同步电动机的工作原理

同步电动机的工作原理
同步电动机的工作原理

同步电动机的工作原理

同步电动机

转子转速与定子旋转磁场的转速相同的交流电动机。其转子转速n 与磁极对数p、电源频率f之间满足n=f/p。转速n决定于电源频率f,故电源频率一定时,转速不变,且与负载无关。具有运行稳定性高和过载能力大等特点。常用于多机同步传动系统、精密调速稳速系统和大型设备(如轧钢机)等。

同步电动机是属于交流电机,定子绕组与异步电动机相同。它的转子旋转速度与定子绕组所产生的旋转磁场的速度是一样的,所以称为同步电动机。正由于这样,同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。为此,在很多时候,同步电动机是用以改进供电系统的功率因数的。

同步电动机在结构上大致有两种:

1、转子用直流电进行励磁。它的转子做成显极式的,安装在磁极铁芯上面的磁场线圈是相互串联的,接成具有交替相反的极性,并有两根引线连接到装在轴上的两只滑环上面。磁场线圈是由一只小型直流发电机或蓄电池来激励,在大多数同步电动机中,直流发电机是装在电动机轴上的,用以供应转子磁极线圈的励磁电流。

由于这种同步电动机不能自动启动,所以在转子上还装有鼠笼式绕组而作为电动机启动之用。鼠笼绕组放在转子的周围,结构与异步电动机相似。

当在定子绕组通上三相交流电源时,电动机内就产生了一个旋转磁

场,鼠笼绕组切割磁力线而产生感应电流,从而使电动机旋转起来。电动机旋转之后,其速度慢慢增高到稍低于旋转磁场的转速,此时转子磁场线圈经由直流电来激励,使转子上面形成一定的磁极,这些磁极就企图跟踪定子上的旋转磁极,这样就增加电动机转子的速率直至与旋转磁场同步旋转为止。

2、转子不需要励磁的同步电机

转子不励磁的同步电动机能够运用于单相电源上,也能运用于多相电源上。这种电动机中,有一种的定子绕组与分相电动机或多相电动机的定子相似,同时有一个鼠笼转子,而转子的表面切成平面。所以是属于显极转子,转子磁极是由一种磁化钢做成的,而且能够经常保持磁性。鼠笼绕组是用来产生启动转矩的,而当电动机旋转到一定的转速时,转子显极就跟住定子线圈的电流频率而达到同步。显极的极性是由定子感应出来的,因此它的数目应和定子上极数相等,当电动机转到它应有的速度时,鼠笼绕组就失去了作用,维持旋转是靠着转子与磁极跟住定子磁极,使之同步

同步电动机的起动方法:

同步电动机只有在定子旋转磁场与转子励磁磁场相对静止时,才能得到平均电磁转矩。如将静止的同步电动机励磁后直接投入电网,这时定子旋转磁场与转子磁场间以同步转速n1作相对运动,转子受到交变的脉动转矩,其平均值为零,电机不能起动。所以必须借助其他方式来起动。

常用的起动方法有下列三种:

1. 辅助电机起动

通常选用和同步电动机极数相同的感应电动机(容量为主机的5%~15%)作为辅助电动机。先用辅助电动机将主机拖到接近同步转速,然后用自整步法将其投入电网,再切断辅助电动机电源。这种方法只适用于空载起动,而且所需设备多,操作复杂。

2. 变频起动

此法实质上是改变定子旋转磁场转速利用同步转矩来起动。在起动开始时,转子加上励磁,定子电源的频率调得很低,然后逐步增加到额定频率,使转子的转速随着定子旋转磁场的转速而同步上升,直到额定转速。采用此法须有变频电源,而且励磁机与电动机必须是非同轴的,否则在最初转速很低时无法产生所需的励磁电压。

3. 异步起动

同步电动机多数在转子上装有类似于感应电动机的笼型起动绕组(即阻尼绕组)。同步电动机异步起动的原理接线如下图所示。起动时,先把励磁绕组接到约为励磁绕组电阻值10倍的附加电阻,然后用感应电动机起动方法,将定子投入电网使之依靠异步转矩起动。当转速上升到接近同步转速时,再加入励磁电流,依靠同步电磁转矩将转子牵入同步。

同步发电机励磁自动控制系统练习参考答案

一、名词解释 1.励磁系统 答:与同步发电机励磁回路电压建立、调整及在必要时使其电压消失的有关设备和电路。 2.发电机外特性 答:同步发电机的无功电流与端电压的关系特性。 3.励磁方式 答:供给同步发电机励磁电源的方式。 4.无刷励磁系统 答:励磁系统的整流器为旋转工作状态,取消了转子滑环后,无滑动接触元件的励磁系统。 5.励磁调节方式 答:调节同步发电机励磁电流的方式。 6.自并励励磁方式 答:励磁电源直接取自于发电机端电压的励磁方式。 7.励磁调节器的静态工作特性 答:励磁调节器输出的励磁电流(电压)与发电机端电压之间的关系特性。 8.发电机调节特性 答:发电机在不同电压值时,发电机励磁电流IE与无功负荷的关系特性。 9.调差系数 答:表示无功负荷电流从零变至额定值时,发电机端电压的相对变化。 10.正调差特性 答:发电机外特性下倾,当无功电流增大时,发电机的端电压随之降低的外特性。11.负调差特性 答:发电机外特性上翘,当无功电流增大时,发电机的端电压随之升高的外特性。12.无差特性 答:发电机外特性呈水平.当无功电流增大时,发电机的端电压不随之变化的外特性。

13.强励 答:电力系统短路故障母线电压降低时,为提高电力系统的稳定性,迅速将发电机励磁增加到最大值。 二、单项选择题 1.对单独运行的同步发电机,励磁调节的作用是( A ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.保持机端电压恒定和调节发电机发出的无功功率; D.调节发电机发出的有功电流。 2.对与系统并联运行的同步发电机,励磁调节的作用是( B ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.调节机端电压和发电机发出的无功功率; D.调节发电机发出的有功电流。 3.当同步发电机与无穷大系统并列运行时,若保持发电机输出的有功 PG = EGUG sinδ为常数,则调节励磁电流时,有( B )等于常数。 X d A.U G sinδ; B.E Gsinδ; C.1 X d ?sinδ; D.sinδ。 4.同步发电机励磁自动调节的作用不包括( C )。 A.电力系统正常运行时,维持发电机或系统的某点电压水平; B.合理分配机组间的无功负荷; C.合理分配机组间的有功负荷; D.提高系统的动态稳定。 5.并列运行的发电机装上自动励磁调节器后,能稳定分配机组间的( A )。A.无功负荷;

同步电动机原理

同步电动机的原理 同步电动机是属于交流电机,定子绕组与异步电动机相同。它的转子旋转速度与定子绕组所产生的旋转磁场的速度是一样的,所以称为同步电动机。正由于这样,同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。为此,在很多时候,同步电动机是用以改进供电系统的功率因素的。 同步电动机在结构上大致有两种: 1、转子用直流电进行励磁。这种电动机的转子做成显极式的,安装在磁极铁芯上面的磁场线圈是相互串联的,接成具有交替相反的极性,并有两根引线连接到装在轴上的两只滑环上面。磁场线圈是由一只小型直流发电机或蓄电池来激励,在大多数同步电动机中,直流发电机是装在电动机轴上的,用以供应转子磁极线圈的励磁电流。 由于这种同步电动机不能自动启动,所以在转子上还装有鼠笼式绕组而作为电动机启动之用。鼠笼绕组放在转子的周围,结构与异步电动机相似。 当在定子绕组通上三相交流电源时,电动机内就产生了一个旋转磁场,鼠笼绕组切割磁力线而产生感应电流,从而使电动机旋转起来。电动机旋转之后,其速度慢慢增高到稍低于旋转磁场的转速,此时转子磁场线圈经由直流电来激励,使转子上面形成一定的磁极,这些磁极就企图跟踪定子上的旋转磁极,这样就增加电动机转子的速率直至与旋转磁场同步旋转为止。 2、转子不需要励磁的同步电机 转子不励磁的同步电动机能够运用于单相电源上,也能运用于多相电源上。这种电动机中,有一种的定子绕组与分相电动机或多相电动机的定子相似,同时有一个鼠笼转子,而转子的表面切成平面。所以是属于显极转子,转子磁极是由一种磁化钢做成的,而且能够经常保持磁性。鼠笼绕组是用来产生启动转矩的,而当电动机旋转到一定的转速时,转子显极就跟住定子线圈的电流频率而达到同步。显极的极性是由定子感应出来的,因此它的数目应和定子上极数相等,当电动机转到它应有的速度时,鼠笼绕组就失去了作用,维持旋转是靠着转子与磁极跟住定子磁极,使之同步。

同步电动机的起动

同步电动机的起动 1.同步电机的基本原理 同步发电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。一般分为转场式同步电机和转枢式同步电机。 图1.1给出了最常用的转场式同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场)气隙处于电枢内圆和转子磁极之间,气隙层的厚度和形状对电机内部磁场的分布和同步电机的性能有重大影响。 除了转场式同步电机外,还有转枢式同步电机,其磁极安装于定子上,而交流绕组分 布于转子表面的槽内,这种同步电机的转子充当了电枢。图中用AX BY CZ三个在空间错开120分布的线圈代表三相对称交流绕组。 —OO + ―-定子铁心』2—转子* 3—滑环F 4—电刷"5—磁力线 图1.1同步电机结构模型 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主

磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。感应电势有效值:每相感应电势的有效值为E o =4.44fN 感应电势频率:感应电势的频率决定于同步电机的转速n和极对数p,即 f=p n/60 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 1.2同步转速 同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz,故有: n=60f/p=3000/p 要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min ,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 1.3运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 分析表明,同步电机运行于哪一种状态,主要取决于定子合成磁场与转子主极磁场之间

(完整版)同步电动机励磁柜原理

励磁柜 介绍一些同步电动机励磁柜的基本知识,希望大家能了解并多交流一下同步电动机励磁柜的基本知识。 一.KJLF11 具有以下特点: 1.转子励磁采用三相全控整流固接励磁线路; 2.与同步电动机定子回路没有直接的电气联系;3.实现了按同步电动机转子滑差,顺极性自动投励。按到达亚同步转速(95%)时投入励磁,使同步电动机拖入同步运行; 4.具有电压负反馈自动保持恒定励磁; 5.起动与停车时自动灭磁,并在同步电动机异步运行时具有灭磁保护; 6.可以手动调节励磁电流,电压进行功率因数调整,整流电压可以从额定值的10%至125%连续调节;7.交流输入电源与同步电动机定子回路来自同一段母线;8.同步电动机正常停车5 秒钟之内,本设备整流电路和触发电路的同步电源不容许断电;9.灭磁电阻RFD1 和RFD2 的阻值为所配的转子励磁绕组直流电阻的 5 倍,其长期容许电流为同步电动机额定励磁电流的15%;10.当同步机矢步运行时,可以发出矢步信号,用于报警或跳闸;11.输入电源为380V. 二.保护电路:(1).过压保护:1.同步电动机异步运行时,转子感应过电压由灭磁环节将放电电阻RFD1-2 接入,消除开路过电压。 2.主电路可控硅元件的换向过电压由并接于元件两端的阻容电路吸收。(RC4-9) 3.整流变压器一次侧分,合闸引起的操作过电压由RC1-3 组成的阻容吸收装置来抑制。4.为使同相两桥臂上可控硅元件合理的分担自直流侧的过电压,设置了R10-15 均压电阻来保护。(2)过电流保护: 1.与可控硅串联的快速熔断器是作为直流侧短路保护用,快熔熔断时,保护环节可发出声响报警信号,跳开同步电动机定子侧电源开关,切断励磁。 2.短路电流发生在整流变压器二次侧时,其一次侧空气开关脱扣器顺动,切断电源。 3.直流侧过负荷时,空气开关脱扣器或热继电器动作。但整定值应保证强励磁30 秒内不动作。 三. 励磁线路各环节的工作电压均由同步电源变压器供给,其工作原理如下:同步电动机起动过程中,灭磁环节工作,使转子感应交变电流两半波都通过放电电阻,保证电机的正常起动。起动过程中,整流电路可控硅处于阻断状态,当电

同步电机的基本工作原理和结构

同步电机的基本工作原理和结构 第一节精编资料 本章主要介绍同步电机的结构和基本工作原理,同步电机的电动势和磁动势,异步电动...二,同步电机的工作原理1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场... 原理,结构 同步电机的基本工作原理和结构 本章主要介绍同步电机的结构和基本工作原理、同步电机的电动势和磁动势、异步电动机的电势平衡,磁势平衡、等值电路及相量图、功率转矩、同步发电机运行原理等内容。本章共有10节课,内容和时间分配如下: 1.掌握同步电机的结构特点及工作原理。(2节) 2.掌握同步电机绕组有关的结构、额定参数(1节) 3.掌握同步电机机绕组的磁动势、等效电路,一般掌握相量图。(3节) 4.掌握同步电机功率、转矩和同步电机启动特性。(2节) 5.了解同步发电机的运行原理。(2节) 一、简介 交流电机,根据用途,可以分为同步发电机、同步电动机和同步补偿机三类。 (交流电能几乎全部是由同步发电机提供的。目前电力系统中运行的发电机都 是三相同步发电机。 同步电动机可以通过调节其励磁电流来改善电网的功率因数,因而在不需要调速的低速大功率机械中也得到较广泛的应用。随着变频技术的不断发展,同步电动机的起动和调速问题都得到了解决,从而进一步扩大了其应用范围。

同步补偿机实质上是接在交流电网上空载运行的同步电动机,其作用是从电网汲取超前无功功率来补偿其它电力用户从电网汲取的滞后无功功率,以改善电网的供功率因数。) 二、同步电机的工作原理 1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场和转子旋转磁场。定子旋转磁场—又常称为电枢磁势,而相应的磁场称为电枢磁场60f1n,速度:同步速度,即 1p 方向:从具有超前电流的相转向具有滞后电流的相。 形成原因:以电气方式形成。 (当对称三相电流流过定子对称三相绕组时,将在空气隙中产生旋转磁通势。它的旋转速度 60f1n,1p为同步速度,即;它的旋转方向是从具有超前电流的相转向具有滞后电流的相;当某相电流达到最大值的瞬间,旋转磁势的振幅恰好转到该相绕组轴线处。这个旋转磁通势是以电气方式形成的。同步电机不论作为发电机运行还是作为电动机运行,只要其定子三相绕 组中流通对称三相电流,都将在空气隙中产生上述旋转磁通势,建立旋转磁场。同步电机的定子绕组被称为电枢绕组,因此,上述磁势又常称为电枢磁势,而相应的磁场称为电枢磁场。转子旋转磁场—直流励磁的旋转磁场。 60f1n, 速度:同步速度,即1p 方向:与定子相同。 形成原因:机械方式形成。 (在同步电机的转子上装有由直流励磁产生的磁极,磁极与转子无相对运动。当转子旋转时, 以机械方式形成旋转磁通势,并在气隙中形成另一种旋转磁场。由于磁场随转子一同旋转,被称为直流励磁的旋转磁场。) 2 电动势—两个旋转磁场切割绕组产生。

同步电动机经常出现的故障及原因分析

同步电动机经常出现的故障及原因分析 经常发现的故障现象有:①定子铁芯松动,运行中噪声大。②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。④转子线圈绝缘损伤,起动绕组笼条断裂。⑤转子磁极的燕尾楔松动、退出。⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电动机起动,投励运行中的各种典型状态波形摄片,研究分析表明,同步电动机出现上述故障,不是制造问题,而是传统励磁技术存在缺陷。 2 传统励磁技术存在的缺陷 2.1 励磁装置起动回路及环节设计不合理 同步电动机励磁装置主回路中的主桥分为:全控桥式和半控桥式,下面分别以这两种方式分析。 ①半控桥式励磁装置:由三只大功率晶闸管和一只大功率二极管组成,如图1所示。电动机在起动过程中,存在滑差,在转子线圈内将感应-交变电势,其正半波通过ZQ形成回路,产生+if,其负半波则通过KQ,RF形成回路,产生-if,如图2所示,由于回路不对称,则形成的-if与+if也不对称,致使定子电流强烈脉动,波形如图3所示。使电动机因此而强烈振动,直到起动结束才消失。 ②全控桥工励磁装置:由6只大功率晶闸管组成,如图4所示。

在起动过程中,随着滑差减小,当转速达到50%以上时,励磁感应电流负半波通路时通时断,同样形成+if与-if电流不对称从而形成脉振转矩,造成电动机强烈振动。 ③投励时“转子位置角”不合理。无论是全控桥还是半控桥,电动机起动过程投励时,都产生 沉闷的冲击,这种冲击,同样会造成电机损害,这是“转子位置角”不合理所致。 以上所出现的脉振、投励时的冲击,并不一定一次性使电机损坏,但每次起动都会使电机产生疲劳,造成电机内部损害,积而久之,必然造成电机内部故障。 2.2 将GL型反时限继电器兼做失步保护 传流动磁装置将GL型继电器兼做失步保护,当电机失步时,它不能动作(如带风机类负载)或不及时动作(如带往复式压缩机类负载),使电动机或励磁装置损坏。 ①失励失步:是指同步电动机励磁绕组失去直流励磁或严重欠励磁,使同步电动机失去静态稳定,滑出同步,此时丢转不明显,负载基本不变,定子电流过流不大,电机无异常声音,GL型继电器往往拒动或动作时限加长,且失励失步值班人员-不易发现,待电动机冒烟时,已失步较长时间,已造成了电机或励磁装置损害。但不一定当场损坏电机,而是造成电机内部暗伤,经常出现电机冒烟后,停机检查又查不出毛病,电机还可以再投入运行。

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell软件中的RMxprt模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 T。本例所永磁同步电动机的效率η、功率因数cos?、起动转矩st T和最大转矩max 设计永磁同步电动机的额定数据及其性能指标如下: 计算额定数据:

(1) 额定相电压:N 220V U U == (2) 额定相电流:3 N N N N N 1050.9A cos P I mU η??== (3) 同步转速:160=1000r /min f n p = (4) 额定转矩:3 N N 1 9.5510286.5N m P T n ?==g 2.2 主要尺寸和气隙长度的确定 永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式 估算得到: 2 i11P D L C n '= N N N cos E K P P η?'=, 6.1p Nm dp C K K AB δ α=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。 E K 为额定负载时感应电势与端电压的比值,本例取0.96;p α'为计算极弧系数, 初选0.8;Nm K 为气隙磁场的波形系数,当气隙磁场为正弦分布时等于1.11;dp K 为电枢的绕组系数,初选0.92。A 为电机的线负荷,B δ为气隙磁密,A 和B δ的 选择非常重要,直接影响电机的参数和性能,应从电机的综合技术经济指标出发 来选取最合适的A 和B δ值,本例初选为200A/cm,0.7T A B δ==。 由上式可初步确定电机的2i1D L ,但要想进一步确定i1D 和L 各自的值,还应选择主要尺寸比i1i122L L pL D D p λπτπ===,其中τ为极距。通常,中小型同步电动机的0.6~2.5λ=,一般级数越多,λ也越大,本例初选1.4。 永磁同步电动机的气隙长度δ一般要比同规格的感应电动机的气隙大,主要 是因为适当的增加气隙长度可以在一定的程度上减小永磁同步电动机过大的杂 散损耗,减低电动机的振动与噪声和便于电动机的装配。所以设计永磁同步电动 机的气隙长度时,可以参照相近的感应电动机的气隙长度并加以适当的修改。本 例取=0.7mm δ。 确定电动机定子外径时,一般是在保证电动机足够散热能力的前提下,视具 体情况为提高电动机效率而加大定子外径还是为降低成本而减小定子外径。

同步电动机励磁系统常见故障分析

同步电动机励磁系统常见故障分析 作者:陆业志 本文结合KGLF11型励磁装置,对其在运行中的常见故障进行分析。 1 常见故障分析 (1)开机时调节6W,励磁电流电压无输出。 原因分析:励磁电流电压无输出,肯定是晶闸管无触发脉冲信号,而六组脉冲电路同时无触发脉冲很可能是移相插件接触不良,或者同步电源变压器4T损坏,造成没有移相给定电压加到六组脉冲电路的1V1基极回路上,从而六组脉冲电路无脉冲输出导致晶闸管不导通。 (2)励磁电压高而励磁电流偏低。 原因分析:这是个别触发脉冲消失或是个别晶闸管损坏的缘故。个别触发脉冲消失可能是脉冲插件接触不良。另外图1中三极管1V1、单极晶体管2VU及小晶闸管9VT损坏,或者是电容2C严重漏电或开路。如果主回路中晶闸管1VT~6VT中有某一个开路或是触发极失灵,同样会导致输出励磁电流偏低的现象。 (3)合励磁电路主开关时,励磁电流即有输出。 原因分析:这是由于图1所示脉冲电路中的三极管1V1集电极-发射极之间漏电,即使移相电路还未送来正确的控制电压,也会导致1C充电到2VU导通的程度。2VU即输出触发使小晶闸管9VT导通,2C经9VT放电而发出脉冲令1VT、3VT、6VT之一触发导通,使转子励磁电路中流过直流电流。 (4)同步电动机起动时,励磁不能自行投入。 原因分析:励磁不能自行投入。肯定是自动投励通道电路中断或工作不正常,因此可能是投励插件与插座间接触不良,或是图2所示投励电路中的三极管3V1、单结晶体管4VU工作不正常,电容5C漏电、电位器W′损坏。另外是移相插件同样有接触不良现象,或者是图3所示移相电路的小晶闸管10VT损坏等等。 (5)运行过程中励磁电流电压上下波动。 原因分析:引起励磁电流电压输出不稳的原因很多,主要有1)脉冲插件可能存在接触不良,造成个别触发脉冲时有时无。2)图1所示脉冲电路的电位器4W松动,使三极管1V1电流负反馈发生变化,造成放大器工作点不稳定,从而影响晶闸管主回路输出的稳定性。另外,如果电容2C漏电或单结晶体管2VU及三极管1V1性能不良,也会引起触发脉冲相位移动。3)图3所示移相电路的电位器6W松动或接触不良,将会使移相控制电压Ed间歇性消失,引起励磁电流电压输出大幅度波动。另外,如果稳压管7VS、8VS损坏,都会使Ey随电网电压波动而波动,使Ed输出波动,造成晶闸管主回路直流输出不稳。 (6)励磁装置输出电压调不到零位。

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。 2、三相异步电动机的转子:

转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明: 型号异步电动机的型号主要包括产品代号、设计序号、规格代号和特殊环境代号等。产品代号表示电动机的类型,用汉语拼音大写字母表示;设

同步电机励磁系统

同步电机励磁系统 Excitation system for synchronous electricalmachines-Definitions GB/T 7409.11997 本标准是对GB 7409—87的修订。 GB 7409—87执行七年来,技术已有新的发展,其中有些内容IEC已制定了国际标准。为适应技术发展的要求和贯彻积极采用国际标准的精神,原标准需作修订。 为便于采用IEC标准和今后增补、修订标准的方便,经技术委员会研究,将GB 7409改编为系列标准:修订后的GB 7409.1等同采用IEC 34-16-1:1991;GB 7409.2等同采用IEC 34-16-2:1991,至于GB 7409.3,由于IEC目前还没有相应的标准,此部分是根据GB 7409执行七年的情况并参考了美国IEEE std 421.1—1986、421.A—1978、421.B—1979和原苏联ГОСТ21558—88等标准编写的。 本标准定义的同步旋转电机的励磁系统术语为一般通用的术语。同步电机励磁系统所有 各分标准在使用同步电机励磁系统技术名词和术语时均符合本标准之规定。其他未包括的术 语,应在同步电机励磁系统各分标准中作补充规定。 本标准由全国旋转电机标准化技术委员会汽轮发电机分技术委员会提出并归口。 本标准负责起草单位:哈尔滨大电机研究所。 主要起草人:忽树岳。 IEC

1)IEC(国际电工委员会)是由所有国家的电工技术委员会(IEC国家委员会)组成的世界范围内的标准化组织。IEC的目的是促进电工和电子领域内所有有关标准化问题的国际间的合 作。为此目的和除其他活动之外,IEC出版国际标准。这些标准是委托各个技术委员会制定 的;对所讨论的主题感兴趣的任何一个国家委员会都可以参加起草工作,与IEC有联系的国际的,政府的和非政府的组织也可以参加起草工作。IEC和ISO(国际标准化组织)按两大组织之间共同确定的条件紧密合作。 2)IEC关于技术问题的正式决议或协议是由代表各国家委员会专门利益的技术委员会 所制定的,这些决议或协议都尽可能充分地表达了国际上所涉及的问题的一致意见。 3)这些决议或协议均以标准、技术报告或导则的形式出版且以推荐的形式供国际上使 用,并在此意义上为各国家委员会所承认。 4)为了促进国际上的统一,IEC各国家委员会应尽最大可能在各自的国家和地区标准中 明确地采用IEC国际标准,并应清楚地指明IEC标准与对应的本国或本地区标准之间的某 些分歧。 5)IEC对任何申明符合其某些标准的设备不提供表明它已被认可的标记过程,并且也不 对其负责。 IEC

同步电机与异步电机的区别及工作原理

同步电机与异步电机的区别? 同步与异步的最大区别就在于看他门的转子速度是不是与定子旋转的磁场速度一致,如果转子的旋转速度与定子是一样的,那就叫同步电动机,如果不一致,就叫异步电动机。 当极对数一定时,电机的转速和频率之间有严格的关系,用电机专业术语说,就是同步。异步电机也叫感应电机,主要作为电动机使用,其工作时的转子转速总是小于同步电机。 所谓“同步”就是电枢(定子)绕组流过电流后,将在气隙中形成一旋转磁场,而该磁场的旋转方向及旋转速度均与转子转向,转速相同,故为同步。异步电机的话,其旋转磁场与转子存在相对转速,即产生转距。 同步电机的转速是和频率极数恒定的满足转速=60乘以频率除以极对数(同步转速)不随负荷的改变而该改变异步电机的转速永远低于同步转速但是带额定负荷时转速很接近同步转速随着负荷的增加转速会下降。所以叫异步电机 同步电机的转子有转子线圈和鼠龙,通入励磁电流。而异步电机只有鼠龙(铜条)。同步电机转速恒定,而异步电机低于同步转速 同步电机与异步电机的区别及工作原理? 同步电机和异步电机的主要区别是:同步电机能与其定子磁场旋转达到同步转速,异步电机转速达不到定子磁场的同步转速。 电机大致分成三种,同步机,异步机(以上两种多与电网相连),还有个直流电机。 下面的内容是一个过渡,只作为对电机(同步机、异步机)原理性的知识进行形象的讲解(懂电机的可跳过)。 同步机和异步机,这两个东西都是交流电机,利用了三相交流电的比较有意思的一个特性:简单的说如果把三个线圈像搅拌器(就是家里用来打鸡蛋的那种东西)那样布置,三个线圈相互不接触,分别加上abc三相电压,于是产生三相电流,接着好玩的事情就发生了,线圈所围的空间内出现了与所加电压同频的旋转磁场(若要更深入的解释,就得说驻波的分解,叠加,比较麻烦)。所以人们把线圈按照上述所说的办法,嵌进定子,于是转子所在的那个空间就产生了旋转的磁场。 有了这个磁场就好办了,我们就可以想象定子处有一个看不见的磁铁在转,此时如果转子是个磁铁的话,那么转子不就被带动起来了么,就是电动机了,反之如果转子带动那个看不见的磁铁,就成了发电机了(首先转子带动那个虚拟磁铁,转子肯定受个阻力矩吧,虚拟磁铁受个动力矩吧,注意!力是能量转换的中介(或者说是标志),虚拟磁铁毕竟是虚拟的,定子又不动,那么定子肯定地获得电动势喽。如定子带负载的话,就会有电流,还是三相的,有电流就会有磁场,干扰转子产生的磁场,这个叫做

同步电机原理和结构

1 同步电机 8.1 同步电机原理和结构 1.同步发电机原理简述 (1)结构模型: 同步发电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。最常用的转场式同步电机的定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场)。除了转场式同步电机外,还有转枢 式同步发电机,其磁极安装于定子上,而交流 绕组分布于转子表面的槽内,这种同步电机的 转子充当了电枢。图8-1-1给出了典型的转场 式同步发电机的结构模型。图中用AX 、BY , CZ 共3个在空间错开120°电角度分布的线 圈代表三相对称交流绕组。 (2)工作原理 同步电机电枢绕组是三相对称交流绕组,当 原动拖动转子旋转时,通入三相对称电流后,会产生高速旋转磁场,随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场),会在其中感应出大小和方向按周期性变化的交变电势,每相感应电势的有效值为, E 0=4.44f N Фf k w (8-1-1) 式中 f ——电源频率;Фf ——每极平均磁通; N ——绕组总导体数;k w ——绕组系数; E 0是由励磁绕组产生的磁通Фf 在电枢绕组中感应而得,称为励磁电势(也称主电势、空载电势、转子电势)。由于三相电枢绕组在空间分布的对称性,决定了三相绕组中的感应电势将在的时间上呈现出对称性,即在时间相位上相互错开1/3周期。通过绕组的出线端将三相感应电势引出后可以作为交流电源。可见,同步发电机可以将原动机提供给转子的旋转机械能转化为三相对称的交变电能。 感应电势的频率决定于同步电机的转速n 和极对数p ,即 图8-1-1 同步电机结构模型 60pn f

大型同步电动机励磁装置说明书

同步电动机励磁控制装置 使用说明书 沈阳远大机电装备有限公司 二○○九年十一月十七日

一、概述 TDLC系列同步电动机全数字励磁装置是我公司自行研发的新一代产品,采用全数字控制,主要用于同步电动机励磁调节系统,可根据不同的负载选择不同的运行方式,具有运行可靠、技术先进、结构简单、功能齐全、性能稳定、调试方便、维护简单等优点。 二、型号说明 产品系列代码额定励磁电流 设计序号额定励磁电压 三、适用范围 本装置可作为拖动重载或轻载起动的同步电动机的直流励磁电源,与同步电动机单机配套,适用于各种气体压缩机、风机、球磨机等,也可适用于拖动冲击负荷(如轧钢负荷)的同步电动机励磁用。适用电机功率范围为200-20000KW。 四、使用环境 1、海拔高度不超过1500米,超过1500米时要降容使用; 2、周围空气介质温度-10℃ -- +45℃; 3、周围空气相对湿度不大于85% (20±5℃); 4、无腐蚀性气体导电尘埃及易燃易爆场所; 5、无剧烈振动冲击,倾斜度不超过5°; 6、户内安装,安装地点有良好的通风。 五、性能特点 1、适用于380V—10KV电压等级的同步电动机,装置供电为三相四线制,可满足轻载或重载启动要求。 2、全数字控制模式,摒弃常规电位器整定及调节方法。无需调试即可运行。

3、启动无脉振,电机异步启动过程平稳、快捷,可满足电机降压或全压启动。 4、电机的投励采用滑差检测准角(反极性末尾)投励,投励的角度选择国际公认的电器分离角最小的位置;还设有定时后备投励环节,保证电机启动一次投励成功。 5、励磁装置能以恒流、恒功率因数及恒无功方式运行(后两种选配),能有效克服电网电压的波动及由于电机转子温升带来的电流变化,并且适应不同负荷要求自动调节励磁。 6、采用自有专利技术---整定灭磁,消除电机启动过程的脉振,增大牵入转矩,使电机启动平稳快捷。 7、具有过压、过流、失磁、失步及失步再整步等保护功能。 8、设有逆变环节,有效泄放电机转子的储能,保护电机和励磁装置免受损害。 9、测量自动重合闸信号,能够避免非同期冲击对电机造成的致命伤害。 10、强励功能,在电网电压下降时可提供1.4倍的强励电流。 11、具有和上位计算机通讯功能,通讯接口为RS232或者RS485。通讯协议为MODEL BUS。可以实现励磁柜功率因数COSφ,定子电流,励磁电压,电流的上传,实现远程调节励磁。(需要此功能的用户请在定货时说明,一般配置不包括此项功能)。 六、主要技术指标 1、输入要求:三相四线线制交流,380V±10%,50±1Hz。 2、功率因数在0.5-1范围内连续可调。 3、强励倍数最大为1.4倍,出厂设定值为1.2倍,时间为15秒。 4、励磁电流调节从0-600A连续可调。 5、电网电压波动在80%到110%范围内,恒流励磁调节偏差不大于±5%。 6、当控制电压偏差不超过+10%至-15%时,控制器能正常可靠工作。 7、滑差投励:按转子滑差5%顺极性投励。 8、后备投励:投时时间0-30秒可设定。 9、滑差投全压:按到达同步速的90%自动投全压。 10、延时投全压:延时投全压时间0-30秒可设定。

电机学第11章同步发电机的基本工作原理和结构思考题与习题参考答案

1 第11章同步发电机的基本工作原理和结构思考题与习题参考答案 11.1 同步发电机感应电动势的频率和转速有什么关系? 在频率为50H Z 时,极数和转速有什么关系? 答:频率与转速的关系为:60 pn f = 当频率为Hz 50时,30005060=?=pn 。 11.2 为什么汽轮发电机采用隐极式转子,水轮发电机采用凸极式转子? 答:汽轮发电机磁极对数少(通常p =1),转速高,为了提高转子机械强度,降低转子离心力,所以采用细而长的隐极式转子;水轮发电机磁极对数多,转速低,所以采用短而粗的凸极式转子。 11.3 试比较同步发电机与异步电动机结构上的主要异同点。 答:同步发电机和异步电动机的定子结构相同,都由定子铁心、定子三相对称绕组、机座和端盖等主要部件组成。但这两种电机的转子结构却不同,同步发电机的转子由磁极铁心和励磁绕组组成,励磁绕组外加直流电流产生恒定的转子磁场。转子铁心又分为隐极式和凸极式两种不同结构。异步电动机的转子分为笼型和绕线型两种结构形式,转子绕组中的电流及转子磁场是依靠定子磁场感应而产生的,故也称为感应电动机。 11.4 一台汽轮发电机,极数22=p ,MW 300=N P , kV 18=N U ,85.0cos =N ?,Hz 50=N f ,试求:(1)发电机的额定电流;(2)发电机额定运行时的有功功率和无功功率。 解:(1)A U P I N N N N 6.1132085.010********cos 336=????==? (2)MW P N 300= MVA P S N N N 94.35285.0/300cos /===? var 186527.094.352sin M S Q N N N =?==? 11.5一台水轮发电机,极数402=p ,MW 100=N P ,kV 813.U N =,9.0cos =N ?,Hz 50=N f ,求:(1)发电机的额定电流;(2)发电机额定运行时的有功功率和无功功率;(3)发电机的转速。 解:(1)A U P I N N N N 553.46489.0108.13310100cos 336=????==? (2)MW P N 100= MVA P S N N N 11.1119.0/100cos /===? var 44.48436.011.111sin M S Q N N N =?==? (3)min /15020 506060r p f n N =?==

同步发电机怎么励磁

无刷励磁发电机的轴端头是一台交流发电机,其转子是发电绕组,发出的电流通过固定在发电机轴上的导线引导固定在轴上的硅整流管,整流后的直流直接进入转子绕组,其中没有整流刷这个东西,所以成为无刷励磁。 无刷励磁发电机的轴端头是一台交流发电机,其转子是发电绕组,发出的电流通过固定在发电机轴上的导线引导固定在轴上的硅整流管,整流后的直流直接进入转子绕组,其中没有整流刷这个东西,所以成为无刷励磁。曾经风靡过一段时间,但是由于整流管坏了就得停机,所以现在已经用的很少了,基本都采用自复励系统。 同步发电机励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。现说明如下: 1.直流励磁机励磁 直流励磁机通常与同步发电机同轴,采用并励或他励接法。采用他励接法时,励磁机的励磁电流由另一台被称为副励磁机的同轴的直流发电机供给。 2.静止励磁器励磁 同一轴上有3台发电机,即主发电机、交流主励磁机和交流副励磁机。副励磁机的励磁电流开始时由外部直流电源提供,待电压建立起来后再转为自励(有时采用永磁发电机)。副励磁机的输出电流经过静止晶闸管整流器整流后供给主励磁机,而主励磁机的交流输出电流经过静止的三相桥式硅整流器整流后供给主发电机的励磁绕组。 3.旋转整流器励磁 静止整流器的直流输出必须经过电刷和集电环才能输送到旋转的励磁绕组,对于大容量的同步发电机,其励磁电流达到了数千安培,使得集电环严重过热。因此,在大容量的同步发电机中,常采用不需要电刷和集电环的旋转整流器励磁系统。主励磁机是旋转电枢式三相同步发电机,旋转电枢的交流电流经与主轴一起旋转的硅整流器整流后,直接送到主发电机的转子励磁绕组。交流主励磁机的励磁电流由同轴的交流副励磁机经静止的晶闸管整流器整流后供给。用于这种励磁系统取消了集电环和集电装置,故又称为无刷励磁系统。

同步电动机

同步电动机的起动方法设计 摘要:虽然同步电机大部分情况用作发电机。但是在工业生产中有一些大功率的空气压缩机、大型鼓风机、电动发电机组等,这些生产机械本身也没有调节速度的要求。如果用同步电动机去拖动可能更合适。这是因为同步电动机与同容量的异步电动机相比,同步电动机的功率因数髙,还可以通过调节其励磁电流来改善电网的功率因数,因而在不需要调速的低速大功率机械中得到较广泛的应用。随着变频技术的不断发展,同步电动机的起动和调速问题都得到了解决,从而进一步扩大了其应用范围。本文先介绍了同步电机及同步电动机的工作原理,而后分析了调节同步电动机的励磁电流以提高电网功率因数以及异步起动和变频起动。 关键字:同步电机,同步电动机,电网功率因数,励磁电流,异步起动,变频起动 1 同步电机的基本原理 同步电机和感应电机一样是一种常用的交流电机。特点是稳态运行时,转子的转速和电网频率之间有不变的关系n=n s=60f/p,n s称为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。 同步电机分为同步发电机和同步电动机。现代发电厂中的交流电机以同步电机为主。 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。

同步电动机励磁柜操作步骤(精)

同步电动机励磁柜操作步骤 1、合上励磁柜右下角励磁变压器电源开关。 2、合上上下俩触摸屏24V1 24V2电源开关。 3、将主令开关《调零》打向调试位,励磁变压器及励磁装置风机吸合旋转,约20秒后发出投向全压信号《触摸屏左下角开关量输出栏》8秒后误灭磁动作,此时励磁电流表有显示,电流大约160A 左右,紧接励磁电压表有电压显示。 4、将主令开关打向零位,点击触摸屏右下角复位图标,进入将开关量图标点击3秒及故障码清零。 5、将主令开关打向工作位,等待启动同步电动机。 6、当同步电动机起来后,功率因数表有可能显示的是滞后功率因数,急需旋转增磁旋钮来增磁使功率因数在超前0.95运行。 7、运行中若增减负荷,也得增减励磁电流,满足功率因数在超前0.9-0.95之间运行。 8、停机后关掉励磁柜所有电源。 开车前准备 (1首先应建立启机条件,当条件满足之后,方可联系调度、通知电工、仪表工做空投实验。包括主轴承温度高联锁,油压低联锁,油泵自启动,电气柜模拟合闸是否正常,主电机绝缘测试是否正常。(注:此项为每次开车必须要操作的步骤。)。现场检查, 并使仪表, 电器处于备用状态。 (2启机条件包括:循环油压建立、冷却水压建立、盘车手柄处于运行、盘车电机静止、滑环罩风压建立。(主电机允许运行指示灯亮) (3)查各设备, 排放各缓冲器和分离器油水。

(4开冷却水进出总阀, 各冷却器进出水阀, 填料及气缸夹套, 缸盖进出水阀门。检查冷却水流动情况, 确认冷却水压力达到启机要求。 (5启注油器, 检查各注油点注油情况。 (6检查稀油站油位, 油质, 启油泵, 检查油压是否达到开车要求, 观察十字头. 滑道润滑是否正常。停油泵, 将盘车手柄扳到" 盘车" 位置, 启油泵, 注油器, 盘车2到3分钟, 检查运动部件是否正常。停盘车电机, 油泵, 将盘车手柄扳到" 开车" 位置. 启动油泵。 (7启风机, 检查风量是否正常。 (8开合成气一回一, 二回一阀, 循环气回路调节阀(均为全开。 (9微开合成气进气阀及循环气进气阀, 合成气充压至1.0MPa, 循环气充压到3.0--5.0MPa 左右, 分别利用合成气放空阀和循环气放空阀进行放空置换2--3次。置换完成后, 关闭合成气一回一阀, 合成气, 循环气放空阀. 微开合成气及循环气进气阀, 分别充压到 1.0MPa,3.0--5.0MPa 。 氨压机5.2.1开车前的准备 (1通知电工、仪表工到现场检查机电仪泵,是否满足开车条件。 (2巡检检查现场各截止阀、电磁阀、调节器、排污阀等是否满足开车条件。 (3现场检查稀油站、偶合器的油箱油位、油质是否满足开车条件。 (4现场检查机组有无泄漏。 (5合格氮气已供至界区,压力与流量等能满足开车要求。 (6检查冷却水是否供至系统,水路是否畅通。 (7总控检查机组的联锁是否已复位、已解除;温度、振动、位移等是否满足开车条件。

相关文档
最新文档