石墨烯和六方氮化硼纳米材料的改性

石墨烯和六方氮化硼纳米材料的改性
石墨烯和六方氮化硼纳米材料的改性

石墨烯和六方氮化硼纳米材料的改性

石墨烯纳米材料及其应用

墨烯纳米材料及其应

二?一七年十二月

摘要 ................. 错误!未定义书签 1引言................ 错误!未定义书签 2石墨烯纳米材料介绍......... 错误!未定义书签 3石墨烯纳米材料吸附污染物...... 错误!未定义书签金属离子吸附........... 错误!未定义书签 有机化合物的吸附......... 错误!未定义书签 4石墨烯在膜及脱盐技术上的应用..… 错误!未定义书签石墨烯基膜............ 错误!未定义书签 采用石墨烯材料进行膜改进..... 错误!未定义书签 石墨烯基膜在脱盐技术的应用??… 错误!未定义书签5展望................ 错误!未定义书签

石墨烯因为其独特的物理化学方面的性质,特别是其拥有较高的比表面积、 较高的电导率、较好的机械强度和导热性,使其作为一种新颖的纳米材料赢得了越来越广泛的关注。 关键词:石墨烯;碳材料;环境问题;纳米材料 1引言 随着世界人口的增长,农业和工业生产出现大规模化的趋势。空气,土壤和水生生态系统受到严重的污染;全球气候变暖等环境问题正在成为政治和科学关注的重点。目前全球已经开始了解人类活动对环境的影响,并开发新技术来减轻相关的健康和环境影响。在这些新技术中,纳米技术的发展已经引起了广泛的关注。 纳米材料由于其在纳米级尺寸而具有独特的性质,可用于设计新技术或提高现有工艺的性能。纳米材料在水处理,能源生产和传感方面已经有了诸多应用,越来越多的文献描述了如何使用新型纳米材料来应对重大的环境挑战。 石墨烯引起了诸多研究人员的关注。石墨烯是以sp2杂化连接的碳原子层构成的二维材料,其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯还具有特殊的电光热特性,包括室温下高速的电子迁移率、半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度, 被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛的应用前景。在环境领域,石墨烯已被应用于新型吸附剂或光催化材料,其作为下一代水处理膜的构件,常用作污染物监测。 2石墨烯纳米材料介绍 单层石墨烯属于单原子层紧密堆积的二维晶体结构()。在石墨烯平面内,碳原子以六兀环形式周期性排列,每个碳原子通过C键与临近的二个碳原子相连,S Px和Py三个杂化轨道形成强的共价键合,组成sp2杂化结构,具有120° 的键角。石墨烯可由石墨单层剥离而产生,最初是通过微机械剥离,使用胶带依次将石墨粘黏成石墨烯来实现。Geim和Novoselov

项目名称生物基石墨烯宏量制备及石墨烯在功能纤维中的产

项目名称:生物基石墨烯宏量制备及石墨烯在功能纤维中的产业化应用 提名意见: 石墨烯具有高导电性、高强度、高韧度等特点。将石墨烯与纺织纤维进行复合将赋予材料诸多优异性能。现有制备石墨烯方法面临着成本高,产量低,对环境产生严重污染等问题,亟待发展简单、安全无毒、低成本、厚度均一、高产率的工业化生产石墨烯材料的方法。 该项目发明了以玉米芯纤维素为原料,采用“基团配位组装”法制备石墨烯材料的新方法,突破了生物基石墨烯配位组装析炭、催化热裂解、精制分散关键技术;研发了石墨烯表面改性及在聚合物中的分散技术,解决了石墨烯在再生纤维素纤维、涤纶短纤维与锦纶 6 纺丝过程中易团聚、品质控制困难等问题;开发了专用组件过滤技术,制备了石墨烯改性再生纤维素纤维、涤纶短纤维与锦纶6 长丝,开发了石墨烯改性纤维高效纺纱系列加工技术、织物与染整技术,建立了石墨烯功能纺织品成型加工技术体系。项目授权国家发明专利26项,具有完整的知识产权体系,整体技术达到国际先进水平。 该项目建立了年产200 吨生物基石墨烯材料的生产线,年产2000 吨的石墨烯功能聚合物母粒生产线。在服饰、家纺、轻工等领域得到了广泛的应用。经济效益和社会效益显著。 提名该项目为国家技术发明二等奖。 项目简介: 石墨烯是一种技术含量非常高、应用潜力非常广泛的碳纳米材料,具有高导电性、高强度、高韧度等多种特点,在军工、航天、锂离子电池、新能源、新材料等新兴领域和传统领域,都将带来革命性的技术进步。将石墨烯与纺织纤维进行复合将赋予材料诸多优异性能。石墨烯包括了单层石墨烯、双层石墨烯、少层石墨烯,不同层数的石墨烯应用领域大相径庭。现有制备石墨烯包括了微机械剥离、SiC 高温热解、CVD 外延、化学还原等方法,这些方法面临着成本高,产量低,对环境产生严重污染等问题,亟待发展简单、安全无毒、低成本、厚度均一、高产率的工业化生产石墨烯材料的方法。 本项目发明了以玉米芯纤维素为原料,采用“基团配位组装”法制备石墨烯材

石墨烯在环氧树脂中的应用

石墨烯在环氧树脂中的应用 石墨烯的简介 石墨是碳单质的同素异形体,碳元素的神奇的六号元素,碳单质同素异形体从最硬到极软,从全吸收到全透光,绝缘体到半导体到导体,绝热到良导热,而石墨烯就是单原子层的石墨。 石墨烯增强树脂机理 石墨烯具有很大的表比面积,加上石墨烯的分子级的分散,可与聚合物之间形成很强的界面作用,羟基等官能团和制作过程均会使石墨烯变成褶皱的状态,这些纳米级的不平整可增强石墨烯与聚合物链之间的相互作用。官能团化石墨烯表面含有羟基,羧基等化学基团,可与极性高分子如聚甲基丙烯酸甲酯形成较强的氢键。 石墨烯在环氧树脂中的应用——导电性 改性的石墨烯于环氧树脂复合,加入2%的改性石墨烯,环氧复合材料的储能模量增大113%,加入4%是,强度增大38%。纯EP树脂的电阻为10^17欧姆.厘米,添加氧化石墨烯后电阻下降6.5个数量级。 石墨烯在环氧树脂中的应用——导热性 将碳纳米管、石墨烯加到环氧树脂中,当加入20 vol% CNTs 20 vol%

GNPs, 复合材料的导热系数可达7.3W/mK. 石墨烯在环氧树脂中的应用——阻燃性 当加入5wt%有机功能化氧化石墨烯时阻燃值提高23.7%,加入5wt%的石墨烯时阻燃性能提高43.9%。 石墨烯导热塑料的优势 石墨烯导热塑料容易加工、成型耗费能源少、密度适中做出产品轻巧、可降解对环境污染小、加工可自动化高效、颜色丰富任意调整、仓库运输成本大量降低、不易碰撞变形、可绝缘不易造成安全隐患,散热均匀。 环氧树脂的种类 1. 缩水甘油醚型树脂缩水 2.缩水甘油脂型树脂 3.缩水甘油胺型树脂

4.脂环族环氧化合物 5.线状脂肪族环氧化合物。 环氧树脂的用途 环氧树脂一般和添加物同时使用,以获得应用价值。添加物可按不同用途加以选择,常用添加物有以下几类:(1)固化剂;(2)改性剂;(3)填料;(4)稀释剂;(5)其它。 其中固化剂是必不可少的添加物,无论是作粘接剂、涂料、浇注料都需添加固化剂,否则环氧树脂不能固化。 由于用途性能要求各不相同,对环氧树脂及固化剂、改性剂、填料、稀释剂等添加物也有不同的要求。

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨烯的应用领域

第二章石墨烯应用领域 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 中国科学院预计,到2024年前后,石墨烯器件有望替代互补金属氧化物半导体(CMOS)器件,在纳米电子器件、光电化学电池、超轻型飞机材料等研究领域得到应用。目前,全球范围内仅电子行业每年需消耗大约2500吨半导体晶硅,纯石墨烯的市场价格约为人民币1000元/g ,其若能替代晶硅市场份额的10%,就可以获得5000亿元以上的经济利益;全球每年对负极材料的需求量在2.5万吨以上,并保持了20%以上的增长,石墨烯若能作为负极材料获得锂离子电池市场份额的10%,就可以获得2500吨的市场规模。可见,石墨烯具有广阔的应用空间和巨大的经济效益。

正是在这一背景下,目前国内外对石墨烯技术的应用研究如火如荼,具体应用如下: 2.1 石墨烯锂离子电池 锂离子电池具有容量大、循环寿命长、无记忆性等优点,目前已成为全球消费类电子产品的首选电池以及新能源汽车的主流电池。高能量密度、快速充电是锂电池产品发展的必然趋势,在正极材料中添加导电剂是一种有效改善锂电性能的途径,可大大增加正负极的导电性能、提高电池体积能量密度、降低电阻,增加锂离子脱嵌及嵌入速度,显著提升电池的倍率充放电等性能,提高电动车的快充性能。 所谓石墨烯电池并非整个电池都用石墨烯材料制作,而是在电池的电

石墨烯塑料的制备方法及产业化方向

石墨烯塑料的制备方法及产业化方向 石墨烯塑料的制备方法 石墨烯塑料(石墨烯改性塑料复合材料)性能的优劣与其制备过程中的加工条件是分不开的。不同的制备方法导致石墨烯在基体中的分散性、界面作用和空间结构均有所不同,而这些因素则决定了复合材料的刚度、强度、韧性和延展性等。 就目前研究所知,对于石墨烯塑料,可以通过对剪切力、温度和极性溶剂的控制来控制石墨烯的分散程度以及石墨烯片层的剥离程度。 石墨烯塑料的物理制备方法包括溶液混合法和熔融共混法,化学方法方面应用较多的有原位聚合法、乳液混合法、层层自组装技术(LbL)等。 溶液混合法 溶液混合法是将石墨烯材料(GO、RGO)在溶剂中溶解制得悬浮的单层石墨烯,使其*程度地分散在聚合物基体中。如将改性氧化石墨烯GO分散在有机溶剂中,还原得到石墨烯RGO,然后与聚合物进行溶液共混制成复合材料。溶液混合法能将石墨烯较好地分散在聚合物基体中。这种方法因其分散效果好、制备速度快以及能够很好地控制各成分的状态而得到了广泛的应用;但该方法需要使用有机溶剂,会对环境造成不良影响。 熔融共混法 熔融共混法是一种无溶剂制备方法,利用挤出机产生的剪切力克服界面作用力将填料分散在聚合物熔体中。熔融共混中由于分别制备石墨烯和聚合物,因此石墨烯的尺寸与形态可控,但是石墨烯在聚合物基体中集聚而不易分散,并且与聚合物的界面作用较差。熔融共混法是制备石墨烯塑料比较实用的方法,其工艺较为简单,可实现大规模低成本制备,但是较高的温度和局部压力会影响复合材料各成分的稳定性。 原位聚合法 原位聚合法是将石墨烯与聚合物单体混合,然后加入催化剂引发反应,*制得复合材料。通过检测发现,这种方法没有破坏复合材料的热稳定性,不过原位聚合法的反应条件难以确定,加入导热添加剂后会对聚合物产生不确定影响。

纳米石墨烯的特性以及应用

纳米石墨烯的特性以及应用 摘要:石墨烯是指从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。在石墨烯中,碳原子之间以σ键相连接,这些σ键赋予了石墨烯极其强大的机械性能;同时,由于碳原子的结合方式为SP2杂化,因此每个碳原子都有一个孤电子,从而赋予了其优秀的导电性。而近年来,纳米石墨烯以及其氧化物,由于自身良好的生物相容性以及较大的表面积,在生物医药等领域的应用取得了极大的进展,本文将简述石墨烯以及其氧化物的特性,并举例分析其在生物载药工厂中的作用。 关键词:纳米石墨烯;纳米氧化石墨烯;生物医药;药物传递 一.纳米石墨烯以及氧化纳米石墨烯自身特性 1.1 纳米石墨烯自身特性 纳米石墨烯与石墨烯的概念容易混淆,但本质上是同一个物质。纳米石墨烯代表的是厚度在纳米级别的石墨烯。一般程度上严格定义的石墨烯都是单层的,而纳米石墨烯则有可能是多层的。纳米石墨烯常常被称为石墨烯纳米片,也被称为碳纳米片( CNFs )或碳纳米壁( CNWs)。人们所熟悉的富勒烯,碳纳米管,石墨等碳材料,本质的基础单元就是石墨烯。 石墨烯最迷人的地方在于它的纯粹。单层原子的结构使得石墨烯具有极薄的性质,但由于碳原子之间强韧的σ键以及整个二维晶体平面的拉伸性能,使得石墨烯同时具有了非常高的强度性能,杨氏模量为1100Gpa,而断裂强度则达到惊人的125Gpa,这样的机械性能使得石墨烯几乎可以被利用在任何需要高强度材料的领域。 而与此同时,石墨烯二维晶体表面流动的孤电子赋予了它优越的导电性能。由于自身电阻率非常小,石墨烯被视为下一个可以取代“硅”的导电原材料,人们希望能制备出具有更高性能的现代计算机芯片或处理器。 1.2 氧化纳米石墨烯自身特性 氧化纳米石墨烯,英文缩写为GO,顾名思义是石墨烯的氧化物。氧化石墨烯保留了原有的层状结构,通过强氧化剂(例如高锰酸钾)开环,使得部分双键断裂,引入了许多含氧的官能团,例如羧基,羟基,环氧基等。这些活泼的含氧功能团赋予了石墨烯更为活泼的性能。

石墨烯分散方法

石墨烯分散方法 石墨烯具有优良的性能,科研工作者考虑将其作为增强体加入到基体材料中以提高基体材料的性能。但是,由于其较大的比表面积,再加上片层与片层之间容易产生相互作用,极易出现团聚现象,而且团聚体难以再分开,不仅降低了自身的吸附能力而且阻碍石墨烯自身优异性能的发挥,从而影响了石墨烯增强复合材料性能的改进。为了得到性能优异的石墨烯增强复合材料,科研工作者在克服石墨烯团聚、使其分散方面做了诸多研究。分散方法简介如下: 1、机械分散发 利用剪切或撞击等方式改善石墨烯的分散效果。吴乐华等以纯净石墨粉为原料,无水乙醇为溶剂,采用湿法球磨配合超声、离心等方式得到石墨烯分散液,通过扫描电镜、透射电镜和拉曼光谱分析均证明石墨烯为几个片层分散。 2、超声分散发 利用超声的空化作用,以高能高振荡降低石墨烯的表面能,从而达到改善分散效果的目的。Umar等将石墨在N-甲基吡咯烷酮(NMP)中采用低功率超声处理,随着超声时间的延长,石墨烯分散液的浓度随之升高,当超声时间超过462h后,石墨烯分散液浓度能够达到1.2mg/mL,这

是由于超声所产生的溶剂与石墨烯之间的能量大于剥离石墨烯片层所需要的能量,进而实现了石墨烯的分散。3、微波辐射发 采用微波加热的方式产生高能高热用以克服石墨烯片层间的范德华力。Janowska等采用氨水作为溶剂,利用微波辐射处理在氨水中的膨胀石墨以制备石墨烯分散液,透射电镜观测结果表明制得的石墨烯主要为单、双和少层(少于十层)石墨烯,并且能够在氨水中稳定分散,研究证实微波辐射产生的高温能够使氨水部分气化,产生的气压对克服石墨烯片层间的范德华力具有显著的作用。 4、表面改性 通过离子液体对膨胀石墨进行表面改性来提高石墨烯的分散性。这种改性属于物理方法,它能降低改性过程对石墨烯结构和官能团的影响。经过改性的石墨烯片层粒径小,呈现出褶皱的状态;通过离子液体改性后的石墨烯可以长时间在丙酮溶液中保持均匀的分散状态,并且能够均匀分布在硅橡胶基体中,离子液体链长增加使得样品更加均匀地分散。 采用具有强还原能力的没食子酸作为稳定剂和还原剂,制得了具有高分散性的石墨烯。由于分子中苯环结构和石墨烯之间形成了π—π共轭相互作用,从而作为稳定剂吸附在石墨烯表面,这使得石墨烯片层具有较强的负电性,

氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能_叶国锐

复合材料学报第31卷 第6期 12月 2014年Acta Materiae Comp ositae SinicaVol.31 No.6 December 2 014文章编号:1000-3851(2014)06-1402-07 收稿日期:2013-09-27;录用日期:2013-11-07;网络出版时间:2014-01-2 0 09:42网络出版地址:www.cnki.net/kcms/detail/10.13801/j .cnki.fhclxb.20141202.001.html基金项目:深圳市战略性新兴产业发展专项(ZD SY20120619141411025)通讯作者:曹海琳,教授,研究方向为复合材料性能设计及开发。 E-mail:caohl@h it.edu.cn引用格式:叶国锐,晏义伍,曹海琳.氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J].复合材料学报,20 14,31(6):1402-1408.Ye Guorui,Yan Yiwu,Cao Hailin.Basalt fiber modified with graphene oxide and properties of its reinforced epoxy  compos-ites[J].Acta Materiae Comp ositae Sinica,2014,31(6):1402-1408.氧化石墨烯改性玄武岩纤维及其增强环氧树脂 复合材料性能 叶国锐1,晏义伍1,曹海琳*1,2 (1.深圳航天科技创新研究院深圳市复合材料重点实验室,深圳518057;2.哈尔滨工业大学化工学院,哈尔滨15 0001)摘 要: 为了改善玄武岩纤维/环氧树脂复合材料的界面性能,通过偶联剂对氧化石墨烯进行改性,并将改性后的氧化石墨烯引入到上浆剂中对玄武岩纤维进行表面涂覆改性,同时制备了氧化石墨烯-玄武岩纤维/环氧树脂复合材料。采用FTIR表征了氧化石墨烯的改性效果;运用SEM分析了改性上浆剂处理对玄武岩纤维表面及复合材料断口形貌的影响和作用机制。结果表明:偶联剂成功接枝到氧化石墨烯表面; 玄武岩纤维经氧化石墨烯改性的上浆剂处理后,表面粗糙度及活性官能团含量增加,氧化石墨烯-玄武岩纤维/环氧树脂界面处的机械齿合作用及化学键合作用增强,界面黏结强度得到改善,玄武岩纤维的断裂强力提高了30.8%,氧化石墨烯-玄武岩纤维/环氧树脂复合材料的层间剪切强度提高了10.6%。 关键词: 氧化石墨烯;表面改性;玄武岩纤维;力学性能;复合材料中图分类号: TB332 文献标志码: A Basalt fiber modified with graphene oxide and properties of its reinforced epoxy  compositesYE Guorui 1, YAN Yiwu1,CAO Hailin*1, 2(1.Shenzhen Key Laboratory of Composite Materials,Shenzhen Academic of Aerospace Technology,Shenzhen 518057,China;2.School of Chemical Engineering and Technology,Harbin Institute of Technology,Harbin 150001,China)Abstract: To improve the interfacial properties of basalt fiber/epoxy composites,the graphene oxide modified withcoupling agent was introduced into sizing agent,and the modified sizing agent was used to modify basalt fiber andthe graphene oxide-basalt fiber/epoxy composites were prepared.The modification effect of graphene oxide wascharacterized by FTIR.The effect of modified sizing modification on surface of basalt fiber and composites cross-sectional morphologies and reaction mechanism were investigated using SEM.The results show that coupling agentis successfully grafted onto the surface of graphene oxide.Surface roughness and reactive functional groups are in-creased after basalt fiber being infiltrated in sizing agent modified by graphene oxide,and the mechanical interlockingand chemical bonding of the graphene oxide-basalt fiber/epoxy interface are enhanced,the interface bonding strengthis improved,the fracture strength of basalt fibers is improved by 30.8%and the interlaminar shear strength of gra-phene oxide-basalt fiber/epoxy  composites is improved by 10.6%.Key words: graphene oxide;surface modification;basalt fiber;mechanical properties;composites 玄武岩纤维是以天然玄武岩矿石作为原料,经 高温熔融、拉丝、冷却而得到的一种新型无机纤 维[1] ,具有突出的力学性能、耐高温、高耐腐蚀与化 学稳定性、吸湿性低等优点。以其为增强相的复合材料制品被广泛应用于航空航天、汽车制造、建筑、化工和医学等领域,被认为是21世纪最具发展潜 力的新型材料之一[ 2- 4]。复合材料的性能很大程度上依赖于复合材料的界面性能,而界面性能除了取

石墨烯改性

综合实践论文 题目:石墨烯改性研究进展 班级:高分子112 姓名:陈阳建 指导老师:祖立武 日期:2014年6月20日

石墨烯改性研究进展 陈阳建 齐齐哈尔大学材料学院,黑龙江齐齐哈尔10221 摘要: 结合当前国内外石墨烯改性的研究进展,分别从表面改性和电子性能改性两个方面介绍了石墨烯的改性方法。其中,石墨烯表面改性包括共价键功能化和非共价键功能化;石墨烯电子性能改性包括掺杂和离子轰击。讨论了各种改性方法的优缺点,并在原有改性方法的基础上,展望了未来石墨烯改性的发展方向。关键词: 石墨烯;改性;综述;共价键功能化;非共价键功能化;掺杂;离子轰击 Research progress in the modification of graphene Chen yangjian Materials Science,Qiqihar University ,Qiqihar in Heilongjiang 10221 Abstract: Based on the research progress of modification of graphene material at hom e and abroad, the methods of modification of graphene are introduced from the surfac e modification and the electronic properties modification, respectively. The methods o f surface modification contain the covalent functionalization and non-covalent functio nalization; the methods of electronic properties modification contain dopin g and ion b ombardment. Finally, the advantages and disadvantages of various modification met h ods are discussed, and the further development of modification of graphene is pointed out on the basis of original modification methods. Key words: graphene; modification; review; covalent functionalization; non-covalent functionalization; doping; ion bombardment

纳米材料石墨烯

石墨烯 前言: 石墨烯是继富勒烯、碳纳米管之后纳米材料研究领域又一里程碑式的重大科学发现。2004年英国Manchester大学的Geim等Science上报道了单层石墨烯( graphene)的发现,石墨烯研究热潮的序幕就此拉开。至此,碳纳米家族中的零维富勒烯、一维碳纳米管、二维石墨烯,加上此前早为人们所熟知的宏观碳晶体材料三维金刚石和石墨,所有维度上具有晶体结构的碳材料均已被人们所认识和发现。碳纳米材料在基础科学研究领域享有很高的关注度,1985年发现的富勒烯荣获1996年的诺贝尔化学奖,2010年石墨烯在其被发现的第6个年头就获得了诺贝尔物理奖,这些足以证明碳纳米材料发现和研究的重要科学意义。 石墨烯是碳原子以sp杂化连接的单原子层构成的二维原子晶体,其基本结构单元为有机材料中最稳定的苯六元环结构,从结构上来看石墨烯可以看做是富勒烯、碳纳米管以及石墨等碳材料的基本组成单元,其通过包裹成球可以得到富勒烯,沿着固定轴旋转可以形成碳纳米管,多层石墨烯堆叠组装在一起就形成了石墨片。 石墨烯是单层原子厚度的石墨,当施加外力时,碳原子面就弯曲变形,从而使碳原子不必重新排列也保持结构稳定。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于石墨烯片平面内π轨道的存在,电子可在晶体中自由移动,使得石墨烯具有十分优异的电子传输性能。其还具有很多特殊性质,比如零能隙,反常的量子霍耳效应,朗道量子性等,吸引了国内外学者从凝聚态电子结构、输运性质到相对论的研究等众多方面的研究兴趣。 虽然石墨烯刚刚被发现不久,目前也已经有了一定的应用领域,但是制备石墨烯的方法都比较复杂,整个工艺过程很难控制,且只能生产少量的石墨烯纳米薄膜。虽然石墨烯作为工程材料具有很大的应用前景,然而如何有效方便地制备出高质量二维石墨烯纳米薄膜是发展研究和应用的关键所在。因此,应寻找一种快速的、可控的高质量石墨烯纳米薄膜的制备工艺。 正文 目前,石墨烯的制备手段通常可以分为两种类型:化学方法和物理方法。物理方法,是从具有高晶格完备性的石墨或者类似的材料来获得,获得的石墨烯尺度都在80 nm 以上。而化学方法是通过小分子的合成或溶液分离的方法制备的,得到石墨烯尺度在

石墨烯在涂料领域中的应用

石墨烯在涂料领域中的应用(1) 1 概述 1.1 石墨烯定义石墨烯(Graphene)是一种由碳原子构成的新型单层片状结构的二维(2D)材料,是由碳原子以sp2杂化轨道组成的六角型呈蜂巢状晶格的平面薄膜。碳原子核外层电子排布为1s22s22p2,sp2杂化是由1个s轨道和2个p轨道杂化形成的杂化轨道。维(dimension,简写为D)表示长、宽、高、厚等尺寸。对纳米材料,0D表示纳米粒子;1D表示纳米线,如碳纳米管等;2D表示纳米尺寸的薄膜;3D是表示纳米复合材料。 1.2 石墨烯结构特性石墨烯晶体材料具有“至薄、至坚”、优良的热导体和电子迁移率等特性。 1.2.1 “至薄”晶体材料石墨烯是世界上迄今发现的“至薄”晶体材料,石墨烯薄膜只有1个碳原子厚度。10万层石墨烯叠加起来的厚度约为1根头发丝的直径;300万层石墨烯薄膜叠起来只有1 mm厚。 1.2.2 “至坚”晶体材料石墨烯是迄今发现的世界上力学性能最好的材料之一。表征石墨烯在外应力作用下抵抗变形能力大小的模量可达1 T(1012)Pa;反映石墨烯受力时抵抗破坏能力大小的强度约为130 G(109)Pa。 1.2.3 优良的热导体和电子迁移率石墨烯的热导率达5 000 W/(m ·K),是良好的导热体。石墨烯独特的载流子特性,使其电子迁移率达到2×105 cm2/(V·s),超过硅100倍,且几乎不随温度变化而变化。 1.3 应用前景独特的结构特点加上“极端突出”性能,使它的用途引起人们超高的期望:制造高效太阳能电池;超轻型航天航空飞行器材料;超坚韧的防弹衣;甚至有近乎科幻色彩的展望——可能制超长“太空电梯”缆线。预测石墨烯正在或将要给社会带来革命性巨变;对石墨烯用途,描绘了一幅幅商机无限的图画,在全球研究热度持续升温!对石墨烯在导电、防腐、阻燃、导热和高强度等功能涂料中的应用也勾画了多彩的前景。1.3.1 提高涂料防腐性石墨烯提高涂料防腐性:有物理防腐和电化学防腐多重作用。

石墨烯纳米材料(论文)

《应用胶体化学》论文大作业 ——石墨烯纳米材料 姓名:杨晓 学号:200900111143 年级:2009级 2011-12-11

摘要:石墨烯是继富勒烯、碳纳米管之后发现的一种具有二维平面结构的碳纳米材料,它自 2004 年发现被以来,成为凝聚态物理与材料科学等领域的一个研究热点。石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文简要介绍了石墨烯的性能特点、制备方法,着重对石墨烯纳米复合材料进行了介绍,对石墨烯纳米材料的制备方法、理化性质、国内外研究进展、石墨烯纳米材料的优缺点及应用前景进行了详细介绍。 关键词:石墨烯纳米材料复合物特性制备应用

目录 引言 (4) 一石墨烯纳米材料的理论与实际意义 (4) 二石墨烯纳米材料的国内外研究现状及比较分析 (5) 2.1 石墨烯纳米材料的国内外研究 (5) 2.1.1 国外研究 (5) 2.1.2 国内研究 (8) 2.2 石墨烯纳米材料的国内外研究比较分析 (11) 三文献中石墨烯纳米材料的研究方案 (11) 3.1 聚乳酸/ 纳米羟基磷灰石/ 氧化石墨烯(PLA/n-HA/GO)纳米复合膜的制备及生物性 (11) 3.1.1 实验试剂 (11) 3.1.2 PLA/n-HA/GO纳米复合膜的制备 (11) 3.2 石墨烯负载Pt催化剂的制备及催化氧还原性能[43] (12) 3.2.1 试剂和仪器 (12) 3.2.2 石墨烯负载Pt催化剂的制备 (12) 3.3 石墨烯的制备和改性及其聚合物复合的研究进展[44] (12) 3.3.1 石墨烯的制备 (12) 3.3.2 制备聚合物基复合材料 (14) 3.4 石墨烯/聚合物复合材料的研究进展[45] (14) 3.4.1 石墨烯的制备 (14) 3.4.2 石墨烯/聚合物复合材料的制备 (15) 3.5 石墨烯的合成与应用[46] (16) 3.5.1 微机械分离法(micromechanical cleavage) (16) 3.5.2 取向附生法———晶膜生长(eqitaxial growth) (16) 3.5.3 加热SiC的方法 (17) 3.5.4 化学分散法 (17) 四结合胶体理论与性质比较分析各种石墨烯纳米材料的优缺点 (17) 4.1 石墨烯 (17) 4.2 氧化石墨烯 (18) 4.3 石墨烯/无机物纳米材料 (18) 4.4 石墨烯/聚合物纳米材料 (18) 五展望石墨烯纳米材料的应用前景 (18) 参考文献 (20)

【CN209887696U】一种便于裁剪的石墨烯改性塑料【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920514632.8 (22)申请日 2019.04.16 (73)专利权人 郑州康晓科技有限公司 地址 450003 河南省郑州市金水区政六街 27号优加创客中心607号 (72)发明人 唐国文  (51)Int.Cl. B26D 7/28(2006.01) B26D 7/01(2006.01) (54)实用新型名称一种便于裁剪的石墨烯改性塑料(57)摘要本实用新型公开了一种便于裁剪的石墨烯改性塑料,包括外壳、活动机构和裁剪机构,所述活动机构安置于外壳的内部,所述裁剪机构安置于外壳的顶部。本实用新型中,通过第一滑槽、第一滑块的作用,能够将框架滑至镂空状内壳的凹槽中,使得装置便于对石墨烯塑料进行测量裁剪操作,通过转轴的作用,能够对框架插入凹槽中时带动滚轮,便捷框架插进凹槽中不易出现卡顿现象,当需要调节裁剪长度操作时,可通过活动块的作用,能够带动活动板在框架内部进行左右方向滑动操作,便捷对石墨烯塑料板进行调节长度操作,通过测量线的作用,能够在活动板滑动时通过测量线进行调节需要的长度功能,使得石墨烯塑料准确的裁剪需要的长度,使得装置的功 能性增强。权利要求书1页 说明书3页 附图1页CN 209887696 U 2020.01.03 C N 209887696 U

权 利 要 求 书1/1页CN 209887696 U 1.一种便于裁剪的石墨烯改性塑料,包括外壳(1)、活动机构(2)和裁剪机构(3),其特征在于,所述活动机构(2)安置于外壳(1)的内部,所述裁剪机构(3)安置于外壳(1)的顶部。 2.根据权利要求1所述的一种便于裁剪的石墨烯改性塑料,其特征在于,所述活动机构(2)的内部包括有内壳(201),且内壳(201)的内壁设置有第一滑槽(202),所述内壳(201)的内部开设有凹槽(203),且凹槽(203)的内部安装有转轴(205),所述转轴(205)的外侧连接有滚轮(204)。 3.根据权利要求1求所述的一种便于裁剪的石墨烯改性塑料,其特征在于,所述裁剪机构(3)的内部包括有框架(301),且框架(301)的底部安装有第一滑块(302),所述框架(301)的内侧连接有活动块(303),且活动块(303)的外侧安装有活动板(306),所述活动板(306)的内侧开设有第二滑槽(307),且活动板(306)的外侧连接有松紧环(304),所述松紧环(304)的外侧连接有第二滑块(305)。 4.根据权利要求 2所述的一种便于裁剪的石墨烯改性塑料,其特征在于,所述滚轮(204)通过转轴(205)与凹槽(203)构成旋转结构,且凹槽(203)的截面面积小于内壳(201)的截面面积。 5.根据权利要求3所述的一种便于裁剪的石墨烯改性塑料,其特征在于,所述活动板(306)通过活动块(303)与框架(301)构成滑动结构,且活动板(306)的中轴线与框架(301)的中轴线相对应。 6.根据权利要求3所述的一种便于裁剪的石墨烯改性塑料,其特征在于,所述松紧环(304)通过第二滑块(305)、第二滑槽(307)与活动板(306)构成滑动结构,且第二滑槽(307)的中轴线与活动板(306)的中轴线相对应。 2

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

石墨烯纳米材料及其应用

石墨烯纳米材料及其应用

石 墨 烯 纳 米 材 料 及 其 应 用 二〇一七年十二月

目录 摘要 (4) 1引言 (4) 2石墨烯纳米材料介绍 (4) 3石墨烯纳米材料吸附污染物 (6) 3.1金属离子吸附 (6) 3.2有机化合物的吸附 (7) 4石墨烯在膜及脱盐技术上的应用 (9) 4.1石墨烯基膜 (9) 4.2采用石墨烯材料进行膜改进 (10) 4.3石墨烯基膜在脱盐技术的应用 (11) 5展望 (12)

摘要 石墨烯因为其独特的物理化学方面的性质,特别是其拥有较高的比表面积、较高的电导率、较好的机械强度和导热性,使其作为一种新颖的纳米材料赢得了越来越广泛的关注。 关键词:石墨烯;碳材料;环境问题;纳米材料 1引言 随着世界人口的增长,农业和工业生产出现大规模化的趋势。空气,土壤和水生生态系统受到严重的污染;全球气候变暖等环境问题正在成为政治和科学关注的重点。目前全球已经开始了解人类活动对环境的影响,并开发新技术来减轻相关的健康和环境影响。在这些新技术中,纳米技术的发展已经引起了广泛的关注。 纳米材料由于其在纳米级尺寸而具有独特的性质,可用于设计新技术或提高现有工艺的性能。纳米材料在水处理,能源生产和传感方面已经有了诸多应用,越来越多的文献描述了如何使用新型纳米材料来应对重大的环境挑战。 石墨烯引起了诸多研究人员的关注。石墨烯是以sp2杂化连接的碳原子层构成的二维材料,其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯还具有特殊的电光热特性,包括室温下高速的电子迁移率、半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛的应用前景。在环境领域,石墨烯已被应用于新型吸附剂或光催化材料,其作为下一代水处理膜的构件,常用作污染物监测。2石墨烯纳米材料介绍 单层石墨烯属于单原子层紧密堆积的二维晶体结构(Fig.1)。在石墨烯平面内,碳原子以六元环形式周期性排列,每个碳原子通过σ键与临近的三个碳原子

相关文档
最新文档