动物生态学的研究现状与前沿

动物生态学的研究现状与前沿
动物生态学的研究现状与前沿

动物生态学的研究现状与前沿

生命科学学院生态学陈**

摘要:动物生态学是一门研究动物与其生存环境相互作用关系的生态学分支学科,在生态学上占有十分重要的位置。本文通过总结近年来有关动物生态学的研究,了解动物生态学的热点问题以及一些核心技术的应用,对动物生态学的研究现状和前沿进行综述,以期开展更深入的学习与研究。

关键词:动物生态学研究现状前沿

1前言

动物生态学研究可追溯至公元16世纪,至20世纪初,已成为一门年轻的科学。动物生态学作为生态学发展的基石,对生态学新理论的发展和构建作出了重要贡献。自从80年代以来,生态学的发展陆续出现了若干新的热点,如系统生态学、全球生态学、景观生态学、环境生态学、生物多样性、恢复生态学、保护生物学等。动物生态学在异质种群理论、种群生存理论、行为生态学发展起到关键作用,对生态学新理论的发展作出了重要贡献[1]。

到了90年代,我国动物生态学的发展主要受到三个方面的推动。[1]一是异质

种群理论和种群生存力理论的影响,国内学者将此理论用于动物种群的研究。二是随着分子生物学、行为学的渗透,动物行为生态成为研究的热点之一, 涉及到交配行为、婚配体制、化学通讯、繁殖投资策略等。同时运用分子标记技术,研究动物种群的迁徙,物种遗传多样性、功能基因及其生态适应等。三是1992年我国加入《生物多样性》公约后,生物多样性成为我国生态学研究的一个热点,动物生态学的研究也因此得到了推动,主要在遗传多样性、入侵物种、关键种与功能群、濒危机制研究方面得到更多的发展。

另外,随着人们对生物系统了解的不断深入,生态学研究进入了以整合和协作为特征的新时代,生态学的分支学科迅速与生物学、物理学、数学及社会科学等学科相结合[2]。

2动物生态学研究进展

我国近年来动物生态学研究主要包括了陆生动物以及水生动物等方面,不同区域物种的研究采用的方法和研究的方向不同,目前动物生态学研究侧重于陆生动物的研究。

2.1陆生地面动物研究

陆生地面动物的生态学研究主要包括了动物的种群和群落结构、分子生态、冬眠、食性、生殖和栖息地等方面的研究,同时一些特殊种类的动物还包括了其它的一些生态学研究,如蝙蝠的回声定位声波研究,鸟类的迁徙等。

2.1.1栖息地研究

在栖息地的研究中,使用数理统计方法并利用计算机对研究结果进行分析成为时尚,在近年的研究工作中,景观拼块的特征和生境片段化对动物分布的影响成为栖息地研究的一个重要方面。与此同时,地理信息系统(Geographieal Information System)已开始在鸟类栖息地选择的研究中得到应用。

[3]最新研究进展在于新技术、新方法的应用,无线电遥测技术在现阶段鸟类栖息地选择研究中的应用已十分普遍,该技术不仅可以定量获得鸟类对特定类型栖息地的偏爱程度,还可对选择的机制进行探讨。近年来,地理信息系统、全球卫星定位系统和遥感技术也逐渐得到了应用,利用计算机对研究结果进行准确的统计分析已引起各国学者普遍重视。利用GIS软件的空间数据内插分析技术,绘出各主要生态要素的空间分布图,可以,从直观上反映了栖息地的生态状况[4]。2.1.2动物繁殖研究

动物的繁殖生态研究主要针对动物的卵巢发育,卵泡生长与雌激素分泌,卵母细胞成熟和受精、卵裂和囊胚形成、附植与胚胎发育以至于产仔数等一系列繁殖方面的基本问题。

杨利国等[5]指出近年来国内最新的研究有应用激素免疫技术研究家畜的免疫繁殖学,胚胎工程技术应用于育种以及繁殖疾病的诊断和治疗等。此外,秦鹏春[6]等研究各种生长因子与动物繁殖之间的关系,用于探究动物繁殖的机制。翼手目的繁殖研究主要集中于婚配制度、繁殖群体结构以及特殊的储精现象等。2.1.3种群和群落

我国动物种群生态学的研究主要集中在种群数量及其动态等方面,同时,还有种群年龄鉴定与种群年龄结构、种群生命表、种群分布型和种群生存力等方面的研究。对于动物群落的研究则侧重对群落组成、多样性指数和均匀性的分析。群落结构的空间变化及其影响因子等[7]、[8]。另外,丁平等[8]指出在鸟类生态学研究中有关群落集团结构、生态位与种间关系、生境分布型、群落动态与演替、植

被与鸟类群落的关系和城市化对鸟类群落的影响等方面的研究较为深入。

[9]种群遗传异质性主要研究种群的基因组成,基因频率的分布和演变,种群遗传杂合性以及生境破碎、隔离、种群瓶颈、奠基者效应、基因流、选择等因素对种群遗传结构的影响。种群遗传异质性研究已经有大量的理论和实践工作,一般认为自然选择、遗传漂变、基因流等对种群遗传结构有重大影响,但对不同物种、同一物种的不同地方种群,所受各因素的影响不同,及对同一地方种群的研究有时也会得出不同的结论,这可能是实验方案、样本数、野外调查数据及统计分析方法不同所致。

2.1.4分子生态学研究

分子生态学是应用分子生物学的原理和方法来研究生命系统与环境系统相互作用的机理及其分子机制的科学,其特点是强调生态学研究中宏观与微观的紧密结合,用分子生物学的方法来解决种群水平的生物学问题。关于动物的分子生态学研究内容是较新的,主要是随着分子生态学的兴起而发展起来的。其研究依赖于分子生态学技术手段的应用。

目前分子生态学应用于动物方面的研究主要有动物的起源、血缘关系、亲本分析等系统进化方面的问题。同时还有群体和保护遗传学、行为生态学、遗传分化和形态分化以及同工酶等方面的研究。此外,一些特殊种类还可以用于特殊的方面的研究,如翼手目的病毒研究等。

动物的分子生态学研究主要是利用分子生物学的技术,从DNA水平来研究生物的生态和种群。具体而言,它所利用的技术主要是探针、引物和序列等,常见的分子生态学的分子标记有:限制性片段长度多态性(restriction fragment length polymorphism,RFLP)、随机扩增多态DNA(randomly amplified polymorphic DNA,RAPD)、小卫星DNA(minisatellite DNA)、微卫星DNA(microsatellite DNA)、扩增片段长度多态性(amplification fragment Length polymorphism,AFLP)等[10]。

2.1.5其他

能量生态学研究的最终目的是要说明生态系统中能量的流动,通过动物能量生态学研究,最终建立起动物的能量模式[11];目前关于食性的研究比较单一,主要侧重于分析动物的食物类型和捕食策略以及随季节的变化情况,分析的方法主要有直接观察法、利用法、胃分析法和粪便显微分析法等[12];关于动物的行为生

态学研究,主要有捕食行为、求偶行为、冬眠等,以及其随环境因子变化的研究。

2.2土壤动物研究

土壤动物是土壤生态系统中不可分割的组成部分,它们在分解残体、改变土壤理化性质、土壤形成与发育、土壤物质迁移与能量转化等方面有重要的作用。我国土壤动物生态学研究主要从土壤动物群落与环境关系、土壤动物群落的组成和多样性、土壤动物群落结构、土壤动物群落功能、土壤动物群落演替与受干扰生态系统的土壤动物群落6个方面进行[8]。其特点是区域分布集中于中国东部、研究的生态系统类型广泛、研究角度多种多样与应用研究发展迅速。目前,我国关于土壤动物生态方面的研究还存在较多的空白。

2.3水生动物生态学研究

2.3.1海洋动物研究

我国海洋底栖动物群落生态学的研究内容包括:群落的物种组成及分布;群落优势种的数量分布及其季节变化;群落空间结构及时间结构;群落结构及其变化的动态分析;群落演替;不同海区群落类型及其比较研究等[13]。

多样性指数引进群落生态学研究之后,对不同群落进行比较有了一个定量的指标。从多样性指数的不同数值,可以比较系统而明显地看出生物群落的结构,同时也可以反映出生物群落和生态环境之间的关系。直到最近由蔡立哲建立了大型底栖生物污染指数。

我国在21世纪初才引进底栖生物粒径谱这个概念并开始有些研究,如东、黄海典型站位底栖生物粒径谱研究,南黄海典型站位底栖生物粒径谱及其应用。20世纪90年代后期由国家科技部和国家基金委启动的重大、重点基金项目和国家973重点基础研究项目,以及相配套的“中—英”、“中—日”、“中—法”国际合作,把底栖生态学的研究提高到海洋生态系统整体研究的水平,用水层-底栖系统耦合的原理进行分析,相继建立了胶州湾北部软底水层-底栖耦合箱式模型,继而在更大的区域尺度建立了渤海和南黄海冷水团分层多室水层-底栖耦合模型。与此同时,开展了有机物质沉降动力学研究以及沉积物-海水界面(SW I)的生物扰动、生物沉降和再悬浮的试验研究,为生态建模提供了参数。

2.3.2湿地底栖

底栖动物是湿地生态系统中的一个重要组成部分,在能量流动和物质循环中

起着承上启下的作用。目前国内关于湿地动物的生态学研究较少,主要集中于底栖动物与环境因子的关系研究,包括温度、盐度、PH值、水文格局、底质条件、溶氧量以及有机物含量等非生物因子,再通过群落聚类、标序分析研究动物群落结构的空间分异情况。同时还有植被的影响、物种间的竞争和捕食影响、人类活动(如工程建设,围垦,工业污染,水产养殖等)等生物因子的影响[14]。此外,国内学者还运用功能群对大型底栖动物进行研究。

2.3.3浮游动物

我国在浮游动物生态学方面的研究主要针对河口浮游动物种类组成、时空分布、生物量及其环境影响因素等方面的研究,其中盐度和温度是影响浮游动物种类组成、群落结构、时空分布的重要环境因子[15]。目前我国许多学者多使用浅水I型或Ⅱ型浮游生物网(网孔为507μm和169μm)进行样品采集。浮游动物群落结构特征的变化监测和评价水体污染程度和自净作用的应用也较为广泛。

3研究前沿:

我国在地面动物生态学研究方面研究较多,较为深入,较为有前景的研究前沿包括:小卫星、微卫星等分子标记的使用将在亲子鉴定、种群结构的研究中发挥越来越大的作用;通过分子手段构建动物物种的DNA指纹图谱和分子标记库,将极有利于探究物种的系统进化关系;使用遗传连锁图研究数量性状将为分子生态学提供新的研究平台;生长因子应用于胚胎工程的研究,有助于提高体外操作的卵和胚胎的质量,增加囊胚成功率,拯救质量不佳的胚胎以增多活胚数,提高妊娠率和繁殖效率等,在动物生产繁殖方面发挥重要作用。

在土壤动物生态方面,随着研究的发展,土壤动物群落生态学研究不断与农业生态、环境生态、城市生态和恢复生态等应用生态学领域结合。土壤生物区系、土壤生物多样性和全球变化对土壤生物的影响已成为土壤生态学研究的前沿领域。

在水生动物生态研究领域,进入21世纪以来,底栖生物研究的时空尺度已经扩大到全球,并以年际和十年际的时间系列为重点,联系全球变化,特别是以气候异常和人类活动的影响为切入点,通过现场观测和受控试验相结合,探讨底栖生物的功能响应越来越受到学者的重视。深海生态和极端条件生境中底栖生物的研究成为热点。底栖生物在沉积物海水界面(SW I)中的作用成为另一个研究热点。

更多地使用高新技术,包括3S技术、深潜和分子生物学技术,通过国际合作探讨底栖生态过程在全球生物地化过程中的作用,揭示化能合成的能量能道以及小型生物和微生物相互作用的分子机制。

总的来说,未来动物生态学的研究将随着全球生态学、景观生态学等学科的发展而进入到一个大范畴、大尺度的研究领域。同时通过数学模型的建立将很好地服务于未来复合生态系统的研究,解决人类面临的生态问题。

参考文献

[1]张知彬.中国动物生态学研究回顾

[2]张谧,谢宗强.21世纪的生态学研究前沿.植物学通报,2002,19(1):121-124

[3]张正旺,郑光美.鸟类栖息地选择研究进展

[4]李天文,马俊杰,李易桥.基于GIS的大熊猫栖息地质量研究.西北大学学报(自然科学版),2004,34(2):228-232

[5]杨利国.家畜繁殖研究进展.畜牧与兽医,1994,26(5)236-238

[6]秦鹏春,秦志远,石惠芝.生长因子与动物繁殖.黑龙江动物繁殖,1996,4(1): 38-40

[7]许木启,张知彬.我国无脊椎动物生态学研究进展概述.动物学报,2002,48(5): 689-694

[8]朱永恒,赵春雨,王宗英等.我国土壤动物群落生态学研究综述.生态学杂志, 2005,24(12):1477-1481

[9]郑向忠,徐宏发,陆厚基.动物种群遗传异质性研究进展.生物多样性,1997,

5(3):210-216

[10]常弘,柯亚永.分子标记及其在鸟类分子生态学研究中的应用[J].动物学杂志,2002,37(1):79-85

[11]计翔,陆健健.陆生爬行动物能量生态学研究.动物学杂志,1990,25(1):46-49

[12]郑荣泉,鲍毅新.有蹄类食性研究方法及研究进展.生态学报,2004,24(7): 1532-1539

[13]斯广杰,陈丕茂,陈勇等.海洋底栖生物生态学的研究进展.安徽农业科学, 2009,37(19):9026-9029,9305

[14]胡知渊,鲍毅新,程宏毅等.中国自然湿地底栖动物生态学研究进展.生态学杂志,2009,28(5):959-968

[15]杨宇峰,王庆,陈菊芳.河口浮游动物生态学研究进展.生态学报,2006,26(2):576-585

蝙蝠生态学研究前沿

高级生态学作业 作业题目:近十年蝙蝠的生态学 研究前沿报告 学院:生命科学学院 专业:生态学 班级:12级研究生 姓名:陈柏承 学号:2111214013 任课教师:吴志峰 近十年蝙蝠的生态学研究前沿报告 绪论 我国的蝙蝠研究起步相对较晚,生态学方面的研究更是存在许多空白。随着生态学的不断发展,生态学技术不断地被运用于蝙蝠的研究。近十年来,我国关于蝙蝠的生态学研究取得了突飞猛进的发展,涉及的领域包括传统的生态学研究、行为生态学⑴、分子生态学以及大尺度研究蝙蝠的地理分布等。蝙蝠本文对蝙蝠的生态学研究背景,核心概念,以及国内近十年的研究进展进行简要的综述,以期今后开展更深入学习和研究。 1背景 我国在翼手目生态学研究方面起步较晚,最初的研究只在于一些种类简单的生态观察,其经典的蝙蝠生态学研究侧重于宏观生态学方面,其内容包括了食性、栖息地选择、繁殖、回声定位声波、冬眠、昼夜节律等。此外,也有关于环境因子的影响[2]、蝙蝠在生态系统中作用等研究⑶。然而,蝙蝠的宏观生态学研究还存在着许多空缺,很多种类生态资料不全等问题。近年来,分子生态学得到了长足发展,在分子生态学技术的极大冲击下,在分子水平上的蝙蝠生态学研究成为了蝙蝠研究的热点,并凭借其巨大的优越性,很好的解决了蝙蝠研究中一些争执不下的问题。此

外,一些学者正试图通过多尺度或大尺度研究蝙蝠地理分布问题⑷0 2核心概念理解 2.1生态位 生态位(ecological niche)是指一个种群在生态系统中,在时间空间上所占据的位置及其和相关种群之间的功能关系和作用。一个种的生态位,是按其食物和生境来确定的。有着相似食物或空间要求的数群近缘种,因处不同生态位,彼此并不竞争。 2.2回声定位声波 回声定位是一个复杂的、高度进化的过程,其定义为动物通过分析自身发射声波的回声建立其周围环境的声音图像过程。不同种类的蝙蝠其回声定位声波有一定的差异。可以通过超声波监听仪对蝙蝠的声波进行接收,运用波形分析软件可以帮助分析波形情况。蝙蝠可根据回声定位回避障碍物和捕食猎物,它们的回声定位具有很高的分辨率。根据蝙蝠所发出的回声定位信号特征可将其分为两大类:即FM蝙蝠和CF/FM蝙蝠[5]。所谓FM蝙蝠就是利用调频信号(frequency modulation,FM) 进行回声定位的一类,该类占回声定位蝙蝠的大多数。所谓CF/ FM蝙蝠是指回声 定位的信号持续的时间可达30?60ms乃至200ms,信号的主要部分是由一个恒频(constant frequency CF)组成,在该信号尾部则是一个向下扫描的FM信号的一类蝙蝠。对蝙蝠回声定位行为的研究一直是国际上蝙蝠研究中的热点。 2.3分子生态学 分子生态学是使用分子生物学的原理和方法来研究生命系统和环境系统相互作用的机理及其分子机制的科学。目前蝙蝠的分子生态学研究主要包括RAPD技术、SSR技术、同工酶技术等这几种分子手段的使用。 2.3.1RAPD 技术 RAPD是随机扩增多态DNA(randomly Amplified polymorphic DNA) 的简称,是建立在PCR (Polymerase Cha in Reaction基础之上的一种可对整个未知序列的基因组进行多态性分析的分子技术。其以基因组DNA为模板,以单个人工合成的随机多态核苷酸序列(通常为10个碱基对)为引物,在热稳定的DNA聚合酶(Taq酶)作用下,进行PCR扩增。扩增产物经琼脂糖或聚丙烯酰胺电泳分离、溴化乙锭染色后,在紫外透视仪上检测多态性。扩增产物的多态性反映了基因组的多态性。RAPD技术是蝙蝠

冷原子物理意义

冷原子物理的意义 按照人类对微观世界的认识深入程度划分,当代物理学有三个最主要的研究领域,即粒子物理,原子分子与光物理(AMO)和凝聚态物理。这三个领域的物理学家瓜分了决大多数20世纪50年代以来的诺贝尔物理学奖。 就这三个大领域的基础性和应用性来说,原子分子与光物理领域介于其他两者之间。它没有像粒子物理物理那样需要依靠大型实验设备展开基础性探索工作,也没有像凝聚态物理那样把更多的研究方向瞄准于可遇见的应用。因此在原子分子与光物理领域中,许多研究方向的现实意义并不为人所熟知,激光冷却技术和冷原子物理就是其中一例。 作为这个大领域的最热门方向之一,激光冷却技术冷原子物理领域曾在5 年内诞生了两次诺贝尔物理学奖,分别是1997年朱棣文(S. Chu), 科昂-塔努基(C. Cohen-Tannoudji)和菲利普斯(W. Phillips)因发明了激光冷却技术而获奖;以及2 001年维曼(C. Wieman),康乃尔(E. Cornell), 和凯特勒(W. Ketterle)利用激光冷却技术获得玻色-爱因斯坦凝聚(BEC)而获奖。就连2005年诺贝尔物理学奖的获奖成果也与冷原子物理紧密相关,获奖人之一的汉施(T. Hansch)也曾是激光冷却思想最早的提出者之一。 一个小小的研究领域能这样受到重视,它深层次的研究意义分不开的。冷原子物理领域的开创者们也许不会想到,依靠激光冷却技术获得的超低温原子因为有着其他状态的物质(常温原子)所没有的优势,在可预见的未来将对人类文明发展起到十分关键作用。 一、可观测相干的物质波波长 微观世界的粒子都具有波粒二相性。德布罗意波(物质波)波长λ=h/mv,与粒子的动量呈反比。室温原子因为平均速度达到几百米每妙,其德布罗意波长为很小,大约为10-12米量级,原子大多处在不同的量子态上,相干长度很短,难以形成干涉。冷原子最低温度可达到几个纳K,平均速度可达到几厘米每秒,德布罗意波长约为10-7米量级,相干长度很长,能够宏观观测到相干现象。当碱

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

0713 生态学一级学科

0713 生态学一级学科 博士、硕士学位基本要求 第一部分学科概况和发展趋势 1869年德国动物学家赫克尔(Haeckel)首次提出生态学这一概念,认为生态学是研究生物有机体与其环境之间相互关系的科学。1935年英国植物学家A.G.Tansley 提出了“生态系统”的概念,标志着生态学成为一门独立的学科并超出了生物学的领域,其研究领域越来越广泛,从分子、个体一直到生物圈乃至与社会经济的关系。现代生态学的研究对象更进一步向微观与宏观两个方面发展,如分子生态学、景观生态学和全球生态学。近几十年来,生态学迅速发展的另一个非常重要的特征是应用生态学的发展。随着人们对人口、环境、资源等问题的普遍关注,生态学已经发展成为一门多学科交叉应用性很强的基础学科。 国际生态学研究在半个世纪以来发生了一系列的重大变化,生态学改变了长期以来的纯自然主义的倾向,正越来越紧密地域社会经济发展相结合,并服务于生产实践,有关生态系统服务、生态系统分析以及生态工程设计等在区域经济发展中正发挥着越来越重要的作用。近年来,全球变化研究、可持续发展研究、生物多样性研究、生态系统与生物圈的可持续利用、生态系统服务于生态设计、转基因生物的生态学评价、生态预报、生态过程及其调控、生物入侵、流行病生态学等成为现代生态学研究的热点领域,而湿地生态学、景观生态学、脆弱与退化生态学、恢复与重建及保护生态学、生态系统健康、生态经济与人文生态学等则是以全球变化为起点和主题的新兴研究领域。随着复杂系统理论研究的不断深入,自然生态系统提供了很好的模式系统类型,企业生态、产业生态、区域经济生态以及生态管理等逐渐成为现代经济发展的重要研究领域。 总之,以生态系统为中心,以人地关系为基础,以高效和谐为方向,以生态工程为手段,以可持续发展为目标是现代生态学的主要特征。生态学发展至今,其内涵和外延的关系有了明显变化,因此生态学的定义不能局限于当初经典的含义,结合现代生态学发展动向,归纳各种观点,可将生态学定义为:有机体与环境之间的相互关系,其主要研究方向可以概括为生态科学、生态工程与生态管理,其目的是保护和利用生物多样性,维持自然生态系统的安全性,人与生物圈(即自然、资源与环境)的协调性,现代经济发展的高效性与可持续性,实现人类社会的永续发展。

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

现阶段国内外机器人产业发展现状分析

机器人与智能装备产业是高度集成微电子、通信、计算机、人工智能、控制和图像处理等学科最新科研和产业成果的前沿高新技术产业,是拟建的江苏省(常州)工业技术研究院的服务的产业核心和研发的产业立足点。直接影响生活最优化和智能化的机器人技术是机器人与智能装备产业的技术核心,推进着未来机器人与智能装备领域的科技创新力和产业竞争力。 机器人技术是一种是以自动化技术和计算机技术为主体、有机融合各种现代信息技术的系统集成和应用。经过半个多世纪的发展,机器人技术在工业生产领域得到了广泛的应用,极大地提升了生产品质并成功解放了劳动力资源。作为高技术领域中重要的前沿技术之一,机器人技术具有前瞻性、先导性的特点,对学术研究、产业升级、培养创新意识、保障国家安全、引领未来经济社会的发展有着十分重要的作用。 目前,相关领域的技术突破,从根本上为提升机器人技术的学术研究提供了必要的支持,为机器人的应用范围拓宽了道路,已涵盖国防、航空航天、工业生产、服务、老人康复、教育甚至普通家庭生活,一场新的机器人技术研究高潮和发展契机业已到来。 机器人技术毫无疑问是未来的战略性高技术,充满机遇和挑战。 目前,国际上机器人市场大概有80亿至100亿,其中工业机器人占的比重最大。2025年,整个机器人市场将达到500亿,服务机器人从原来的300多万台增加到1200多万台,特种机器人(如:排爆机器人、医疗机器人等)的呼声也越来越高。另外,微软等IT企业,丰田、奔驰等汽车公司,甚至还有家具、卫生洁具企业都纷纷参与机器人的研制。 美国和日本多年来引领国际机器人的发展方向,代表着国际上机器人领域的最高科技水平。目前,日本除了比较关注特种机器人和服务机器人以外,还注重中间件的研制。然而,近年来日本基本上在做模仿性的工作,突破性技术比较少。而美国在机器人领域的技术开发方面,一直保持着世界领先地位。再有,美国主要做高附加值的产业,比如军用机器人,目前世界销售的9000台军用机器人之中,有60%来自美国。比如:美国最近研制成功的BigDog 军用机器人,能负重100公斤,行进速度跟人相当,每小时达到五公里,还能适应各种地形,即使是在侧面受到冲击时也能保持很好的系统稳定性。 在各种机器人中,工业机器人应用较早,发展最为成熟。同时,技术的不断进步一直在牵引着机器人学科的发展,使机器人的应用领域从工业机器人扩展到特种机器人和服务机器人等。机器人技术也正越来越深刻地影响着我们的生活。机器人不但将在工厂、实验室与人一起工作,还将在车站、机场、码头、交通路口为人们指引路径、回答问题、帮助行人。机器人还将步入千家万户,为老人端茶送水,护理伤病人等等。未来机器人将会越来越广泛地进入人类社会,人类对机器人的依赖会如同现时对待计算机一样,即使是短时间的离开都可能会造成很大不便。 机器人化是先进制造领域的重要标志和关键技术,针对先进制造业生产效率提高的诸多瓶颈问题,尤其是在汽车产业中,机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。目前汽车制造业是所有行业中人均拥有机器人密度最高的

0713生态学一级学科简介

0713生态学一级学科简介 一级学科(中文)名称:生态学 (英文)名称: Ecological 一、学科概况 生态学的形成和发展经历了一个漫长的历史过程,而且是多元起 源的。概括地讲,大致可分出4个时期:生态学的萌芽时期;生态学 的建立时期;生态学的巩固时期;现代生态学时期。 1、生态学的萌芽时期(公元16世纪以前) 2、生态学的建立时期(公元17世纪至19世纪末) 进入17世纪之后,随着人类社会经济的发展,生态学做为一门 科学开始成长。进入19世纪之后,生态学得到很快发展并日趋成熟。 3、生态学的巩固时期(20世纪初至20世纪50年代) 20世纪初期,动、植物生态学并行发展,出版了不少生态学著 作与教科书。在动物生态学方面,关于生理生态学、动物行为学和动 物群落学等研究有了较大的进展。植物生态学在这一时期也得到重 要发展,出版的专著有《植物社会学》;《实用植物生态学》;植物生 态学》;《生物地理群落学与植物群落学》(1945)等。由于各地自然条 件、植物区系、植被性质及开发利用程度的差异,使植物生态学在研 究方法、研究重点上各地有所不同,在这一时期形成了几个著名的生 态学派,主要有:北欧学派(Uppsala学派);法瑞学派;英美学派; 苏联学派。 4、现代生态学时期(20世纪60年代开始) 20世纪60年代以来,由于工业的高度发展和人口的大量增长, 带来了许多全球性的问题(例如, 人口问题,环境问题,资源问题和 能源问题等),涉及到人类的生死存亡,造成对人类未来生活的威胁。

上述问题的控制和解决,都要以生态学原理为基础,因而引起社会上对生态学的兴趣与关心。 从上面的叙述中不难看出,随着科学的发展,与人类生存密切相关的许多环境问题都成为生态学学科发展中的前沿热点问题,生态学越来越融合于环境科学之中。特别是以人类生存环境为中心的生态学研究,更显得突出。 值得特别提出的是21世纪的生态学,一个突出的特点就是更加紧密地结合社会和生产中的实际问题,不断突破其初始时期以生物为中心的学科界限,未来的环境是以人类为主体的,向解决社会当前面临的社会问题发展,并在实现社会的可持续发展中起着越来越重的作用。 如果说21世纪前生态学和生态学工作者主要是指出问题和提出哪些该做哪些不该做,到了21世纪生态学则是转变到对解决问题途径的探索。当代生态学研究愈来愈注意与群众相结合,与社会发展和生产实际的需要相结合,并成为政府决策和行动的基础。当生态学介入生产和社会问题时,特别是涉及到可持续发展的问题时,就不可避免地与政策、经济、法律以及美学、道德、伦理等方面,甚至进入哲学领域的更深层次的思考。 二、学科内涵 生态学诞生于19世纪后半叶,学科主要任务是研究生物与其生存环境的相互关系,重点探讨环境对生物的影响,生物对环境的适应以及两者协同进化的规律,学科的核心理论是,自然界中的任何生物间及其生物的集合体间与其周围环境存在相互依存、相互制约、协同进化的关系并形成结构和功能相统一的各类生态系统,对人类而言,这些生态系统都具有服务功能。关于生态学基本理论常因生命层次的不同而异,从系统的层面上,通用的理论主要是相生相克理论、系统开放理论、等级系统理论、生态平衡与耐受极限理论等。目前,生态

环境生态学参考文献

《环境生态学》参考文献 第一章 1 金岚.环境生态学.高等教育出版社,1992 2 王如松,等.现代生态学的热点问题研究.中国科学技术出版社,1996 3 李博.生态学.高等教育出版社,2002 4 李振基,等.生态学.科学出版社, 2000 5 李博.普通生态学.内蒙古大学出版杜,1993 6 伍业钢,李哈滨.当代生态学博论.中国科学技术出版社,1992 7 McIntosh,Robert P. (徐嵩龄译).生态学概念和理论的发展.中国科学技术出版社, 1992 8 马世俊,王如松. 社会—经济—自然复合生态系统. 生态学报, 1984 9 国家自然科学基金委员会.生态学—自然科学学科发展战略调研报告.科学出版社,1997 10 陈天乙.生态学基础.南开大学出版社,1995 11 牛文元,前言,马世骏.现代生态学透视.科学出版社,1990 12 孙承咏.环境学导论.中国人民大学出版社,1994 13 何强,等.环境学导论(第二版).清华大学出版社,1994 14 Beeby A. Applying Ecology. London: Chapman & Hall,1993 15 Bramwell A. Ecology in the 20th Century: A History. New Haven Yale University Press, 1989 16 Clark JS, Carpenter SR, Barber M, et al. Ecological forecasts: An emerging imperative. Science, 2001 17 Mackenzie, A., A.S. Ball, S.R. Virde. Ecology. Bios Scientific Publishers Limited, 1999 第二章 1 孙儒泳,等.基础生态学.高等教育出版社,2003 2 孙儒泳.动物生态学原理(第三版).北京师范大学出版社,2001 3 王勋陵,王静.植物形态结构与环境.兰州大学出版社,1989 4 贾恢先,赵曼容.甘肃河西走廊盐生植被的调查.甘肃农业大学学报,1984 5 王尊国,贾恢先.浅议我国西北盐地资源植物的分布与利用.甘肃农业科技出版社,1995

动物生态学的研究现状与前沿

动物生态学的研究现状与前沿 生命科学学院生态学陈** 摘要:动物生态学是一门研究动物与其生存环境相互作用关系的生态学分支学科,在生态学上占有十分重要的位置。本文通过总结近年来有关动物生态学的研究,了解动物生态学的热点问题以及一些核心技术的应用,对动物生态学的研究现状和前沿进行综述,以期开展更深入的学习与研究。 关键词:动物生态学研究现状前沿 1前言 动物生态学研究可追溯至公元16世纪,至20世纪初,已成为一门年轻的科学。动物生态学作为生态学发展的基石,对生态学新理论的发展和构建作出了重要贡献。自从80年代以来,生态学的发展陆续出现了若干新的热点,如系统生态学、全球生态学、景观生态学、环境生态学、生物多样性、恢复生态学、保护生物学等。动物生态学在异质种群理论、种群生存理论、行为生态学发展起到关键作用,对生态学新理论的发展作出了重要贡献[1]。 到了90年代,我国动物生态学的发展主要受到三个方面的推动。[1]一是异质 种群理论和种群生存力理论的影响,国内学者将此理论用于动物种群的研究。二是随着分子生物学、行为学的渗透,动物行为生态成为研究的热点之一, 涉及到交配行为、婚配体制、化学通讯、繁殖投资策略等。同时运用分子标记技术,研究动物种群的迁徙,物种遗传多样性、功能基因及其生态适应等。三是1992年我国加入《生物多样性》公约后,生物多样性成为我国生态学研究的一个热点,动物生态学的研究也因此得到了推动,主要在遗传多样性、入侵物种、关键种与功能群、濒危机制研究方面得到更多的发展。 另外,随着人们对生物系统了解的不断深入,生态学研究进入了以整合和协作为特征的新时代,生态学的分支学科迅速与生物学、物理学、数学及社会科学等学科相结合[2]。 2动物生态学研究进展 我国近年来动物生态学研究主要包括了陆生动物以及水生动物等方面,不同区域物种的研究采用的方法和研究的方向不同,目前动物生态学研究侧重于陆生动物的研究。

光学工程前沿报告1 潘运

光学工程前沿之来自量子世界的新技术 潘运(MF1415003) (南京大学光通信中心江苏南京 210008) 摘要:本文是听完全国光电技术与系统学术会议中量子技术的邀请报告后,自己的一些感想和总结。郭光灿院士首先介绍了量子世界的与经典世界的一些不同的特点,用来引起大家对量子学的兴趣,然后着重介绍了量子密码和量子计算这两方面的量子学的应用,这两项应用着重体现了量子学巨大的发展前景,最后鼓励大家投身与科学研究的事业中来,体现了郭院士不仅自己专心搞研究而且期望拉起一个研究队伍的科研理念。本篇报告着重介绍量子光学的一些基础性知识,并且对会议中量子学的应用做一些介绍。 关键词:量子光学,量子信息技术,量子世界 Abstract:This article is after listening to the National Optoelectronic Technology and Systems Conference invited the report quantum technology, some of their own feelings and summary. Academician Guangcan Guo first introduced the quantum world with some of the different characteristics of the classical world, to arouse interest in quantum science, and then focuses on the quantum cryptography and quantum computing applications of quantum science in these two areas, which focuses on two applications quantum Theory reflects strong growth prospects, and finally to encourage everyone to join the cause of scientific research in the past, reflecting the professor Guo concentrate not only their own research and expect to pull out of a research team of research ideas. This chapter report highlights some of the basic quantum optics knowledge, and for meeting the application of quantum science to do some introduction. Keywords: Quantum Optics,Quantum information technology,Quantum World 1.引言 量子世界具有经典世界所不具有的特点,对于常年生活在宏观世界中的人来说,这种微观的量子世界的特点可能会然人感到怪异。但是正是由于量

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

全球OLED前沿技术发展趋势分析

全球OLED前沿技术发展趋势分析 与LCD相比,OLED具有主动发光,无视角问题;重量轻,厚度小;高亮度,高发光效率;发光材料丰富,易实现彩色显示;响应速度快,动态画面质量高;使用温度范围广;可实现柔软显示;工艺简单,成本低;抗震能力强等一系列的优点,因此它被专家称为未来的理想显示器。 1、技术飞跃 从1947年发现有机发光二极管,到OLED电视的销量急剧增长,OLED已经走过了一条冗长的道路,从初期的面板良率极低,已经发展到了现如今的FHD面板良率80%的突破,由于OLED显示技术与传统显示技术因为使用的材料不同(有机物与金属),所有拥有本质上的区别,同时,随着新材料以及新技术的不断诞生与成熟,相信面板良率将有进一步提升。面板的价格也将进一步下调。 图表1:55"FHD OLED良率与成本关系(模组)(单位:$,%) 资料来源:前瞻产业研究院整理 2、技术发展难点 自从1979年柯达公司华裔研究员邓青云发现了有机电致发光现象以来,OLED技术得到了长足的发展,它被科学家们程之为未来显示技术的明星,这是由于OLED的性能远远超过了LCD,PDP。 但是,这项技术仍然有很多的难点,站在发展的角度,前瞻认为OLED技术尚存在以下问题亟须解决: 图表2:OLED技术发展难点

资料来源:前瞻产业研究院整理 3、OLED技术发展趋势 目前,国内外企业都在对OLED技术发展难度进一步攻关,相信未来这些难点将会取得突破,基于当代全球OLED技术发展情况,前瞻产业研究院发布的《2016-2021年中国OLED产业市场预测与投资前景分析报告》认为,未来OLED技术发展趋势如下: (1)真正能发挥OLED技术优势,仍是AMOLED应用为主 PMOLED在其元件的结构组成,明显较AMOLED结构更为简单,具备大量生产压低成本的制造优势,也是OLED用于显示应用最早量产的产品形态。PMOLED适用于行动电话的次显示屏幕应用,在讯息显示量不高的小型面板应用尤其适合,量产成本也相对低许多。但在行动装置越趋转向高彩、大尺寸、快速显示的应用方向时,PMOLED在技术条件明显无法应付新需求。

物理学院光电信息科学与工程专业(理)

物理学院光电信息科学与工程专业(理) 级本科培养方案 一、培养目标 本专业培养适应社会主义现代化建设需要的,德、智、体、美全面发展的,具有光电信息科学与技术的知识背景和学科交叉能力,具有创新意识和实践能力的复合型拔尖人才。学生具有优秀的道德品质,扎实的专业技能,有成为行业领袖的气质,爱国爱民。 毕业生应具有坚实的自然科学和较好的人文社会科学基础,并熟练掌握一门外语;系统地掌握本专业领域中较宽的科学和技术基础理论;了解光信息科学技术领域的前沿和发展动态;具有创新意识和跟踪掌握该领域新理论、新知识、新技术的能力;掌握文献索引、资料查询的基本方法,熟悉国家信息产业政策及国内外有关知识产权的法律法规,具有一定的科学研究能力。 二、培养规格和要求 本专业基本学制年,授理学学士学位,培养要求如下: 、通过专业基础课以及专业核心课程,打造学生厚实的基础知识体系,使学生一方面获得坚实的数学、物理和光信息科学等基础知识,同时也具备光电子学、光信息学、光电子材料与光通信方向的专业技能。此外,在公共必修课中培养学生较高道德修养、较强的身体素质、较深的文化底蕴,形成正确地世界观、人生观、价值观,使学生做到德才兼备、全面发展。 、通过公共选修课中的通识课程、学科中专业选修课程,拓展学生的科学文化视野,提高人文修养和科学素养,促进学生建立良好的大局观与创新意识,为学生争当某领域领军人物,形成领袖气质奠定良好的基础。 、通过专业实践课、研究型的专业选修课,以及学院提供的国际交流和业余科研课题,强化学生专业技术能力,学术研究能力,全面提升学生知识综合运用能力,培养学生修身齐家意识,树立正确的家国情怀。 三、授予学位与修业年限 按要求完成学业者授予理学学士学位。修业年限:四年。

纳米材料研究进展

2011年第4期甘肃石油和化工2011年12月 纳米材料研究进展 李彦菊1,高飞2 (1.河北科技大学化学与制药工程学院,河北石家庄050018; 2.中核第四研究设计工程有限公司,河北石家庄050000) 摘要:纳米材料具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。综述了纳米材料 的分类、特性以及应用领域。 关键词:纳米材料;功能材料;复合材料 1前言 纳米(nm)是一个极小的长度单位,1nm=10-9m。当物质到纳米尺度以后,大约是在1~100nm 这个范围空间,物质的性能就会发生突变,呈现出特殊性能。这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。纳米技术正是利用纳米粒子这些特性实现其在各行各业中的特殊应用[1,2]。纳米技术和纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是21世纪的三大科技之一。目前世界各国都对纳米材料和纳米科技高度重视,纷纷在基础研究和应用研究领域对其进行前瞻性的部署,旨在占领战略制高点,提升未来10~20年在国际上的竞争地位。我国政府对纳米科技十分重视,先进的纳米产业正在蓬勃发展[3,4]。 2纳米材料的分类 以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm[5]。在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数[6],纳米材料的基本单元可以分为3类:①0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等; ③2维,指在3维空间中有1维在纳米尺度,如超薄膜、多层膜、超晶格等。按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料[7,8]。按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。纳米材料大部分都是人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体。例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的[9,10]。 3纳米材料的特性[11,12] 3.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面体 收稿日期:2011-07-05 作者简介:李彦菊(1981-),女,河北廊坊人,硕士,已发表论文10余篇,其中SCI2篇。主要从事纳米材料的研究工作。8

全球卫星导航系统的发展现状

0.引言 GPS的投入运行对当今社会经济、军事产生了革命性影响,各个国家对它的依赖性不断加大。同时,为了避免受制于人,各国纷纷研制自己的全球卫星导航系统。紧随美国之后,俄罗斯建成了GLONASS 系统,但由于资金长期短缺以及其他种种原因,导致在轨工作卫星曾大量空缺,不能提供全天候、全球性的定位服务。而欧盟正在开发的伽利略(GALILEO)卫星导航系统是一个独立的,性能优于GPS,与现有全球卫星导航系统具有互用性的民用全球卫星导航系统。争奇斗艳的全球卫星导航定位系统将会给当今的信息社会带来深远的影响。 1.美国GPS的发展现状 1.1GPS导航定位原理GPS是在美国海军导航卫星系统的基础上发展起来的以卫星为基础的无线电导航定位系统。它具有全能性、全球性、全天候、连续性和实时性的导航、定位和定时功能,能为用户提供精密的三维坐标、速度和时间。 GPS系统由空间卫星星座、地面监控系统及用户设备组成。GPS 空间星座部分由24颗GPS卫星(含3颗备用卫星)组成,卫星均匀分布于倾角为55°的6个轨道面上,轨道平均高度约为20200km。每颗GPS卫星发射两个载波(1575.42MHz/L1和1227.60MHz/L2)信号,在其上用相位调制技术加载了测距码和导航电文,供用户接收机使用。地面监控系统由一个主控站、3个注入站和5个监控站组成,其主要功能是采集数据、编算GPS导航电文及系统维护等。用户设备是实现GPS卫星导航定位的终端设备,由GPS接收机硬件和数据处理软件组成,它通过接收并处理GPS卫星信号,可得到用户的时间、位置、速度等参数[1][2]。 1.2GPS自身的缺陷 现行的GPS系统存在如下的缺陷:BlockⅡ(BlockⅡA)GPS卫星信号的强度极其微弱(天顶运行的GPS卫星的信号强度仅有3.5E-16W),几乎淹没于背景噪音之下,并能被建筑物等阻挡物反射,产生多路径效应。 调制于L1载波上的C/A码和P码都位于L1的中心频带,易于受到人为干扰。通常情况下,对P码的捕获和跟踪是通过先捕获C/A码和巧用Z计数的方法实现的。这样,如果人为地干扰C/A码的接收,也就等效于P码受到干扰。 民间用户难以同时获得L1-P码伪距和L2-P码伪距,无法实现GPS双频观测的电离层效应距离偏差改正,限制了GPS单点定位精度的提高。 GPS的系统组成和信号结构都不能满足当前的需要。例如:在高纬度地区,严重影响导航和定位,在中、低纬度地区,每天总有两次盲区、每次盲区历时20~30分钟,盲区时,PDOP值远大于20,给导航和定位带来很大的误差。 为确保导航定位的精度,GPS的卫星导航电文必须每天更新一次,地面监控系统担负着编算和注入导航电文的重要任务,一旦地面监控系统受到破坏,军用和民用用户都不能得到高精度的GPS导航定位服务。 1.3GPS现代化的举措[3] 针对上述情况,GPS执行委员会(IGEB)、GPS顾问委员会(GIAC)和导航学会(ION)召开多次国际会议,讨论GPS现代化的问题。根据GPS 执行委员会有关资料,GPS现代化的主要措施主要有: 取消了GPS SA政策,给民用用户带来了明显的效益。 发射BlockⅡR卫星更换BlockⅡ/ⅡA卫星。与BlockⅡ/ⅡA卫星相比,BlockⅡR卫星在功能上有如下扩充:在L2载波上增设C/A码(或L2C码);在L1和L2载波上各增设一个军用伪噪声码(M码);可根据指令增强L2载波上的P(Y)码、L1载波上的P(Y)码和C/A的功率。BlockⅡR-M卫星的功能更进一步加强:能作卫星之间的距离测量;能在轨自主更新和精化GPS卫星的广播星历和星钟A系数;能进行星间在轨数据通讯,在无地面监控系统干预的情况下,可进行自主导航。 发射BlockⅡF卫星。BlockⅡF卫星除具有BlockⅡR卫星的全部功能外,还在保护波段增加第三民用信号L5(1176.45MHz),并增加了卫星间的数据通道。到2008年6月,GPS在轨卫星共有31颗,其中BlockⅡA卫星13颗,BlockⅡR卫星12颗,BlockⅡR-M卫星6颗。 发射BlockⅢ(GPSⅢ)卫星。目前正在研究未来GPS卫星导航的需求,讨论制定GPSⅢ型卫星系统结构,系统安全性、可靠程度和各种可能的风险。计划在2009年发射GPSⅢ的第一颗实验卫星,2030年完成整个星座的更新。 地面监控系统现代化的措施主要有:给监测站装备数字式GPS 信号接收机和计算机;用分布式结构计算设备替换现有的主计算机;采用精度改善技术建立卫星控制集成网络,完善BlockⅡR卫星的全运行能力;在美国本土(卡纳维拉尔角)增建一个监控站(使监控站增至6个);在范登堡空军基地建立一个备用主控站;增强BlockⅡR卫星的指令和控制能力。 2.俄罗斯GLONASS的发展现状 2.1GLONASS简介 为了应对美国的全球卫星定位系统GPS,前苏联从上世纪80年代初开始建设与美国GPS系统相类似的卫星定位系统GLONASS (Global Orbiting Navigation Satellite System),于1995年12月将其发展成为由24颗GLONASS卫星组成的工作星座。该系统也由空间卫星星座、地面监测控制站和用户设备三部分组成。空间卫星星座为21颗卫星分布在夹角为120°的3个倾角为64.8°轨道面上,另外3颗卫星备用。GLONASS通过两个频率发射导航信号,但它的每颗卫星的频率都不相同。 GLONASS可供国防、民间使用,不带任何限制,也不计划对用户收费,并声明不引入选择可用性(SA)。但由于俄罗斯经济困难,卫星的补充和维护得不到保证,GLONASS在轨卫星曾大量空缺(2000年情况最严重时只剩下6颗卫星),破坏了其星座完整程度,致使该系统的可用性大大下降。 2.2GLONASS的恢复和现代化 GLONASS的危机引起了俄方的重视,俄罗斯认识到“出于国家安全战略的考虑,俄罗斯应该使用本国的GLONASS系统,而非美国的GPS或者是欧洲的GALILEO导航系统”。随着经济复苏,俄政府在本世纪初制定了“拯救GLONASS”的补星计划,并决定启动逐步改善和提高GLONASS性能的现代化改造。 补星和现代化计划共分三个阶段:第一阶段为补充新的卫星以满足GLONASS系统正常运行的最低要求。第二阶段为GLONASS-M计划,即研制新的GLONASS-M卫星。新的GLONASS-M卫星搭载了铯钟,增强了信号的稳定性;改善了信号结构,增加了附加信息;安装了滤波器,消除了1601.6MHz~1613.8MHz以及1660.0MHz~ 1670.0MHz频段的信号干扰;与此同时,其寿命也由原来的3年延长至7~8年;该阶段计划达到18颗在轨运行卫星(包括GLONASS卫星 全球卫星导航系统的发展现状 项鑫1刘红旗2李军杰3 (1.中国地质大学<武汉>地空学院湖北武汉430074;2.平顶山煤业集团土建公司河南平顶山467000; 3.河南城建学院河南平顶山467000) 【摘要】GPS现代化计划提出了更新星座和地面系统、增加第三民用信号L5、增加卫星间的数据通道、发射BlockⅢ(GPSⅢ)卫星等措施,GLONASS正在逐步实施补星和现代化计划,GALILEO可望提供六项更优的服务。分析了全球导航定位系统的发展与应用状况,讨论了导航定位信息的融合情况与应用前景。 【关键词】GPS;GLONASS;Galileo;CNSS;信息融合 66

相关文档
最新文档