. 20° B.30° C.40° D.50° 二、填空题(每题3分,共24分) 11、如图.⊙O 中OA ⊥BC ,∠CDA=25o ,则∠AOB 的度数为_______. 12.如图.AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50 o .则∠ADC=_______. 13. 如图,点A 、B 、C 都在⊙O 上,连结AB 、BC 、AC 、OA 、OB ,且∠BAO=25°, 则∠ACB 的大小为___________. 14. 已知:如图,四边形ABCD 是⊙O 的内接四边形,∠BOD=140°,则∠DCE= . 15、 如图,AB 是⊙O 的直径,C, D, E 都是⊙O 上的点,则∠1+∠2 = . (第5 题) 第7题 第11题 13题 第12题 14题 15题

相关文档
最新文档